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Abstract

Evangelos Kosinas, M.Sc. in Data and Computer Systems Engineering, Department
of Computer Science and Engineering, School of Engineering, University of Ioannina,
Greece, July 2020.
Finding twinless strong bridges and articulation points in linear time.
Advisor: Loukas Georgiadis, Associate Professor.

A directed graph G = (V,E) is called twinless strongly connected if it contains a
strongly connected subgraphH = (V,E ′) without any pair of antiparallel (twin) edges.
The following problem naturally suggests itself: given a twinless strongly connected
graph G, find all edges e (resp. all vertices v), such that G\e (resp. G\v) is not twinless
strongly connected. Every such edge (resp. vertex) is called twinless strong bridge
(resp. articulation point). In this thesis, we show how to compute these elements
in linear time. For this purpose, we have developed new linear-time algorithms that
solve problems related to 3-connectivity in undirected graphs. Although there already
exist algorithms that can solve these problems in asymptotically optimal time, they are
somewhat involved. Our approach is conceptually simple and thus leads to algorithms
that are both easy to implement and likely to perform better in practice.
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Ε Π

Ευάγγελος Κοσίνας, Δ.Μ.Σ. στη Μηχανική Δεδομένων και Υπολογιστικών Συστημά-
των, Τμήμα Μηχανικών Η/Υ και Πληροφορικής, Πολυτεχνική Σχολή, Πανεπιστήμιο
Ιωαννίνων, Ιούλιος 2020.
Αλγόριθμοι γραμμικού χρόνου για τον υπολογισμό των twinless ισχυρών γεφυρών
και των κόμβων twinless ισχυρής άρθρωσης.
Επιβλέπων: Λουκάς Γεωργιάδης, Αναπληρωτής Καθηγητής.

Σε αυτήν την εργασία ασχολούμαστε με μία έννοια συνεκτικότητας σε κατευθυ-
νόμενα γραφήματα που ονομάζεται twinless ισχυρή συνεκτικότητα (twinless = χω-
ρίς αντιπαράλληλες ακμές) και αποτελεί μια ισχυρότερη συνθήκη από την ισχυρή
συνεκτικότητα. Συγκεκριμένα, λέμε ότι ένα κατευθυνόμενο γράφημα G = (V,E)

είναι twinless ισχυρά συνεκτικό αν υπάρχει (τουλάχιστον) ένα υπογράφημά του
H = (V,E ′) το οποίο είναι ισχυρά συνεκτικό και δεν περιέχει αντιπαράλληλες ακ-
μές (twins). Αυτό είναι ένα είδος συνεκτικότητας που ορίστηκε το 2006, και έχει
εφαρμογές σε προβλήματα τηλεπικοινωνιακών δικτύων και αρχιτεκτονικής.

Ένα ερώτημα που τίθεται εύλογα όταν ορίζει κανείς μια έννοια συνεκτικότητας
σε γραφήματα, είναι το πώς μπορούν να εντοπιστούν, με αποδοτικό τρόπο, όλα
τα στοιχεία του (κόμβοι ή ακμές), τα οποία, με την αφαίρεσή τους, καταστρέφουν
αυτήν την ιδιότητα στο γράφημα. Έτσι μπορεί κανείς να έχει μια εικόνα π.χ. για το
πόσο ανθεκτικό είναι ένα δίκτυο στην απώλεια κόμβων ή ακμών. Εμείς εξετάζουμε
ακριβώς το πρόβλημα του εντοπισμού των ακμών (αντ. των κόμβων) σ’ ένα twinless
ισχυρά συνεκτικό γράφημα, οι οποίες (αντ. οι οποίοι) με την αφαίρεσή τους κατα-
στρέφουν την twinless ισχυρή συνεκτικότητα σε αυτό. Οι πρώτες λέγονται twinless
ισχυρές γέφυρες (twinless strong bridges), ενώ οι δεύτεροι κόμβοι twinless ισχυ-
ρής άρθρωσης (twinless strong articulation points). Αυτό το πρόβλημα εξετάστηκε
από έναν ερευνητή το 2019, οποίος έδωσε αλγορίθμους πολυπλοκότητας O(nm)

για τον υπολογισμό αυτών των στοιχείων, όπου n είναι το πλήθος των κόμβων και
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m το πλήθος των ακμών στο γράφημα εισόδου. Εμείς βελτιώνουμε αυτό το απο-
τέλεσμα, δίνοντας αλγορίθμους ασυμπτωτικά βέλτιστης (δηλαδή, στην προκειμένη
περίπτωση, γραμμικής) πολυπλοκότητας για το ίδιο πρόβλημα.

Η εργασία μας στηρίζεται σ’ έναν ισοδύναμο χαρακτηρισμό της twinless ισχυ-
ρής συνεκτικότητας που δόθηκε το 2006 απ’ τον ερευνητή που εισήγαγε αυτήν την
έννοια. Αυτός απέδειξε ότι ένα κατευθυνόμενο γράφημα είναι twinless ισχυρά συ-
νεκτικό αν και μόνο αν είναι ισχυρά συνεκτικό και το μη-κατευθυνόμενο γράφημα
που αντιστοιχεί σε αυτό είναι 2-συνεκτικό ως προς τις ακμές (2-edge-connected).
Έτσι φαίνεται ξεκάθαρα πως η έννοια της twinless ισχυρής συνεκτικότητας απο-
τελεί ένα μίγμα συνεκτικοτήτων, στο αρχικό κατευθυνόμενο γράφημα και το αντί-
στοιχο μη-κατευθυνόμενο. Είναι λοιπόν εύλογο να υποθέσει κανείς ότι ορισμένα
προβλήματα που αφορούν αυτήν την έννοια συνεκτικότητας μπορούν να λυθούν
με την παράλληλη αντιμετώπισή τους στα δύο επίπεδα: το κατευθυνόμενο και το
μη-κατευθυνόμενο.

Πράγματι, εμείς καταφέρνουμε να λύσουμε το βασικό πρόβλημα της εργασίας
μας αναπτύσσοντας αλγορίθμους που επιλύουν ορισμένα προβλήματα που αφορούν
την 3-συνεκτικότητα σε μη-κατευθυνόμενα γραφήματα (εφόσον τα προβλήματα που
αφορούν το επίπεδο της ισχυρής συνεκτικότητας υπάρχουν ήδη γνωστοί αλγόριθμοι
που τα επιλύουν). Συγκεκριμένα, λύνουμε σε γραμμικό χρόνο τα εξής προβλήματα:

• Δοθέντος ενός μη-κατευθυνόμενου γραφήματος G που είναι 2-συνεκτικό ως
προς τις ακμές, να βρεθούν όλα τα count(e), για όλες τις ακμές e του
γραφήματος, όπου count(e) είναι το πλήθος των ακμών με τις οποίες η e

σχηματίζει ζευγάρι τομής, και

• Δοθέντος ενός μη-κατευθυνόμενου γραφήματος G που είναι 2-συνεκτικό ως
προς τους κόμβους, να βρεθούν όλα τα count(v), για όλους τους κόμβους
v του γραφήματος, όπου count(v) είναι το πλήθος των ακμών με τις οποίες
ο v σχηματίζει ζευγάρι τομής κόμβου-ακμής,

τα οποία έχουν εφαρμογές και στο πρόβλημα του υπολογισμού των twinless ισχυρά
συνεκτικών συνιστωστών (TSCCs) που σχηματίζονται μετά την αφαίρεση μιας ακμής
(αντ. ενός κόμβου) που αποτελεί twinless ισχυρή γέφυρα αλλά όχι ισχυρή γέφυρα
(αντ. κόμβο twinless ισχυρής άρθρωσης αλλά όχι ισχυρής άρθρωσης). Αν και τα
προβλήματα που επιλύουν οι αλγόριθμοί μας μπορούν να λυθούν με γνωστές με-
θόδους σε ασυμπτωτικά βέλτιστο χρόνο, οι αλγόριθμοι που προτείνουμε εμείς είναι
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απλούστεροι στην σύλληψή τους και ευκολότεροι στην υλοποίησή τους, και ενδέ-
χεται λοιπόν να είναι και ταχύτεροι στην πράξη. Επιπλέον, οι έννοιες στις οποίες
βασίζονται οι αλγόριθμοί μας, καθώς και οι τεχνικές που αξιοποιούν, είναι ουσια-
στικά οι ίδιες και στις δύο περιπτώσεις, και φαίνεται πως μας δίνουν ένα ενιαίο
πλαίσιο για την αντιμετώπιση προβλημάτων συνεκτικότητας σε μη-κατευθυνόμενα
γραφήματα.
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Chapter 1

Introduction

1.1 Basic concepts of graph theory

1.2 Twinless strong connectivity

1.3 Our contribution

1.4 Overview of this work

1.1 Basic concepts of graph theory

Although our exposition is self-sufficient, we refer the reader to Diestel [1] for a good
introduction to the basic concepts of graph theory that are needed for our purposes
(in particular, chapters 1 and 3).

1.1.1 Graphs

A graph is a collection of vertices and edges connecting those vertices. Formally, it
is defined as a pair of sets (V,E), where V is the set of vertices and E consists of
edge of the form {u, v} or (u, v), depending on whether the graph is undirected or
directed, respectively. A directed graph is also called a digraph. The word ”graph”,
if unspecified, might mean either an undirected or a directed graph. If {u, v} (resp.
(u, v)) is an edge in an undirected (resp. in a directed) graph, then u, v are called the
ends of the edge. A pair of edges (x, y), (y, x) in a directed graph is called a pair of
antiparallel edges. If G = (V,E) is a digraph, the underlying undirected graph of G,
denoted by Gu, is the graph (V, {{x, y} | (x, y) ∈ E}).
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Let G = (V,E) be a graph. A graph (V ′, E ′) such that V ′ ⊆ V and E ′ ⊆ E is
called a subgraph of G. If C ⊆ V is a set of vertices, then the induced subgraph of
C , denoted by G[C], is the maximal subgraph (C,E ′) of G, w.r.t. E ′. In other words,
G[C] := (C, {e ∈ E | both ends of E are in C}). Let x be either a vertex or an edge of
G. G \ {x} denotes the graph that remains after the removal of x from G. Formally,
if v is a vertex of G, G \ {v} := (V \ {v}, {e ∈ E | both ends of e are in V \ {v}});
and if e is an edge of G, G \ {e} := (V,E \ {e}). If X = {x1, . . . , xk} is a collection of
vertices and edges, we define G \X recursively as G \X := (G \ {x1}) \ {x2, . . . , xk}.
In the case that X = {x} (i.e. X is a singleton), we may also write G \X as G \ x.

