

Tool Support and Topological Study of Schema Evolution in

terms of Foreign Keys

A Thesis

submitted to the designated

by the General Assembly of Special Composition

of the Department of Computer Science and Engineering

Examination Committee

by

Konstantinos Dimolikas

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

WITH SPECIALIZATION

IN SOFTWARE

University of Ioannina

January 2019

Examining Committee:

 Panos Vassiliadis, Associate Professor, Department of Computer Science and

Engineering, University of Ioannina (Supervisor)

 Evaggelia Pitoura, Professor, Department of Computer Science and

Engineering, University of Ioannina

 Apostolos Zarras, Associate Professor, Department of Computer Science and

Engineering, University of Ioannina

DEDICATION

To my family.

ACKNOWLEDGMENTS

First and foremost, I would like to thank my supervisor Panos Vassiliadis for his

guidance and the fruitful collaboration we had throughout my graduate studies in

the University of Ioannina. Finally, I should express my gratitude to my parents for

all the support and encouragement they offered me all these years.

i

TABLE OF CONTENTS

DEDICATION V

ACKNOWLEDGMENTS VII

TABLE OF CONTENTS I

LIST OF FIGURES IV

ABSTRACT IX

ΕΚΤΕΤΑΜΕΝΗ ΠΕΡΙΛΗΨΗ ΣΤΑ ΕΛΛΗΝΙΚΑ XI

CHAPTER 1. INTRODUCTION 13

1.1 Scope 13

1.2 Roadmap 19

CHAPTER 2. RELATED WORK 20

2.1 Case Studies of Schema Evolution 20

2.2 Comparison to the State of the Art 27

CHAPTER 3. REFACTORING PROCESS 28

3.1 Aim of Refactoring 29

3.2 Initial Architecture and Design 30

3.2.1 Package Diagram 30

3.2.2 Class Diagrams 31

3.2.3 Classes Collaborations Responsibilities (CRC) Method 36

3.3 Refactoring Actions 41

ii

3.3.1 Package Level Issues 41

3.3.2 God Classes 42

3.3.3 Lack of APIs 43

3.3.4 Duplicated Code 51

3.3.5 Misplaced Methods 53

3.3.6 Redundant Components 53

3.3.7 Convention Violations 53

3.4 Testing 54

3.5 Final Architecture and Design 55

3.5.1 Package Diagram 55

3.5.2 Class Diagrams 56

3.6 Evaluation 60

3.6.1 Abstractness – Instability Graph 60

3.6.2 Class Level Metrics 62

3.7 Summary of Refactoring Results 74

CHAPTER 4. TABLE TOPOLOGY AND EVOLUTION 76

4.1 Experimental Setup 77

4.1.1 Datasets 77

4.1.2 Data Preprocessing 79

4.2 Distribution of Tables over Degrees 81

4.3 Table Topological Categories 86

4.3.1 Definition of Topological Categories 86

4.3.2 Rules for Table Classification 89

4.4 Relationship between Tables’ Topological Categories

and their Properties 93

4.4.1 Relationship between Topological Categories and Duration 96

iii

4.4.2 Relationship between Topological Categories and Survival 102

4.4.3 Relationship between Tables’ Topological Categories and

Birth Version 106

4.4.4 Relationship between Tables’ Topological Categories and

Update Activity 109

4.4.5 Relationship between Tables’ Topological Categories and

Size Change 116

4.5 Summary of Findings 120

CHAPTER 5. EXPORTING PARMENIDIAN TRUTH AS A WEB

APPLICATION 125

5.1 Architecture of a Web Application 125

5.2 Design of Parmenidian Truth Web Application 127

5.2.1 Package Diagram 128

5.2.2 Class Diagrams 128

CHAPTER 6. CONCLUSIONS AND FUTURE WORK 134

6.1 Conclusions 134

6.2 Future work 135

BIBLIOGRAPHY 137

SHORT CV 140

iv

LIST OF FIGURES

Figure 3.1 Functionalities of Subsystems 30

Figure 3.2 Initial Package Diagram of Parmenidian Truth 31

Figure 3.3 Class Diagram of the Gui Package 32

Figure 3.4 Class Diagram of the Core Package 33

