
Evaluating NUMA-Aware Optimizations for the
Reduce Phase of the Phoenix++ MapReduce

Runtime

A Thesis

submitted to the designated

by the General Assembly

of the Department of Computer Science and Engineering

Examination Committee

by

Anastasios Souris

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

WITH SPECIALIZATION

IN COMPUTER SYSTEMS

University of Ioannina

August 2020

Examining Committee:

• Vassilios V. Dimakopoulos, Assoc. Professor, Department of Computer Science
and Engineering, University of Ioannina (Advisor)

• Aristides Efthymiou, Assist. Professor, Department of Computer Science and
Engineering, University of Ioannina

• Evaggelia Pitoura, Professor, Department of Computer Science and Engineer-
ing, University of Ioannina

Table of Contents

List of Figures iii

Abstract v

Εκτεταμένη Περίληψη vii

1 Introduction 1
1.1 Parallel Systems and Parallel Programming Models 1
1.2 The MapReduce Programming Model 2
1.3 Objectives of this Thesis . 2
1.4 Thesis Organization . 3

2 Background on cc-NUMA Architectures 4
2.1 Optimization Techniques on cc-NUMA Architectures 6

2.1.1 Characteristics of Scheduling Algorithms for NUMA Systems . . 6
2.1.2 Factors Affecting Performance 6
2.1.3 Collecting Metrics . 7
2.1.4 Memory Migration . 8
2.1.5 Thread and Memory Placement 8

3 Background on Phoenix++ 24
3.1 Architecture of The Phoenix++ Runtime System 24
3.2 Writing MapReduce Applications with the Phoenix++ API 27
3.3 The Phoenix++ Reduce Phase Algorithm 32
3.4 Related Work . 33

4 Improving the Reduce Phase of Phoenix++ 35
4.1 Hierarchical Tournament-Based Reduce Agorithms 35

i

4.2 Task Distritbution Policies for the Reduce Phase 38
4.2.1 Thread Mapping Policies . 38
4.2.2 Work Stealing Victim Selection Policies 38
4.2.3 Description of the Task Distribution Policies 39

5 Implementation Details 42
5.1 Topology Related Subsystem . 42
5.2 Task Queue System . 44
5.3 Tournament Vertical Reduce Implementation 45
5.4 Reduce Task Distribution Policies Implementation 45

6 Experimental Evaluation 47
6.1 Machine Description . 47
6.2 Workload Descriptions . 48
6.3 Evaluation Results . 49

6.3.1 Superiority of the Task Distribution Policies over the Tournament-
Based Approaches . 49

6.3.2 Results for parade with 32 GB data size 50
6.3.3 Results for parade with 64 GB data size 55
6.3.4 Results for parallax with 16 GB data size 59
6.3.5 Results for paragon with 4 GB data size 63

7 Conclusions and Future Work 66
7.1 Conclusions . 66
7.2 Future Work . 67

Bibliography 68

ii

List of Figures

2.1 The architecture of a cc-NUMA machine (output given by lstopo) . . . 5

3.1 Memory organization for the global container storing (key,value) pairs.
Each thread ti uses the cells with column index i. A key is stored at
the row specified by its hash value modulo the row size. 33

4.1 The 2-phase horizontal approach to the tournament-based reduce al-
gorithm. In the first phase, we produce 1 reduce task for each row and
for each NUMA node separately. In the second phase, we produce 1
reduce task for each row and all NUMA nodes combined. 36

4.2 The intra-node and inter-node reduction phases of the vertical ap-
proach. Each phase consists of separate executions of a tournament-
based hierarchical reduction with binary fan-out. To begin with, each
NUMA node performs a local reduction and, then, a global reduction
is performed from the winners of each local reduction. 37

6.1 Latency in seconds for the reduce phase for 64 GB data size, Equal
emit filler policy and Equal-Prob Key Filler Policy 50

6.2 Latency in seconds for the reduce phase for 16 GB data size in parallax,
Equal emit filler policy and Equal-Prob Key Filler Policy 50

6.3 Latency in seconds for the reduce phase for 16 GB data size in parallax,
Equal emit filler policy and Disjoint-Subranges Key Filler Policy 51

6.4 Latency in seconds for the reduce phase for 16 GB data size in parallax,
One-Numa-Heavy emit filler policy and Equal-Prob Key Filler Policy . 51

6.5 Latency in seconds for the reduce phase for 32 GB data size, Equal
emit filler policy and Equal-Prob Key Filler Policy 52

iii

6.6 Latency in seconds for the reduce phase for 32 GB data size, Equal
emit filler policy and Disjoint-Subranges Key Filler Policy 53

6.7 Latency in seconds for the reduce phase for 32 GB data size, One-
Numa-Heavy emit filler policy and Equal-Prob Key Filler Policy 54

6.8 Latency in seconds for the reduce phase for 64 GB data size, Equal
emit filler policy and Equal-Prob Key Filler Policy 56

6.9 Latency in seconds for the reduce phase for 64 GB data size, Equal
emit filler policy and Disjoint-Subranges Key Filler Policy 57

6.10 Latency in seconds for the reduce phase for 64 GB data size, One-
Numa-Heavy emit filler policy and Equal-Prob Key Filler Policy 58

6.11 Latency in seconds for the reduce phase for 16 GB data size, Equal
emit filler policy and Equal-Prob Key Filler Policy 60

6.12 Latency in seconds for the reduce phase for 16 GB data size, Equal
emit filler policy and Disjoint-Subranges Key Filler Policy 61

6.13 Latency in seconds for the reduce phase for 64 GB data size, One-
Numa-Heavy emit filler policy and Equal-Prob Key Filler Policy 62

6.14 Latency in seconds for the reduce phase for 4 GB data size, Equal emit
filler policy and Equal-Prob Key Filler Policy 64

6.15 Latency in seconds for the reduce phase for 4 GB data size, Equal emit
filler policy and Disjoint-Subranges Key Filler Policy 65

iv

Abstract

Anastasios Souris, M.Sc. in Computer Science, Department of Computer Science and
Engineering, University of Ioannina, Greece, August 2020.
Evaluating NUMA-Aware Optimizations for the Reduce Phase of the Phoenix++
MapReduce Runtime.
Advisor: Vassilios V. Dimakopoulos, Associate Professor.

MapReduce is a programming model used to process large volumes of data. To
implement an algorithm in the MapReduce programming model we need to provide
two methods called map and reduce. The map function transforms the input to a set
of (key, value) pairs. The reduce function receives as input all values associated with
a key, as they were produced by the map function, aggregates them according to
a user-supplied function and produces a single value as output. Phoenix++ is an
implementation of the MapReduce parallel programming model for shared memory
systems.

In this thesis we evaluate NUMA-aware optimization techniques for the reduce phase
of the Phoenix++ implementation of the MapReduce parallel programming model for
shared memory systems. A NUMA machine is comprised of a set of NUMA nodes
that are linked together with interconnect links. Each NUMA node consists of its
own local memory (i.e DRAM) and a number of CPUs. In this way, a CPU can access
memory in its own NUMA node faster than memory located in other NUMA nodes.

To begin with, we evaluate two sets of methods that are based on the well-known and
historical tournament-based barrier algorithm, whereby we hierarchically reduce the
(key,value) pairs first within NUMA nodes and then among all NUMA nodes. The
second set of methods we evaluate are extensions of the current implementation of the
reduce phase in the Phoenix++ runtime, whereby we implement various reduce task

v

distribution policies that dictate to which thread a reduce task should be executed,
where a reduce task implies the reduction over a specific range of keys. We evaluate
those methods against synthetic workloads and deduce that for the case where the
workload exhibits a specific kind of locality we observe performance advantages of
up to 30.85%.

vi

Ε Π

Αναστάσιος Σουρής, Μ.Δ.Ε. στην Πληροφορική, Τμήμα Μηχανικών Η/Υ και Πληρο-
φορικής, Πανεπιστήμιο Ιωαννίνων, Αύγουστος 2020.
Αξιολόγηση Μεθόδων Βελτιστοποίησης για NUMA Αρχιτεκτονικές Στην Φάση Re-
duce του Μοντέλου Παράλληλου Προγραμματισμού MapReduce Χρησιμοποιώντας
την Υλοποίηση Phoenix++.
Επιβλέπων: Βασίλειος Β. Δημακόπουλος, Αναπληρωτής Καθηγητής.

Το MapReduce είναι ένα μοντέλο προγραμματισμού που χρησιμοποιείται για την
επεξεργασία μεγάλων όγκων δεδομένων. Προκειμένου να προγραμματίσουμε έναν
αλγόριθμο στο μοντέλο προγραμματισμού MapReduce, πρέπει να παρέχουμε δύο
μεθόδους που ονομάζονται map και reduce. Η συνάρτηση map μετατρέπει την είσοδο
σε ένα σύνολο ζευγών (κλειδί, τιμή). Η συνάρτηση reduce λαμβάνει ως είσοδο όλες
τις τιμές που σχετίζονται με ένα κλειδί, όπως παρήχθησαν από τη συνάρτηση map,
τις συγκεντρώνει σύμφωνα με μια συνάρτηση παρεχόμενη απο τον χρήστη και πα-
ράγει μία μόνο τιμή ως έξοδο. Το Phoenix++ είναι μια υλοποίηση του μοντέλου
παράλληλου προγραμματισμού MapReduce για κοινόχρηστα συστήματα μνήμης.

Σε αυτή τη διατριβή αξιολογούμε τις τεχνικές βελτιστοποίησης για αρχιτεκτονικές
NUMA στην φάση μείωσης του Phoenix++ που είναι υλοποίηση του μοντέλου πα-
ράλληλου προγραμματισμού MapReduce για κοινόχρηστα συστήματα μνήμης. Ένα
μηχάνημα NUMA αποτελείται από ένα σύνολο κόμβων NUMA που συνδέονται μαζί
με συνδέσμους διασύνδεσης. Κάθε κόμβος NUMA αποτελείται από τη δική του το-
πική μνήμη (δηλαδή DRAM) και έναν αριθμό CPU. Με αυτόν τον τρόπο, μια CPU
μπορεί να αποκτήσει πρόσβαση στη μνήμη στον δικό της κόμβο NUMA ταχύτερα
από τη μνήμη που βρίσκεται σε άλλους κόμβους NUMA.

Κατ ’αρχάς, αξιολογούμε δύο σύνολα από μεθόδους που βασίζονται στον γνωστό
και ιστορικό ιεραρχικό αλγόριθμο για barriers (tournament barrier algorithm), όπου

vii

μειώνουμε ιεραρχικά τα ζεύγη (κλειδί, τιμή) πρώτα μέσα στους κόμβους NUMA και
μετά μεταξύ όλων των κόμβων NUMA. Το δεύτερο σύνολο μεθόδων που αξιολο-
γούμε είναι οι επεκτάσεις της τρέχουσας εφαρμογής της φάσης μείωσης στο χρόνο
εκτέλεσης του phoenix++, όπου εφαρμόζουμε διάφορες πολιτικές διανομής εργα-
σιών reduce που υπαγορεύουν σε ποιο νήμα πρέπει να εκτελεστεί μια εργασία
reduce, όπου μια εργασία reduce συνεπάγεται τη μείωση σε ένα συγκεκριμένο εύ-
ρος κλειδιών. Αξιολογούμε αυτές τις μεθόδους έναντι συνθετικών φορτίων εργασίας
και συμπεραίνουμε ότι στην περίπτωση όπου ο φόρτος εργασίας εμφανίζει ένα συ-
γκεκριμένο είδος locality παρατηρούμε πλεονεκτήματα απόδοσης έως και 30,85%.

viii

Chapter 1

Introduction

1.1 Parallel Systems and Parallel Programming Models

1.2 The MapReduce Programming Model

1.3 Objectives of this Thesis

1.4 Thesis Organization

1.1 Parallel Systems and Parallel Programming Models

Parallel systems are systems that are comprised of many computational units that
work in unison in order to solve a computational task. In this thesis we are con-
cerned with shared-memory cc-NUMA parallel architectures. These architectures are
comprised of multiple processor interconnected by a network interconnect, each of
which is a multi-core processor comprised of multiple cores each of which may or
may not be multithreaded. The main memory in such a parallel system is shared be-
tween all processing units in a single address space and because the main memory is
not accessed with equal latency and bandwidth from all processing units we call this
architecture non-uniform memory access. This happens because each NUMA node
is equipped with its own RAM module and a processing unit accessing memory that
does not belong to its own NUMA node has to traverse the interconnection network
to reach the destination memory module. Furthermore, in a cc-NUMA architecture
(i.e cache-coherent NUMA architecture) each processor as a cache hierarchy typically

1

comprised of 1 or 2 levels of private caches followed by 1 level of a larger shared
cache. A parallel programming model is a paradigm used to program algorithms on
various parallel architectures. An important feature of a parallel programming model
is its ability to perform optimally on a wide range of different parallel architectures.
Popular parallel programming models that have shown to exhibit these virtues are
the task/dataflow model and the MapReduce model. In this thesis we are concerned
with the MapReduce parallel programming model.

1.2 The MapReduce Programming Model

MapReduce is a programming model used to process large volumes of data. To
implement an algorithm in the MapReduce programming model we need to provide
two methods called map and reduce.

Map The map function transforms the input to a set of (key, value) pairs.

Reduce The reduce function receives as input all values associated with a key, as
they were produced by the map function, aggregates them according to a user-
supplied function and produces a single value as output.

To illustrate the MapReduce model we are going to use the popular word count appli-
cation. Our goal is to process an input document and output the number of items
each distinct word appears in that document. The map function receives a portion of
the input document, splits it into its constituent words, and for each word emits a
(key, value) pair where the key is the word itself and the value is the number 1. The
reduce function takes as input all values produced for one key, that is for one word.
By summing those values, which are all equal to 1 according to the map function, we
get the number of occurrences of that word in the input document.

A MapReduce application may optionally include a merge phase after the map and
reduce stages have finished. In the merge phase, the output of the reduce stage is sorted
by value. In our word count example, if we sort the output by value, that is by number
of occurrences, in decreasing order, we can easily get the top-K occurring words in
the input document.

2

1.3 Objectives of this Thesis

In this thesis we aim to improve the performance of the reduce phase for the
Phoenix++ runtime on cc-NUMA architectures. We evaluate two sets of methods
that are based on the well-known and historical tournament-based barrier algorithm,
whereby we hierarchically reduce the (key,value) pairs first within NUMA nodes and
then among all NUMA nodes. The second set of methods we evaluate are exten-
sions of the current implementation of the reduce phase in the Phoenix++ runtime,
whereby we implement various reduce task distribution policies that dictate to which
thread a reduce task should be executed, where a reduce task implies the reduction
over a specific range of keys. We evaluate those methods against synthetic workloads
and deduce that for the case where the workload exhibits a specific kind of locality
we observe performance advantages of up to 30.85%.

1.4 Thesis Organization

This thesis consists of the following chapters:

Introduction This chapter.

Background on cc-NUMA Architectures This chapter provides a background on
the characteristics of cc-NUMA Architectures, how they affect performance and
optimization techniques for dealing with them.

Background on Phoenix++ This chapter provides a background on the Map/Reduce
programming model and on the structure and architecture of the phoenix++
implementation.

Improving the Reduce Phase of Phoenix++ This chapter describes two sets of al-
gorithms that are evaluated for the reduce phase of Phoenix++. The first set
of methods rely on the hierarchical algorithms for the reduce phase and the
second set of methods are task distribution policies for the reduce phase.

Implementation Details This chapter provides some details on the modifications and
additions made to the phoenix++ runtime for the purpose of this thesis.

3

Experimental Evaluation Lastly, this chapter provides the results from the experi-
ments as well as conclusions and future work.

Conclusions and Future Work This chapter concludes this thesis.

4

Chapter 2

Background on cc-NUMA Architectures

2.1 Optimization Techniques on cc-NUMA Architectures

In a Non-Uniform Memory Architecture (NUMA) system, the machine is comprised
of a set of NUMA nodes that are linked together with interconnect links. Each NUMA
node consists of its own local memory (i.e DRAM) and a number of CPUs. In this
way, a CPU can access memory in its own NUMA node faster than memory located in
other NUMA nodes. Moreoever, in a cache-coherent NUMA system (cc-NUMA) the
system maintains coherence between its caches among the NUMA nodes. An example
cc-NUMA system is showcased in figure 2.1. This system consists of 4 NUMA nodes
each of which contains 6 cores for a total of 24 cores. Each NUMA node contains
approximately 4GB RAM for a total of 16 GB of RAM. All cores within a NUMA
node share approximately 5MB of L3 cache. The NUMA nodes are connected via
direct bidirectional interconnection links.

5

Figure 2.1: The architecture of a cc-NUMA machine (output given by lstopo)

6

2.1 Optimization Techniques on cc-NUMA Architectures

The problem of scheduling multi-programmed workloads in NUMA architectures is
of particular interest due to the idiosyncrasies of the architecture. Early solutions to
this problem considered data locality as the optimizing goal for NUMA architectures.
The intuition is that since a CPU can access memory faster in its local NUMA node,
then it is best to schedule a process in the NUMA node that contains its memory.
However, in Blagodurov et al. [2011] they have shown experimentally that data lo-
cality may even hurt performance in NUMA architectures, and therefore a new line of
research has emerged that aims to design and implement new scheduling algorithms
for NUMA systems.