1.1.2 Connectivity in graphs

The concept of connectivity is one of the most fundamental in the theory of graphs.
It can be most easily grasped by introducing it through the notion of paths. So
let G be a graph. A path P in G is an alternating sequence of vertices and edges
v1, e1, v2, e2, . . . , vk−1, ek−1, vk, where every vi (for i = 1, . . . , k) is a vertex and every
ei (for i = 1, . . . , k − 1) has the form {vi, vi+1} if G is undirected, or (vi, vi+1) if G is
directed. We say that P starts from v1 and ends in vk. If k = 2, we do not distinguish
the path P from the edge e1. P is called simple if all vertices v1, . . . , vk are distinct. A
graph (resp. a digraph) G is called connected (resp. strongly connected) if for every
pair of vertices {u, v} there is a path starting from u and ending in v. Equivalently, a
(di)graph G is (strongly) connected if for every pair of vertices {u, v} there is a simple
path starting from u and ending in v.

One is interested to know how resilient is the connectivity of a graph to the
removal of vertices or edges. Thus we get some stronger conditions than those of
(strong) connectivity. More specifically, an undirected (resp. a directed) graph G is
called k-edge-connected, if, for every set X of k − 1 edges, G \X is connected (resp.
strongly connected). In other words, in order to disconnect G, at least k edges have to
be removed. The notion of k-vertex-connectivity is defined in an analogous manner:
an undirected (resp. a directed) graph G is called k-vertex-connected, if it contains
at least k + 1 vertices and, for every set X of k − 1 vertices, G \X is connected (resp.
strongly connected). That is, in order to disconnect G, at least k vertices have to be
removed. A graph that is k-vertex-connected is also k-edge-connected, but the reverse
is not necessarily true - unless k = 1, in which case the notions of k-vertex and k-edge
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connectivity coincide with that of (strong) connectivity. If e (resp. v) is an edge (resp.
a vertex) in a (strongly) connected (di)graph G and G\e (resp. G\v) is not (strongly)
connected, then e is called a (strong) bridge (resp. a (strong) articulation point). More
generally, if G is k-edge-connected (resp. k-vertex-connected), a set X of k edges
(resp. vertices) whose removal disconnects G is called a cut (resp. a separation set).
A connected undirected graph in which every edge is a bridge is called a tree. A set C
of vertices from a (di)graph G maximal w.r.t. the property that every two vertices in
C remain in the same (strongly) connected component of G after the removal of any
set of k− 1 edges, is called a k-edge-connected component of G. Similarly, a set C of
vertices from a (di)graph G maximal w.r.t. the property that every u, v in C remain
in the same (strongly) connected component of G after the removal of any set of
k−1 vertices, none of which is u or v, is called a k-vertex-connected component of G.
Figure 1.1 is an illustration of some of these concepts and contains a few observations
which are important for our purposes.

1.2 Twinless strong connectivity

In 2006, S. Raghavan [11] introduced the notion of twinless strong connectivity in
directed graphs. A digraph G = (V,E) is called twinless strongly connected if there
exists a subgraph (V,E ′) of G which is strongly connected and contains no pair of
antiparallel (or twin) edges. It is obvious that a graph is twinless strongly connected
only if it is strongly connected (but the reverse is not necessarily true). (See Figure
1.2.) Twinless strong connectivity is thus a stronger condition than that of strong
connectivity.

The notions of strongly connected components and strong bridges and articulation
points have their analogues in the context of twinless strong connectivity. To be more
specific, let G be a digraph. A maximal (w.r.t. their vertices) subgraph of G with the
property of being twinless strongly connected is called a twinless strongly connected
component (TSCC) of G. Furthermore, if G is twinless strongly connected, an edge e
(resp. a vertex v) such that G \ {e} (resp. G \ {v}) is not twinless strongly connected,
is called a twinless strong bridge (resp. a twinless strong articulation point).

In order to determine how resilient a twinless strongly connected digraph is to
the loss of vertices or edges, one is naturally interested in finding all twinless strong

3



(a)

(b)

(d)

G

Gu

(c)

Figure 1.1: (a) A strongly connected digraph G with strong bridges and articulation points

shown in red. (b) The underlying undirected graph Gu of G with bridges and articulation

points shown in red. Every bridge (resp. every articulation point) of Gu corresponds to a

strong bridge (resp. strong articulation point) of G, but the reverse is not true. (c) The 2-

edge-connected components of Gu. They partition the vertices of the graph, and their induced

subgraphs are connected with the bridges of Gu in a tree structure. (d) The 2-vertex-connected

components of Gu. A vertex of Gu is an articulation point if and only if it belongs to at

least two 2-vertex-connected components. The induced subgraphs of the 2-vertex-connected

components partition the edges of the graph.

bridges and articulation points. In 2019 Jaberi [10] gave algorithms of O(nm) com-
plexity for the computation of all twinless strong bridges and articulation points in

4



(V,E) (V,E’)
(a)

(b)

Figure 1.2: (a) An example of a twinless strongly connected digraph. (b) is strongly connected
but not twinless strongly connected.

a twinless strongly connected digraph with n vertices and m edges, and left as an
open question whether these elements can be computed in linear time. This is a rea-
sonable hypothesis, since there exist linear-time algorithms that solve the analogous
problems for connectivity and strong connectivity (i.e. the computation of bridges
and articulation points in undirected graphs and the computation of strong bridges
and articulation points in digraphs) [12], [7].

1.3 Our contribution

In this thesis we provide an algorithm which computes all twinless strong bridges
(resp. all twinless strong articulation points) of a twinless strongly connected digraph
G in linear time. Furthermore, we show how, after a linear-time preprocessing of the
graph, we can answer queries of the form “Given a twinless strong bridge e (resp. a
twinless strong articulation point v) which is not a strong bridge (resp. a strong articulation
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point), report the number of TSCCs of G \ {e} (resp. G \ {v})”, in time O(1).
To do this, we have developed linear-time algorithms which solve the following

problems in undirected graphs:

• Given a 2-edge-connected undirected graph G = (V,E), find all count(e), for every
e ∈ E, where count(e) := #{e′ ∈ E | {e, e′} is a cut-pair}.

• Given a 2-vertex-connected undirected graph G = (V,E), find all count(v), for every
v ∈ V , where count(v) := #{e ∈ E | {v, e} is a vertex-edge cut-pair}.

There are linear-time algorithms that can solve these problems ([13], [5]), but
they are somewhat involved (especially [5], which constructs SPQR-trees, and relies
on the algorithm of Hopcroft and Tarjan for 3-connectivity [6]). Our approach is
conceptually simple and leads to algoritmhs that are easy to implement.

1.4 Overview of this work

In Chapter 2 we describe linear-time algorithms for the computation of all twinless
strong bridges and articulation points in a twinless strongly connected digraph and
the number of TSCCs in the graph that remains after the removal of a twinless strong
bridge which is not a strong bridge (resp. a twinless strong articulation point which
is not a strong articulation point). We show how, in order to solve these problems,
we can rely on algorithms which solve some problems related to 3-connectivity in
undirected graphs. These algorithms are described in Chapters 4 and 5. In Chapter
3 we define and show how to compute the parameters that are essential to our
algorithms, and are defined on the structure provided by a depth-first scan of an
undirected graph. Finally, in Chapter 6 we discuss some open problems.

6



Chapter 2

Computing twinless strong bridges and
articulation points

2.1 An equivalent characterization of twinless strong connectivity

2.2 Finding twinless strong bridges, and counting TSCCs

2.3 Finding twinless strong articulation points, and counting TSCCs

2.1 An equivalent characterization of twinless strong connectivity

The starting point of our work is the following equivalent characterization of twinless
strong connectivity given by S. Raghavan:

Theorem 2.1. ([11]) A digraph G is twinless strongly connected if and only if it is strongly
connected and its underlying undirected graph Gu is 2-edge-connected.

This shows clearly how this notion of connectivity in digraphs is related to a
type of connectivity in undirected graphs. As a corollary, we have the following
characterization of the TSCCs of a strongly connected digraph:

Corollary 2.1. ([11]) The TSCCs of a strongly connected digraph G correspond to the
2-edge-connected components of its underlying undirected graph Gu.
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2.2 Finding twinless strong bridges, and counting TSCCs

An immediate consequence of Theorem 2.1 is that a twinless strong bridge in a
twinless strongly connected digraph is either (1) a strong bridge or (2) an edge whose
removal destroys the 2-edge connectivity in the underlying graph. A twinless strong
bridge can be an edge of both type (1) and (2) (see Figure 2.1). Now, since all strong
bridges can be found in linear time [7], in order to find all twinless strong bridges
it is sufficient to focus our attention on computing the edges of type (2). To do this,
we only have to find all the edges of the underlying graph whose removal destroys
the 2-edge-connectivity; in other words: all the edges of the underlying graph which
belong to a cut-pair.

(a) (b) (c)

Figure 2.1: (a) A twinless strong bridge of type (1) but not (2). (b) A twinless strong bridge
of type (1) and (2). (c) A twinless strong bridge of type (2) but not (1). Below each graph is

depicted the underlying undirected graph that corresponds to the above after the removal of

the twinless strong bridge (which is the coloured edge in the directed graph). With red are

shown the bridges.

Lemma 2.1. An edge e = (x, y) in a twinless strongly connected digraph G is a twinless
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strong bridge but not a strong bridge if and only if its twin (y, x) is not an edge of G, and
(G \ e)u is not 2-edge-connected.

Proof. Let e = (x, y) be an edge in a twinless strongly connected digraph G which is a
twinless strong bridge but not a strong bridge. Theorem 2.1 implies, that the removal
of this edge leaves us with a graph H = G\e whose underlying undirected graph Hu

is not 2-edge-connected. Now, since the initial graph is twinless strongly connected,
its underlying undirected graph Gu is 2-edge-connected, therefore the twin (y, x) of
e is not an edge of G (otherwise, the removal of e would leave the underlying graph
unchanged). The converse is an immediate consequence of Theorem 2.1.

This suggests the following algorithm for the computation of all twinless strong
bridges. Firstly, we mark all edges that are strong bridges. Then we find all edges of
the underlying graph which belong to a cut-pair, and mark those that correspond to
an edge in the initial graph whose twin is missing from it. All the marked edges are
precisely the twinless strong bridges.

Now, although there are known algorithms which compute, in linear time, all
the edges which belong to a cut-pair in a 2-edge-connected undirected graph G (see
e.g. Tsin [13]), in Chapter 4 we describe our own algorithm, which is conceptually
simple and easy to implement in practice. It relies on some parameters extracted by
a depth-first search (DFS) on the graph, which we’ll describe in the next Chapter.
Furthermore, our algorithm counts, for every edge e, the number of edges e′ such
that {e, e′} is a cut-pair; we call this number count(e). This is useful for counting the
TSCCs after the removal of a twinless strong bridge which is not a strong bridge in
a twinless strongly connected digraph, as suggested by the following Lemma:

Lemma 2.2. Let G be a twinless strongly connected digraph, and let e be a twinless strong
bridge of G which is not a strong bridge. Then count(ẽ) + 1, where ẽ is the edge in Gu

corresponding to e, is the number of TSCCs of G \ e.