Figure 3.5 Class Diagram of the Export Package 33

Figure 3.6 Class Diagram of the Model.Loader Package 34

Figure 3.7 Class Diagram of the Model Package 35

Figure 3.8 Class Diagram of the ParmenidianEnumerations Package 36

Figure 3.9 CRC Cards of the Classes of Package Core 37

Figure 3.10 CRC Cards of the Classes of Package Export 37

Figure 3.11 CRC Cards of the Classes of Package Gui 38

Figure 3.12 CRC Cards of the Classes of Package Model.Loader 39

Figure 3.13 CRC Cards of the Classes of Package Model 40

Figure 3.14 CRC Cards of the Classes of Package ParmenidianEnumerations 41

Figure 3.15 Methods (squares) and Attributes (circles) of the

DiachronicGraph Class 44

Figure 3.16 Class Diagram of the IParmenidianTruth interface and its client 45

Figure 3.17 Class Diagram of the Interfaces of Package DataImport and their

Clients 46

Figure 3.18 Class Diagram of the IDiachronicGraph Interface and its Client 48

Figure 3.19 Class Diagram of the IMetricsReport Interface and its Client 49

Figure 3.20 Class Diagram of the IGraphMetrics Interface and its Clients 50

v

Figure 3.21 Class Diagram of the IExportManager Interface and its client 51

Figure 3.22 Class Diagram of the Classes Responsible for Metrics Reports

Generation 52

Figure 3.23 Checkstyle Violations Before and After the Refactoring Process 54

Figure 3.24 Updated Package Diagram of ParmenidianTruth 55

Figure 3.25 Updated Class Diagram of the Gui Package 56

Figure 3.26 Updated Class Diagram of the Core Package 57

Figure 3.27 Updated Class Diagram of the DataImport Package 58

Figure 3.28 Updated Class Diagram of the Export Package 58

Figure 3.29 Updated Class Diagram of the Model Package 59

Figure 3.30 Abstractness-Instability Graph Before Refactoring Process 61

Figure 3.31 Abstractness-Instability Graph After Refactoring Process 62

Figure 3.32 Distribution of Classes wrt Number of Methods (range) in the

Core Package 64

Figure 3.33 Distribution of Classes wrt Number of Fields (range) in the Core

Package 65

Figure 3.34 Distribution of Classes wrt CBO (range) in the Core Package 66

Figure 3.35 Distribution of Classes wrt LCOM (range) in the Core Package 66

Figure 3.36 Distribution of Classes wrt Number of Methods (range) in the

Export Package 67

Figure 3.37 Distribution of Classes wrt Number of Fields (range) in the

Export Package 67

Figure 3.38 Distribution of Classes wrt CBO (range) in the Export Package 68

Figure 3.39 Distribution of Classes wrt LCOM (range) in the Export Package 68

Figure 3.40 Distribution of Classes wrt Number of Methods (range) in the

Model Package 69

Figure 3.41 Distribution of Classes wrt Number of Fields (range) in the

Model Package 70

Figure 3.42 Distribution of Classes wrt CBO (range) in the Model Package 70

vi

Figure 3.43 Distribution of Classes wrt LCOM (range) in the Model Package 71

Figure 3.44 Distribution of Classes wrt Number of Methods (range) in the

DataImport Package 72

Figure 3.45 Distribution of Classes wrt Number of Fields (range) in the

DataImport Package 72

Figure 3.46 Distribution of Classes wrt CBO (range) in the DataImport

Package 73

Figure 3.47 Distribution of Classes wrt LCOM (range) in the DataImport

Package 73

Figure 3.48 Summary of the Improvements of the Refactoring Process 74

Figure 4.1 Statistics for the datasets used in our study, [VKZZ17] 79

Figure 4.2 Growth Rate of Tables and Foreign Keys 79

Figure 4.3 Evolution of Foreign Keys in SlashCode and Zabbix 80