2.1.1 Characteristics of Scheduling Algorithms for NUMA Systems

In order to design a scheduling algorithm for NUMA systems, one must take into
consideration the following issues:

• Relative Placement of Threads and Memory

• Thread Migration

• Memory Migration

• Data Sharing

• Resource Contention

• Asymmetry

• Process Metrics Measurement

2.1.2 Factors Affecting Performance

Starting with a deep experimental analysis in Blagodurov et al. [2011], one wit-
nesses the results of resource contention in the performance of schedules. The sources
of resource contention addressed in Blagodurov et al. [2011] are (1) contention for
the shared last-level cache, (2) contention for the memory controller, (3) contention
for the inter-domain interconnect and, finally, (4) remote access latency. Contrary to
schedules optimized for data locality and, hence, minimizing remote access latency,

7

the authors in Blagodurov et al. [2011] show that the order of importance for the
sources of contention as far as performance degradation is concerned, is (1) con-
tention for the memory controller, (2) contention for the inter-domain interconnect,
(3) remote access latency and, lastly, (4) contention for the shared last-level cache.
In Lepers et al. [2015], it is shown that the asymmetry in the architecture of a NUMA
system also influences the performance of a scheduler, and, hence, must be taken
into consideration when deciding the placement of threads. In particular, in a NUMA
system (1) links can have different bandwidths, (2) links can send data transfer in
one direction than in the other, (3) links can be used only by a subset of the nodes,
and, finally, (4) links can be either bidirectional or unidirectional. Last but not least,
data sharing also affects the choice of thread placement. As pointed out in Srikanthan
et al. [2015] threads that share data and are not scheduled in the same CPU cause
increased contention in the inter-domain interconnect and the local cache controllers
due to increased cache-coherence traffic.

2.1.3 Collecting Metrics

In order to quantify the degree of resource contention and data sharing, a scheduler
needs to collect metrics on the behaviour of an application. Approaches here differ
on the how fine-grained these measurements are. In Blagodurov et al. [2011] they
use a rather simple inference prediction heuristic for resource contention, which is
the cache-miss rate heuristic, stating that if two threads in one CPU both have high
cache-miss rates then they probably interfere for shared resources and, hence, should
be scheduled in different domains. Other schedulers take into consideration which
CPUs are communicating with each other. In Lepers et al. [2015], they collect CPU-
to-CPU communication using hardware counters that measures both cache-coherence
and memory traffic from one CPU to another. In Srikanthan et al. [2015] they use a
more fine-grained approach, whereby they are able to separate traffic due to cache-
coherence protocols and traffic due to memory accesses. Finally, for memory migra-
tion one needs to identify which memory pages one thread accesses. To that end,
in Blagodurov et al. [2011], Dashti et al. [2013] they use instruction-based sam-
pling, a technique that samples instructions and filters those that are remote memory
accesses.

8

2.1.4 Memory Migration

The schedulers in Blagodurov et al. [2011], Dashti et al. [2013], Lepers et al. [2015]
always migrate the memory together with migrating a thread. This happens by using
instruction-based sampling and capturing remote memory references. When a remote
memory reference is encountered then the corresponding memory page, as well as
some close-by memory pages, are migrated to the issuing NUMA node. In Lepers et al.
[2015], they also perform a full memory migration when the above approach doesn’t
reduce the amount of remote memory references, which means that all memory pages
of the application are moved.

2.1.5 Thread and Memory Placement

Algorithms for scheduling on NUMA systems, broadly speaking can be classified in
three major categories: (1) those that migrate memory towards the thread that accesses
that memory, (2) those that migrate a thread towards the memory it accesses, and
(3) those that employ a hybrid approach utilizing both solutions.
The aim of these schedulers is to reduce resource contention and co-locate data-

sharing threads as long as it doesn’t increase resource contention. DINO recognizes
threads that are competing for resources inside a CPU and then migrates threads so as
to co-schedule threads with a high resource consumption with threads that have low
resource consumption. When migrating a thread, DINO also employs a mechanism for
memory migration in order to avoid the disadvantages of NUMA-agnostic migrations.
To account for data sharing, DINO uses a heuristic to co-locate threads of the same
application that may share data. Carrefour only deals with memory placement and
assumes a thread placement mechanism that co-locates data-sharing threads as long
as they do not put pressure on the shared resources and puts bandwidth hungry
threads on separate sockets. Then, Carrefour attempts to place memory in an optimal
position by utilizing three mechanisms: (1) page co-location that places the memory
page together with the threads that access this page so as to avoid contention on the
inter-domain interconnect and remote memory references, (2) page interleaving that
attempts to equalize the pressure on the local memory controllers across the NUMA
nodes, and (3) page replication that replicates a memory page to the NUMA nodes
from which it is accessed in order to eliminate memory controller and inter-domain
interconnect contention. AsymSched attempts to find a subset of the NUMA nodes that

9

provides the highest bandwidth to the cluster of threads that require high bandwidth.
SAM attempts to co-locate data sharing threads by monitoring inter-socket coherence
traffic and migrates threads that put pressure on the local bandwidth consumption
to another socket in order to reduce the pressure.
In Srikanthan et al. [2016], the authors extend the SAM algorithm described in

Srikanthan et al. [2015] in order to, first, take into consideration latency tolerance for
tasks with high inter-socket coherence activity, and, secondly, to make better mapping
decisions on hyperthreads. The latency tolerance of a pair of tasks is their ability to hide
their communication latency and is quantified by the per-task IPC of that pair of tasks,
because a high per-task IPC results in more potential of instruction interleaving in-
between successive communication and cache coherence events. Consequently, SAM is
extended to prefer co-locating pairs of tasks with lower latency tolerance. To measure
the latency tolerance, SAM monitors for each task its IPC and SPC which stands for
stalls per inter-socket coherence event. Through extended experimentation, the authors
concluded that when the SPC value is high enough it can be used by itself as an
indicator of latency tolerance. For low to moderate value sof SPC, however, we need to
examine the IPC of each task to determine the latency tolerance of the pair. Specifically,
higher IPC indicates better latency tolerance for reasons described previously.
In addition to that, after SAM has identified a pair of tasks to co-locate by taking

into consideration inter-socket coherence traffic and latency tolerance, then it needs to
decide whether to schedule those tasks on the same core as hyperthreads, on distinct
cores on the same socket or even not to co-locate them at all. The benefit of hyper-
threads is that they share the private caches and their disadvantage is that they share
functional units. We consider two cases. The first case is about non latency tolerant
tasks. Those tasks where categorized as such because they do not have sufficient ILP
to mask the latency of communication/coherence events. Therefore, these tasks do not
require exclusive use of the core’s functional units and would benefit from the fast
communication through the core’s private caches. The second case is about latency
tolerant tasks. Those tasks have sufficient ILP which means that they make heavy
usage of a core’s functional resources. Consequently, we need to place those tasks
either on distinct cores on the same socket or even to distribute them on different
sockets in case of a high latency tolerance value.

In Popov et al. [2019] stress the importance of co-optimizing the following aspects of

10

executing a parallel application on a parallel architecture:

Thread Mapping How are threads mapped to the target architecture. The threads
could be scattered across the available sockets, compacted or mapping according to
a contiguous policy. The difference between the compact and contiguous policies
is that compact first fills one numa node before proceeding to the next, whereas
a compact policy evenly spreads the threads across the numa domains.

Page Mapping How are pages mapped, i.e according to a first-touch policy , according
to a locality policy whereby pages are mapped to the NUMA domain from which
most accesses to that page occur, according to a balance policy such that pages
are scattered across the NUMA domains so that each NUMA domain receives
an almost equal share of the total memory traffic, or according to a mixed policy
that tries to optimize for both locality and balance.

Numa Node Degree How many of the NUMA nodes should be used.

Degree of Parallelism This involves choosing how many threads to use for the ap-
plication.

However, optimizing simultaneously for all of those 4 criteria results in a extremely
large search space. To reduce the search space, the authors employ the following two
strategies. To begin with, instead of executing the whole application, the framework
extracts and executes specific codelets that are representative of the application (the
authors observe that almost all applications consist of phases of executions and each
phase basically consists of a single kernel – called codelet, which is repeatedly ex-
ecuted). One specific codelet will have to be executed under various configurations
from the search space so that an optimal solution is found. Henceforth, for one codelet,
the framework extracts its input working set as well as the NUMA first-touch based
page mapping of its input working set so that the codelet can be replayed. This is
achieved using the codelet extractor and replayer (CERE) framework that uses ptrace
to capture memory accesses.
The next step is to executing each codelet under various configuration of the 4

criteria above. For each codelet, its input working set is laoded and the captured page
mapping is applied. The codelet is executed once to warm the cache, and then mul-
tiple times to derive a median execution time. Even though the framework executes
individual codelets and not the whole application and, therefore, we already have

11

a substantial decrease in search time, the possible configurations of those 4 criteria
above still result in a very large search space which the framework must prune. The
search space per each of the aforementioned criteria is:

Thread Mapping This involves choosing number of NUMA nodes (called thread
NUMA degree TND) and how threads are mapped to the available units (called
thread placement policy TPP) for which the scatter and contiguous policies are
considered.

Page Mapping This involves choosing the page numa degree PDN which specifies
how many of the numa nodes to use for page mapping, as well as the page
placement policy PPP for which the first-touch, locality, balance and mix policies
are considered.

Degree of Parallelism This involves choosing how many threads to use for the ap-
plication.

To reduce the search space, the framework performs the following simple search
space pruning phase:

• Only one thread placement policy is evaluated whenever the number of numa
nodes used is either 1 or larger or equal to the number of threads used. That
is because in that case, both scatter and contiguous policies are equivalent.

• Locality and first-touch page placement policies are evaluated only when the
thread numa degree is the same as the page numa degree.

• For all configurations, the number of threads considered is always larger or
equal than the number of numa nodes and less than or equal to the total
available cores for those numa nodes.

A large overhead incurred by the framework when applying page placement poli-
cies like locality or balance, is the monitoring of how threads access the pages. To
reduce this overhead, the framework captures this information only once when the
codelet is captured before being replayed. The last step in their framework consists of
application-wide optimization. By optimizing each codelet separately, the framework
optimizes execution per region. However, one region may affect another region, for
instance, if the page mapping for one region as produced by the optimal solution

12

of it’s codelet search space exploration phase is different from that used by the next
region that would result in costly page migrations for the next region. The framework
proposes this solution: If for two consecutive regions A and B we have found two
optimal configurations Ca and Cb, respectively, and regions A and B share pages or
threads (which is identified by the memory accesses collected by the codelet’s exe-
cution), then we choose whichever of Ca or Cb results in the best execution for both
regions.

In Muddukrishna et al. [2016] the authors place emphasis on the fact that for maximal
efficiency on NUMA systems besides load balancing we need to focus on minimizing
memory access costs albeit in a portable manner that is agnostic to the details of
the underlying NUMA architecture. Such an approach can be utitlized by both ex-
perienced and non-experienced programmers and is integrated by the authors in the
user-friendly OpenMP programming model. To handle data distribution the authors
propose that the programmer uses a memory allocation function that receives a policy
as an extra argument. Three policies are suggested: The first is called standard and
just uses the OS memory allocation policy. The second is called fine and splits the
memory being allocated into units and distributes these units in a round-robin fash-
ion across all NUMA domains. The last policy is called coarse and places the memory
being allocated whole in a single NUMA domain, but each time memory is allocated
using the coarse policy a different NUMA domain is selected in a round-robin fash-
ion for that memory to be allocated at. The fine policy is suggested to be used in
applications where we allocate the data once and then we instantiate multiple tasks
that operate on that data. If we were allocating the data on a single NUMA donain,
then we would suffer from traffic congestion from all those tasks trying to access
that data. Instead, we use the fine policy and distribute the data across the NUMA
domains which means that memory traffic produced by the tasks accessing that data
is also distributed among the memory controllers. In case the data is allocated by
many tasks then the authors propose using the coarse policy regardless of the number
of tasks accessing each data allocated. In case of one task accessing each data, a coarse
policy assures that each task accesses its data in a separate NUMA domain from other
tasks and hence we utilize the available bandwidth better. The same is true in the
case where multiple tasks access the same data with the hypothesis that each task
accesses only one allocation, cause otherwise one task would require bandwidth from

13

multiple NUMA domains. Assuming that the programmer has chosen the memory
policies per allocation optimally, we can enhance load-balancing strategies in order
to better schedule tasks by minimize memory access latencies. In order to do that,
the authors introduce a task queue exists per NUMA domain. It is also assumed that
the programmer provides the task footprint of the task which consists of a description
of the data the task accesses. Load-balancing is treated in two phases: In the fist
phase, we have work-dealing where the initial placement of a task is decided during
its creation. Utilizing the memory footprint of the task, we calculate the number of
bytes accessed by the task from each NUMA domain. Then the task is enqueued in
the queue of the NUMA domain from which it will incur the least access cost to its
memory. To avoid having the scheduling costs outweight the benefit of placing the
task in that queue, two heuristics are used whereby the task is immediately placed in
the queue of the thread making the decision. The first heuristic tests for the memory
footprint of the task being less that a threshold in which case making memory op-
timizations is pointless. The second heuristic tests that the memory footprint of the
task is not perfectly distributed among the NUMA domains because then regardless
of the NUMA node in which we place it, the task would incur the same memory
access costs. In the second phase, we have work-stealing that occurs whenever threads
have no more work in the local queue. In that case, a thread attempts to steal from
NUMA nodes in increasing distance order with the exception that if the remote target
queue is nearly empty that NUMA node is skipped and the stealing thread continues
its stealing attempts with the next NUMA node in order.

In Drebes et al. [2016] the authors present the enhanced work-pushing and deferred
allocation techniques, in order to distribute data across memory controllers to avoid
contention, and keep memory accesses local in order to reduce remote memory ref-
erences. Consider a task t that has input dependencies on n input buffers I0, . . . , In−1

and output dependencies on m output buffers O0, . . . , Om−1. Enhanced work pushing
attempts to optimize the data locality of the task by placing the task on the NUMA
node from where its access cost in terms of remote versus local memory references
to its input and output buffers is minimized. To that end, we first determine whether
we want to consider only the input buffers, only the output buffers or both (input-
only, output-only or input-output policy). Then, for each buffer we are interested in,
we add its size in bytes multiplied by a weight to the total number of bytes accessed

14

by the task for the NUMA node where the buffer is allocated. The weight is defined
to distinguish between reads and writes since their cost typically differs. At the end,
for each NUMA node Ni we estimate the access cost of the task if we place it in
Ni by adding up the access cost from Ni to each other NUMA node Nj (i.e multi-
ply the average access cost between Ni and Nj by the weighted number of bytes in
Nj accessed by the task) and we choose the NUMA node with the minimum such
cost. Observe that this technique tries to optimize only for data locality and not for
memory contention. That is, it is assumed that there already exists a good enough
data distribution. However, the authors suggest that data distribution should be done
automatically by the runtime system because manual data distribution in a parallel
control program is error prone and not portable performance-wise between different
NUMA architectures. For this reason, they suggest the deferred allocation technique.
Since by the work-stealing principle we know that tasks are fairly distributed among
the NUMA nodes, if we use the policy that each task allocates its output buffers locally
in the NUMA node where it executes, then we also have a fairly good distribution
of the buffers among the NUMA nodes. Note that we also gain in data locality since
all writes of the task are to local output buffers. Last but not least, since deferred
allocation guarantees local writes for the task, we use the enhanced work pushing
technique with the input-only policy.

In Virouleau et al. [2016], the authors aim at improving performance of OpenMP
applications written with task dependencies on NUMA systems by exploiting (1) how
data distribution occurs, (2) the assignment of ready tasks to the processors and (3)
how load balancing is performed with respect to the topology of the NUMA system.
They rely their work on the XKAAPI runtime system which is a work-stealing based
task execution runtime. To abstract the NUMA system, XKAAPI uses the notion of
places. A place is a list of tasks associated with a subset of the system’s processing
units. The following scheduler’s actions are configurable: selecting a victim which is
abstracted by the method Wsselect which is called whenever an idle worker needs
to steal a ready task from some place, selecting a place to push a ready task which
happens whenever the execution of one task enables its children which now become
ready for execution and need to be put in some place and is abstracted by the method
WSpush, and pushing a set of initial ready tasks using the method Wspush_init. To
begin with, we need to distribute the sources of the dependency graph. To mitigate

15

congestion on the bandwidth of NUMA nodes, the authors propose the cyclicnuma
strategy whereby the initial tasks are distributed in a round-robin fashion around
the NUMA nodes and the randnuma strategy whereby the initial tasks are distributed
randomly around the numa nodes. The Wsselect strategy can be chosen from one of
the following ones: sProcNuma, sNumaProc, sProc, sNuma. In more detail, sProcNuma
dictates that a thief first tries to steal from the places of the processors of its local
NUMA node, then from the place of its local NUMA node and if that fails it continues
in the same manner with a randomly selected remote node. The sNumaProc strategy
is similar to the sProcNuma strategy with the difference that the thief will first try to
steal from the place of the NUMA node and then from the places of its processors.
The sProc strategy ditcates that the thief will only look at the places of the proces-
sors of its local NUMA node and then at the place of its local NUMA node. With
the sNuma strategy the thief will visit only the places of NUMA nodes and not the
places of the processors contained within each NUMA node. When a task becomes
ready the Wspush strategy needs to decide to which place to push that task. Two of
the strategies ignore data dependencies completely and just push the task either to
the place of the processor (pLoc strategy) or to the place of the NUMA node (pLoc-
Num strategy) where the processor that executes the Wspush method resides. The
other methods attempt at exploiting the data dependencies of the task. The first one,
pNumaW, pushes the task at the place of the NUMA node where most of its output
data is allocated. The last strategy, pNumaWLoc, is similar to the pNumaW with the
difference that if the chosen NUMA node where the task is pushed is the one where
the processor that executes the Wspush method resides, we push the task to the place
of that processor instead. In their evaluation they concluded the following facts: (1)
regardless of theWsselect andWspush strategies selected the cyclicnuma strategy works
best. (2) Restricting a task to only the node where its output data resides and not
allowing it to be stolen hurts performance. For example, if most of the tasks write the
same set of data then all those tasks will occupy a subset of the processors whereas
the rest of the processor will remain idle. (3) The sNumaProc + pNumaWloc combina-
tion seems to work best followed closely by the sProcNuma + pNumaWloc combination.