Proof. Since e is not a strong bridge, G\ e is strongly connected. By Corollary 2.1, the
TSCCs of a strongly connected digraph correspond to the 2-edge-connected compo-
nents of its underlying undirected graph. Now, the number of the 2-edge-connected
components of (G \ e)u = Gu \ ẽ equals the number of its bridges + 1. (This is due to
the tree structure of the 2-edge-connected components of a connected graph; see [1]
and Figure 1.1.) By definition, this number of those bridges is equal to count(ẽ).
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Thus, if e is twinless strong bridge which is not a strong bridge in twinless strongly
connected digraph G, then the number of TSCCs of G \ e equals count(ẽ) + 1, where
ẽ is the edge of Gu that corresponds to e.

2.3 Finding twinless strong articulation points, and counting TSCCs

It is an immediate consequence of Theorem 2.1 that a twinless strong articulation
point in a twinless strongly connected digraph G is either (1) a strong articulation
point or (2) a vertex whose removal destroys the 2-edge connectivity in the underlying
undirected graph Gu. A twinless strong articulation point can be a vertex of both type
(1) and (2) (see Figure 2.2). Now, since all strong articulation points can be computed
in linear time [7], it remains to find all vertices of type (2). Note that such a vertex
x either I entirely destroys the connectivity of the underlying graph Gu with its
removal, or II , upon removal, it leaves us with a graph Gu \ x that is connected but
not 2-edge-connected (see Figure 2.2). Clearly, the set of vertices with property I are
a subset of the set of strong articulation points. Therefore, it suffices to find all vertices
with property II. To that end, we may process each 2-vertex-connected component
of Gu separately, as the next lemma suggests.

Lemma 2.3. Let H be a 2-edge-connected undirected graph. Let v be a vertex that is not
an articulation point, and let C be its 2-vertex-connected component (2VCC). For any edge
e, H \ {v, e} is not connected if and only if e belongs to H[C] and H[C] \ {v, e} is not
connected.

Proof. (⇒) Since H is 2-edge-connected, it contains no bridges. Therefore, every 2VCC
of H contains at least three vertices, and thus its induced subgraph is a 2-vertex-
connected subgraph of H (see Figure 1.1). Now, let e be an edge such that the graph
H \ {v, e} is not connected, and let C ′ be the 2VCC of H whose induced subgraph
contains e (we recall that the 2VCCs of H partition its edges; see Figure 1.1). Suppose,
for contradiction, that C ′ ̸= C. Since H[C ′] is 2-vertex-connected, is must also be 2-
edge-connected, and therefore it contains no bridges. Moreover, v is not an articulation
point, so it is contained in only one 2VCC of H , hence, C ′ \ {v} = C ′. This means
that e is not a bridge in H[C ′ \ {v}] = H[C ′], and therefore not a bridge in H \ v - a
contradiction.
(⇐) Recall the block graph representation of H [1]: Let T be the graph whose vertices
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(a) (b) (c) (d)

Figure 2.2: (a) A twinless strong articulation point (sap) of type (1) but not (2). (b) A

twinless sap of type (1) and (2) (with property II). (c) A twinless sap of type (1) and (2)

(with property I). (d) A twinless sap of type (2) but not (1) (it necessarily has property II).

Below each graph is depicted the underlying undirected graph that corresponds to the above

after the removal of the twinless sap (which is the coloured vertex in the directed graph).

The red edges are the bridges.

are the 2VCCs and the articulation points of H , and which contains an edge e if and
only if e connects a 2VCC C ′ with an articulation point x ∈ C ′; then T is a tree.
Now, suppose that there exists an edge e = (x, y) in C such that H[C] \ {v, e} is not
connected, but H \ {v, e} is connected. This means that there exists a simple path P

in H \ {v, e} connecting x and y. Since x and y are not connected in H[C] \ {v, e}, P
must contain vertices from H \C. So let z be the first vertex in P such that z ∈ C but
its successor in P is not (such a vertex exists, since x ∈ C). Since z is in C and has
a neighbor that belongs to a different 2VCC, it is an articulation point. Now let w be
the first vertex after z in P such that w ∈ C (such a vertex exists, since y ∈ C). Due
to the tree structure of the 2VCCs of H , we conclude that w = z. (In other words,
when a path leaves a 2VCC through an articulation point, in order to return to this
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2VCC it must pass again through the same articulation point.) But this contradicts
the simplicity of P .

So, in order to find all twinless strong articulation points, it is sufficient to solve
the following problem: Given a 2-vertex-connected undirected graph G, find all vertices
v for which there exists an edge e such that G \ {v, e} is not connected. We call the
sets {v, e} with the property that G{v, e} is not connected vertex-edge cut-pairs. In
Chapter 5 we describe a linear-time algorithm for this problem. It relies on some
parameters extracted by a DFS on the graph, which we’ll describe in the next Chapter.
Furthermore, our algorithm counts, for every vertex v, the number of edges e such
that {v, e} is a vertex-edge cut-pair; we call this number count(v). This is useful for
counting the TSCCs after the removal of a twinless strong articulation point which is
not a strong articulation point in a twinless strongly connected digraph, as suggested
by the following Lemma:

Lemma 2.4. Let G be a twinless strongly connected digraph, and let v be a twinless
strong articulation point of G which is not a strong articulation point. Then count(v) + 1

(computed in the 2-vertex-connected component of v in Gu) is the number of twinless
connected components of G \ {v}.

Proof. Since v is not a strong articulation point, G \ {v} is strongly connected. By
Corollary 2.1, the twinless strongly connected components of a strongly connected
graph correspond to the 2-edge-connected components of its underlying graph. Now,
the number of the 2-edge-connected components of Gu \ {v} equals the number of
its bridges + 1 (this is due to the tree structure of the 2-edge-connected components
of a connected graph). By Lemma 2.3, all these bridges lie in the 2-vertex-connected
component of v in Gu. By definition, their number is count(v).

We note that the problem of computing all vertices that belong to a vertex-edge
cut-pair is related to 3-vertex connectivity (a fact which is illustrated in Figure 2.3),
and it can be solved in linear-time by exploiting the structure of 3-vertex-connected
(triconnected) components of the graph, represented by an SPQR tree. Our approach,
however, avoids SPQR-trees (whose computation is somewhat involved), and is con-
ceptually simple and easy to implement.

In summary, let us describe the algorithm for the computation of all twinless
strong articulation points in a twinless strongly connected digraph G. First, we
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x y

a

b
(1)

(2)

(3)

Figure 2.3: (1) A 2-vertex-connected graph with a vertex-edge cut-pair {v, (x, y)}. This

implies that both {v, x} and {v, y} are separation pairs, and therefore the graph is not 3-

vertex-connected. (2) A 2-vertex-connected graph with a separation pair {a, b} but with no

vertex-edge cut-pairs. (3) A 3-vertex-connected graph. Of course, it contains neither separation

pairs nor vertex-edge cut-pairs.

mark all vertices that are strong articulation points. Then we compute the 2-vertex-
connected components of the underlying graph Gu. (These can be computed in linear-
time by an algorithm described in [12].) Finally, we process each 2-vertex-connected
component C separately: We apply a linear-time algorithm (such as that described
in Chapter 5) to find all vertices in C that belong to a vertex-edge cut-pair, and mark
them. All the marked vertices are precisely the twinless strong articulation points of G.

In the next Chapter we will introduce some parameters that are needed for the
algorithms described in Chapters 4 and 5, and are defined on the structure provided
by a DFS on an undirected graph. We will also provide linear-time algorithms for
their computation.
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Chapter 3

Information extracted from a DFS tree

3.1 Depth-first search

3.2 Computing all high(v) and highp(v) in linear time

3.3 Computing all M(v) and Mp(v) in linear time

Depth-first search (DFS) is an extremely useful technique to explore a graph and
collect data from it in the process. We refer the reader to the seminal paper of
Tarjan [12] for a good exposition of DFS and of some of its applications.

3.1 Depth-first search

Let G be a connected undirected graph. We consider a DFS traversal of G, starting
from an arbitrarily selected vertex r, and let T be the resulting DFS tree [12]. A vertex
u is an ancestor of a vertex v (v is a descendant of u) if the simple tree path from
r to v contains u. Thus, we consider a vertex to be an ancestor (and, consequently,
a descendant) of itself. We let p(v) denote the parent of a vertex v in T . If u is a
descendant of v in T , we denote the set of vertices of the simple tree path from u to
v as T[u, v]. The expressions T[u, v) and T(u, v] have the obvious meaning (i.e., the
vertex on the side of the parenthesis is excluded from the tree path). Furthermore,
we let T (v) denote the subtree of T rooted at vertex v. We identify vertices in G by
their DFS number, i.e., the order in which they were discovered by the search. Hence,
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u ≤ v means that vertex u was discovered before v. The edges of the tree are called
tree-edges, and the edges of G which are not tree-edges are called back-edges, as their
endpoints have ancestor-descendant relation in T . When we write (u, v) to denote a
back-edge, we always mean that v ≤ u, i.e., u is an descendant of v in T .

The following is a list of some concepts that are defined on the structure given
by the DFS and are essential to the algorithms we are going to describe in the next
chapters. See Figure 3.1 for an illustration.

• low(v) := min{u | there exists a back-edge (x, u), with x a descendant of v}

• high(v) := max{u | u is a proper ancestor of v and there exists a back-edge (x, u),
with x a descendant of v}

• highp(v) := max{u | u is a proper ancestor of p(v) and there exists a back-edge (x, u),
with x a descendant of v}

• M(v) := the nearest common ancestor of all descendants of v which are connected to
a proper ancestor of v with a back-edge.

• Mp(v) := the nearest common ancestor of all descendants of v which are connected to
a proper ancestor of p(v) with a back-edge.

low(v), high(v) and M(v) are well-defined for every vertex v ̸= r if G is 2-edge-
connected, and highp(v) and Mp(v) are well-defined for every vertex v different from r

and the child of r if G is 2-vertex-connected. The low points have been defined in [12],
and can be computed easily in linear time with a recursive algorithm (in a bottom-up
fashion). As for the other concepts, they are defined here for the first time, as far as I
know. Thus, in the following two sections we will describe algorithms which compute
all high, highp, M and Mp (for all the vertices on which they are defined), in linear
time.

3.2 Computing all high(v) and highp(v) in linear time

The basic idea to compute all high(v) (for v ̸= r) is to do the following: We process
the back-edges (u, v) in decreasing order with respect to their lower end v. When
we process (u, v), we ascent the path T [u, v], and for each visited vertex x such that
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𝑣

ℎ𝑖𝑔ℎ 𝑣

ℎ𝑖𝑔ℎ𝑝 𝑣

𝑙𝑜𝑤 𝑣

𝑀 𝑣

𝑀𝑝 𝑣

Figure 3.1: Concepts defined on the structure of the DFS tree that are essential to our
algorithm. Dashed lines correspond to DFS tree paths. Back-edges are shown directed from

descendant to ancestor.

high[x] is still undefined, we set high[x]← v. See Algorithm 3.1. It should be clear that
this process, which forms the basis of our linear-time algorithm, computes all high(v),
for v ̸= r, correctly.