Figure 4.4 Distribution of Tables over Total Degrees 82

Figure 4.5 Distribution of Tables over In-Degrees 84

Figure 4.6 Distribution of Tables over Out-Degrees 85

Figure 4.7 Breakdown of tables wrt In- and Out-Degrees at the Diachronic

Graph 86

Figure 4.8 Breakdown of Tables over the Chain Link and Mini-Hub

Categories 88

Figure 4.9 Table Categories Based on the Topology of the Diachronic Graph 89

Figure 4.10 Distribution of Tables over the Single and Multi-labels

Categories 90

Figure 4.11 Occurrences of Label Changes per Type of Change 91

Figure 4.12 Rules for Tables’ Categories Determination 92

Figure 4.13 Misclassification Rate of Assigning Labels via the Automatic

Process 93

Figure 4.14 Breakdown of Tables over Topological Categories 94

vii

Figure 4.15 Distribution of Tables over Categories including Isolated

Category 94

Figure 4.16 Distribution of Tables over Categories excluding Isolated

Category 95

Figure 4.17 Distribution of Tables per Normalized Duration Category 96

Figure 4.18 Distribution of Tables over the Normalized Duration Categories 97

Figure 4.19 Distribution of Tables per Topological and Duration Categories

with and without the ISOLATED Category 100

Figure 4.20 Probability for a Table of a Topological Category to Belong to a

Certain Duration Category 101

Figure 4.21 Distribution of “Survivors” per Topological Category 102

Figure 4.22 Distribution of “Survivors” per Topological Category (including

ISOLATED) 103

Figure 4.23 Probability of Survival per Topological Category 104

Figure 4.24 Probability of Survival for the ISOLATED Tables 105

Figure 4.25 Populations of Tables (left: without ISOLATED; right: with

ISOLATED) Born in the Originating Version 106

Figure 4.26 Distribution of Tables Born in the Originating Version per

Topological Category 107

Figure 4.27 Probability to be “born” in the First Version per Topological

Category 108

Figure 4.28 Distribution of Tables per Activity Class (top: without the

ISOLATED; bottom: with the ISOLATED) 111

Figure 4.29 Distribution of Tables per Topological and Activity Categories 113

Figure 4.30 Probability for a Table of a Topological Category to Develop

Specific Update Activity and vice versa 114

Figure 4.31 Distribution of Tables per Size Scale Category 117

Figure 4.32 Top: Distribution of Tables over Topological and Size Scale

Categories; Bottom: Probability for a Table to Have a Certain Size

Scale 118

Figure 5.1 Client/Server Communication Model 126

viii

Figure 5.2 Package Diagram of the Application’s Java Resources 128

Figure 5.3 Class Diagram of the Servlets Package (along with the Interfaces

of the Core Package) 129

Figure 5.4 Class Diagram of the Core Package 131

Figure 5.5 Class Diagram of the Model Package 132

Figure 5.6 Class Diagram of the Enums Package 133

ix

ABSTRACT

Konstantinos Dimolikas. MSc in Computer Science, Department of Computer Science

and Engineering, University of Ioannina, Greece, January 2019.

Tool Support and Topological Study of Schema Evolution in terms of Foreign Keys

Advisor: Panos Vassiliadis, Associate Professor.

Studying the evolution of databases’ structure, known as schema evolution, is of great

importance, since it can reveal patterns that will help administrators devote less time

for increasing databases’ information capacity with the least possible effects on the

surrounding applications and take all the necessary maintenance actions for

preserving and enhancing databases’ performance.