In Chen and Guo [2015] the authors target iterate divide-and-conquer applications
that have tree-shaped execution DAGs. Their aim is to solve two problems with ran-
domized work stealing: (1) Tasks perform remote memory accesses because their

16

assigned to random sockets, and (2) the shared caches are not utilized efficiently.
LAWS is an algorithm that comprises of three subsystems: The load-balanced task al-
locator, the adaptive dag packer and the triple-level work-stealing scheduler. As far as the
load-balanced task allocator is concerned, its purpose is to distribute the data set
and the tasks of the applications evenly among the available sockets. The assumption
made is that a task divides its data set evenly among its children according to its
branching degree. Assuming that the data region accessed by all the tasks is [0, D)

then, based on our assumption, we can determine for each task the data region it
will access based on the data region of its parent and its parent’s branching degree.
Moreover, due to the assumption that the amount of data coincides with processing
requirements, if we assume that we have M sockets then we want to evenly distribute
the data region [0, D) to all sockets. Therefore, each socket I , 1 <= I <= M , will
receive a portion of the data region [0, D) described as [(i− 1)D/M, i(D/M)). When
we spawn a task we know its data region and hence can determine to which socket
we should schedule that task. This mapping computation is deterministic across iter-
ations and, consequently, a task will be assigned to the same socket each time. This
results in the task accessing from its local memory node and not from a remote node.
This is true because at the first iteration when a task is assigned to a socket it will be
executed there (i.e work-stealing is disabled) and due to the first-touch policy its data
region will be allocated on that socket. Regarding the adaptive dag packer, after we
have chosen which tasks to execute in each socket we want to optimize shared cache
usage for each socket. The rationale is to group the tasks assigned to each socket into
CF subtrees where a CF subtree denotes a group of tasks whose combined data fits
in the shared cache of the socket and, therefore, should be executed in isolation in
that socket. So, the CF subtrees are executed sequentially in each socket and each CF
subtree within the socket is executed in parallel. The problem is how to find the CF
subtrees. To do that, LAWS performs the first iteration to estimate the shared cache
size required by each task (note that we consider the subtree rooted at that task).
Then, a task becomes a CF subtree root if its shared cache size fits in the shared
cache of the socket and its parent’s doesn’t. The authors explain two drawbacks in
their method of estimating the shared cache size required by a task which results in
suboptimal CF subtrees. For that reason, in later iterations LAWS attempts to alter
the CF subtrees root assignment in order to find the optimal one. The authors make
the following observation: Both too large and too small CF subtree sizes result in

17

worse execution times. The optimal solution is somewhere in between. Therefore,
LAWS starts by evaluating smaller CF subtree sizes. If execution times get better then
the original CF subtree sizes were too large and, as a result, LAWS need to keep de-
creasing the subtree sizes until an optional one is found. Otherwise, the original CF
subtree sizes were too small and LAWS, instead, increases the CF subtree sizes. Last
but not least, the triple-level work-stealing scheduler has a pool of CF subtree roots
for each socket that they execute sequentially. After a CF subtree has been taken from
the pool, the cores in the socket use classic work-stealing to execute the assigned CF
subtree. When execution of that subtree has finished an assigned head core for the
socket fetches the next available CF subtree from the socket’s pool or if none exists
it attempts to steal a CF subtree from another socket’s pool.

In Majo and Gross [2017] the authors describe how to expose to the application pro-
grammers NUMA-aware optimizations that are portable among different architectures
and composable, meaning that the application is composed of multiple independent
parallel software libraries. The authors implement their ideas as extensions to the
popular TBB platform named TBB-NUMA. To begin with, the platform is made
aware of different concurrently executing runtimes by providing them with threads.
TBB-NUMA provides a Resource Management Layer that distributes available threads
between co-running threads schedulers so that each thread scheduler gets approxi-
mately an equal number of threads from each available processor. The reason behind
this decision is to make available all of the system’s resources like bandwidth to
each registered task scheduler. Furthermore, to become NUMA-aware TBB-NUMA
assigns a mailbox to each NUMA domain. Then, the application programmer can spec-
ify affinities for a task to a specific NUMA domain by associating the task with the
mailbox of that NUMA domain. Since it suffices for any thread assigned to the NUMA
domain of the mailbox to execute that task for it to avoid remote memory references,
in TBB-NUMA a thread looks for work in the mailbox assigned to its NUMA domain.
With respect to mailboxes, TBB-NUMA provides some more optimizations. A task is
present both in the local deque of the thread that spawned it and in the mailbox to
which it has affinity to. Therefore, if the task gets stolen from the private dequeue of
the thread before it gets retrieved from the mailbox it may not execute in the desired
NUMA domain and hence experience remote memory references. A similar scenario
occurs if the thread that spawned the task retrieves it from its local dequeue. TBB-

18

NUMA deals with these issues by having threads assess whether a given task is likely
to be picked up soon from its mailbox before trying to steal it. Moreover, to avoid
having the thread that spawned the task to retrieve it from its local deque before it
gets retrieved from its mailbox, TBB-NUMA employs two heuristics. The first heuris-
tic dictates that when a task submits children tasks for execution it should do so in
an order such that tasks with affinity to the current NUMA domain are submitted last
and those that have affinities to a different NUMA domain should be submitted first.
In that way, when the thread retrieves from its local deque it will first take tasks with
affinity from the local NUMA domain and later tasks that have affinity to a distant
mailbox are more likely to be picked up at their destination. This heuristic however
does not work in cases where a task submits only one task for execution that has
affinity to a distant mailbox. In that cases, TBB-NUMA suggests that the programmer
detaches the spawned task from its parent which basically means that the spawned
task is not inserted in the thread’s local dequeue but only in the processor it has
affinity to. This does not mean, however, that the task is inserted only to the mailbox
of the NUMA domain of the destination processor. That is, because due to the fact
that the task scheduler gets assigned different number of threads each time it may be
the case that the NUMA domain of the destination mailbox has no thread assigned
to and therefore the task is never picked up from the mailbox. To resolve this issue,
TBB-NUMA assigns a shared queue for each NUMA domain. The detached task is
enqueued to the shared queue of the destination processor.

In Anbar et al. [2016] the authors propose PHLAME which is an execution model
that is able to take advantage of the hierarchical locality in architectures with deep
memory hierarchies. PHLAME relies on a locality-aware programming model mean-
ing that the programmer is responsible for annotating in some way the data that
each task/thread or activity touches. The experiments performed in their paper rely
on PGAS and MPI programming models. Then, PHLAME is responsible for co-
locating those tasks with the data they touch and, moreover, to distance every pair
of activities accordingly to their degree of interaction. To decide on a best mapping
strategy, PHLAME uses offline profiling. To characterize the architecture, PHLAME
discovers its levels (i.e cores, dies, sockets, nodes, blades, chassis, cabinet etc) and the
cost of transferring a message of size L between entities of the same level, for each
level of the machine and for various message sizes L. This profiling stage needs to be

19

performed only once for each machine architecture. Then, for a given application and
input profile, PHLAME performs an application profiling stage whereby for each pair
of activities Xi and Xj the average message size and number of messages exchanged
between those two activities are computed (this occurs for different bin sizes, i.e if bin
0 holds message sizes between 1 and 63 bytes then a message of size 1 <= k <= 63

is counted for in bin 0, and similarly for bin 1 with message sizes of 64 bytes to 255
bytes etc). The first step to deciding a mapping for the threads, is to find a metric
that characterizes the benefit of placing two tasks at a specific distance from each
other. PHLAME calls this metric FIT. First, we compute for each pair of tasks Xi

and Xj what communication cost would they incur if placed at some level for each
level (i.e if placed in the same core, in the same socket, in the same numa node etc).
This cost can be computed because from the application profiling phase PHLAME
knows the amount of communication between every pair of activities. The fitness
metric FIT for the pair of activities Xi and Xj and a particular level L, is computed
as the sum for each other level L’! = L of the difference of the cost of placing Xi

and Xj at level L’ and the cost of placing Xi and Xj at level L. Intuitively, the larger
this metric the better level L is suited for activities Xi and Xj because the individual
differences would be larger which means that placing Xi and Xj at a different level
L’ would incur larger cost. To produce hierarchical mappings, PHLAME follows 2
steps. In the first step a set of mappings is generated based on either bottom-up or
top-down clustering approaches. Then, the PHAST algorithm chooses from among
those mappings the one with the minimum total communication cost, where the total
communication cost is the sum of the communication cost for each pair of activities Xi

and Xj if placed at the level imposed by that mapping. Both clustering based meth-
ods model the execution as a graph where each vertex is a task and an edge between
two tasks denotes their communication cost, which is known from the application
profiling stage. A bottom-up based clustering algorithm works as follows: At the first
iteration each task is placed in its own cluster. Then, groupings are made from those
clusters based on the FIT metric. This means that tasks whose FIT metric is higher
should be placed in the same cluster because they would benefit from being placed
in the same level. For the new groups that have been computed, we re-compute their
communication costs and their FIT metrics (as aggregates of their members) and
then continue until we are left with one large group. Last but not least, a top-down
clustering algorithm works as follows: We start with all tasks as a single group and

20

then split them into separate groups. We should split tasks that will not benefit from
being placed together at that level, and hence the splitting phase puts priority to the
pairs with the lowest fitness values. This process continues until we reach partitions
of size 1.

The purpose of Tumbler described in Pusukuri et al. [2015] is to evenly balance
load of threads across CPU sockets not based on the common heuristics employed
by OS scheduler they compared against that rely on the number of threads. If two
sockets have assigned the same number of threads this doesn’t mean that the load
imposed by their assigned threads will be the same, which almost certainly leads to
performance degradation. Number of threads as an indicator to load balance across
CPU sockets is poor because first, threads may perform different functionality and
thus require different amounts of CPU resources (i.e consider the different stages of
a pipeline application), secondly even if we are considering identical threads they
may have been assigned different amounts of input to process, and, lastly, threads
that communicate via locking may result in different loads to their CPUs due to lock
contention that results in increased lock waiting times. Thus, Tumbler by evenly bal-
ancing load across CPU sockets attempts to minimize CPU idle times and improve
performance. Tumbler periodically, after a grouping interval, examines the CPU load
imposed by each thread, which is approximated by the sum of user percentage and
kernel percentage time for that thread divided by the grouping interval time, sorts
the threads in increasing load and divides them in as many groups as there are CPU
sockets in a round-robin fashion. This results in an almost even distribution of cu-
mulative load across the CPU sockets. Then, Tumbler performs the necessary thread
migrations so that each group of threads is scheduled to its CPU socket leaving the OS
scheduler the flexibility to load balance the group’s threads within the CPU socket.
To accommodate high lock contention scenarios where the load of threads changes
frequently, Tumbler must adapt the grouping interval so that it reacts faster to ap-
plication’s phase changes. To do that, Tumbler keeps track of the variation of CPU
variation and accordingly selects a grouping interval, i.e high variation in CPU uti-
lization may imply high lock contention and, consequently, Tumbler needs to perform
grouping and thread migrations more frequently.

In Jeannot et al. [2014] the authors present the TreeMatch algorithm that is used

21

to map processes to processing units in such a way that the communication profile
of the application and the topology of the machine is taken into consideration. To
begin with, TreeMatch profiles the application in order to collect its communication
profile that consists of the following metrics for each pair of processes: (1) the number
of messages exchanged, (2) the total amount of communication and (3) the average
size of the messages exchanged between them. The drawback of this approach is
that it isn’t suitable for applications whose communication profile varies during their
execution and also the profiling phase needs to be executed each time parameters
such as number of processes or input data size change. Next, the topology of the
machine is abstracted using the hwloc library in a tree. Last but not least, TreeMatch
computes the placement of the processes, that is to which processing unit each will
bind to. In this last phase, TreeMatch iteratively calculates how to group the processes
for each level of the topology. The high level idea is the following: At each level of
the topology we group the processes taking into consideration their communication
profile into groups of size that is determined by the arity of the nodes in the next
level of the topology. For example, in the level of cores the next level could be the
level of shared caches and if the arity of that level was 4, meaning that each cache is
shared by 4 cores then we would make groups of size 4. The calculated groups for
the current level become virtual processes that are used for the next level. So in the
next level we would have virtual processes each of which is a group of processes that
was computed in the previous level and whose communication profile is the sum
of the communication profiles of its constituent processes. The iterations continue
until we compute a single group for the first level of the topology. The important
thing is how groups are formed. To from the groups of size k for a particular level,
we form a graph where each vertex is one set of k processes (so we have as many
vertices as there are subsets of size k of the virtual processes) and we add an edge
between each pair of vertices whose respective subsets share a vertex. The reason
for this is that we want to select subsets of size k for the current level and we want
each virtual process to belong to exactly one subset. So by adding those edges then
we can rely on finding an independent set on the constructed graph which means
that we select vertices with no edge between them and this translates into subsets of
virtual processes with no virtual process in common. However, this simple variant of
the independent set application to the constructed graph does not take into consid-
eration the communication profile of the virtual processes. Intuitively, we would like

22

to favor a subset of virtual processes that result in lower total communication. To
that end, we add weights to each vertex of the graph where the weight of a vertex is
equal to the sum of the communication profiles of each virtual process in the vertex’s
group minus the amount of communication saved by grouping the virtual processes
represented by that vertex together. Therefore, if the virtual processes communicate a
lot then their weight will be small. Consequently, the minimum weight variant of the
independent set problem will favor vertices of small weight which means that it will
group virtual processes that will benefit the most from being grouped together. But
since this variant is a NP-Hard problem and inapproximable at a constant ratio the
authors propose some heuristics: (1) The smallest-values-first heuristic uses a greedy
algorithm to finding an independent set that picks vertices in increasing order of
their weight, (2) the largest-values-last heuristic also sorts the vertices in increasing
order of their weight and chooses an independent set where the largest index of the
vertices chosen is minimized, and lastly (3) the largest-weighted-degrees-first heuristic
sorts the vertices according to the average weight of their neighbours in decreasing
order and then finds an independent set greedily picking vertices in that order (the
rationale is that when a vertex is picked in such an order then its neighbours can-
not be chosen later and this means that vertices with large weight will not be chosen).

In Cruz et al. [2019] the authors describe the EagerMap algorithm to solve the map-
ping problem, i.e deciding on which processing unit each task should execute based
on information about (1) the communication profile of the application which is given
by the communication matrix that captures the amount of communication between
each pair of tasks, (2) the topology of the architecture and in particular which levels
are shared, like shared L3 caches, and the links between elements of the architecture,
and, last but not least, (3) the load profile of the application consisting of the load
of each task measured in number of CPU instructions executed. EagerMap attempts
to take advantage of structured communication whereby tasks are partitioned into
groups and most communication occurs within a group. The first step of the Ea-
gerMap algorithm is to form groups for each shared level of the architecture in a
hierarchical fashion. Then, those groups are mapped to the topology of the architec-
ture. To partition K tasks (or subgroups of tasks) into groups for a particular shared
level of the architecture that consists of L elements, EagerMap takes advantage of the
communication matrix and the load profile for those K tasks using a greedy algo-

23

rithm. In more detail, the algorithm begins by accumulating the load for all K tasks
and deciding for the load that the next group will be responsible for by dividing the
remaining load by the number of remaining groups to form. Once the load for the
next group has been decided, the algorithm proceeds on to forming that next group
by choosing among the free tasks (i.e those that haven’t already been assigned to
previous groups) such that their cumulative load doesn’t exceed the load assigned to
that group and the communication between tasks of that group is maximized. That
is achieved using a greedy approach as follows: among the remaining free tasks,
the next task to be assigned to the group is that one with the maximum amount of
communication with the tasks already assigned to that group. Once the groups for
the current level of the architecture is formed before proceeding on to the next level,
EagerMap recreates the communication matrix and load profile for the newly formed
groups using the communication and load profiles of the current level. One important
detail is that EagerMap never creates more groups of tasks than there are elements of
the current level of the architecture. The last stage of EagerMap is to map the groups
to the topology of the architecture in a top-down fashion. Assuming that we are at
some level consisting of L elements then because we know that for that level we have
at most L groups we assign each group to a separate element of the current level and
proceed recursively in a top-down fashion.

24

Chapter 3

Background on Phoenix++

3.1 Architecture of The Phoenix++ Runtime System

3.2 Writing MapReduce Applications with the Phoenix++ API

3.3 The Phoenix++ Reduce Phase Algorithm

3.4 Related Work

3.1 Architecture of The Phoenix++ Runtime System

This section contains a description of each of the components of the Phoenix++ runtime
system.

Synchronization This component provides an OS agnostic API over common syn-
chronization primitives used by the runtime system. These primitives are imple-
mented in header file sync.h and are:

Lock Two implementations of a lock type are provided with an API offering the
acquire and releasemethods. The first implementation is based on the pthread_mutex_t

type and the second one is an implementation of the MCS lock.

Semaphore The semaphore implementation is based on the sem_t type provided by
POSIX and provides the wait and post methods.

25

Locality This component is implemented in header file locality.h and provides the
notion of a locality group that is equivalent to a NUMA node. The implementation is
based on the libnuma library for linux but makes certain machine-specific assumptions
(i.e like that CPU ids are contiguous within the same NUMA node). The method
loc_mem_to_lgrp(const void *addr) can be used to obtain the identifier of the locality group
in which the address specified by the parameter is located at. Also, method loc_get_lgrp

() can be used to obtain the identifier of the locality group to which the calling thread
belongs.

Processor The processor.h provides an API to bind threads to cores. Method proc_bind_thread

(int cpu_id) binds the calling thread to the CPU core whose OS index is specified by
the parameter cpu_id. Method proc_unbind_thread() can be used to unbind a thread from
its CPU core and, lastly, the method proc_get_cpuid() returns the OS index for the CPU
core of the calling thread.

Scheduler This component provides various thread mapping policies and is imple-
mented in header file scheduler.h. The purpose of a thread mapping policy, which is
abstracted by the sched_policy class, is to assign logical thread identifiers, ranging from
0 to NumThreads − 1, to the OS-specific CPU core identifier, in order for them to
be used to bind the threads to those CPU cores using the processor component. This
functionality is implemented by the thr_to_cpu(int thr) method of some subclass of the
sched_policy class. Such concrete subclasses provide specific thread mapping policies,
like spreading the threads equally among the sockets, or first filling one socket en-
tirely before utilizing the next one. The implementation of those concrete classes is
machine-dependent and on the assumption that the OS is Solaris.