In order to achieve linear running time, we have to be able, when we consider
a back-edge (u, v), to bypass all vertices on the path T[u, v] whose high value has
been computed. To that end, it suffices to know, for every vertex x in T[u, v], the
nearest ancestor of x whose high value is still null. We can achieve this by applying
a disjoint-set-union (DSU) structure [2].

Specifically, we maintain a forest F that is a subgraph of T , subject to the following
operations:

link(x, y): Adds the edge (x, y) into the forest F .

find(x): Return the root of the tree in F that contains x.

Let Fx denote the tree of F that contains a vertex x. Initially, F contains no edges, so
x is the unique vertex in Fx. In our algorithm, the link operation always adds some
tree edge (u, p(u)) to F , so the invariant that F is a subgraph of T is maintained. This
is implemented by uniting the corresponding sets of u and p(u) in the underlying
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Algorithm 3.1 SimpleHigh
1: for all vertices v ̸= r do
2: sort the back-edges (u, v) in decreasing order w.r.t. to their lower end v

3: end for
4: for all back-edges (u, v) do
5: if high[u] = null then
6: high[u]← v

7: end if
8: u← p(u)
9: end for

DSU structure, and setting the root of of Fp(u) as the representative of the resulting
set. Then, find(u) returns the root of Fu, which will be the nearest ancestor of u in
T whose high value is still null. Algorithm 3.2 gives a fast algorithm for computing
high(v), for every vertex v ̸= r.

The next lemma summarizes the properties of Algorithm 3.2.

Lemma 3.1. Algorithm 3.2 is correct. Furthermore, it will perform n−1 link and 2m−n+1

find operations on a 2-vertex-connected graph with n vertices and m edges.

Proof. Let B be the sorted list of the back-edges. (Notice that B contains m − n +

1 edges.) We will prove the theorem inductively by showing that, for every t in
{0, . . . ,m − n}: if, after having run the algorithm for the first t back-edges, we now
have that, (1) for every vertex x, find(x) returns the nearest ancestor of x whose high
value is still null, (2) for every back-edge (u, v) in B[1, t], high[x] has been computed
correctly for every x in T [u, v), and the high value of every other vertex, which does
not belong to such a set, is still null, and (3) every set that has been formed due to
the link operations that have been performed is a subtree of T , of whose members
only its root has its high value still set to null, then, if we run the algorithm once
more for the t+1 back-edge, properties (1), (2) (for t+1), and (3) will still hold true.

For the basis of our induction, let us note that the premise of the inductive propo-
sition for t = 0 is trivially true: Before we have begun traversing B, the set containing
x is a singleton, find(x) = x, and high[x] is null, for every vertex x. Now, suppose the
premise of the inductive proposition is true for some t in {0, . . . ,m−n}, and let (u, v)
be the t + 1 back-edge. Let x1, . . . , xk, in decreasing order, be the vertices in T [u, v]

whose high value is still null. (Note that, since B is sorted in decreasing order w.r.t
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Algorithm 3.2 FastHigh
1: initialize a forest F with V (F ) = V (T ) and E(F ) = ∅
2: for all vertices v ̸= r do
3: set high[v]← null
4: end for
5: sort the back-edges (u, v) in decreasing order w.r.t. to their lower end v

6: for all back-edges (u, v) do
7: u← find(u)
8: while u > v do
9: high[u]← v

10: next← find(p(u))
11: link(u, p(u))
12: u← next

13: end while
14: end for

the lower end-point of its elements, we have xk = v.) We observe two facts. First,
by (1), we have that x1 = find(u), and xi = find(p(xi−1)), for i = 2, . . . , k. Second, (2)
implies that the correct high value of xi, for every i = 1, . . . , k− 1, is v (although now
it is still set to null). From these two facts we can see that, in order to prove that
our algorithm is going to correctly compute the values high[xi], for i = 1, . . . , k − 1,
and not mess with those that have already been computed, it is sufficient to show
that the function find(p(x)), in line 10, will return, every time it is invoked, the closest
ancestor of p(x) whose high value is still set to null - despite all the link operations
which might have been performed in the meantime. To see this, observe that (1) and
(3) imply that, for every i = 1, . . . , k−1, xi and p(xi) belong to different sets (since xi,
having its high value still set to null, is the root of the set it belongs to). From this we
conclude, that after linking xi with p(xi), xj and p(xj) still belong to different sets, for
every j = i+1, . . . , k− 1. It should be clear now that, by executing our algorithm for
the t+ 1 back-edge, only the high values of x1, . . . , xk−1 are going to be affected (and
computed correctly). This shows that (2) (for t+ 1) still holds true. We also see that
all the sets that have been formed due to the link operations that have been performed
are still subtrees of T , since every such operation is linking a vertex with its parent.
Now, let x be a vertex that belongs to one of the sets that have been affected by the
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link operations that have been performed during the execution of the algorithm for
the t + 1 back-edge. By (1), this means that, before running the algorithm for this
back-edge, find(x) = xi, for some i = 1, . . . , k. We conclude, that after running the
algorithm for the t + 1 back-edge, the closest ancestor of x that has its high value
still set to null is v (since, now, every vertex in T [u, v) has its high value computed).
This shows that (1) still holds true. Furthermore, this also shows that every vertex
in T [x, v] is part of the same set. We conclude that the root of the set which contains
x is v. Thus we have shown that (3) still holds true. (We do not have to consider the
vertices whose set has not been affected by the link operations.)

Thus we have proved that, since the premise of the inductive proposition for t = 0

is true, (2) in the conclusion of the inductive proposition for t = m − n is also true.
In other words, our algorithm computes correctly the high value of every x which
belongs to a set of the form T [u, v), for some back-edge (u, v). Since the graph is
2-vertex-connected, every vertex x ̸= r belongs to such a set. Furthermore, after the
execution of the algorithm, precisely n−1 link operations (one for every vertex x ̸= r),
and 2m− n− 1 find operations (one for every end-point of every back-edge, and one
for every vertex x ̸= r) will have been performed.

Since all the link operations we perform are of the type link(u, p(u)), and the total
number of link and find operations performed is O(m+n), we may use the static tree
DSU data structure of Gabow and Tarjan [2] to achieve linear running time.

Finally, we note that the algorithm for computing all highp(v) is almost identical
to Algorithm 3.2. The only difference is in line 8, where we have to replace “while
u > v” with “while p(u) > v”. The proof of correctness and linearity is essentially the
same.

3.3 Computing all M(v) and Mp(v) in linear time

Recall that M(v) is the nearest common ancestor of all descendants of v that are
connected with a back-edge to a proper ancestor of v, while Mp(v) is the nearest
common ancestor of all descendants of v that are connected with a back-edge to a
proper ancestor of p(v).

Before we describe our algorithm for the computation of M(v) (and Mp(v)), we
state a lemma that will be useful in what follows.
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Lemma 3.2. Let u and v be such that v is an ancestor of u and M(v) is a descendant of
u. Then M(v) is a descendant of M(u).

Proof. Let e = (x, y) be a back-edge with x a descendant of v and y a proper ancestor
of v. Since v is an ancestor of u, y is a proper ancestor of u. And since M(v) is a
descendant of u, x is a descendant of u. Now, it is an immediate consequence of the
definition of M(u), that M(u) is an ancestor of x. Since e was chosen arbitrarily, we
conclude that M(u) is an ancestor of M(v).

Note 3.1. We note that the lemma still holds if we replace M(v) with Mp(v).

Our algorithm for the computation of M(v) works recursively on the children of
v. So, let v be a vertex (different from r). We define l(v) = min{{v} ∪ {u | there exists
a back-edge (v, u)}}. (Of course, we have low(v) ≤ l(v).) Now, if l(v) < v, we have
M(v) = v. (Let us note here that, if v is a leaf, then l(v) < v is necessarily true, since
the graph is 2-vertex-connected, and therefore we may set M(v) = v for all vertices v
that are leaves.) Furthermore, if there exist two children c, c′ of v such that low(c) < v

and low(c′) < v, then, again, M(v) = v. The difficulty arises when there is only one
child c of v with the property low(c) < v (one such child of v must of necessity exist,
since the graph is 2-vertex-connected), in which case M(v) is a descendant of c, and,
therefore, M(v) is a descendant of M(c) by Lemma 3.2. In this case, we repeat the
same process in M(c): we shall test whether l(M(c)) < v or whether there exists only
one child d of M(c) such that low(d) < v, in which case we repeat the same process
in M(d), and so on.

Now, we claim that a careful implementation of the above procedure yields a
linear-time algorithm for the computation of M(v), for all vertices v ̸= r. To that end,
it suffices to store, for every vertex v that is not a leaf of T , two pointers, L(v) and
R(v), on the list of the children of v. Initially, L(v) points to the first child c of v
that has low(c) < v, and R(v) points to the last child c′ of v that has low(c′) < v. Our
algorithm works in a bottom-up fashion. Provided we have computed M(u) for every
descendant u of v, we execute Procedure 3.3.

Lemma 3.3. By executing Procedure 3.3, for all vertices v ̸= r, in bottom-up fashion of
T , we can compute all M(v) in linear-time.

Proof. To prove correctness, it is sufficient show that, for the computation of M(v), if
M(v) lies in T(m), for some descendant m of v, and l(m) ≥ v, then every back-edge
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Algorithm 3.3 Procedure FindM
1: if l(v) < v then
2: return v

3: end if
4: if L[v] ̸= R[v] then
5: return v

6: end if
7: m←M [L[v]]

8: if l(m) < v then
9: return m

10: end if
11: while low(L[m]) ≥ v do
12: L[m]← next child of m
13: end while
14: while low(R[m]) ≥ v do
15: R[m]← previous child of m
16: end while
17: if L[m] ̸= R[m] then
18: return m

19: end if
20: m←M [L[m]]

21: goto line 8

that starts from T(v) and ends in a proper ancestor of v has its starting-point in a
subtree of the form T(c), where c is a child of m between L[m] and R[m]. It’s easy
to see this inductively: that is, let v be a vertex, all of whose descendants had this
property as the algorithm was running. Now, suppose that m is a descendant of v
such that M(v) lies in T(m). If L[m] points to the first child of m and R[m] to the last
child of m, then there is nothing to prove. But if one of these two pointers was moved
(in lines 12 or 15) during the execution of the algorithm, this means, thanks to the
inductive hypothesis, that for an ancestor x of m which is also a proper descendant of
v it is true that every back-edge that starts from T(x) and ends in a proper ancestor
of x has its starting-point in a subtree of the form T(c), for some child c of m between
L[m] and R[m]. Now we see why every back-edge that starts from T(v) and ends in
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a proper ancestor of v has its starting-point in a subtree of the same form: for if this
is not the case, and there exists a back-edge that starts from T(d), for some child d

of v which is not between L[m] and R[m], and ends in a proper ancestor of v, then
this is also a back-edge that starts from T(x) and ends in a proper ancestor of x - a
contradiction.