The main research question that we attempt to answer in this Thesis can be expressed

in this way: is there a relationship between tables’ involvement with foreign keys and their

evolution? For answering this question, we adopt a model that considers each version

of a schema as a graph which includes schema’s tables and foreign key constraints as

nodes and edges, respectively. The union of the graphs forms the Diachronic Graph,

which comprises all the tables and all the foreign keys that ever exist in schema’s

history. We also define four categories, namely isolated, source, lookup and internal, for

the tables with respect to the combination of their in- and out- degrees in the

Diachronic Graph. We refer to these categories with the term topological since they

describe the arrangement of the tables in the Diachronic Graph with respect to their

inciting foreign keys. We then classify tables into the topological categories and we

study how tables’ topology is associated with several evolution-related properties,

such as tables’ duration, their update activity, their size change, etc. The schema

histories that we utilize in the context of our work derive from 5 relational databases

supporting open-source projects.

The most significant results of our research work, which are also verified by the

statistical evidence, are: (a) a relationship between tables’ topological categories and

their probability to be born in the originating version of their databases and (b) a

correlation between tables’ topology and their update activity. Specifically, we have

x

identified that the more topologically complex a table is the more intense is its life in

terms of its update activity and the higher is the probability to be introduced in the

very first version of its schema history.

To facilitate the research part of the Thesis, we perform an extensive refactoring in

the architecture of the Parmenidian Truth tool that visualizes the schema evolution of

relational databases. After identifying and prioritizing design defects, we have

applied a series of modifications in the source code of the tool, aiming at increasing

tool’s extendibility potential. To verify that the changes we introduced have not

altered tool’s expected behavior, we have created unit tests for all the modules we

either modified or added. Finally, we have evaluated the enhancements of the

refactoring process by comparing the design quality of the tool before and after the

refactoring.

Complementing the refactoring of the tool, we have also constructed a web

application that visualizes the schema evolution of relational databases and

summarizes the main corresponding statistics.

xi

ΕΚΤΕΤΑΜΕΝΗ ΠΕΡΙΛΗΨΗ ΣΤΑ ΕΛΛΗΝΙΚΑ

Κωνσταντίνος Δημολίκας, ΜΔΕ στην Πληροφορική, Τμήμα Μηχανικών Η/Υ και

Πληροφορικής, Πανεπιστήμιο Ιωαννίνων, Ιανουάριος 2019.

Μελέτη της εξέλιξης σχήματος βάσεων δεδομένων σε σχέση με τα ξένα κλειδιά

με τη χρήση εξειδικευμένου λογισμικού

Επιβλέπων: Παναγιώτης Βασιλειάδης, Αναπληρωτής Καθηγητής.

Η μελέτη της εξέλιξης της δομής των βάσεων δεδομένων, η οποία είναι γνωστή

με τον όρο εξέλιξη σχήματος, είναι ιδιαίτερα σημαντική καθώς μπορεί να

αποκαλύψει μοτίβα που θα βοηθήσουν τους διαχειριστές των βάσεων να

αφιερώνουν λιγότερο χρόνο στην αύξηση της χωρητικότητας των παρεχόμενων

πληροφοριών με τις λιγότερες πιθανές συνέπειες για τις εξαρτημένες εφαρμογές

και να υλοποιούν όλες τις απαραίτητες εργασίες συντήρησης για να διατηρείται

και να βελτιώνεται η απόδοση της βάσης.