Task Queue This component is implemented in header file task_queue.h and source
file task_queue.c. This component provides a task queue per thread and an API to enqueue
and dequeue both map and reduce tasks to those task queues. This API is implemented
by class task_queue. An array of task queues is allocated, one for each thread. Moreover,
to ensure that accesses to those task queues are thread-safe, task_queue also allocates
an array of locks one for each task queue. The enqueue(task_t const& task, thread_loc

const& loc, int total_tasks=0, int lgrp=-1) method inserts the task passed as parameter to
either the task queue at the index specified by the loc parameter or to some index that

26

depends on the number of task queues and the total number of tasks to be inserted
in the task queues. The dequeue(task_t& task, thread_loc const& loc) method searches the
task queues for tasks. The search begins with the task queue of the calling thread
trying to obtain a task from the front of that task queue, and then cycling through
all other task queues trying to steal a task from the back of those task queues. In all
cases, the thread first obtains the lock for each target task queue before accessing it.

Thread Pool The thread pool component is implemented in header file
thread_pool.h and in source file thread_pool.cpp. NumThreads threads are created with
logical identifiers from 0 to NumThreads − 1. The thread pool uses a thread map-
ping policy specified by the scheduler component to bind those threads to CPU cores
using the binding functionality of the processor component. The same thread pool
is used during both map and reduce phases. In order to specify which method each
participating thread of the thread pool should execute, the thread_pool class which
implements the thread pool, provides the set(thread_func thread_func, void** args, int

num_workers) method that changes the current function to be executed by the thread
pool. In order to begin the map and reduce phases and, accordingly, to wait for their
termination, the thread_pool class provides the begin and wait methods respectively.
Each participating thread of the thread pool executes the loop(void *arg) method and
executes the assigned thread function each time a start signal has been received by
the begin method.

Containers and Combiners There is a tight integration between the containers and
combiners components, which are implemented, respectively, in header files container.h

and combiner.h. Each container uses an input type that is equivalent to a thread local
version of that container and used in isolation by a thread during the map phase.
Specifically, the map reduce scheduler, requests from the container one thread local
input type container for each one of the threads in the thread pool using the method
input_type container::get(thread_id). This thread local input type container is passed to
the emit() method to add (key,value) pairs. At the end of the map phase, the thread
local input type container is added to the global container so that it can be used dur-
ing the reduce phase. This is accomplished using the container::add(thread_id,input_type)

method. For each key, the containers store a combiner for the values associated with
that key. For the reduce phase, the threads need to reduce the values for one key

27

and for that they use the iterator begin(out_index) method of the container. The it-
erator type is responsible for collecting the values for that key from all threads in
the container and provide a single iterator over all those values. The iterator pro-
vides the bool next(K& key, output_type& values) method that is used to iterate over the
(key,value) pairs. For each key we gain access to its values through the combined in-
terface (i.e output_type = Combiner<V>::combined). The containers offered are: has_container,
array_container and fixed_hash_container. A combiner object is used to group all values
for one particular key. The buffer_combiner queues up all elements to be reduced at the
end and the associative_combiner combines the values into a single value at the moment
they are added into the container. The buffer_combiner uses many combiners per key,
i.e one for each thread. When time comes to reduce those combiners (i.e when an
iterator is requested) the buffer_combiner starts collecting all those combiners into a
single combined object using the combiner.combineinto(combined) method. To com-
bine the values during iteration, the combined object provides an iterator API with
a next method that traverses all the values in the combined object. The difference of
the associative_combiner to the buffer_combiner is that the combined iterator will return a
single combined value from all internal combiners.

Map Reduce Scheduler The map reduce scheduler is responsible for creating the
thread pool, the task queue as well as the global container. Then it executes in se-
quence the map phase, the reduce phase and lastly the merge phase. The map phase
creates a map task for each chunk of input data and enqueues it in the task queue.
After all map tasks have been created, the workers in the thread pool are given the
signal to start using the start_workers method. After the workers have finished the map
phase, the reduce tasks are generated, one for each row of the global container. Then
the workers are signalled to start again now executing reduce tasks. The last step is
to execute the map phase which is accomplished by again creating merge tasks in the
task queue and starting the workers in the thread pool to execute them. In order to
use the same thread pool for all three phases, the thread pool provides a set method
that can be used to specify the function to be executed by the worker threads and
the input argument for each worker thread.

28

3.2 Writing MapReduce Applications with the Phoenix++ API

To illustrate the usage of the phoenix++ we are using the word count application again.
To begin with, we need to define types for the input, the key and the value. The
input is of type struct wc_string which represents a piece of text. The key is a single
word which is represented by the type struct wc_word. Since the key is used in a hash-
based container where keys must be compared with each other, we need to overload
the comparison operators for type struct wc_word. Moreover, the key type must be
hashable and for that we provide a functor of type struct wc_word_hash that computes
a hash value for a given word. The value represents the number of occurrences of
each word and can be any integer type, like uint64_t for example. Those types are
provided in listing 3.1

Listing 3.1: Types for word count application
1 // a passage from the text. The input data to the Map -Reduce

2 struct wc_string {

3 char* data;

4 uint64_t len;

5 };

6
7 // a single null -terminated word

8 struct wc_word {

9 char* data;

10
11 // necessary functions to use this as a key

12 bool operator <(wc_word const& other) const {

13 return strcmp(data , other.data) < 0;

14 }

15 bool operator ==(wc_word const& other) const {

16 return strcmp(data , other.data) == 0;

17 }

18 };

19
20
21 // a hash for the word

22 struct wc_word_hash

23 {

24 // FNV -1a hash for 64 bits

25 size_t operator ()(wc_word const& key) const

29

26 {

27 char* h = key.data;

28 uint64_t v = 14695981039346656037 ULL;

29 while (*h != 0)

30 v = (v ^ (size_t)(*(h++))) * 1099511628211 ULL;

31 return v;

32 }

33 };

To package the word count map reduce application we implement a class that inherits
from the base class MapReduce or MapReduceSort depending on whether we want
our output to be sorted by value or not. For this example we are going to use
MapReduceSort because we want to output the top-10 occurring words in the document.
MapReduceSort is a template class implementing the curiously recurring template pattern,
and requiring as template parameters the type of the deriving class, the type of the
input, the type of the key, the type of the value and the type of the hash container to
use. In our case we use the hash container type that is provided by phoenix++ but we
instantiate it for our types and the custom hash functor type struct wc_word_hash. This
class is named WordsMR and is provided in listing 3.2.
To specify the reduce function which in our case is just a summation, we are using

the sum_combiner type template argument to the hash container type. Alternatively, we
could implement a method void reduce(key_type const& key, reduce_iterator const& values,

std::vector<keyval>& out) that receives a key and its values via the reduce_iterator iterator
object, and we append the result of the aggregation to the output container out. The
map function receives a piece of the input document of type data_type, splits it into its
constituent words, and for each word produces the desired (key, value) pair using the
emit_intermediate function. To complete our WordsMR class we need to specify a function
that splits the input document to smaller pieces each of which is passed as input to
a separate invocation of the map function. This function is the int split(wc_string& out)

function. We also need to provide a function to sort the output by value during the
merge phase.

Listing 3.2: The WordsMR class
1 class WordsMR : public MapReduceSort <WordsMR , wc_string , wc_word , uint64_t ,

hash_container <wc_word , uint64_t , sum_combiner , wc_word_hash >

2 {

3 char* data;

30

4 uint64_t data_size;

5 uint64_t chunk_size;

6 uint64_t splitter_pos;

7
8 public:

9 explicit WordsMR(char* _data , uint64_t length , uint64_t _chunk_size) :

10 data(_data), data_size(length), chunk_size(_chunk_size),

11 splitter_pos (0) {}

12
13 void map(data_type const& s, map_container& out) const

14 {

15 for (uint64_t i = 0; i < s.len; i++)

16 {

17 s.data[i] = toupper(s.data[i]);

18 }

19
20 uint64_t i = 0;

21 while(i < s.len)

22 {

23 while(i < s.len && (s.data[i] < 'A' || s.data[i] > 'Z'))

24 i++;

25 uint64_t start = i;

26 while(i < s.len && ((s.data[i] >= 'A' && s.data[i] <= 'Z') || s.

data[i] == '\''))

27 i++;

28 if(i > start)

29 {

30 s.data[i] = 0;

31 wc_word word = { s.data+start };

32 emit_intermediate(out , word , 1);

33 }

34 }

35 }

36
37 int split(wc_string& out)

38 {

39 /* End of data reached , return FALSE. */

40 if ((uint64_t)splitter_pos >= data_size)

41 {

42 return 0;

43 }

31

44
45 /* Determine the nominal end point. */

46 uint64_t end = std::min(splitter_pos + chunk_size , data_size);

47
48 /* Move end point to next word break */

49 while(end < data_size &&

50 data[end] != ' ' && data[end] != '\t' &&

51 data[end] != '\r' && data[end] != '\n')

52 end ++;

53
54 /* Set the start of the next data. */

55 out.data = data + splitter_pos;

56 out.len = end - splitter_pos;

57
58 splitter_pos = end;

59
60 /* Return true since the out data is valid. */

61 return 1;

62 }

63
64 bool sort(keyval const& a, keyval const& b) const

65 {

66 return a.val < b.val || (a.val == b.val && strcmp(a.key.data , b.key.

data) > 0);

67 }

68 };

Last but not least, we need to instantiate our class in order to execute the word count
application. This is illustrated in listing 3.3. In the illustrated code the variables fdata

is a pointer to the input document’s contents which have been memory mapped to the
main memory, and the variable finfo is of type struct stat which provides OS specific
information for the input file.

Listing 3.3: Executing the word count mapreduce application
1 std::vector <WordsMR ::keyval > result;

2 WordsMR mapReduce(fdata , finfo.st_size , 1024*1024);

3 mapReduce.run(result)

32

3.3 The Phoenix++ Reduce Phase Algorithm

Figure 3.1 showcases the memory organization of the global container structure using
by the Phoenix++ runtime. During the map phase, the emit function uses the local
container of the executing thread to store the (key,value) pair. At the end of the
map phase, each participating thread adds its local container to the global container
maintained by the runtime so that there exists a global view over the (key,value) pairs
during the reduce phase. The global container is a two dimensional array with as many
columns as there are threads in the thread pool and as many rows as the hash space
size for the keys. Each column can be viewed as a local hash container for the thread
whose logical identifier is specified by the index of that column. That is, if a thread ti

emits a key that hashes to row j, then that key is added to cell [j][i]. During the reduce
phase, when a thread performs a reduction over the values for a specific key, it needs
to iterate over all values produced from all participating threads for that particular
key. This is achieved by iterating over the cells whose row is specified by the hash of
that key. The reduce algorithm consists of producing one reduce task for each row
of the global container, distributing them over the task queues and having the threads
execute those tasks. Considering the suitability of this reduce phase algorithm for
NUMA architectures in accordance with the factors affecting performance as we have
discussed them in chapter chapter 2, we conclude that the iteration over one row for
reducing all the values produced from all threads for that row results in increased
memory traffic from remote locations.

33

Figure 3.1: Memory organization for the global container storing (key,value) pairs.
Each thread ti uses the cells with column index i. A key is stored at the row specified
by its hash value modulo the row size.

3.4 Related Work

In this section we begin by briefly discussing the Mao et al. [2010] implementation of
the MapReduce parallel programming model. In Metis the authors target MapReduce
applications which involve a relatively large number of intermediate key/value pairs
and a relatively low amount of computation, that is, situations in which the run time
is not dominated by the application code in functions Map and Reduce, but by the
overhead of the library itself. Metis uses as an intermediate data structure a hash
table with a b+-tree in each entry in order to get the benefits of both a hash table and
a tree. To avoid the copy phase between the map and the reduce phases, all threads
use the same size for their local hash tables and rely on the b+-tree for good lookup
time on each entry of the hash table. That strategy of avoiding the copy that happens
in Phoenix++ at the end of the map phase to the beginning of the reduce phase is
something that we could also adopt to Phoenix++ as well. In another note, in Arif
and Vandierendonck [2015] they use OpenMP parallel loops to implement the map
phase with or without a task construct within the parallel for loop. Then, they use
the OpenMP 4.0 feature for user defined reductions for the reduce phase. However,
they state that depending on the data type of the reduction object the user defined
reductions may not be evaluated in parallel in current OpenMP implementations.
Therefore, performance and applicability of the OpenMP application model depends

34

on the MapReduce application. In such cases they had to resort to custom solutions
in order to avoid using expensive synchronization objects like locks and/or critical
sections. We try instead to optimize further the Phoenix++ runtime in order to get the
benefits of its simplicity with an increased efficiency.

35

Chapter 4

Improving the Reduce Phase of
Phoenix++

4.1 Hierarchical Tournament-Based Reduce Agorithms

4.2 Task Distritbution Policies for the Reduce Phase

In this chapter we describe the methods we evaluated for improving the reduce
phase of the Phoenix++ implementation on NUMA architectures. The first set of
methods rely on hierarchical algorithms and the second set of methods consist of
task distribution policies that dictate to which thread a reduce task should execute.
Implementation details are provided in the next chapter.

4.1 Hierarchical Tournament-Based Reduce Agorithms

In order to minimize the amount of memory traffic that needs to be read/written from
remote NUMA nodes, we propose a hierarchical approach to the reduce phase that is
based on the well-known tournament barrier algorithm.
Since the global container is two-dimensional we have in essence two dimensions over
which we can partition and produce smaller reduce tasks that range over a sub array
of the global array structure.

36

The Horizontal Approach The horizontal approach, as showcased in figure 4.1, con-
sists of two phases. In the first phase we restrict the reduction only within a single
NUMA node hence avoiding inter-node communication. To accomplish that we per-
form the following modifications:

• Restrict work stealing in the task queue subsystem to victim threads within the
same NUMA node as the thief thread.

• For each key row produce as many reduce tasks as there are NUMA nodes.
The reduce task for a key row iterates only over the columns of the threads that
belong to the same NUMA node as the thread executing that reduce task.

For the second phase, we operate as the original reduce algorithm. That is, we
produce one reduce task for each key row. For that reduce task, the thread executing
it still iterates over the entire set of columns, but for each NUMA node there exists
only one column that contains the output of the reduce phase from the first phase.

Figure 4.1: The 2-phase horizontal approach to the tournament-based reduce algo-
rithm. In the first phase, we produce 1 reduce task for each row and for each NUMA
node separately. In the second phase, we produce 1 reduce task for each row and all
NUMA nodes combined.

The Vertical Approach The vertical approach, as showcased in figure 4.2, also con-
sists of two phases but each phase is hierarchical in nature. We refer to the first phase
as intra-node reduction phase and the second phase as the inter-node reduction phase. For
both phases we use a tournament-based hierarchical reduction with binary fan-out algo-
rithm as the reduction algorithm.

37

Intra-Node Reduction Phase A local reduction is executed by each NUMA node sep-
arately. At the end of the reduction, we have one winner from each NUMA node
that has performed the reduction over all keys for the set of values contained
in its home NUMA node.

Inter-Node Reduction Phase A global reduction having the winners of the previous
phase as participating threads.

Possible Improvements A straightforward extension to the aforementioned algo-
rithms, is to consider more levels of the hierarchical cc-NUMA architecture in addi-
tion to the level of the NUMA nodes. For example, we could restrict reduction within
private and shared caches prior to the level of the NUMA node.

Figure 4.2: The intra-node and inter-node reduction phases of the vertical approach.
Each phase consists of separate executions of a tournament-based hierarchical reduc-
tion with binary fan-out. To begin with, each NUMA node performs a local reduction
and, then, a global reduction is performed from the winners of each local reduction.

38

4.2 Task Distritbution Policies for the Reduce Phase

The current reduction algorithm generates one task per row of the global container
and the thread that picks that task makes a reduction over all columns for that
particular row. In this section we describe different strategies, called task distribution
policies on how to assign those tasks to threads. These strategies are supplemented
by thread mapping policies and work stealing victim selection policies.

4.2.1 Thread Mapping Policies

A thread mapping policy specifies how NumThreads threads are mapped to the com-
putational units of the target NUMA system.

Contiguous We first fill up fully one numa node before proceeding to the next one.

NUMA-Spread We equally split the threads among the available numa nodes.

With a contiguous thread mapping policy we have faster communication and syn-
chronization between the worker cores because most of them share at least a last level
cache. On the other hand, assigning all threads to one numa node entails memory
contention on the local memory controller of that numa node, and as a result we may
not be able to take advantage of the full bandwidth of that numa node. To remedy
this situation, we can use the numa-spread thread mapping policy, whereby we take
advantage of all available numa nodes and we split the threads among them. Hence,
there is less memory contention on each numa node but, on the other hand, there
is more communication and synchronization cost among threads residing in distinct
numa nodes.

4.2.2 Work Stealing Victim Selection Policies

When a worker runs out of work from its own local queue it becomes a thief and
starts searching for work in the queues of other workers. We can specify different
policies on how a worker thief chooses its victim which we call work stealing victim
selection policies. In the following, we assume that we have NumThreads threads with
identifiers in the range [0, NumThreads− 1].

No The thief doesn’t perform actually no work stealing.

39

Sequential The thief chooses each victim thread sequentially in thread-id order. In
more detail, a thief thread with identifier tid, 0 ≤ tid < NumThreads, chooses
its victims in this order: tid+ 1, tid+ 2, ..., NumThreads− 1, 0, 1, ..., tid− 1.

Random The thief chooses randomly with equal probability from among its co-
workers.

Numa-Aware The thief thread steals successively from different numa nodes starting
for its own numa node. Each time it advances to a new numa node, it steals
randomly from the threads belonging to that numa node. We would use this
approach when we want to restrict remote communication as much as possible
by first draining all work from our local numa node and then proceeeding to
the next numa nodes.

Numa-Only The thief thread steals randomly only from threads belonging to the
same numa node as itself. We would use this approach if we want to eliminate
complete remote memory references.