Now, to prove linearity, we note that the only way our algorithm could be making
an excessive amount of steps, would be by visiting some vertices a lot of times, when it
recursively descends to the descendants of some vertices, in order to compute their M
value. So we define, for every vertex v, the (possibly empty) list S(v) = {m1, . . . ,mkv}
of the proper descendants of v that the algorithm had to visit in order to compute
M(v), sorted by the order of visit (i.e. ordered increasingly). We will prove linearity by
showing that two such distinct lists can meet only in their last element. Equivalently,
we may show that a non-last member m of such a list (let us call it: an intermediary
member), can appear only in that same list. So, let m be an intermediary member of
a list S(v), for some vertex v, and let v be the first vertex in whose list m appears as
an intermediary member (that is, there is no proper descendant of v in whose list
m appears as an intermediary member). We note, that, since m is an intermediary
member of S(v), M(v) is a proper descendant of m. Now, suppose that there exists
a proper ancestor u of v such that m is a member of S(u), and let u be the closest
proper ancestor of v that has this property. Then we have l(u) = u, and there is a
unique child c of u with the property low(c) < u. Furthermore, M(c) (the first member
of S(u)) belongs to T [m, c]. But M(c) does not belong to T [m, v]: for otherwise, since
c is an ancestor of v, Lemma 3.2 implies that M(c) is a descendant of M(v), which
is a proper descendant of m. We conclude, that M(c), the first member of S(u), is an
ancestor of v. Now, continuing in this fashion, (i.e. considering the unique child d of
M(c) that has the property low(d) < u, so that M(d) is the second member of S(u)),
we see that the members of S(u) are either ancestors of v or descendants of M(v). A
contradiction.

We use a similar algorithm in order to compute all Mp(v). The only change we
have to make in Procedure 3.3 is to replace every comparison to v with a comparison
to p(v). The proof of correctness and linearity is essentially the same.
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Chapter 4

Counting cut-pairs in linear time

4.1 Introduction

4.2 The case back-edge - tree-edge

4.3 The case where both edges are tree-edges

4.1 Introduction

Let G = (V,E) be a 2-edge-connected undirected graph. For every e in E we define
count(e) := {e′ ∈ E | {e, e′} is a cut-pair }. Thus, an edge e belong to a cut-pair
if and only if count(e) > 0. In this Chapter we show how to compute all count(e)
in linear time. Although Tsin [13] and other researchers have developed linear-time
algorithms to solve the problem of determinind the edges that belong to a cut-pair
in a 2-edge-connected undirected graph (and an extension of their algorithms can
also solve the counting problem), our approach is conceptually simple and easy to
implement in practise. In section 2.2 we saw how we can apply such an algorithm
to find all twinless strong bridges in a twinless strongly connected digraph in linear
time. Furthermore, by Lemma 2.2, we know how to use the parameters count(e) to
compute in linear time the number of TSCCs of a twinless strongly connected digraph
after the removal of a twinless strong bridge which is not a strong bridge.

To compute all count(e), we will work on the tree structure T , with root r, provided
by a DFS on G. Then, if {e, e′} is a cut-pair of edges, either one of them is a back-edge
and the other one is a tree-edge, or both of them are tree-edges. (It cannot be the
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case that both of them are back-edges, since then their removal would not disconnect
the graph.) Furthermore, in the case that both of them are tree-edges, we have the
following:

Lemma 4.1. If {e, e′} is a cut-pair such that both e and e′ are tree-edges, then they both
lie on the simple tree path T [u, r], for some vertex u. (See Figure 4.1.)

Proof. Since both e and e′ are tree-edges, there exist vertices u and v, such that
e = (u, p(u)) and e′ = (v, p(v)). Since the graph is 2-edge-connected, u is distinct
from v, and let’s assume, without loss of generality, that u > v. Now, suppose that
e and e′ are not part of the simple tree path T [u, r]. Then v is not an ancestor of
u. Furthermore, since u > v, v is not a descendant of u either. Now, remove {e, e′}
from the graph. We note three facts. First, since v is not a descendant of u, T (u)
remains connected. Second, since the graph is 2-edge-connected, there exists a back-
edge connecting a vertex from T (u) with a proper ancestor x of u. Third, since v is
not an ancestor of u, the vertices on the simple tree path T [p(u), x] remain connected.
These three facts imply that u remains connected with p(u), and therefore {e, e′} is
not a cut-pair. A contradiction.

Thus we have two distinct cases to consider, and we will compute count(e) by
counting the number of cut-pairs {e, e′} in each case. We will handle these cases
separately, by providing a specific algorithm for each one of them. We shall begin
with the case that one of those edges is a back-edge, since this is the easiest to handle.
We suppose that all count(e) have been initialized to zero.

4.2 The case back-edge - tree-edge

Our algorithm for this case is based on the following observation:

Proposition 4.1. Let e be a back-edge and u a vertex distinct from r. Then the pair
{e, (u, p(u))} is a cut-pair if and only if e starts from T (u), ends in a proper ancestor of u,
and is the only back-edge with this property.

Proof. (⇒) Since the graph is 2-edge-connected, there exists at least one back-edge
e′′ with the property that e′′ connects a descendant of u with a proper ancestor of u.
Supposing e′′ ̸= e, we see that {e, (u, p(u))} cannot be a cut-pair: since, in this case,
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p(u)
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p(v)
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(a) (b)

Figure 4.1: (a) An example of a DFS tree containing two cut-pairs of tree-edges (shown in
red and green). (b) An illustration of the argument in 4.1: since the graph is 2-edge-connected,

there exist a back-edge connecting the subtree T (u) with T (u, r], and a back-edge connecting

the subtree T (v) with T (v, r]. The pair of tree-edges {(u, p(u)), (v, p(v))} is not a cut-pair.

by removing {e, (u, p(u))}, u remains connected with p(u). That’s a contradiction.
(⇐) By removing the edge (u, p(u)), all the paths that connect u with p(u) must
necessarily use a back-edge connecting a vertex from T (u) with a proper ancestor of
u. If e is the only back-edge with this property, then {e, (u, p(u))} is a cut-pair.

This implies that, for every vertex u, there exists at most one cut-pair of the form
{e, (u, p(u))}, where e is a back-edge, and it immediately suggests an algorithm for
determining whether such a cut-pair exists. We only have to count, for every vertex
u ( ̸= r), the number b_count(u) := #{back-edges that start from T (u) and end in a
proper ancestor of u}. To do this, we define, for every vertex u, up(u) := #{back-edges
that start from u and end in an ancestor of u}, and down(u) := #{back-edges that start
from T (u) and end in u}. All up(u) and down(u) can be computed easily in linear
time. Now b_count(u) can be computed recursively: if c1, . . . , ck are the children of u,
then b_count(u) = up(u)+b_count(c1)+ . . .+b_count(ck)−down(u); and if u is childless,
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b_count(u) = up(u).
Now, for every vertex u that has b_count(u) = 1, we set count[(u, p(u))]← count[(u, p(u))]

+1. Furthermore, in this case, there exists only one back-edge (x, y) such that x is
a descendant of u and y is a proper ancestor of u, and so we have x = M(u) and
y = low(u). Thus, we also set count[(M(u), low(u))]← count[(M(u), low(u))] + 1.

4.3 The case where both edges are tree-edges

Our algorithm for this case is based on the following observation:

Proposition 4.2. Let u, v be two vertices such that v is an ancestor of u. Then {(u, p(u)),
(v, p(v))} is a cut-pair if and only if v is a proper ancestor of u with M(u) = M(v) and
high(u) < v. (See Figure 4.2.)

Proof. (⇒) Since the graph is 2-edge-connected, the removal of one edge is not suffi-
cient to disconnect the graph, and therefore v must be a proper ancestor of u. Now, let
(x, y) be a back-edge such that x is a descendant of u and y is a proper ancestor of u.
Since u is a descendant of v, x is also a descendant of v. Furthermore, we notice that,
since {(u, p(u)), (v, p(v))} is a cut-pair, y is a proper ancestor of v. (For otherwise, by
removing (u, p(u)) and (v, p(v)), T (u) remains connected (since v is an ancestor of u),
the vertices in the simple tree path T [p(u), y] remain connected (since v is an ances-
tor of y), and, therefore, the existence of the back-edge (x, y) implies that u remains
connected with p(u).) This shows that M(v) is an ancestor of M(u), and high(u) is a
proper ancestor of v. Conversely, let (x, y) be a back-edge such that x is a descendant
of v and y is a proper ancestor of v. We observe that, since {(u, p(u)), (v, p(v))} is
a cut-pair, x must be a descendant of u. (For otherwise, by removing (u, p(u)) and
(v, p(v)), the simple tree paths T [x, v] and T [p(v), y] have not been affected (since u

is a descendant of x), and, therefore, the existence of the back-edge (x, y) implies
that v remains connected with p(v).) Furthermore, since v is an ancestor of u, y is a
proper ancestor of u. This shows that M(u) is an ancestor of M(v). We conclude that
M(u) = M(v).
(⇐) Remove the edges (u, p(u)) and (v, p(v)). Now, if there exists a path connecting u

with p(u), this path must use a back-edge (x, y) such that either (1) x is in T (u) and
y in T [p(u), v], or (2) x is a descendant of a vertex in T [p(u), v], but not a descendant
of u, and y is a proper ancestor of v. (1) cannot be true, since high(u) < v. (2) cannot
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be true, since M(u) = M(v), and therefore M(v) is a descendant of u, and therefore x
is a descendant of u. We conclude that the pair {(u, p(u)), (v, p(v))} is a cut-pair.

r

v p(v)u p(u)M(u)
=
M(v)

high(u)
=

high(v)

low(u)
=

low(v)

r

v p(v)u p(u)

M(v)

r

v p(v)u p(u)

(a)

(b)

(c)

x

Figure 4.2: This is an illustration of the necessary and sufficient conditions for two tree-edges
(that belong to a simple tree path starting from the root) to form a cut-pair. From (a) it is

obvious that M(v) must be in T (u). From (b) its is obvious that high(u) must be a proper

ancestor of v. In (c) we have that M(v) = M(u) and high(u) < v. Then {(u, p(u)), (v, p(v))}

is a cut-pair. By Lemma 4.2, we have high(u) = high(v). Since M(v) is in T (u), for every x

which is a descendant of a vertex in T (u, v], but not a descendant of u, we have high(x) ≥ v.

Algorithm 4.1 describes how we can compute, for every vertex u, the number
of cut-pairs of the form {(u, p(u)), (v, p(v))}. To prove correctness, we will need the
following:
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Lemma 4.2. Let u, v be two vertices such that M(u) = M(v), v is an ancestor of u, and
high(u) < v. Then high(u) = high(v).