Το βασικό, ερευνητικής φύσεως, ερώτημα που επιδιώκουμε να απαντήσουμε

στην παρούσα εργασία μπορεί να διατυπωθεί ως εξής: Υπάρχει κάποια σχέση

μεταξύ της συσχέτισης των πινάκων με τα ξένα κλειδιά μιας βάσης δεδομένων και

της εξέλιξης τους; Για να απαντήσουμε στο συγκεκριμένο ερώτημα,

χρησιμοποιούμε ένα μοντέλο που αναπαριστά κάθε έκδοση του σχήματος σαν

έναν γράφο του οποίου οι κόμβοι και οι ακμές αντιστοιχούν στους πίνακες και τα

ξένα κλειδιά του σχήματος, αντίστοιχα. Η ένωση αυτών των γράφων αντιστοιχεί

στον Διαχρονικό Γράφο, ο οποίος αποτελείται από όλους τους πίνακες και όλα τα

ξένα κλειδιά που εμφανίστηκαν σε τουλάχιστον μία έκδοση της ιστορίας του

σχήματος. Επίσης, ορίζουμε 4 κατηγορίες για τους πίνακες, συγκεκριμένα τις

isolated, source, lookup και internal με βάση τον συνδυασμό των έσω- και έξω-

βαθμών τους στον Διαχρονικό Γράφο. Χαρακτηρίζουμε τις κατηγορίες αυτές με

τον όρο τοπολογικές, καθώς περιγράφουν τη θέση των πινάκων στον Διαχρονικό

Γράφο σε σχέση με τα ξένα κλειδιά τους. Στη συνέχεια, ταξινομούμε τους

πίνακες στις τοπολογικές κατηγορίες και μελετάμε πώς η τοπολογία των

πινάκων σχετίζεται με διάφορα χαρακτηριστικά της εξέλιξης τους, όπως η

διάρκεια ζωής τους, η δραστηριότητα τους, η αλλαγή του μεγέθους τους, κ.α. Τα

xii

σχήματα που χρησιμοποιούμε στα πλαίσια της έρευνας μας προέρχονται από 5

σχεσιακές βάσεις δεδομένων που υποστηρίζουν συστήματα λογισμικού ανοιχτού

κώδικα.

Τα σημαντικότερα αποτελέσματα της έρευνας μας, τα οποία επιβεβαιώνονται

και από τα στατιστικά στοιχεία, είναι: (α) η σχέση μεταξύ των τοπολογικών

κατηγοριών των πινάκων και της πιθανότητας εμφάνισης τους στην πρώτη

έκδοση του σχήματος της βάσης τους και (β) η συσχέτιση της τοπολογίας των

πινάκων με τη δραστηριότητα τους. Συγκεκριμένα, διαπιστώσαμε ότι όσο πιο

σύνθετος τοπολογικά είναι ένας πίνακας τόσο πιο έντονη δραστηριότητα έχει

και τόσο μεγαλύτερη είναι η πιθανότητα εμφάνισης του στην πρώτη έκδοση του

σχήματος του.

Για να διευκολύνουμε την έρευνα μας, υλοποιήσαμε μία εκτεταμένη

αναμόρφωση της αρχιτεκτονικής του λογισμικού Παρμενίδεια Αλήθεια, το οποίο

οπτικοποιεί την εξέλιξη του σχήματος σχεσιακών βάσεων δεδομένων. Έχοντας

εντοπίσει και προτεραιοποιήσει τα σχεδιαστικά ελαττώματα, εφαρμόσαμε μια

σειρά από τροποποιήσεις στον πηγαίο κώδικα του εργαλείου με στόχο να

αυξήσουμε τις δυνατότητες επέκτασης των λειτουργιών που προσφέρει το

λογισμικό αυτό. Για να επιβεβαιώσουμε ότι οι αλλαγές που υλοποιήσαμε δεν

έχουν επηρεάσει την αναμενόμενη συμπεριφορά του λογισμικού,

δημιουργήσαμε ελέγχους μοναδιαίων ενοτήτων για κάθε ενότητα που είτε

τροποποιήσαμε είτε προσθέσαμε. Τέλος, αξιολογούμε τις βελτιώσεις που

επέφερε η διαδικασία αναμόρφωσης, συγκρίνοντας την ποιότητα της σχεδίασης

του εργαλείου πριν και μετά την αναμόρφωση.

Συμπληρωματικά της αναμόρφωσης του λογισμικού, δημιουργήσαμε μία

διαδικτυακή εφαρμογή που οπτικοποιεί την εξέλιξη του σχήματος σχεσιακών

βάσεων δεδομένων και συνοψίζει τις βασικότερες πληροφορίες για την εξέλιξη

των βάσεων.

13

CHAPTER 1.