4.2.3 Description of the Task Distribution Policies

In this section we describe policies on how to distribute reduce tasks over the worker
threads.

Random-Based This is a simple rudimentary approach to reduce task distribution,
whereby each reduce task is assigned uniformly at random to one of the available
workers. With this approach we can potentially achieve good load balancing among
the workers since each worker will get roughly the same amount of reduce tasks.
Nevertheless, we have no control on the communication cost and the amount of local
and remote references each thread will occur.

Interleave-Based This is another simple rudimentary approach much like the pre-
vious one. Instead of assigning randomly each reduce task to one of the available
workers, we just interleave them among them. That is, the i−th reduce task is assigned
to the thread with thread-id i%NumThreads.

40

Locality-Based The purpose of this reduce task distribution policy is to assign each
task to the thread that will incur the least access cost to it. The algorithm is actually
very simple:

1. For each key in any order

(a) Assign the key to the thread with minimum access cost to that key

The problem with this approach is that depending on the distribution of key data
over the columns of the global container we may have oversubscription, that is the effect
of assigning too much work on a small portion of the worker threads. To remedy
this situation we can rely on the work-stealing policies but another approach would be
to devise another reduce task distribution policy to counterattack that effect.

Balanced-Based With this reduce task distribution policy we attempt to avoid over-
subscription by avoid assigning reduce tasks to already overloaded threads. However,
we still want to take advantage of locality whenever possibly and therefore we need
to prioritize reduce tasks according to their data volume and access cost and thread
assigning in a similar manner. The algorithm is the following:

1. Sort the keys by their data volume

2. For each key in sorted order do

(a) Sort the threads in increasing access cost for the current key

(b) Assign the key to the first thread in the above sort order that is not too
overloaded

Mixed Locality and Balanced Based A potential disadvantage of the previous
balanced-based reduce task distribution policy is that a reduce task may not be assigned
to a thread that has exclusivity to that key, meaning it has a large portion of that key’s
data in the numa node containing that thread. To that end, we add one additional
rule to the thread assignment process of the balanced-based policy, whereby the first
thread in the increasing access cost sorted order, i.e the thread with the least cost to
the key, gets assigned the key regardless of whether it is overloaded or not, if and
only if that thread has exclusivity to that key. The revised algorithm now becomes
this:

41

1. Sort the keys by their data volume

2. For each key in sorted order do

(a) Sort the threads in increasing access cost for the current key

(b) If the least access cost thread has exclusivity to that key then assign the key
to that thread. Otherwise, assign the key to the first thread in the above
sort order that is not too overloaded

Mixed Locality and Interleave Based With this reduce task distribution policy
we apply the exclusivity rule of the Mixed Locality and Balanced Based policy to the
Interleave-Based policy. The revised algorithm is:

1. For each key in any order do

(a) If the least access cost to the that key has exclusivity to that key then assign
the key to that thread. Otherwise, assign that key based on the interleave
policy.

42

Chapter 5

Implementation Details

5.1 Topology Related Subsystem

5.2 Task Queue System

5.3 Tournament Vertical Reduce Implementation

5.4 Reduce Task Distribution Policies Implementation

The purpose of this chapter is to describe the changes and additions that i made to
the phoenix++ source code in order to implement the proposed algorithms.

5.1 Topology Related Subsystem

In order to obtain information about the topology of the NUMA system and perform
thread binding i used the Portable Hardware Locality library.

Thread Binding To perform thread binding i choose for each thread-id the pro-
cessing unit on which it is going to be executed, which is represtented by the type
hwloc_const_cpuset_t. Then, i call the method hwloc_set_cpubind with appropriate flags that
indicate that the thread binding must be strict, meaning that the operating system
scheduler is not free to migrate that thread to another processing unit. That action is
implemented in the thread_binding class.

43

Thread Mapping Policies The mapping of thread-ids to hwloc_const_cpuset_t is imple-
mented by a subclass of the thread_mapping_policy class. That base class provides the
interface for the mapping and subclasses implement specific thread mapping policies.
Two subclasses have been implemented. The first, named contiguous_thread_mapping_policy

, assigns the threads to the available processing units in sequence filling completely
each NUMA node before proceeding to the next one. The second, named numa_spread_thread_mapping_policy

, spreads the threads among the available NUMA nodes equally and then recursively
among lower level hardware elements, like shared L3 and L2 caches until a process-
ing unit is encountered.

The integration of those implementations of thread mapping policies and the current
implementation of the phoenix++ runtime is implemented as follows. The threading
system that provides the workers to the map reduce scheduler is implemented by
the thread_pool.hpp and thread_pool.cpp component. I added to the constructor of the
thread_pool object one parameter for the thread_mapping_policy and one parameter for
the thread_binding object. Both are passed as pointers in order to accept subclasses.
When each thread is created in thread_pool it receives a thread-id and it uses the
thread_mapping_policy object to obtain the hwloc_const_cpuset_t object that specifies to which
processing unit it must bind do, and then uses the thread_binding object to bind itself
to that processing unit.

Auxilliary details for hwloc In order to implement the thread mapping policies,
the following hwloc methods were useful:

hwloc_get_type_depth To obtain the the level in the NUMA system where a particu-
lar type of hardware elements are. For example, to know where the processing
units are in the NUMA hierarchy.

hwloc_get_nbobjs_by_depth To obtain how many hardware elements are in a par-
ticular level. For example, to know how many processing units or NUMA nodes
exist.

hwloc_get_obj_by_depth To obtain a particular hardware element within a level. For
example, to obtain the second NUMA node or the k-th processing unit.

hwloc_get_next_obj_by_type To iterate over the hardware elements in a particular
level.

44

5.2 Task Queue System

The task queue system is responsible for providing the queues where the workers
search for map and reduce tasks to execute. I have altered the order by which each
worker searches for tasks in the queues. The task queue system is implemented in
the component task_queue.hpp and task_queue.cpp. The dequeue method of the task_queue

object is the implementation of the work stealing policy for each worker. Whereas
in the original code each worker searches the queues in a predetermined order, i
have added the ability to the task_queue object to use various work stealing policies.
In order to do that, i have provided a ws_victim_selection_policy base class that pro-
vides the interface for the work stealing victim selection policy. Several subclasses
have been implemented, among which are the numa_aware_ws_victim_selection_policy and
numa_only_ws_victim_selection_policy concrete implementations. The interface exposed to
the task_queue system is the method next that returns the sequence of thread-ids from
which to steal. The task_queue object now accepts in its constructor a ws_victim_selection_policy

object. The dequeue method uses that object to obtaint the next thread-id from which
to steal.

The numa_aware_ws_victim_selection_policy policy dictates that a worker first steals from
other threads within its own NUMA node and then from other threads that belong
to other NUMA nodes in increasing distance order. To obtain the distance order
of between NUMA nodes, the numa_aware_ws_victim_selection_policy policy uses an object
of the class topology_distance_matrix which i implemented for that purpose. That class
provides a single method that accepts two thread-ids and returns their distance in the
NUMA system. In order to obtain the distances between processing units, i use the
hwloc_distances_get_by_type method from hwloc to get the distances between each pair of
processing units and then the method hwloc_distances_obj_pair_values to obtain the dis-
tance for a particular pair of processing units. Last but not least, to find the NUMA
node where a processing unit is, i use the hwloc_get_numanode_obj_by_os_index method
from hwloc that retrieves the NUMA node index as reported by the operating system
and returns the respective hwloc object. To retrieve the operating system index of the
NUMA node i use the hwloc_cpuset_to_nodeset method to convert the cpu index of the
processing unit to the index of the NUMA node where it belongs.

45

5.3 Tournament Vertical Reduce Implementation

The vertical tournament reduce implementation is provided in tournament_reduce.hpp.
The existing phoenix++ implementation of the reduce phase first generates the re-

duce tasks and then starts the workers. Each worker executes a reduce_callbackmethod.
To keep the same scheme of implementation, one reduce task is generated for each
worker thread and they are requested not to perform work stealing in order to ensure
that each worker thread executes only one reduce task. The reduce callback executes
the reduce method of the tournament_reduce class implemented in tournament_reduce.hpp. For
the implementation of the reduction in class tournament_reduce we need to know from
which thread each thread will reduce at each level of the reduction and access to other
objects like locks and barriers. These arguments are stored in the generated reduce
tasks themselves and generated by the tournament_reduce_args_generator class provided in
tournament_reduce.hpp. That class needs to group threads based on the NUMA node they
belong to and for that i use the hwloc library.

5.4 Reduce Task Distribution Policies Implementation

To begin with, the task distribution policies require the knowledge of the amount of
keys stored in the global container. To that end, i have implemented the key_distribution

class in component container_key_distribution.hpp that is an array of equal size and
shape as the global container and each cell contains the amount of keys stored in the
respective cell of the global container. The container object creates an object of type
container_key_distribution and each time data is added to the container, as in the add

method, the container_key_distribution object is updated to reflect the added data. To
accurately keep track of the amount of both keys and values i had to also update
the combiner classes to keep track of the number of values they store. A reduce task
distribution policy is represented by the abstract class reduce_task_distribution_policy

which provides the following interface to the map reduce scheduler:

reduceTasksCount Get the number of reduce tasks to put in the queues.

getReduceTaskAt Get the i-th reduce task.

getReduceTaskDestAt Get the id of the task queue where to put the i-th task.

46

Therefore, the modifications to the reduce phase of the phoenix++ implementation
are minimal. That implementation constisted of a for loop that enqueued the reduce
tasks to the queues and then a call to the start_workers method that signals the worker
threads to begin executing the reduce tasks. I only had to change the for loop to en-
queue the reduce tasks as reported by the subclass of the reduce_task_distribution_policy

used.

Several concrete subclass implementations of the reduce_task_distribution_policy abstract
class exist, among which are the following:

1. interleave_based_reduce_task_distribution_policy

2. locality_based_reduce_task_distribution_policy

3. balanced_based_reduce_task_distribution_policy

4. mixed_locality_and_balanced_based_reduce_task_distribution_policy

Those implementations use the key_distribution object provided by the global con-
tainer in order to know how many keys exist in each cell of the global container. In
order to compute the cost of accessing a particular cell of the global container the
topology_distance_matrix object is used which returns the distance between the thread
that makes the access and the thread that holds that cell of the global container.
In that way, the reduce task distribution policies have been separated from the low
level imlementation details provided by the hwloc library and use more portable and
higher level of abstraction objects like the topology_distance_matrix and key_distribution

objects.

47

Chapter 6

Experimental Evaluation

6.1 Machine Description

6.2 Workload Descriptions

6.3 Evaluation Results

6.1 Machine Description

For the performance evaluations i used the following machine configuration.

parade A Dell EMC PowerEdge R840 server. This machine consists of 4 NUMA nodes
each of which contains 32 processing units and 64 GB of RAM, for a total of
128 processing units and 256 GB of RAM. All processing units within a NUMA
node share a 22MB L3 cache. The processing units within a NUMA node are
organized in 16 cores each of which contains 2 threads. The two threads within
a core share the L1 instruction and data cache (each 32 KB) and the L2 cache
(1024 KB). The processor architecture is Intel Xeon Gold 6130.

parallax A Dell EMC PowerEdge R740 server. This machine consists of 2 NUMA
nodes. The machine hosts 2 Intel Xeon Gold 6130 CPUs, each of which is
equipped with 16 cores and 32 threads for a total of 32 cores and 64 threads.
All cores within a CPU share a 22MB L3 cache. Each NUMA node has 32GB

RAM for a total of 64GB RAM.

48

paragon This machine is comprised of 2 AMD Opteron 6161 CPUs each of which
has 12 cores at 1.8GHz for a total of 24 cores. Each CPU package consists of
2 NUMA nodes each equipped with 4GB of RAM for a total of 16GB of RAM
(each CPU has 8GB of RAM). All cores within a NUMA node share a 5118KB

L3 shared cache memory.

6.2 Workload Descriptions

For the performance evaluations we used the associative sum combiner where a
thread reduces all values mapped to the same key during the map operation, and
during the reduce operation the threads reduce the values mapped to the same key
that were produced by different threads.
A workload is determined by the following characteristics:

Total Number of Emits The total number of key value pairs to be emitted by the
workload.

Key Range The key range is [0, T otalNumberOfEmits).

Emit Filler Policy Determines what percentage of the total number of emits is to be
produced by each thread. I used the following configurations:

Equal All threads make the same number of emits.

One-Numa-Heavy A large percentage of the total emits is made by threads
belonging to one numa node only. This configuration is introduced to test
the effects of unbalanced load.

Key Filler Policy Determines which key to emit for each of the emits a thread makes.
I used the following configurations:

Equal-Prob At each emit all keys in the key range have an equal probability
of being produced.

Disjoint-Subranges The keys are partitioned according to their final place in
the buckets used at the reduce operation, and the buckets are disjointly
partitioned to the threads. This configuration is introduced to test the effects
of locality.

49

Since we are concerned with the reduce phase and a combiner is used at the map
phase, each thread only emits each key only once. Therefore, in order to populate
the global container with large amounts of data i need to enlarge the key range. I
control the amount of data with the total emits to be made and as a result the key
range is made equal to the total emits. The value associated with each key is around
8000 bytes and a key is a plain integer. For 32GB i need 4000000 emits and for 64GB

i need 8000000 emits to be made. This determines the workload data size. Then i
used 4 configurations for emit-filler and key-filler policies. The configurations are:

Emit Filler Policy Key Filler Policy Description

Equal Equal-Prob This represents the typical random case
Equal Disjoint-Subranges This represents the scenario where a thread has exclusitivity to some keys

One-Numa-Heavy Equal-Prob This represents the scenario where the load is unbalanced among the NUMA nodes

6.3 Evaluation Results

6.3.1 Superiority of the Task Distribution Policies over the Tournament-

Based Approaches

In this section, we present evidence that the task distribution policies perform better
compared to the tournament-based approaches. This can be seen in figure 6.1.
The horizontal approach is most similar to the task distribution based policies. The

reason that it performs worse compared to the most closest approach which is the
interleave-based task distribution policy, is due to the barrier in between the two phases
and the extra overhead associated with the management of the data structures used
to merge the keys since those data structures need to be created, filled and destroyed
twice.
The vertical approach performs much worse than all other approaches because it

too has extra overhead similar to the horizontal approach regarding the intermediate
barrier between the two phases and the management of the merge data structures.
However, the vertical approach has an additional disadvantage, that of having less
threads to perform reduce work during the second phase. Especially in the kind of
workload used in the experiment, which has too many keys, this plays an important
role.
The next figures showcase the same results for the parallax machine using 16GB

data size, where it can be clearly seen that the two tournament based methods perform

50

Figure 6.1: Latency in seconds for the reduce phase for 64 GB data size, Equal emit
filler policy and Equal-Prob Key Filler Policy

consistently worse in all three cases.

Figure 6.2: Latency in seconds for the reduce phase for 16 GB data size in parallax,
Equal emit filler policy and Equal-Prob Key Filler Policy

6.3.2 Results for parade with 32 GB data size

Equal emit filler policy and Equal-Prob Key Filler Policy This case represents
the typical random case where the distribution of keys among the rows and columns
of the global container used during the reduce phase is totally random. In this case
we do not expect to gain anything from the numa-aware reduce task distribution
policies. In fact, we expect to loose a little performance due to the overhead associ-
ated with those policies.

51

Figure 6.3: Latency in seconds for the reduce phase for 16 GB data size in parallax,
Equal emit filler policy and Disjoint-Subranges Key Filler Policy

Figure 6.4: Latency in seconds for the reduce phase for 16 GB data size in parallax,
One-Numa-Heavy emit filler policy and Equal-Prob Key Filler Policy

The latency in seconds for the reduce phase including the overhead for calculating
the reduce task distribution for each policy is depicted in figure 6.5.
We can see the results in more detail in the following table.

52

Figure 6.5: Latency in seconds for the reduce phase for 32 GB data size, Equal emit
filler policy and Equal-Prob Key Filler Policy

NumThreads balanced interleave locality locality-balanced locality-interleave

4 16.2661555025 16.7332478485 16.1398775815 16.3289557 16.325156577999998
8 9.111661975499999 9.121280459 9.1214282095 9.032698263 9.1859138915
12 6.625793674 6.723201617 6.7798502890000005 6.9366528745 6.883620022000001
16 5.433512949 5.138815534 5.169219404 5.1306766095 5.2222823075
20 4.0481774285 4.0492843725 4.050868277 4.0514895965 4.022246476
24 3.388849652 3.3211678275 3.401215155 3.3652237915 3.4110387180000004
28 2.9135616984999997 2.8159430524999998 2.919349384 2.914855799 2.908029307
32 2.7073231609999997 2.659490345 2.6497552325 2.7132312174999997 2.6514609875
36 2.718864892 2.6085971580000002 2.672250138 2.6795830814999997 2.60839149
40 3.3557263214999997 3.0998812310000003 3.275075967 3.0712456475 3.1492632025000002
44 3.540601787 3.3314660755 3.3997618995 3.647467302 3.5383319369999997
48 4.026589875 3.9355055215 4.178533807999999 4.0645516315000005 4.022773564
52 3.591362171 3.4452291329999998 3.6412572975 3.797028508 3.467818649
56 3.7219843519999998 3.7554648895 3.787086224 3.512058486 3.5238600599999996
60 3.532760346 3.5252443785 3.756755341 3.627297216 3.6277459705000004
64 3.6159698750000002 3.5192826735000002 3.834681959 3.8494807855 3.7131822215
68 4.0014073165 3.809073871 4.0161882885 4.0405370835 3.8055073774999997
72 3.8580711450000003 3.82425492 3.9823764345 3.9817610505000003 3.921851199
76 3.6135307545 3.3764502605 3.615334346 3.501741446 3.374402482
80 3.565205189 3.4145505189999996 3.5856262115 3.6544149150000003 3.517573284
84 3.3890513254999997 3.3092474265 3.4296412015 3.573717508 3.4317738
88 3.8711905925 3.5815290685 3.8789551785 3.7490814125 3.7628978799999997
92 3.6046693835 3.2823779825 3.5345663915000003 3.493089103 3.4639087615
96 3.6650389065 3.2040200800000003 3.3088709515000003 3.7108550275 3.5310633129999998
100 3.648010686 3.302303556 3.539762083 3.7185041305 3.5077066109999997
104 3.7774765500000003 3.305549535 3.6793132550000003 3.5959457265 3.410167274
108 4.0388992355 3.623246954 3.954736493 4.05387472 3.825161198
112 3.784549707 3.249946039 3.704752775 3.8657560655000003 3.6539764874999996
116 3.796292847 3.210207365 3.6423795255 3.7023293885 3.5321953544999998
120 3.755297382 3.2172323195 3.713374273 3.728622863 3.5076769480000003
124 4.0275539555 3.46633625 4.016979291 3.9275861709999997 3.7163723135
128 3.747281737 3.355288215 3.7229975635 3.744876186 3.6781396625

Equal emit filler policy and Disjoint-Subranges Key Filler Policy This case rep-
resents the scenario where threads exhibit locality to certain keys, meaning that, for
example, one map worker was responsibility for the majority of keys produced for
one key bucket. The latency in seconds for the reduce phase including the overhead

53

for calculating the reduce task distribution for each policy is depicted in figure 6.6.