Proof. Let (x, y) be a back-edge such that x is a descendant of u and y is a proper an-
cestor of u. Then, since u is a descendant of v, x is also a descendant of v. Furthermore,
high(u) < v implies that y is a proper ancestor of v. This shows that high(u) ≤ high(v).
Conversely, let (x, y) be a back-edge such that x is a descendant of v and y is a proper
ancestor of v. Then, since M(v) = M(u), M(v) is a descendant of u, and therefore x is
also a descendant of u. Furthermore, since v is an ancestor of u, y is a proper ancestor
of u. This shows that high(v) ≤ high(u). We conclude that high(u) = high(v).

Now, we let S(u), for every vertex u ̸= r, denote the set {u}∪{v | {(u, p(u)), (v, p(v))}
is a cut-pair }. Then we have the following:

Proposition 4.3. For every v ∈ S(u) we have S(v) = S(u).

Note 4.1. In other words, this Proposition says that the binary relation “e forms a
cut-pair with e′”, defined on the set of tree-edges, is transitive.

Proof. Let u be a vertex. We will show that all vertices in S(u) have the same high point.
So let v be a member of S(u). By Lemma 4.1, we have that v is either an ancestor of u
or a descendant of u. Suppose that v is an ancestor of u. Then, Proposition 4.2 implies
that high(u) < v. By the same Proposition, we also have M(u) = M(v). By Lemma
4.2, these two facts imply that high(u) = high(v). Now, if v is a descendant of u, the
same argument (with a reversal of the roles of u and v) shows that high(u) = high(v).

Now let v be a member of S(u) and w a member of S(v). Since high(w) = high(v)
and high(v) = high(u), we conclude that high(w) = high(u), and therefore (by the
definition of high) high(w) < u and high(u) < w. By Proposition 4.2, we have M(w) =

M(v) and M(v) = M(u), and thus we conclude that M(w) = M(u). Now, since u and
w have a common descendant (that is,M(w)), they are related as ancestor-descendant.
If u is a proper ancestor or a proper descendant of w, then, since M(u) = M(w) and
high(u) < w and high(w) < u, by Proposition 4.2 we have that w is in S(u). Otherwise,
w = u, and therefore w is in S(u) (by definition). Thus we have S(v) ⊆ S(u). The
reverse inclusion is proved by a symmetric argument.

Theorem 4.1. Algorithm 4.1 is correct.
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Proof. According to Proposition 4.2, all cut-pairs of the form {(u, p(u)), (v, p(v))} have
M(u) = M(v). Therefore, in order to count all these cut-pairs, it is sufficient to focus
our attention on the lists M−1(m), for all vertices m ( ̸= r), to find therein vertices u
and v such that {(u, p(u)), (v, p(v))} is a cut-pair. Now, suppose that we have all these
lists computed and their elements sorted in decreasing order, and let m be a vertex.
Let u be an element of M−1(m) which is maximal in S(u) (i.e. if there exists a v

such that {(u, p(u)), (v, p(v))} is a cut-pair, then v is a proper ancestor of u). Then, by
Proposition 4.2, we have S(u) = M−1(m)∩T [u, high(u)). Furthermore, by Proposition
4.3, we have that, for every v in S(u), S(v) = S(u). This explains why Algorithm 4.1
works. We start with the first element u of M−1(m), and we traverse the list M−1(m)

until we reach a vertex v such that v ≤ high(u) (or until we run out of elements).
While doing that, we keep a counter n_edges of the elements inM−1(m)∩T (u, high(u)).
Then we traverse the segmentM−1(m)∩T [u, high(u)) of the listM−1(m) again, and, for
every w in M−1(m)∩T [u, high(u)), we set count[(w, p(w))] := count[(w, p(w))]+n_edges.
Then we repeat the same process from v, until we reach the end of M−1(m).
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Algorithm 4.1 Counting cut-pairs of tree-edges
1: calculate all lists M−1(m), for all vertices m, and bucket-sort their elements in
decreasing order

2: for all vertices m do
3: u← first element of M−1(m)

4: while u ̸= ∅ do
5: v ← successor of u in M−1(m)

6: n_edges← 0

7: while v ̸= ∅ and high(u) < v do
8: n_edges← n_edges+ 1

9: v ← next element of M−1(m)

10: end while
11: v ← u

12: while v ̸= ∅ and high(u) < v do
13: count[(v, p(v))]← count[(v, p(v))] + n_edges
14: v ← next element of M−1(m)

15: end while
16: u← v

17: end while
18: end for
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Chapter 5

Counting vertex-edge cut-pairs in
linear time

5.1 Introduction

5.2 The case where e is a back-edge

5.3 The case where e lies on the simple tree path T [v, r]

5.4 The case where e lies in T(v)

5.1 Introduction

Let G = (V,E) be a 2-vertex-connected undirected graph. For every v in V we define
count(v) := {e ∈ E | {v, e} is a cut-pair }. Thus, a vertex v belong to a vertex-edge cut-
pair if and only if count(v) > 0. In this Chapter we show how to compute all count(v)
in linear time. Although there are known methods to solve the problem of computing
all count(v) in linear-time (by exploiting properties of SPQR-trees [5]), our approach
is conceptually simple and easy to implement in practise. In section 2.3 we saw how
we can apply such an algorithm to find all twinless strong articulation points in a
twinless strongly connected digraph in linear time. Furthermore, by Lemma 2.4, we
know how to use the parameters count(v) to compute in linear time the number of
TSCCs of a twinless strongly connected digraph after the removal of a twinless strong
articulation point which is not a strong articulation point.
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Now, to compute all count(v), we will work on the tree structure T , with root r,
provided by a DFS on G. Then, if {v, e} is a vertex-edge cut-pair, e can either be a
back-edge, or a tree-edge. Furthemore, in the case that e is a tree-edge, we have the
following:

Lemma 5.1. If {v, e} is a cut-pair such that e is a tree-edge, then e either lies in T (v) or
on the simple tree path T [v, r].

Proof. Suppose that e is neither in T (v) nor on the path T [v, r]. Since e is a tree-edge,
it has the form (u, p(u)), for some vertex u. Since H is 2-vertex-connected, there exists
a back-edge e′ = (x, y) joining a vertex x from T (u) with a proper ancestor y of u.
Now, remove v and e from the graph. Since e does not lie on the path T [v, r], v is not
a descendant of u, and therefore T (u) remains connected. Furthermore, since e is not
in T (v), y remains connected with p(u). The existence of e′ implies that u remains
connected with p(u) - a contradiction.

Thus we have three distinct cases in total, and we will compute count(v) by count-
ing the cut-pairs {v, e} in each case. We will handle these cases separately, by pro-
viding a specific algorithm for each one of them, based on some simple observations
like Lemma 5.1. The linearity of these algorithms will be clear.

Now, we shall begin with the case where e is a back-edge, since this is the easiest
to handle. We suppose that all count(v) have been initialized to zero.

5.2 The case where e is a back-edge

Proposition 5.1. If {v, e} is a cut-pair such that e is a back-edge, then e starts from the
subtree T(c) of a child c of v, ends in a proper ancestor of v, and is the only back-edge that
starts from T(c) and ends in a proper ancestor of v. Conversely, if e is such a back-edge,
then {v, e} is a cut-pair.

This immediately suggests an algorithm for counting all such cut-pairs. We only
have to count, for every vertex c ( ̸= r or the child of r), the number b_count(c)
:= #{back-edges that start from T (c) and end in a proper ancestor of p(c)}. To
do this efficiently, we define, for every vertex v, up(v) := #{back-edges that start
from v and end in an ancestor of v}, and, for every child c of v (if it has any),
down(v, c) := #{back-edges that start from T (c) and end in v}. See Algorithm 5.1.
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Algorithm 5.1 Calculating up(c) and down(v, c)
1: initialize all up(v) and down(v, c) to 0

2: sort the back-edges (u, v) in increasing order w.r.t. their higher end u

3: sort the list of the children of every vertex in increasing order
4: for all vertices v do
5: if v is not childless then
6: cv ← first child of v
7: end if
8: end for
9: for all back-edges (u, v) do
10: up(u)← up(u) + 1

11: while cv is not an ancestor of u do
12: cv ←next child of v
13: end while
14: down(v, cv)← down(v, cv) + 1

15: end for

Now, b_count(c) can be computed recursively: if d1, . . . , dk are the children of c, then
b_count(c) = up(c)+ b_count(d1)+ . . .+ b_count(dk)− down(p(c), c); and if c is childless,
b_count(c) = up(c). Finally, the number of vertex-edge cut-pairs {v, e} where e is a
back-edge, equals the number of children c of v that have b_count(c) = 1.

5.3 The case where e lies on the simple tree path T [v, r]

Let {v, e} be a vertex-edge cut-pair such that e is part of the simple tree path T [v, r].
Then there exists a vertex u which is a proper ancestor of v and such that e = (u, p(u)).
We observe that all back-edges that start from T(u) and end in a proper ancestor of
u must necessarily start from T(v). In other words, M(u) is a descendant of v. Here
we further distinguish two cases, depending on whether M(u) is a proper descendant
of v.

5.3.1 The case M(u) = v

Our algorithm for this case is based on the following observation:
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Proposition 5.2. Let c1, . . . , ck be the children of v (if it has any), and let {v, (u, p(u))}
be a cut-pair such that u is an ancestor of v with M(u) = v. Then u does not belong in any
set of the form T[highp(ci), low(ci)), for i = 1, . . . , k. Conversely, given that u is a proper
ancestor of v such that M(u) = v, and given also that u does not belong in any set of the
form T[highp(ci), low(ci)), for i = 1, . . . , k, we may conclude that the pair {v, (u, p(u))} is
a cut-pair. (See Figure 5.1.)

Proof. (⇒) Suppose that u belongs to T[highp(c), low(c)), for some child c of v. Then
highp(c) is a descendant of u, low(c) is an ancestor of p(c), and both of these vertices
are proper ancestors of v. Now, there exists a back-edge (x, highp(c)), with x in T(c).
There also exists a back edge (x′, low(c)), with x′ in T(c). Therefore, it should be clear
that the removal of both v and (u, p(u)) does not disconnect u from p(u): for, even
after this removal, both u and p(u) remain connected with the subtree T(c). This
contradicts the fact that {v, (u, p(u))} is a cut-pair.
(⇐) Remove the vertex v and the edge (u, p(u)). M(u) = v means that there are no
back-edges (x, y) with x being a descendant of a vertex in T (v, u], but not a descendant
of v, and y an ancestor of p(u). Therefore, if u remains connected with p(u), they must
both be connected with a subtree T(c), for some child c of v. Furthermore, if such is
the case, there must exist two back-edges, (x, y) and (x′, y′), and a child c of v, such
that both x and x′ are in T(c), y is proper ancestor of v and a descendant of u, and
y′ is an ancestor of p(u). But this means that u ≤ highp(c) and low(c) ≤ p(u). In other
words: u is in T[highp(c), low(c)) - a contradiction.
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Figure 5.1: M(u) = v, and v forms a vertex-edge cut-pair with (u, p(u)). Observe that, by

removing v and (u, p(u)), T (v, u] gets disconnected from T (u, r], since M(u) is in T (v) and

there is no child c of v with the property that highp(c) ≥ u and low(c) ≤ p(u).