INTRODUCTION

1.1

1.2

Scope

Roadmap

1.1 Scope

There is no doubt that the life cycle of a software product includes a series of

changes that aim to either correct potential faults or extend its existing

functionalities. Over the course of time, applications tend to increase the

services they offer to their users and as consequence they are becoming more

dependent upon their databases by retrieving more information from them.

This entails a sequence of modifications to the database that alter its internal

structure or its schema between successive versions. We use the term schema

evolution to refer to these changes, which encompass tables/foreign keys

insertions and removals as well as key and type updates.

The importance of studying schema evolution and understanding the

mechanisms behind the necessity for changing database’s structure can be

realized if we consider that minor changes such as a foreign key removal or

an attribute insertion can affect the surrounding applications leading to

applications’ failures or information loss. Identifying potential patterns in the

evolution of databases’ schemata can help administrators to maintain or

develop databases in a way that eliminates the effects on the dependent

applications and reduces the time and the effort they have to devote to apply

the required modifications in the structure of the databases.

The so far limited number of the existing studies on the topic of relational

databases’ evolution can be attributed to the unavailability of a large number

14

of open-source databases’ schema histories that would allow us to establish

solid conclusions on how schemata evolve over time and what are the factors

that determine their evolution. It is worth mentioning that until 1993 there

was no any in-depth study concerning schema evolution revealing a research

gap in this topic. This gap was partially filled in the following years due to the

presence of few open-source software projects that led to various works,

which covered different aspects of the evolution, ranging from coarse-grained

approximations that identify the effects of schema changes and propose

methods for eliminating them to more fine-grained analyses that involve

studying tables and foreign keys’ evolution and determining which tables’

properties are liable to affect tables’ update activity.

Our approach on the topic of schema evolution is twofold, consisted of the

research and the tool support parts. In the first part, we deal with the problem

of schema evolution from a new perspective that takes into account tables’

involvement with foreign keys, which means that we are mainly interested in

understanding how the patterns of edges surrounding nodes in the Diachronic

Graph, the graph whose nodes and edges represent databases’ tables and

foreign key constraints, respectively, is related to the evolution activity of

databases’ schemata. We should mention that in the context of this Thesis we

use the term topology to describe tables’ involvement with foreign keys in the

Diachronic Graph. The second part of our work contains a principled

refactoring process on a existing tool for the study of schema evolution and

the utilization of this tool to construct a web application that can facilitate the

works of research community on the topic of schema evolution.

In a nutshell, the research question that we attempt to answer in this thesis

can be stated as follows: “Is there a relationship between tables’ topological

categories and their evolution?”

To answer this question, we utilize the schema histories of 5 databases

supporting open-source projects from different domains. First, we study the

distribution of the tables with respect to the combination of their in- and out-

degrees in the Diachronic Graph to define the different topological categories

to which we append the including tables. We identify four different categories

in terms of tables’ topology, which can be synopsized as follows:

 Isolated tables with no references from or to other tables.

 Lookup tables with only incoming references.

 Source tables with only outgoing references.

15

 Internal tables with both incoming and outgoing references.

Having determined the topological categories, we encounter the first problem

arising from the so-called change of category phenomenon, which occurs when

tables change category throughout their history. As a result, the tables are

divided into those with a single topological label and those with multiple

labels. A multi-labeling scheme does not facilitate our attempt to relate tables’

topological labels to their evolution profile and for this reason we manually

track tables that change category and assign a single label to them. The

manual inspection of the label changes also helps us to determine a list of

filters consisted of 6 rules that would automate the classification process of

the multi-label tables by removing or ignoring bewildering parts of tables’

lives that confuse the true nature of the tables. Although the misclassification

rate between the two alternative processes is not high, we adopt the labels

derived from the manual process, since it allows us to take into account the

special features of the tables examined.

Assigning a single label to each table enables us to study whether tables’

topological categories are related to various measures of their evolutionary

activity, such as their lives’ duration, their survival potential, their update

activity etc. To assert whether the topology of the tables affects their

evolution-related properties, we accompany the results derived from our

study with statistical evidence by utilizing the Chi-square and Fisher tests.