Figure 6.6: Latency in seconds for the reduce phase for 32 GB data size, Equal emit
filler policy and Disjoint-Subranges Key Filler Policy

We can see the results in more detail in the following table:

NumThreads balanced interleave locality locality-balanced locality-interleave

4 19.687326785 22.7304624965 19.7045343785 19.763066166999998 19.7990690275
8 10.325862896 10.6932500395 10.3101409605 10.318773625 10.312859876000001
12 7.668566317 7.9923733795 7.6314445395 7.6667226369999995 7.663789127499999
16 5.589628571 6.017512969 5.613625021500001 5.608220409 5.5696022355
20 4.962040891 5.2447188815 4.969394081 4.979019946999999 4.936453842
24 4.3844411585 4.6336943195 4.3797572825 4.373301087 4.3540077735
28 4.0557456965 4.4386107755 4.0575881875 4.047730252 4.0379581855
32 3.5575095230000002 3.948826586 3.50944623 3.5330318590000003 3.5049988460000003
36 3.235410589 3.6540050304999996 3.2396109510000004 3.2569416579999997 3.2183263495
40 3.1856893294999997 3.677700425 3.1766414985 3.1818665055000004 3.166885961
44 3.1030762165 3.589071049 3.0929783835 3.0955293435 3.0583891995
48 3.1200896065 3.8099944 3.1013150725000003 3.1185041680000003 3.0616662975
52 3.2102268809999996 3.8726788885 3.1774487075 3.1858986625 3.1479162335
56 3.2595422975 4.108815245000001 3.2258865825 3.2403303575 3.1846244365
60 3.3185806610000004 4.1107306185 3.3260357805 3.3162349300000002 3.31424552
64 2.842929216 3.7200131355000003 2.8441140655 2.809530976 2.746895233
68 2.7492233419999996 3.5362235144999996 2.767029471 2.7979962565000003 2.6875544185
72 2.8073682995 3.5123689575 2.7594880225000002 2.7690506685 2.6897926135
76 2.876121828 3.5331467035 2.8427658375 2.8537458155 2.761891779
80 2.9931275470000003 3.587594481 2.9668132035 2.969076715 2.8852200210000003
84 2.8287124285000003 3.5101032945 2.787128354 2.8374688975 2.6960400175
88 2.88794808 3.5544177845 2.8679323855 2.903017898 2.763785204
92 2.9931310495 3.5229603899999997 2.9453253555 2.9710694474999997 2.850064292
96 3.064424269 3.6275073664999997 3.029898549 3.0589106375000004 2.9293574204999997
100 3.2308264820000003 3.7705583595 3.2125644935 3.2285390415 3.061520937
104 3.2823640794999998 3.746823552 3.2190249719999997 3.2717442785 3.0607294645
108 3.369518625 3.925103393 3.316777218 3.3542142715 3.17513548
112 3.9337646655 3.6464694705 3.8900170115000003 3.8563960495 3.7320100590000003
116 4.0029642735 3.7669261714999998 4.044387988 3.9138046385000003 3.85122316
120 3.032542503 3.709184157 2.9575421 2.9606437115 2.7622068449999997
124 3.1642717275 3.896094824 3.0944602784999997 3.1248264715 2.9371124725
128 3.0877561350000002 3.8494298055 3.021930235 3.0473799305 2.812756615

As it can be seen by the figure, the simplest interleave-based policy performs worst
among the other NUMA-aware methods, and those methods manage to scale better.

54

Examining the table above one can deduce that the best method is the mixed-locality-
and-interleave-based and then the locality-based method. I

One-Numa-Heavy emit filler policy and Equal-Prob Key Filler Policy This sce-
nario represents an unbalanced workload distribution where one NUMA node is
overburden with the majority of the emits made. The latency in seconds for the re-
duce phase including the overhead for calculating the reduce task distribution for
each policy is depicted in figure 6.7.

Figure 6.7: Latency in seconds for the reduce phase for 32 GB data size, One-Numa-
Heavy emit filler policy and Equal-Prob Key Filler Policy

We can see the results in more detail in the following table:

55

NumThreads balanced interleave locality locality-balanced locality-interleave

4 21.468672282 21.3039765395 23.4680811115 21.469354053 21.7171120725
8 10.3886202865 11.079965616500001 10.758482626500001 10.641690885 11.1085751265
12 8.099642170000001 8.348725717499999 9.01927632 7.5911743105 7.3116623569999994
16 7.033698799 7.425057831 7.100424003500001 7.331216387 7.583930195500001
20 6.4346720955 5.4219142389999995 5.426064537 6.464522519 6.36161444
24 4.7496045155 5.5378306175 4.8652394255 5.5133668435 4.874911408
28 5.1006895085 5.019565841 4.943643638499999 5.0819782725 5.066811384999999
32 4.961232364 4.8980142995 4.755139140000001 4.965307234 4.9439544385000005
36 4.9591534225 4.92915705 5.029347230000001 5.0386582205 4.98528589
40 4.8238387945 4.7603914295 4.898661553 4.942227752 4.8657833450000005
44 4.924722989499999 4.735430318 4.949032023 4.8647335755 4.928358834
48 4.6926546215 4.6947386820000006 4.925647273999999 4.8998616315 4.8415636105
52 4.744277628 4.802172329499999 4.741867601 4.6947338345 4.784099178
56 4.7484082555 4.6569797135 4.7387259545 4.820630081999999 4.7874984835
60 4.8510585975 4.721655913999999 4.873968581 4.808859864 4.7357544535
64 4.9077845270000005 4.7119386 4.8617954569999995 4.825118165499999 4.6394832595
68 4.7779861530000005 4.636177093500001 4.705311200000001 4.815251664 4.6506909489999995
72 4.597617720000001 4.699491004 4.5722904115 4.6546094965 4.6784580485
76 4.5470362075 4.4437174575 4.5494104275 4.701737411 4.5174615760000005
80 4.571441521000001 4.560626965 4.715675427 4.7852042365 4.6973960165
84 4.750654192000001 4.422425485 4.6885963175 4.8639921605000005 4.604223230500001
88 5.0271638890000006 4.8447543385 4.896832335 4.8418727100000005 4.7575950905
92 5.2618867305000006 4.929613164 5.2075015745 5.3784161515 5.217171228
96 5.3915938545 5.1326737085000005 5.226830858 5.452314680500001 5.3596608055
100 5.4273365259999995 5.225621528 5.6984717035 5.682452420500001 5.395137473
104 5.632647411500001 5.1962918795 5.6806433819999995 5.6625350655 5.5852282485
108 5.9253906485000005 5.4504656355000005 5.7619199430000005 5.828223547 5.602242727
112 5.9964693735 5.387541548 5.7758721835 6.00342242 5.722388792
116 5.8394143839999995 5.191963059000001 5.6485566255 5.695898379000001 5.593356878
120 5.9048759065 5.6083588585 5.9003235325 5.9710455620000005 5.645843256499999
124 6.275426920999999 5.5177385845 5.8060649615 6.5678452279999995 5.922269055
128 6.619004843500001 5.822076848 6.3194000085 6.418017966 6.132641139

In general all methods perform the same, with the exception of the interleave-
based policy that performs better in high thread counts. The reason for this can be
the fact that the interleave-based policy distributes faster the reduce tasks among the
threads whereas the locality-based methods must rely on work-stealing which induces
extra overhead. The balanced-based method due to its overhead doesn’t match the
performance of the interleave-based method.

6.3.3 Results for parade with 64 GB data size

Equal emit filler policy and Equal-Prob Key Filler Policy The latency in sec-
onds for the reduce phase including the overhead for calculating the reduce task
distribution for each policy is depicted in figure 6.8.
We can see the results in more detail in the following table.

56

Figure 6.8: Latency in seconds for the reduce phase for 64 GB data size, Equal emit
filler policy and Equal-Prob Key Filler Policy

NumThreads balanced interleave locality locality-balanced locality-interleave

4 34.677529608 36.821672626 32.1671266685 37.088344378 35.0997213665
8 16.749758656 16.619612386 16.72555038 16.500827205500002 16.6749154825
12 11.809455245999999 11.653028399499998 11.909420725 11.9898071205 11.715453351
16 9.955870340499999 9.53611767 9.7121734305 9.984366651 9.8456540575
20 9.2657793305 9.3532108665 9.102440146 9.3132463055 9.2339810185
24 7.738913886000001 7.562351809 7.863905056 7.946846431 7.610961162500001
28 8.405104323500002 8.31213519 7.981517128 7.7857264435 7.818154969
32 8.209590233 8.3282956635 8.1981723505 8.020478376 7.988077536
36 9.2299669915 8.515301685499999 8.4791010545 9.1584927735 8.335419071
40 9.13659371 8.948233501499999 9.33057575 7.6808934099999995 9.320391467
44 9.0551944475 9.967500397 9.290926095 10.0083995735 10.0552979565
48 10.0624949515 10.067020769500001 9.500237849000001 9.390310486 10.41042675
52 10.8051922485 11.235036902000001 11.3494642515 11.650186781 10.358913577
56 11.873539625500001 11.764005863000001 11.671767645500001 11.7703137845 11.886132215
60 11.574686983 11.3435868205 11.936020756 11.846824120499999 11.545409202
64 11.468267178 11.1985197095 11.6886595995 12.2197463545 12.016568926
68 11.1706613765 11.4015031275 10.508865948 11.066778856500001 11.5142199815
72 10.926684282 10.8632011355 11.090759551000001 10.914190577 10.7389225935
76 11.617833176000001 11.451266552 11.20049761 12.330772272499999 11.657768601499999
80 12.113177858499999 11.613975098000001 12.483356738 11.3087069365 11.851580102
84 13.434732678 11.897625097999999 11.766549847 12.8015945035 11.790341671
88 13.4923687415 12.716665918 13.531675375999999 13.028127984000001 11.542086625
92 12.645428511999999 13.497193522 13.6928108845 13.8123302385 12.283367724
96 14.1969591995 14.147975453499999 13.267166725 13.3884895035 13.579218256499999
100 14.625700255 13.69032482 14.488692035 13.8180832105 14.174375946000001
104 14.2061163225 14.363820319 14.640646578 15.471457891 13.65614587
108 14.529753676999999 14.9074261465 15.1418582005 15.371165925500001 13.591373646000001
112 15.9535531075 15.4985253405 15.751974115500001 15.5820475515 15.1625304445
116 15.007130524 12.887268004 14.597336880499999 15.336159508 15.729864457000001
120 14.943190155 13.507511209 15.38661797 14.699290211000001 15.2807315385
124 15.587731372499999 14.444314299 14.6788312925 14.6522421565 14.945838956
128 14.702618634499999 14.275126181000001 14.907593967499999 14.720288106 14.4395417375

Equal emit filler policy and Disjoint-Subranges Key Filler Policy This case rep-
resents the scenario where threads exhibit locality to certain keys, meaning that, for
example, one map worker was responsibility for the majority of keys produced for
one key bucket. The latency in seconds for the reduce phase including the overhead

57

for calculating the reduce task distribution for each policy is depicted in figure 6.9.

Figure 6.9: Latency in seconds for the reduce phase for 64 GB data size, Equal emit
filler policy and Disjoint-Subranges Key Filler Policy

We can see the results in more detail in the following table:

NumThreads balanced interleave locality locality-balanced locality-interleave

4 40.082530033 41.1428248235 40.025583513499996 40.0945491345 40.132937676
8 20.7930270995 25.3651353255 20.664143643499997 20.661101114 20.7710790115
12 15.507747346 15.928910784 15.473043761 15.36529367 15.526905558
16 11.124030193 11.6153368795 11.158130783499999 11.190638484499999 11.145797070499999
20 9.706668684 10.2832733465 9.6972073175 9.672478069499999 9.677859918500001
24 8.7829119845 9.695255528 8.763086246499999 8.765523587 8.722509698
28 8.213830815000001 9.364803533 8.268731982 8.264683416499999 8.223007584000001
32 6.8068996665 8.887090561 6.5540442305 6.591464069500001 6.5262431485
36 6.5896665604999995 8.049484953499999 6.58752244 6.571427116000001 6.547442531
40 6.4679976905 7.8425475295 6.4261494245 6.462867113 6.421169819999999
44 6.367247839 7.6923530145 6.3621124469999994 6.3994003710000005 6.329611763
48 6.3949106775 7.693676115000001 6.238600014499999 6.314250660500001 6.2409209315
52 6.582910829999999 8.1463715 6.6197674504999995 6.654450292 6.512379166500001
56 6.6307632420000004 8.394571969000001 6.63959487 6.6813016105 6.6027577184999995
60 6.7611689345 8.3160816575 6.796483794 6.803738195 6.7057377119999995
64 5.5797097255 7.5621137015 5.563605014 5.556207247 5.510569555
68 5.417566646999999 7.7109579964999995 5.442108516 5.3650061545 5.2922414745
72 5.5012232195 7.677072871 5.1821564155 5.218596239 5.259771011
76 5.429455737 7.6078987415 5.246261231 5.439814267999999 5.4243834755
80 5.4446145134999995 7.30259211 5.380024983 5.5193125395 5.281151943499999
84 5.427597094999999 7.116868520000001 5.355227641 5.418216483 5.320032729499999
88 5.5895843245000005 7.368817565 5.5233427035 5.564340358 5.4325452205
92 5.6822388835 7.080553765 5.680353774 5.6993891869999995 5.516795568
96 5.8255473095 7.2468327665 5.775440863 5.812953126 5.633561944
100 6.093079921999999 7.674173106 6.0320079945 6.0641844725 5.93340766
104 6.198487031999999 7.7325002695 6.173234072 6.1779070945 6.0190066375
108 6.2836718995 7.9297485695 6.2420635045 6.28962075 6.102418214
112 5.30328873 7.2339523815 5.319106861 5.422820895 5.2687147675
116 5.620547564 7.4355266575000005 5.790380212500001 5.7465733485 5.627979879
120 5.4277955344999995 7.235994584 5.2681731460000005 5.326486554000001 5.067428172
124 5.332100273 7.905528675 5.5236444745 5.395595023 5.1843084445
128 5.4127111625 7.357002245 5.2761366800000005 5.2493539160000005 5.08735125

Here we can again see the performance advantage of the NUMA-aware methods
over the base interleave-based methods.

58

One-Numa-Heavy emit filler policy and Equal-Prob Key Filler Policy This sce-
nario represents an unbalanced workload distribution where one NUMA node is
overburden with the majority of the emits made. The latency in seconds for the re-
duce phase including the overhead for calculating the reduce task distribution for
each policy is depicted in figure 6.10.

Figure 6.10: Latency in seconds for the reduce phase for 64 GB data size, One-Numa-
Heavy emit filler policy and Equal-Prob Key Filler Policy

We can see the results in more detail in the following table:

59

NumThreads balanced interleave locality locality-balanced locality-interleave

4 56.463624825500005 56.7943555965 57.209495652 56.7549786985 58.478843499
8 32.1967032275 32.0684719605 31.5194465975 33.1077600925 31.028366706
12 20.445610995 23.4547309075 23.0307076355 20.857040296 22.9773021295
16 13.67388358 13.230297548 13.819717927500001 13.064821958 12.6042637465
20 12.2616049415 11.689607535499999 11.9041244625 11.306844127 11.927950767
24 11.6030284365 11.8655335795 10.7651307195 11.046577739 10.7933370715
28 9.626626821 10.0914125835 9.9560933935 10.2589959365 9.918885658499999
32 9.9351220165 9.384238197 9.793642599999998 9.493912756 9.6746953715
36 9.653645899499999 9.707462940500001 9.965096378 10.143473754 10.1628849825
40 9.5231036955 9.9832258215 10.3484916065 10.040341707500001 9.9919911275
44 9.6585178345 9.860832042 10.0272368695 9.798619634000001 10.155965113
48 10.297624409 10.3090311055 10.109351650499999 10.4349132925 10.1199284825
52 10.014926443 9.487137929 9.768957255499998 9.8494671255 10.155001806000001
56 10.050370976 10.058735001999999 9.962650605 10.385509086999999 10.1186443735
60 10.68908372 9.7720437005 10.2415130285 10.353540808 9.866056085
64 10.189459845 9.2636486615 9.63127763 9.919163899499999 10.241357508
68 10.8126674185 10.804179911 10.5963388675 10.938652978499999 10.241718112000001
72 11.1680462125 10.270423134 10.6728469835 10.7501146535 10.537313263
76 10.7371740165 10.5480307645 10.6847122715 10.6562691535 10.488902034999999
80 10.9414184595 10.74159076 10.958679844999999 11.0281303265 10.518426548
84 14.1972207995 13.884077702999999 13.7001532855 14.29957481 13.7260069975
88 15.7534140405 15.445247925 15.757683387 15.6295484915 15.4870328865
92 13.041717883 12.749738473 13.2403069995 12.996534962 13.1900677835
96 13.9444854895 13.6364442505 13.901087905499999 14.4002154085 13.744404428
100 13.9180666695 13.877005011 14.064221667 13.8212558525 13.756438525
104 13.066928874 12.843891421 13.211753047999999 13.179755123 13.010617434
108 13.4868545775 12.9467056025 13.4488495895 13.620820404 13.2079349795
112 13.340665519 12.563232474500001 13.246154936 13.065686034 13.170775893
116 12.823281814000001 12.690553056999999 12.9428138625 12.855474209 12.9115954635
120 12.6774708 12.0444703805 12.476509015 12.443473969 12.003086521
124 12.232698016499999 11.432785377 12.072149549999999 12.102899219 12.010084091500001
128 14.747325475499999 13.9041026045 14.591283638 14.465425708 14.4788274215

As we can see from the figure all methods perform almost the same. This can
be attributed to the fact that due to work-stealing all methods achieve balanced task
distribution and due to the large size the overhead of methods like the balanced-based
method is masked, whereas in the 32GB case the interleave-based method performed
better and the overhead of the other methods was evident.