Algorithm 5.2 describes how we can count, for every vertex v, all cut-pairs of the
form {v, (u, p(u))}, where u is a proper ancestor of v with M(u) = v.

Theorem 5.1. Algorithm 5.2 is correct.

Proof. By Proposition 5.2, we only have to count, for every vertex v, the vertices
u in T (v, r) that have M(u) = v and are not contained in any set of the form
T [highp(c), low(c)), for any child c of v. We do this by finding, in a sense, all maximal
subsets of T (v, r) of the form T [x, y], which do not meet any set T [highp(c), low(c)),
for any child c of v, and we count all elements of M−1(v) ∩ T [x, y]. If c1, . . . , ck is
the list of the children of v sorted in decreasing order w.r.t. their highp point, then
the first such set is T (v, highp(c1)), the last one is T [low(c), r), where c is a child of v
with low minimal among the children of v, and all intermediary sets have the form
T [low(c′), highp(c′′)), for some children c′, c′′ of v. If v is childless, we only have to
count the elements of M−1(v) ∩ T (v, r).

5.3.2 The case where M(u) is a proper descendant of v

In this case,M(u) belongs to T(c), for a child c of v, and so we have that {p(c), (u, p(u))}
is a cut-pair. We base our algorithm for this case on the following observation:
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Proposition 5.3. Let {p(c), (u, p(u))} be a cut-pair, such that u is an ancestor of p(c)
and M(u) is in T(c). Then Mp(c) = M(u) and highp(c) < u. Conversely, if u is a proper
ancestor of p(c) such that Mp(c) = M(u) and highp(c) < u, then the pair {p(c), (u, p(u))}
is a cut-pair. (See Figure 5.2.)

Proof. (⇒) Let (x, y) be a back-edge such that x is in T(u) and y is a proper ancestor
of u. Since M(u) is in T(c), x is in T(c). Furthermore, since u is an ancestor of p(c), y
is a proper ancestor of p(c). This shows that Mp(c) is an ancestor of M(u). Conversely,
let (x, y) be a back-edge such that x is in T(c) and y is a proper ancestor of p(c). Since
c is a descendant of u, x is in T(u). Furthermore, since {p(c), (u, p(u))} is a cut-pair, y
must be a proper ancestor of u. (For otherwise, we can easily see that, by removing
the vertex p(c) and the edge (u, p(u)), u remains connected with p(u), since there
exists a back-edge connecting a vertex from T (M(u)) (which is a subtree of T (c))
with low(u), which is an ancestor of p(u).) This means that x is a descendant of M(u),
and this shows that Mp(c) is a descendant of M(u). We conclude that Mp(c) = M(u).
Finally, since {p(c), (u, p(u))} is a cut-pair, it should be clear that highp(c) must be a
proper ancestor of u (the argument is the same as in the parenthesis).
(⇐) Let’s remove the vertex p(c) and the edge (u, p(u)). Now, if there exists a path
connecting u to p(u), this path should contain at least one back-edge (x, y) such that
either (1) x is in T(c) and y is in T(p(c), u], or (2) x is a descendant of some vertex
in T(p(c), u], but not a descendant of p(c), and y is an ancestor of p(u). (1) cannot be
true, since highp(c) < u. (2) cannot be true, since M(u) is in T(c). We conclude that u
has been disconnected from p(u).
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p(c)cMp(c)
=
M(u)

r
highp(c)
=

high(u)

u p(u)

Figure 5.2: M(u) is in T (c) and p(c) forms a vertex-edge cut-pair with (u, p(u)). This implies

that M(u) = Mp(c) and highp(c) < u. In fact, in this case we have highp(c) = high(u).

Algorithm 5.3 describes how we can compute, for every vertex v, the number of
cut-pairs of the form {v, (u, p(u))}, where u is a proper ancestor of v with M(u) in
T (c) for a child c of v.

Theorem 5.2. Algorithm 5.3 is correct.

Proof. According to Proposition 5.3, for every cut-pair of the form {p(c), (u, p(u))}
such that u is an ancestor of p(c) withM(u) in T (c), we haveM(u) = Mp(c). Therefore,
we may search for these cut-pairs by scanning the lists M−1(m), M−1

p (m), for every
vertex m. Suppose we have calculated these lists and have their elements sorted in
decreasing order. Now, let c be the first element of M−1

p (m) for which there exists a u

in M−1(m) such that u is an ancestor of p(c) and the pair {p(c), (u, p(u))} is a cut-pair.
Proposition 5.3 implies that highp(c) < u. Furthermore, (and, again, as a consequence
of the same Proposition), we have that, for every u′ in M−1(m) ∩ T (p(c), highp(c)),
{p(c), (u′, p(u′))} is a cut-pair, and these are all the elements in M−1(m) for which
this is true. Let U denote the collection of these elements. Now, if c′ is in M−1

p (m) ∩
T [c, highp(c)), then highp(c′) = highp(c). By Proposition 5.3, this means that all the
elements u′ of M−1(m) with the property that u′ is a proper ancestor of p(c′) and
{p(c′), (u′, p(u′))} is a cut-pair, are precisely the members of U ∩ T (p(c′), highp(c)).
This explains the counting procedure of Algorithm 5.3. Then, after we have updated
count[p(c′)] for all c′ in M−1

p (m) ∩ T [c, highp(c)), we repeat the same process for the
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greatest element c′ of M−1
p (m) which is smaller than (i.e. an ancestor of) highp(c),

and has the property that there exists an element u′ in M−1(m) such that u′ is an
ancestor of p(c′) and {p(c′), (u′, p(u′))} is a cut-pair - and keep repeating, until we
have traversed M−1

p (m) (or M−1(m)) entirely.

Notice that in Sections 5.2 and 5.3.1, we were able to count specific types of cut-
pairs by detecting all of them explicitly. Here, on the other hand, we count cut-pairs in
an indirect manner. Of course, we were bound to perform the counting indirectly at
some point: since we claim a linear-time algorithm for the computation of all count(v),
we cannot explicitly find all vertex-edge cut-pairs, as there can be too many of those.
(Consider, for instance, a cycle with n vertices; every vertex v forms precisely n − 2

vertex-edge cut-pairs, i.e., with all the edges not incident to v.) We will perform the
counting in an indirect manner again in Section 5.4.2. In the next section we basically
find all cut-pairs explicitly.

5.4 The case where e lies in T(v)

Let {v, (u, p(u))} be a cut-pair with u being a descendant of v. Then u is a proper
descendant of a child c of v. Now, we observe that all back-edges that start from
T(u) and end in a proper ancestor of u must necessarily end in an ancestor of p(c).
In other words, high(u) ≤ v. Here we distinguish two cases, depending on whether
high(u) is a proper ancestor of v.

5.4.1 The case high(u) = v

Our algorithm for this case is based on the following observation:

Proposition 5.4. Let {v, (u, p(u))} be a cut-pair such that v is a proper ancestor of u

with high(u) = v, and let c be the child of v of which u is a descendant. Then, either (1)

low(u) = p(c), or (2) low(u) < p(c) and u ≤ Mp(c). Conversely, if c is a proper ancestor of
u such that high(u) = p(c) and either (1) or (2) holds, then the pair {p(c), (u, p(u))} is a
cut-pair. (See Figure 5.3.)

Proof. (⇒) Suppose that low(u) ̸= p(c). Then, since low(u) ≤ high(u) and high(u) = p(c),
we have low(u) < p(c). Furthermore, let e be a back-edge that starts from T(c) and
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ends in a proper ancestor of p(c). We claim that e starts from T(u). For otherwise,
the removal of both p(c) and (u, p(u)) would not result in the disconnection of u from
p(u). Since, in this case, we could start from u, traverse the subtree T(u) until we
reach a vertex from which we can land with a back-edge on low(u), then follow the
tree path to the end of e which is a proper ancestor of p(c), and, after we land on
the other end of e, which is a descendant of a proper ancestor of u which is also a
descendant of c, we can reach p(u) through a path in T(c). This shows that Mp(c) is
in T(u), and therefore we have u ≤ Mp(c).
(⇐) If (1) holds, then all back-edges that start from T(u) and end in a proper an-
cestor of u end precisely in p(c). In this case, the removal of the pair {p(c), (u, p(u))}
disconnects the vertices u and p(u). If (2) holds, we claim that Mp(c) is in T(u). In-
deed: since low(u) < p(c), there exists a back-edge that starts from T(u) and ends in
a proper ancestor of p(c). This implies that Mp(c) is an ancestor of a descendant of
u. But, since u ≤ Mp(c), Mp(c) is not a proper ancestor of u. Therefore, it must be
a descendant of u. Now, since Mp(c) is in T(u) and high(u) = p(c), it is easy to see
that the removal of the pair {p(c), (u, p(u))} results in the disconnection of u from
p(u).

p(c)
=

high(u)

c

u p(u)

M(u)Mp(c)

rhighp(c)

low(c)

Figure 5.3: high(u) = p(c) and p(c) forms a vertex-edge cut-pair with (u, p(u)). In this case

we have that Mp(c) is a descendant of M(u). Observe that, after removing p(c) and (u, p(u)),

the tree path T (u, c] gets disconnected from the root, since all back-edges that start from T (c)

and end in a proper ancestor of p(c) start from T (u).
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It is an immediate application of Proposition 5.4 that Algorithm 5.4 correctly
computes, for every vertex v, the number of cut-pairs {v, (u, p(u))} with the property
that u is a descendant of v with high(u) = v.

Algorithm 5.4 The case high(u) = v

1: calculate all lists high−1(v), for all vertices v, and have their elements sorted in
increasing order

2: sort the list of the children of every vertex in increasing order
3: for all vertices v do
4: u← first element of high−1(v)

5: c← first child of v
6: while u ̸= ∅ do
7: while c is not an ancestor of u do
8: c← next child of v
9: end while
10: if low(u) = v or (u ≤ Mp(c) and u ̸= c) then
11: count(v)← count(v) + 1

12: end if
13: u← next element of high−1(v)

14: end while
15: end for

5.4.2 The case high(u) < v

Our algorithm for this case is based on the following observation:

Proposition 5.5. Let {p(c), (u, p(u))} be a cut-pair such that u is a descendant of c with
high(u) < p(c). Then M(u) = Mp(c). Conversely, if u is a proper descendant of c such that
M(u) = Mp(c) and high(u) < p(c), then the pair {p(c), (u, p(u))} is a cut-pair. (See Figure
5.4.)