The first question that we address is stated as follows: “Is there a relationship

between tables’ topological categories and their duration?” We classify tables in

three categories with respect to their normalized duration, which is defined for

a table as the ratio of the number of versions that the table exists in the dataset

over the total number of versions of its dataset. Although we identify several

duration-related patterns, the statistical tests we conducted to evaluate the

differentiation of tables’ duration due to their topological categories does not

allow us to strongly support that there is a correlation between tables’

topology and their lives’ duration. The commonalities that we observe in the

datasets examined are outlined in the following list:

 Internal and lookup tables tend to lives of long duration.

 Isolated tables avoid existing for a long period of time.

The second relationship that we are interested in is that between tables’

topology and their survival potential. We describe a table as a “survivor” if it

exists in the last known version of its dataset. The relevant research question

that we attempt to answer can be stated as follows: “Is there a relationship

16

between tables’ topological categories and their survival potential?” The high

survival rates, which surpass the 65% of the number of tables in all datasets,

along with the results produced by the statistical tests indicate that is quite

unlikely that tables’ topology affect their survival potential. Nevertheless, we

identify two interesting patterns summarized as follows:

 There exists a monotone decrease pattern in the percentages of the

including “survivor” tables, starting from the source tables followed by

lookup and ending with the internal tables.

 Source and lookup tables’ survival rates follow the aggregate ones, while

the survival potential of the internal tables is higher than the

corresponding aggregate in all datasets.

Next, we examine whether the topology of the tables is somehow related to

the originating version of their dataset’s schema history. We can express the

respective research question in the following way: “How is the topological

category of a table related to the probability of being born in the originating version of

its dataset’s schema history?” The main findings of our study on this

relationship are synopsized as listed below:

 Internal and lookup tables are more likely to be “born” in the originating

version of their dataset’s history, which means that it is not probable

that these tables are introduced in the succeeding versions.

 Isolated and source tables tend to be born in versions that follow the

originating one.

 The aforementioned results are in accordance with the gravitation to

rigidity pattern, which suggests that dependency-magnet tables, like

internal and lookup, are not prone to experience any kind of

modifications in the later versions of database’s schema. Thus, we

presume that the early introduction of these tables is preferable in

order to avoid changes caused by adding them in subsequent versions.

The update profile of the tables and its relationship with the topological

categories is another issue that we study. The question that concerns us can be

formulated in this way: “Is there a relationship between the topological category of

a table and its update activity?” We classify tables with respect to their update

activity in three categories, using the label rigid for those with no changes in

their lives, the label quiet for tables with few changes that do not exceed the

value of 5 and the label active for tables with more than 5 updates and with

Average Transitional Update (ATU) greater than 0.1. The ATU represents the

17

fraction of the number of changes a table experiences in its life over its

duration. The main findings on the relationship between topological

categories and tables’ update profile can be listed as follows:

 Isolated and source tables are associated with no or few updates.

 Lookup tables experience either few or many changes.

 Internal tables are prone to undergo many updates.

We also examine the probability for a table with certain update activity to

belong to a specific topological category. We outline the most interesting

results in the subsequent list:

 Rigid tables are quite likely to be source in datasets where there is no

strong presence of isolated tables, while in datasets with numerous

isolated tables the rigid ones tend to be isolated.

 Quiet tables are likely to belong to the source category.

 Active tables tend to categories of high topological complexity.

Given the aforementioned findings as well as the results from the statistical

tests, we can claim that tables with different topological categories are subjects to

different amounts of updates.

The last relationship we study is that between the tables’ topological

categories and their size change, meaning the change of their size between

their first and last known versions. The research question we attempt to

answer is expressed in this way: “How is the topological category of a table related

to its size change?” We categorize tables with respect to the scale of their size

change in three categories, with the label scale down denoting a reduction in a

table’s size, the label steady representing tables with unchanged sizes and the

label scale up indicating an expansion in tables’ sizes. Although the statistical

evidence is not adequate enough to support a correlation between topological

categories and tables’ size change, we identify the following behaviors:

 The majority of the isolated and source tables remain steady.