6.3.4 Results for parallax with 16 GB data size

Equal emit filler policy and Equal-Prob Key Filler Policy The latency in sec-
onds for the reduce phase including the overhead for calculating the reduce task
distribution for each policy is depicted in figure 6.11.
We can see the results in more detail in the following table.

60

Figure 6.11: Latency in seconds for the reduce phase for 16 GB data size, Equal emit
filler policy and Equal-Prob Key Filler Policy

NumThreads balanced interleave locality locality-balanced locality-interleave

2 16.786427895666666 16.479983005 16.538170641 16.750685429333334 16.633060074
4 7.892304888333333 7.836049401333334 7.824653915666667 7.926503957666666 7.810202335333333
6 5.270982942333333 5.255421201333333 5.2315290186666665 5.245155384666667 5.321578406
8 4.396858621 4.283120759333333 4.287749750666666 4.269269845666667 4.320778886333333
10 3.8522237053333335 3.7602157923333333 3.7762734836666665 3.8639908316666665 3.836882302
12 3.0801359870000002 3.10799377 3.1309034000000002 3.106546256333333 3.094435537
14 2.9034554866666666 2.8888655973333335 2.9513096966666668 2.9257252903333333 2.9043660086666665
16 2.7812316213333332 2.7518107746666667 2.747823709 2.8090494573333333 2.7478675226666667
18 2.7121033083333335 2.7123751023333336 2.771912073333333 2.7083455703333335 2.7325262253333333
20 2.8240408826666665 2.769827674 2.836672211333333 2.810759423 2.7912270303333333
22 2.599366586 2.5434643843333333 2.588823893 2.6435534506666665 2.660713348333333
24 3.0880412953333334 2.8912901406666665 2.991043701 2.943650754 2.8509788316666667
26 3.5041611893333333 3.3787158583333334 3.173110316333333 3.375583267 3.2413473213333335
28 3.4591668666666666 3.5879768893333335 3.591419264333333 3.6530721293333333 3.6316496033333334
30 3.6154150363333333 3.576548966 3.6710796813333335 3.6663811576666667 3.674638207333333
32 3.539224813 3.682185312666667 3.5483939123333332 3.639095729 3.4237435216666667
34 3.2687213313333334 3.2144824796666667 3.2303868736666668 3.4263118726666666 3.3303602523333335
36 3.1072322206666665 3.1253975996666665 3.193357123333333 2.9601123886666665 3.138059306666667
38 2.8858600456666665 3.0667944879999998 2.8776488406666667 2.826686291 2.720589957666667
40 2.617082934 2.6537101406666666 2.8665505036666667 2.8685406253333334 2.9220978476666666
42 2.7691576393333333 2.8778874583333334 2.6896647909999998 2.884077779 2.785725810333333
44 2.833747357 2.9173307166666667 2.8677025836666665 2.6844983 2.745121347
46 2.9031009070000002 2.808482070666667 2.8868926466666665 2.756530086666667 3.0991304526666665
48 2.6816600856666666 2.8710412623333332 2.7557561316666668 2.958725896 3.258854396333333
50 3.2006256123333334 2.7480758026666665 2.863879138666667 3.249305897 3.0654768713333334
52 3.291243702 3.363987115 3.424649772 2.8238475696666665 3.1562290256666667
54 3.500209569 3.273586209333333 3.4069744836666667 3.0796498216666666 3.6710270303333337
56 3.2782117123333334 3.1277400903333334 3.615225027666667 3.4702674166666667 3.3875576003333334
58 3.4253094566666666 3.167288951 3.054341545333333 3.5506371123333333 3.2928909673333333
60 3.089826356666667 3.265682978 3.6361849989999997 3.0579455913333335 4.1881960860000005
62 3.5044781626666666 2.9418354653333334 3.7647481066666666 3.5861608333333335 3.3957334463333333
64 4.057415642333334 2.9936661056666667 3.4622537243333333 3.6598077563333336 3.6862785453333333

Equal emit filler policy and Disjoint-Subranges Key Filler Policy This case rep-
resents the scenario where threads exhibit locality to certain keys, meaning that, for
example, one map worker was responsibility for the majority of keys produced for
one key bucket. The latency in seconds for the reduce phase including the overhead

61

for calculating the reduce task distribution for each policy is depicted in figure 6.12.

Figure 6.12: Latency in seconds for the reduce phase for 16 GB data size, Equal emit
filler policy and Disjoint-Subranges Key Filler Policy

We can see the results in more detail in the following table.

NumThreads balanced interleave localit locality-balanced locality-interleave

2 18.53946046966667 21.420404445666666 18.460628321 18.507045357666666 18.518536661666666
4 9.805268235333333 10.894967500333333 9.813067189333333 9.831142105 9.789495454333334
6 7.475483585 7.857575421666667 7.468917451333334 7.461005048333334 7.478274885
8 5.542279507333333 6.243151362666667 5.337988426333333 5.34882162 5.335937529333333
10 4.621346900333333 4.795403877666667 4.62688998 4.631958683333333 4.620590503
12 4.144907432666667 4.351337668666667 4.154608767666667 4.158865322333334 4.164609057666667
14 3.8709118553333335 4.044580764666667 3.85968714 3.851678927 3.8406303176666667
16 3.432263520333333 3.2375919063333334 3.4145498646666668 3.384347976 3.4443843136666668
18 3.089370116 3.183261679 3.0740253843333334 3.083982861 3.0682897343333333
20 2.9912015823333333 3.1147492113333333 2.9681198883333333 2.97540685 2.9604647816666665
22 2.8921355859999998 3.1020794453333336 2.8961739016666668 2.890815791666667 2.88486412
24 2.9221671836666667 3.1925857976666667 2.9066743086666667 2.9312780320000003 2.9191154646666666
26 2.998628892 3.2863582046666666 2.988049924 3.006199767 2.9924806690000003
28 3.1659367996666665 3.497884318 3.095565011333333 3.0654127083333336 3.047535413
30 3.2360528636666666 3.7914679666666666 3.2342852053333333 3.2054212243333335 3.2735780379999997
32 2.5397635663333333 3.055165248 2.525580466 2.5157952949999998 2.508367601
34 2.4621796236666667 2.780221496333333 2.5081005236666667 2.5294517963333334 2.4596767523333334
36 2.5005053166666666 2.767997115 2.467671327 2.405380315 2.402076888333333
38 2.463900499 2.682737944 2.433332538333333 2.43820541 2.4146922726666666
40 2.514952431333333 2.7816258966666667 2.4825694603333335 2.508590191 2.4729549353333335
42 2.5167784946666667 2.7402747326666668 2.516122020666667 2.5237900123333334 2.4839375823333336
44 2.6164121546666665 2.7958716193333335 2.5680524846666666 2.5977643853333334 2.576645179333333
46 2.6655007163333333 2.892063234666667 2.6525506 2.6652665576666665 2.6287840223333334
48 2.7422638706666667 2.9395581193333333 2.7065085926666668 2.7228091476666667 2.6891897533333333
50 2.817035709333333 3.044811517333333 2.7953982053333335 2.8150013916666667 2.7659672619999998
52 2.8569983293333334 3.117728147333333 2.8536234776666665 2.8544001816666666 2.81221451
54 2.9427761753333335 3.2801927093333334 2.932725666 2.9497576973333333 2.904593605
56 3.006564211666667 3.3747491716666667 2.961607137 3.024899441666667 2.923269997
58 2.941557882666667 3.451633618666667 3.015711414666667 3.059610301333333 2.996098041
60 2.7134386766666667 3.3909892723333335 2.666622633666667 2.774961075333333 2.7707922663333333
62 2.657878538 3.2704516133333335 2.5720884346666666 2.5778110523333333 2.481735892666667
64 2.516682006 3.0428412513333334 2.5230210266666666 2.5441667866666666 2.5555118576666667

Here we can again see the performance advantage of the NUMA-aware methods
over the base interleave-based methods.

62

One-Numa-Heavy emit filler policy and Equal-Prob Key Filler Policy This sce-
nario represents an unbalanced workload distribution where one NUMA node is
overburden with the majority of the emits made. The latency in seconds for the re-
duce phase including the overhead for calculating the reduce task distribution for
each policy is depicted in figure 6.13.

Figure 6.13: Latency in seconds for the reduce phase for 64 GB data size, One-Numa-
Heavy emit filler policy and Equal-Prob Key Filler Policy

We can see the results in more detail in the following table:

63

NumThreads balanced interleave locality locality-balanced locality-interleave

2 19.413821118333335 19.081338773666666 18.896907578333334 19.160612707000002 18.960139442666666
4 8.39588958 8.435618327 8.520511218333333 8.435876154 8.325520772666668
6 5.479406299333333 5.629542791 5.574157023 5.497623874333334 5.4862914069999995
8 4.609933825666666 4.544460985 4.4735303889999996 4.5422973833333335 4.5954994110000005
10 3.873598488 3.9141646686666665 4.087036257 3.8634738453333335 4.079074049333333
12 3.404913749 3.095731844 3.218559396333333 3.2257490066666668 3.186693937333333
14 3.0247508033333332 2.999385962333333 3.0380683176666667 3.007429579333333 3.0063717916666666
16 2.8075157163333335 2.7341574696666666 2.692124107 2.8159493760000003 2.7495187013333333
18 2.8203263986666665 2.902614113333333 2.8803105626666667 2.9631949656666667 2.866786354333333
20 2.9393545923333333 2.8808530366666667 2.8874719553333335 2.9528616646666666 2.840654038
22 2.5189670583333332 2.4273433803333333 2.5042033716666667 2.523259007 2.513106888333333
24 2.7589488896666667 2.7180871153333332 2.744821875 2.821057833333333 2.715179186
26 2.9500216833333335 2.9572980393333332 2.9775460663333333 3.009270577 2.975470744
28 3.0215357903333335 3.0570341026666665 3.134239017666667 3.09472586 3.0975689203333334
30 3.1402192496666665 3.108727072333333 3.2326835689999998 3.170278512 3.1034696536666666
32 3.2541898746666664 3.0473593013333335 3.166472163 3.202768219333333 3.1690096876666667
34 3.19234947 3.0516541923333333 3.258949196 3.3294827479999998 3.098336136
36 3.2918625946666666 3.191881958666667 3.301857414666667 3.2464534843333337 3.185771949
38 3.388201871 3.265745584 3.363868833333333 3.332636495 3.297339748
40 3.237484525333333 3.1685167896666666 3.1920451056666668 3.1799082370000002 3.196152667666667
42 3.233902272 3.238063578333333 3.2707778453333334 3.3982712133333335 3.3109231586666668
44 3.4199586203333334 3.295859991 3.2790830466666665 3.589166384 3.255949871
46 3.7528532009999997 3.468852259333333 3.5968239833333335 3.4674552596666666 3.6653089446666667
48 3.7002868593333336 3.7706257076666665 3.8720573243333334 4.057572874666667 3.769070746333333
50 4.181780612666667 4.064052898333333 4.223457634666667 4.203927003 4.344769030666667
52 4.286000934 4.156552495 4.299396511333334 4.2305016816666665 4.207047570333333
54 4.377483771 4.178450525 4.293449831666667 4.245746326 4.2569212793333335
56 4.225120373333334 4.164374077 4.212205362333333 4.292020746333334 4.178356286333334
58 4.139124183 4.014664925666667 4.138499121333333 4.22135407 4.174074332333333
60 4.124766688666667 3.9896611853333335 4.118694861333333 4.1624660376666665 4.093784508000001
62 3.874624748 3.7347858720000002 3.738377255666667 3.8870318796666665 3.8360932956666667
64 4.175104993666666 3.872723478333333 3.9320719706666667 4.056136696333333 4.18180757

As we can see from the figure all methods perform almost the same contrary to the
small data size case for the parade machine using 32GB size where due to overhead
the locality-aware methods performed a little worse in general.

6.3.5 Results for paragon with 4 GB data size

For the paragon machine we used only 4GB because we used the memory per NUMA
node as an upper limit.

Equal emit filler policy and Equal-Prob Key Filler Policy The latency in seconds
for the reduce phase for all policies including the overhead for calculating the reduce
task distribution for each policy is depicted in figure 6.14.
We can again witness the superiority of the task distribution policies over the

tournament based ones. In this case due to the small amount of memory involved all
of the task distribution policies performed almost the same. We can see the results in
more detail in the following table.

64

Figure 6.14: Latency in seconds for the reduce phase for 4 GB data size, Equal emit
filler policy and Equal-Prob Key Filler Policy

Threads horizontal vertical balanced interleave locality locality-balanced locality-interleave

1 90.63549134033333 43.272483384 41.916040718 42.383696615999995 42.980072553666666 43.212478614 43.090648801
2 40.021595354 71.97098942633333 16.144669431 16.102663419 15.938194391333335 16.148257871666665 16.007962572333334
3 25.583419441333334 96.861219301 9.429457008333333 9.507458612666667 9.46737654 9.521075516666667 9.595898434
4 19.513719860000002 88.46605083333333 7.145949401333334 7.280387982333334 7.252408600333333 7.297664836333333 7.208234923
5 15.416812676666666 108.29783369133334 6.173136538 5.933383321333333 6.047893973666667 6.159908495 5.935869062666667
6 12.748709910666667 107.70311547933333 4.7820062 4.7538305649999995 4.6708454669999995 4.753896609333333 4.649656488333333
7 10.966643022666666 100.360966 4.268790277666667 4.230761352 4.261199141666666 4.300853745666666 4.173351482666667
8 9.213544265 96.280304117 3.8456001896666665 3.7873890893333333 3.839532665 3.8732796560000002 3.8435463226666666
9 8.494754001999999 110.381888943 3.5889806666666666 3.522151411333333 3.5638903896666667 3.5801404073333334 3.580721763
10 7.7835837523333335 108.631731761 3.3225147273333335 3.226611594 3.290879311 3.302210839 3.315095246
11 6.862904507666666 105.290653957 2.8794564486666667 2.760916998 2.737010787 2.8874112303333335 2.839809437
12 6.174486703666667 101.68846789833333 2.604806623 2.565763711333333 2.5387573303333335 2.639217976333333 2.6222851206666666
13 6.044573086 105.191358167 2.7963489476666665 2.5594394586666667 2.5495239043333333 2.461456539 2.537277084333333
14 5.537694134 104.39699340599999 2.275608865666667 2.374752454 2.3974937333333335 2.4329964463333336 2.4188232496666666
15 5.264808152666666 101.97749137433333 2.3295044213333336 2.231715734333333 2.3591155010000002 2.315312387 2.3046740683333335
16 4.974551907 99.96013120433334 2.253520301 2.2133255 2.151065163 2.2173485123333334 2.2483972690000003
17 4.790418104666666 112.81385196466667 2.125752572 2.116195884 2.1267544653333332 2.1898535603333333 2.0548459046666667
18 4.815495768666667 110.887434693 2.0856683296666665 2.0170625246666667 2.102112228333333 2.0531578656666665 2.0961854733333336
19 4.382203024333333 109.02053135033334 2.055277900666667 1.9676353446666668 1.9673788166666666 1.9356632966666667 1.929774967
20 4.164595247333334 106.791067678 1.8869219176666667 1.830945912 1.8586519620000002 1.899068397 1.8171436626666666
21 3.9870851270000003 108.29344508 1.7020797986666667 1.7502550683333333 1.790028826 1.865817856 1.7555225813333333
22 3.8475802486666666 107.599913746 1.5960889903333333 1.595026011 1.574224877 1.573961608 1.646303752
23 3.7561397813333333 106.47771405333333 1.6560820183333333 1.5894847263333334 1.546393485 1.619088423 1.6796492966666667
24 3.4924706483333336 104.97931499466667 1.519804578 1.3935759626666666 1.5733790676666666 1.656640132 1.4361306153333333

Equal emit filler policy and Disjoint-Subranges Key Filler Policy onsibility for
the majority of keys produced for one key bucket. The latency in seconds for the
reduce phase including the overhead for calculating the reduce task distribution for
each policy is depicted in figure 6.15.
We can see the results in more detail in the following table.