Proof. (⇒) Let (x, y) be a back-edge such that x is in T(u) and y is a proper ancestor
of u. Then, since u is a descendant of c, x is in T(c), and, since high(u) < p(c), y is a
proper ancestor of p(c). This shows that Mp(c) is an ancestor of M(u). Conversely, let
e be a back-edge that starts from T(c) and ends in a proper ancestor of p(c). Then it
is easy to see that e must start from T(u) (for otherwise, since high(u) < p(c), the pair
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{p(c), (u, p(u))} would not be a cut-pair, for u and p(u) would still be connected with
high(u)). Furthermore, since p(c) is an ancestor of u, e ends in a proper ancestor of u.
This shows that M(u) is an ancestor of Mp(c). Thus we conclude that M(u) = Mp(c).
(⇐) Remove the vertex p(c) and the edge (u, p(u)). Now, if it were possible to reach
p(u) from u through a path in the remaining graph, such a path would have to
include a back-edge that starts from T(u). But such a back-edge will lead us to a
proper ancestor of p(c) (since high(u) < p(c)), and then the only way to get back to
T(c) (in which we must return, for this is where p(u) lies) is to use a back-edge that
starts from T(c) and ends in a proper ancestor of p(c). But such a back-edge must
start from T(u) (since Mp(c) lies in T(u)). This shows that p(u) cannot be reached
from u.

p(c)c

u p(u)

Mp(c)
=
M(u)

r

highp(c)
=

high(u)

low(c)
=

low(u)

Figure 5.4: high(u) < p(c) and p(c) forms a vertex-edge cut-pair with (u, p(u)). In this case

we have Mp(c) = M(u).

Algorithm 5.5 describes how we can compute, for every vertex v, the number of
cut-pairs of the form {v, (u, p(u))}, where u is a descendant of v with high(u) < v.

Theorem 5.3. Algorithm 5.5 is correct.

Proof. According to Proposition 5.5, for every cut-pair of the form {p(c), (u, p(u))}
with c an ancestor of u and high(u) < p(c), we have M−1(u) = M−1

p (c). Therefore, in
order to count all these pairs, it is sufficient to focus our attention, for every vertex
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m, on the lists M−1(m) and M−1
p (m). Now, fix a vertex m and let U(c), for a vertex

c in M−1
p (c), denote the (possibly empty) set of all u in M−1(m) with the property

that u is a (proper) descendant of c such that {p(c), (u, p(u))} is a cut-pair. Let c be
a vertex in M−1

p (m) such that U(c) is not empty, and let u be the greatest element in
U(c). Proposition 5.5 implies that high(u) < p(c). Now let c′ be a vertex in M−1

p (m)

such that c′ ≤ c and high(u) < p(c′). Since every u′ in M−1(m) ∩ T [u, high(u)) has
high(u′) = high(u), Proposition 5.5 implies that every u′ in U(c) is also in U(c′) (since
such a u′ is also a proper descendant of c′). Furthermore, no u′ strictly greater than
u can be in U(c′): since u is the greatest element in M−1(m) that is a descendant of
c such that {p(c), (u, p(u))}, for every u′ in M−1(m) strictly greater than u we must
have high(u′) ≥ c, and therefore high(u′) ≥ c′. We conclude that U(c′) = U(c)∩ T [c, c′).
Therefore, if #U(c) is known, in order to find #U(c′) it is sufficient to find the elements
of U(c′) in M−1(m) ∩ T [c, c′) - call their collection C - and then #U(c′) = #U(c) + #C.
This explains the counting procedure in Algorithm 5.5. Now, suppose that we have
all the lists M−1(m) and M−1

p (m) computed and their elements sorted in decreasing
order. Algorithm 5.5 works by finding the first u in M−1(m) with the property that
there exists a c in M−1

p (m) such that c is an ancestor of u and {p(c), (u, p(u))} is
a cut-pair. Now, thanks to what we said above, we can easily calculate #U(c), for
every c in M−1

p (m) such that high(u) < p(c). Then, after we have properly updated all
count[p(c)], for every such c, we only have to repeat the same process for the greatest
element u′ in M−1(m) which is lower than high(u) and such that there exists a c in
M−1

p (m) such that c is an ancestor of u′ and {p(c), (u′, p(u′))} is a cut-pair - and keep
repeating, until we reach the end of M−1(m) (or M−1

p (m)).

Finally, let us briefly explain why Algorithms 5.2, 5.3, 5.4, and 5.5, run in linear
time. All the required sorted lists can be computed in linear time by bucket sorting.
For example, we can sort the list of children of v, for all vertices v, in increasing order
w.r.t. the highp values (as needed in Algorithm 5.2), as follows. First, we initialize all
lists high−1

p (x) to ∅. Then, for every vertex c ( ̸= r or the child of r), we insert into the
list high−1

p (highp(c)) the element c. Now we initialize the list of children of every vertex
v to ∅. We process all vertices in increasing order, and for every vertex x we do the
following: we traverse the list high−1

p (x), and for every c in high−1
p (x) we insert into

the list of children of p(c) the element c. The computation of all M−1(m), M−1
p (m),

high−1(x), etc., is performed in a similar manner. In Line 7 of Algorithm 5.4 we need
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to check whether c is an ancestor of u; this can be done easily in constant time (in
this particular case, thanks to the way we have sorted high−1(v) and the list of the
children of v, and the way the algorithm proceeds, we may simply check whether c
is the last child of v, or c ≤ u and c′ > u, where c′ is the next child of v). Now, the
key observation to see why the main part of Algorithms 5.2, 5.3, 5.4, and 5.5, runs
in linear time, is that the final step in every while loop always moves forward to the
next element of the list (and never moves backwards).

43



Algorithm 5.2 The case M(u) = v

1: calculate all lists M−1(v), for all vertices v, and have their elements sorted in
decreasing order

2: sort the list of the children of every vertex in decreasing order w.r.t. the highp

value of its elements
3: for all vertices v do
4: if M−1(v) = ∅ then
5: continue
6: end if
7: u←second element of M−1(v) // the first element of M−1(v) is v

8: c←first child of v
9: min← v

10: while u ̸= ∅ and c ̸= ∅ do
11: min← highp(c)
12: while u ̸= ∅ and u > min do
13: count[v]← count[v] + 1

14: u←next element of M−1(v)

15: end while
16: min← low(c)
17: c←next child of v
18: while c ̸= ∅ and highp(c) ≥ min do
19: if low(c) < min then
20: min← low(c)
21: end if
22: c←next child of v
23: end while
24: while u ̸= ∅ and u > min do
25: u←next element of M−1(v)

26: end while
27: end while
28: while u ̸= ∅ do
29: if u ≤ min then
30: count[v]← count[v] + 1

31: end if
32: u←next element of M−1(v)

33: end while
34: end for
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Algorithm 5.3 The case M(u) > v

1: calculate all lists M−1(m) and M−1
p (m), for all vertices m, and have their elements

sorted in decreasing order
2: for all vertices m do
3: c← first element of M−1

p (m)

4: u← first element of M−1(m)

5: while c ̸= ∅ and u ̸= ∅ do
6: while u ̸= ∅ and u ≥ p(c) do
7: u← next element of M−1(m)

8: end while
9: if u = ∅ then
10: break
11: end if
12: if highp(c) < u then
13: n_edges← 0

14: first← u

15: while u ̸= ∅ and highp(c) < u do
16: n_edges← n_edges+ 1

17: u← next element of M−1(m)

18: end while
19: last← predecessor of u in M−1(m)

20: count[p(c)]← count[p(c)] + n_edges
21: c← next element of M−1

p (m)

22: while c ̸= ∅ and p(c) > last do
23: while first ≥ p(c) do
24: n_edges← n_edges− 1

25: first← next element of M−1(m)

26: end while
27: count[p(c)]← count[p(c)] + n_edges
28: c← next element of M−1

p (m)

29: end while
30: else
31: c← next element of M−1

p (m)

32: end if
33: end while
34: end for 45



Algorithm 5.5 The case high(u) < v

1: calculate all lists M−1(m) and M−1
p (m), for all vertices m, and have their elements

sorted in decreasing order
2: for all vertices m do
3: u← first element of M−1(m)

4: c← first element of M−1
p (m)

5: while u ̸= ∅ and c ̸= ∅ do
6: while c ̸= ∅ and c ≥ u do
7: c← next element of M−1

p (m)

8: end while
9: if c = ∅ then
10: break
11: end if
12: if high(u) < p(c) then
13: n_edges← 0

14: h← high(u)
15: while c ̸= ∅ and h < p(c) do
16: while u ̸= ∅ and c < u do
17: n_edges← n_edges+ 1

18: u← next element of M−1(m)

19: end while
20: count[p(c)]← count[p(c)] + n_edges
21: c← next element of M−1

p (m)

22: end while
23: else
24: u← next element of M−1(m)

25: end if
26: end while
27: end for
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Chapter 6

Open problems

In this Chapter we discuss some open problems whose solution would constitute a
natural extension to our work.

Firstly, let us recall that in Chapter 2 we showed how to compute, in linear time,
the number of TSCCs of G \ e (resp. G \ v), for all twinless strong bridges e (resp.
all twinless strong articulation points v) which are not strong bridges (resp. strong
articulation points), for a twinless strongly connected digraph G. Now, one may ask
whether we can have a similar result for all edges (resp. all vertices). (Of course,
we are interested only in those edges (resp. vertices) that are twinless strong bridges
(resp. twinless strong articulation points)). This is a reasonable question, considering
that the analogous problem for strong connectivity has been solved: i.e., there is a
linear-time algorithm that computes the number of strongly connected components
of G \ e (resp. G \ v), for all edges e (resp. all vertices v), where G is a strongly
connected digraph (see Georgiadis et al [4]).

Another open problem concerns the 2-edge-twinless and 2-vertex-twinless blocks.
A 2-edge(resp. vertex)-twinless block is a maximal set B of vertices in a twinless
strongly connected digraph G with the property that, for every two vertices u, v
in B, u and v remain in the same TSCC of G \ e (resp. G \ w), for every edge e

(resp. every vertex w /∈ {u, v}). The concepts of 2-edge-twinless and 2-vertex-twinless
blocks have been introduced by Jaberi in [8] and [9], where he provided algorithms
of complexity O((bt − bs + n)m) and O(n3), respectively, for their computation, where
bt is the number of twinless strong bridges, bs is the number of strong bridges, n
the number of vertices and m the number of edges in a twinless strongly connected
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digraph G. These concepts have their analogues in the context of strong connectivity
(the 2-edge and 2-vertex blocks), and they can be computed in linear-time (see [4]).
Jaberi left as an open question whether the 2-edge-(resp. vertex)-twinless blocks can
also be computed in linear time.

Finally, although 3-connectivity in undirected and 2-connectivity in directed graphs
can be tested in linear time (for 3-connectivity in undirected graphs see [13] and [6],
as well as our own algorithm in Chapter 4 (for 3-edge connectivity); for 2-connectivity
in digraphs see Georgiadis [3] (for 2-vertex connectivity) and [7], which computes all
strong bridges and articulation points), we are not aware of any linear-time algo-
rithms that test higher connectivities in the directed or undirected setting, and thus
it is natural to ask whether such algorithms exist.
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