65

Figure 6.15: Latency in seconds for the reduce phase for 4 GB data size, Equal emit
filler policy and Disjoint-Subranges Key Filler Policy

Threads horizontal vertical balanced interleave locality locality-balanced locality-interleave

1 91.62044300733334 43.343438426 43.11938372633333 43.493503215666664 43.253090754 43.173374188333334 43.20182015066666
2 42.877155873333336 93.51649353566667 21.433504351333333 21.830331012666665 21.235263210333333 21.583757888666668 21.467677515666665
3 28.667718775 124.98901746533333 12.989703003333334 13.011396332 12.961631426333334 13.007899517333334 13.024078935333334
4 20.89342428033333 117.67616290866667 9.265499828666666 9.670919309333334 9.189835622333334 9.147413382 9.191824176333334
5 17.186192612 141.135307424 7.984113954666666 8.393622432333332 8.024748559999999 7.991725977000001 8.001657574
6 14.632478199333333 141.931382116 6.782692974333334 6.723542994 6.8241753313333335 6.77087026 6.7454990299999995
7 12.682169361 135.10941642400002 5.941401052 6.025229261 5.955288855666667 5.922888286666667 5.916845472
8 10.688759285333333 130.210436002 4.811971561 5.156670461333333 4.794081577333333 4.805062684666667 4.802095313
9 9.646997366666666 147.16171532466666 4.412869557333333 4.402718947333334 4.394353112666667 4.4200130736666665 4.396943084666667
10 8.750143116666667 146.90615940466665 4.062702012666667 4.065480782333333 4.065902595666667 4.054798723666667 4.069010237
11 8.050622208 141.974974944 3.771634128666667 3.8818339550000003 3.7694037303333334 3.775629282333333 3.7616052416666665
12 7.505918342666667 137.65582474266665 3.5403373670000002 3.550108929333333 3.5333673396666665 3.548194897 3.5239705076666668
13 7.017665216 142.432908031 3.3967427193333335 3.3749874763333336 3.3685519603333334 3.3791097433333332 3.368734561666667
14 6.595503323333333 141.71862997566666 3.288787279 3.3863590666666665 3.243406038333333 3.3026990339999998 3.268089181
15 6.300437159666666 138.714037389 3.1761386330000003 3.135255184 3.1244641033333336 3.1932946016666666 3.1614900586666668
16 5.733756197666667 137.35299934066668 2.7955521053333334 2.7044937066666668 2.7136395416666668 2.7282479596666667 2.681413376
17 5.319635445333333 150.06284065566666 2.632415739333333 2.6765374946666665 2.605717434666667 2.56965875 2.5188640153333335
18 5.097016679666667 149.75777278833334 2.5069452936666665 2.7552157703333333 2.485006113 2.4937039143333335 2.500978208666667
19 4.873624833333333 147.35812921166666 2.453795558 2.7763780856666664 2.381608641 2.4710700226666664 2.458057375
20 4.693303155333333 145.12259095666667 2.351225895333333 2.430292578 2.3432062276666668 2.352776543 2.4078416236666667
21 4.6014366283333334 146.74665191600002 2.295256254 2.4773770003333335 2.3057749486666665 2.3569783613333333 2.2996465716666665
22 4.363284175333333 146.00387841 2.2985089136666668 2.2219897956666665 2.2785252066666666 2.2861830316666665 2.2402235926666667
23 4.230093182 143.119887743 2.2397576643333332 2.3237822836666666 2.225419212333333 2.282097077 2.239185931333333
24 4.0997548476666665 142.42515073299998 2.296315377 2.3514512560000003 2.2640344856666665 2.224628319333333 2.1560544166666666

We can again witness the superiority of the task distribution policies over the
tournament based ones. In this case due to the small amount of memory involved all
of the task distribution policies performed almost the same. We can see the results in
more detail in the following table.

66

Chapter 7

Conclusions and Future Work

7.1 Conclusions

7.2 Future Work

7.1 Conclusions

In this thesis we evaluated two sets of methods that are based on the well-known and
historical tournament-based barrier algorithm, whereby we hierarchically reduce the
(key,value) pairs first within NUMA nodes and then among all NUMA nodes. The
second set of methods we evaluate are extensions of the current implementation of the
reduce phase in the Phoenix++ runtime, whereby we implement various reduce task
distribution policies that dictate to which thread a reduce task should be executed,
where a reduce task implies the reduction over a specific range of keys. The purpose
of those methods was to improve the reduce phase of the Phoenix++ runtime for the
MapReduce programming model for shared-memry systems
We conclude that the first set of methods do not provide any performance advan-

tages due to the extra overhead of synchronization and management of the interme-
diate data structures used during reduction. However, as far as the task distribution
policies are concerned, in workloads that exhibit locality between the threads and the
key ranges we can observe a performance improvement of up to 26.93% (i.e compar-
ing interleave to the locality-interleave policy for 32 GB) and 30.85% (i.e comparing
interleave to the locality-interleave policy for 64 GB) for 128 threads. For the typical

67

random case where the NUMA-Aware optimizations do not provide any benefits, we
observe a performance decrease of 9.62%.

7.2 Future Work

Therefore, as future work we need to determine an efficient way of determining which
of the methods to use based on the key distribution profile in the global container
during the reduce phase to avoid the performance overhead for the typical random
case. Furthermore, those results need to be checked against larger NUMA machines
especially those with asymmetric interconnection networks. Last but not least, we
need to evaluate those methods for other kinds of applications and compare with
other implementations.

68

Bibliography

Sergey Blagodurov, Sergey Zhuravlev, Mohammad Dashti, and Alexandra Fedorova.
A case for numa-aware contention management on multicore systems. In Pro-
ceedings of the 2011 USENIX Conference on USENIX Annual Technical Conference,
USENIXATC’11, pages 1–1, Berkeley, CA, USA, 2011. USENIX Association. URL
http://dl.acm.org/citation.cfm?id=2002181.2002182.

Baptiste Lepers, Vivien Quéma, and Alexandra Fedorova. Thread and memory place-
ment on numa systems: Asymmetry matters. In Proceedings of the 2015 USENIX
Conference on Usenix Annual Technical Conference, USENIX ATC ’15, pages 277–289,
Berkeley, CA, USA, 2015. USENIX Association. ISBN 978-1-931971-225. URL
http://dl.acm.org/citation.cfm?id=2813767.2813788.

Sharanyan Srikanthan, Sandhya Dwarkadas, and Kai Shen. Data sharing or resource
contention: Toward performance transparency on multicore systems. In Proceedings
of the 2015 USENIX Conference on Usenix Annual Technical Conference, USENIX ATC
’15, pages 529–540, Berkeley, CA, USA, 2015. USENIX Association. ISBN 978-1-
931971-225. URL http://dl.acm.org/citation.cfm?id=2813767.2813807.

Mohammad Dashti, Alexandra Fedorova, Justin Funston, Fabien Gaud, Renaud
Lachaize, Baptiste Lepers, Vivien Quema, and Mark Roth. Traffic management:
A holistic approach to memory placement on numa systems. In Proceedings of
the Eighteenth International Conference on Architectural Support for Programming Lan-
guages and Operating Systems, ASPLOS ’13, pages 381–394, New York, NY, USA,
2013. ACM. ISBN 978-1-4503-1870-9. doi: 10.1145/2451116.2451157. URL
http://doi.acm.org/10.1145/2451116.2451157.

Sharanyan Srikanthan, Sandhya Dwarkadas, and Kai Shen. Coherence stalls or latency
tolerance: Informed cpu scheduling for socket and core sharing. In Proceedings of

69

http://dl.acm.org/citation.cfm?id=2002181.2002182
http://dl.acm.org/citation.cfm?id=2813767.2813788
http://dl.acm.org/citation.cfm?id=2813767.2813807
http://doi.acm.org/10.1145/2451116.2451157

the 2016 USENIX Conference on Usenix Annual Technical Conference, USENIX ATC
’16, page 323–336, USA, 2016. USENIX Association. ISBN 9781931971300.

Mihail Popov, Alexandra Jimborean, and David Black-Schaffer. Efficient thread/-
page/parallelism autotuning for numa systems. In Proceedings of the ACM In-
ternational Conference on Supercomputing, ICS ’19, page 342–353, New York, NY,
USA, 2019. Association for Computing Machinery. ISBN 9781450360791. doi:
10.1145/3330345.3330376. URL https://doi.org/10.1145/3330345.3330376.

Ananya Muddukrishna, Peter A. Jonsson, and Mats Brorsson. Locality-aware task
scheduling and data distribution for openmp programs on numa systems and
manycore processors. Sci. Program., 2015, January 2016. ISSN 1058-9244. doi:
10.1155/2015/981759. URL https://doi.org/10.1155/2015/981759.

Andi Drebes, Antoniu Pop, Karine Heydemann, Albert Cohen, and Nathalie Drach.
Scalable task parallelism for numa: A uniform abstraction for coordinated schedul-
ing and memory management. In Proceedings of the 2016 International Conference
on Parallel Architectures and Compilation, PACT ’16, page 125–137, New York, NY,
USA, 2016. Association for Computing Machinery. ISBN 9781450341219. doi:
10.1145/2967938.2967946. URL https://doi.org/10.1145/2967938.2967946.

Philippe Virouleau, François Broquedis, Thierry Gautier, and Fabrice Rastello. Us-
ing data dependencies to improve task-based scheduling strategies on numa ar-
chitectures. In Proceedings of the 22nd International Conference on Euro-Par 2016:
Parallel Processing - Volume 9833, page 531–544, Berlin, Heidelberg, 2016. Springer-
Verlag. ISBN 9783319436586. doi: 10.1007/978-3-319-43659-3_39. URL https:

//doi.org/10.1007/978-3-319-43659-3_39.

Quan Chen and Minyi Guo. Locality-aware work stealing based on online profiling
and auto-tuning for multisocket multicore architectures. ACM Trans. Archit. Code
Optim., 12(2), July 2015. ISSN 1544-3566. doi: 10.1145/2766450. URL https:

//doi.org/10.1145/2766450.

Zoltan Majo and Thomas R. Gross. A library for portable and composable data locality
optimizations for numa systems. ACM Trans. Parallel Comput., 3(4), March 2017.
ISSN 2329-4949. doi: 10.1145/3040222. URL https://doi.org/10.1145/3040222.

70

https://doi.org/10.1145/3330345.3330376
https://doi.org/10.1155/2015/981759
https://doi.org/10.1145/2967938.2967946
https://doi.org/10.1007/978-3-319-43659-3_39
https://doi.org/10.1007/978-3-319-43659-3_39
https://doi.org/10.1145/2766450
https://doi.org/10.1145/2766450
https://doi.org/10.1145/3040222

Ahmad Anbar, Olivier Serres, Engin Kayraklioglu, Abdel-Hameed A. Badawy, and
Tarek El-Ghazawi. Exploiting hierarchical locality in deep parallel architectures.
ACM Trans. Archit. Code Optim., 13(2), June 2016. ISSN 1544-3566. doi: 10.1145/
2897783. URL https://doi.org/10.1145/2897783.

Kishore Kumar Pusukuri, Rajiv Gupta, and Laxmi N. Bhuyan. Tumbler: An effective
load-balancing technique for multi-cpu multicore systems. ACM Trans. Archit.
Code Optim., 12(4), November 2015. ISSN 1544-3566. doi: 10.1145/2827698. URL
https://doi.org/10.1145/2827698.

E. Jeannot, G. Mercier, and F. Tessier. Process placement in multicore clus-
ters:algorithmic issues and practical techniques. IEEE Transactions on Parallel and
Distributed Systems, 25(4):993–1002, 2014.

Eduardo H. M. Cruz, Matthias Diener, Laércio L. Pilla, and Philippe O. A. Navaux.
Eagermap: A task mapping algorithm to improve communication and load balanc-
ing in clusters of multicore systems. ACM Trans. Parallel Comput., 5(4), March 2019.
ISSN 2329-4949. doi: 10.1145/3309711. URL https://doi.org/10.1145/3309711.

Yandong Mao, Robert Morris, and M. Frans Kaashoek. Optimizing mapreduce for
multicore architectures. Computer Science and Artificial Intelligence Laboratory, Mas-
sachusetts Institute of Technology, Tech. Rep, 2010.

Mahwish Arif and Hans Vandierendonck. A case study of openmp applied to
map/reduce-style computations. In Christian Terboven, Bronis R. de Supinski, Pablo
Reble, Barbara M. Chapman, and Matthias S. Müller, editors, OpenMP: Heterogenous
Execution and Data Movements, pages 162–174, Cham, 2015. Springer International
Publishing. ISBN 978-3-319-24595-9.

Mei-Ling Chiang, Chieh-Jui Yang, and Shu-Wei Tu. Kernel mechanisms with dynamic
task-aware scheduling to reduce resource contention in numa multi-core systems.
J. Syst. Softw., 121(C):72–87, November 2016. ISSN 0164-1212. doi: 10.1016/j.jss.
2016.08.038. URL https://doi.org/10.1016/j.jss.2016.08.038.

I. Ştirb. Numa-btdm: A thread mapping algorithm for balanced data locality on numa
systems. In 2016 17th International Conference on Parallel and Distributed Computing,
Applications and Technologies (PDCAT), pages 317–320, 2016.

71

https://doi.org/10.1145/2897783
https://doi.org/10.1145/2827698
https://doi.org/10.1145/3309711
https://doi.org/10.1016/j.jss.2016.08.038

I. Ştirb. Numa-btlp: A static algorithm for thread classification. In 2018 5th Inter-
national Conference on Control, Decision and Information Technologies (CoDIT), pages
882–887, 2018.

Iulia Stirb. Extending NUMA-BTLP algorithm with thread mapping based on a
communication tree. Computers, 7(4):66, 2018. doi: 10.3390/computers7040066.
URL https://doi.org/10.3390/computers7040066.

C. Bordage and E. Jeannot. Process affinity, metrics and impact on performance: An
empirical study. In 2018 18th IEEE/ACM International Symposium on Cluster, Cloud
and Grid Computing (CCGRID), pages 523–532, 2018.

Nicolas Denoyelle, Brice Goglin, Emmanuel Jeannot, and Thomas Ropars. Data and
thread placement in numa architectures: A statistical learning approach. In Proceed-
ings of the 48th International Conference on Parallel Processing, ICPP 2019, New York,
NY, USA, 2019. Association for Computing Machinery. ISBN 9781450362955. doi:
10.1145/3337821.3337893. URL https://doi.org/10.1145/3337821.3337893.

E. H. M. Cruz, M. Diener, L. L. Pilla, and P. O. A. Navaux. An efficient algorithm for
communication-based task mapping. In 2015 23rd Euromicro International Confer-
ence on Parallel, Distributed, and Network-Based Processing, pages 207–214, 2015.

M. Diener, E. H. M. Cruz, and P. O. A. Navaux. Locality vs. balance: Exploring data
mapping policies on numa systems. In 2015 23rd Euromicro International Conference
on Parallel, Distributed, and Network-Based Processing, pages 9–16, 2015.

Isaac Sánchez Barrera, Miquel Moretó, Eduard Ayguadé, Jesús Labarta, Mateo
Valero, and Marc Casas. Reducing data movement on large shared memory sys-
tems by exploiting computation dependencies. In Proceedings of the 2018 In-
ternational Conference on Supercomputing, ICS ’18, page 207–217, New York, NY,
USA, 2018. Association for Computing Machinery. ISBN 9781450357838. doi:
10.1145/3205289.3205310. URL https://doi.org/10.1145/3205289.3205310.

R. Das, R. Ausavarungnirun, O. Mutlu, A. Kumar, and M. Azimi. Application-to-core
mapping policies to reduce memory system interference in multi-core systems. In
2013 IEEE 19th International Symposium on High Performance Computer Architecture
(HPCA), pages 107–118, 2013.

72

https://doi.org/10.3390/computers7040066
https://doi.org/10.1145/3337821.3337893
https://doi.org/10.1145/3205289.3205310

W. Wang, J. W. Davidson, and M. L. Soffa. Predicting the memory bandwidth and
optimal core allocations for multi-threaded applications on large-scale numa ma-
chines. In 2016 IEEE International Symposium on High Performance Computer Archi-
tecture (HPCA), pages 419–431, 2016.

S. Bak, H. Menon, S. White, M. Diener, and L. Kale. Multi-level load balancing with
an integrated runtime approach. In 2018 18th IEEE/ACM International Symposium
on Cluster, Cloud and Grid Computing (CCGRID), pages 31–40, 2018.

Justin Talbot, Richard M. Yoo, and Christos Kozyrakis. Phoenix++: Modular mapre-
duce for shared-memory systems. In Proceedings of the Second International Work-
shop on MapReduce and Its Applications, MapReduce ’11, page 9–16, New York, NY,
USA, 2011. Association for Computing Machinery. ISBN 9781450307000. doi:
10.1145/1996092.1996095. URL https://doi.org/10.1145/1996092.1996095.

R. M. Yoo, A. Romano, and C. Kozyrakis. Phoenix rebirth: Scalable mapreduce on
a large-scale shared-memory system. In 2009 IEEE International Symposium on
Workload Characterization (IISWC), pages 198–207, 2009.

C. Ranger, R. Raghuraman, A. Penmetsa, G. Bradski, and C. Kozyrakis. Evaluating
mapreduce for multi-core and multiprocessor systems. In 2007 IEEE 13th Inter-
national Symposium on High Performance Computer Architecture, pages 13–24, 2007.

73

https://doi.org/10.1145/1996092.1996095

	Table of Contents
	List of Figures
	Abstract
	Εκτεταμένη Περίληψη
	Introduction
	Parallel Systems and Parallel Programming Models
	The MapReduce Programming Model
	Objectives of this Thesis
	Thesis Organization

	Background on cc-NUMA Architectures
	Optimization Techniques on cc-NUMA Architectures
	Characteristics of Scheduling Algorithms for NUMA Systems
	Factors Affecting Performance
	Collecting Metrics
	Memory Migration
	Thread and Memory Placement

	Background on Phoenix++
	Architecture of The Phoenix++ Runtime System
	Writing MapReduce Applications with the Phoenix++ API
	The Phoenix++ Reduce Phase Algorithm
	Related Work

	Improving the Reduce Phase of Phoenix++
	Hierarchical Tournament-Based Reduce Agorithms
	Task Distritbution Policies for the Reduce Phase
	Thread Mapping Policies
	Work Stealing Victim Selection Policies
	Description of the Task Distribution Policies

	Implementation Details
	Topology Related Subsystem
	Task Queue System
	Tournament Vertical Reduce Implementation
	Reduce Task Distribution Policies Implementation

	Experimental Evaluation
	Machine Description
	Workload Descriptions
	Evaluation Results
	Superiority of the Task Distribution Policies over the Tournament-Based Approaches
	Results for parade with 32 GB data size
	Results for parade with 64 GB data size
	Results for parallax with 16 GB data size
	Results for paragon with 4 GB data size

	Conclusions and Future Work
	Conclusions
	Future Work

	Bibliography