 Lookup and internal tables tend to increase their size.

The second topic of our thesis concerns the refactoring process applied in

Parmenidian Truth project, a tool that visualizes the evolution of relational

databases’ schemata. The main reason for improving the design of this tool is

that we utilize its functionalities for creating the web application presented in

18

Chapter 5, so a series of refactoring actions would facilitate the introduction

of new functionalities required by our application. Using the Unified Modeling

Language (UML) along with the Classes Collaborations Responsibilities (CRC)

method, we are able to identify violations or the absence of design principles

that would complicate our effort to add new functionalities or make use of the

existing ones provided by the Parmenidian Truth tool. The defects we inspect

are summarized as follows: (i) Package level issues (ii) God classes (iii) Lack

of APIs (iv) Duplicated code (v) Misplaced methods (vi) Redundant

components (vii) Convention violations

To deal with each of the above mentioned defects we apply a series of

modifications in the source code of the tool taking into consideration and

complying with the proposed, in each case, design principles and patterns.

Next, we create a unit test for each class we added or modified to confirm that

our alterations have not affected the expected behavior of the tool. Finally, we

conduct a thorough evaluation of the quality of the resulting source code after

the refactoring actions we applied in order to assess and quantify the

enhancements achieved in design level.

In a nutshell, the main improvements achieved via the refactoring process can

be outlined as follows:

 We have increased tool’s expandability and immunity to changes by

introducing a set of APIs

 We have eliminated duplicated code by applying the recommended

template method design pattern

 We have increased cohesion of methods by moving misplaced methods

to new classes

 We have removed redundant components that increase code

complexity

 We have verified the correctness of the proposed modifications by

creating unit tests for classes that we either added or modified

The third part of this thesis describes the structure of a web application we

create to visualize the schema evolution of relational databases. Our prime

motive for creating this application was to provide the entire research

community with a tool that can facilitate their work on the topic of schema

evolution. We utilize the refactored version of the Parmenidian Truth tool and

its functionalities to upload all the necessary information on the server and

19

exploit it each time a client’s request is submitted. The main functionalities

provided by our application are summarized as follows:

 An overview on the distribution of the tables with respect to several

properties, like their update activity, birth version, etc.

 Visualization of tables and foreign keys’ evolution as well as the

depiction of the four evolution-related patterns presented in [VaZS15].

 Visualization of the Diachronic Graph and the intermediate versions.

We also provide users with the capability of selecting nodes’

classification criterion and setting nodes’ radius based on different

tables’ properties.

To sum up, the main contributions of this thesis are synopsized in the next

list:

 A thorough study on the relationship between tables’ topology and

their evolution.

 An extensive restructuring of the Parmenidian Truth tool’s architecture

and an in-depth evaluation of the refactoring process.

 A web application that facilitates the visualization of databases’

schemata evolution.

1.2 Roadmap

The contents of this thesis can be summarized as follows. In Chapter 2, we

highlight the most significant contributions on the topic of schema evolution

and explain how our work differentiates from the state of the art. In Chapter

3, we present and assess the modifications we applied to Parmenidian Truth

tool to improve its architecture, aiming at utilizing it to create a web

application that visualizes schema evolution. Chapter 4 contains our study on

how tables’ topological labels are related to tables’ evolution. In Chapter 5, we

present our web application that facilitates the study on the evolution of

databases’ schema histories via visualizing various known patterns and

providing the corresponding quantitative information. In Chapter 6, we

outline the most important conclusions of our work and highlight open issues

for future research.

20

CHAPTER 2.

RELATED WORK

2.1 Case Studies of Schema Evolution

2.2 Comparison to the State of the Art

In this Chapter, we present the state of the art in the related literature on the

topic of this thesis so as to highlight the growing interest for schema evolution

and what has been achieved over the years. In the second section, there

appears a brief comparison of our work to the case studies of the first section,

demonstrating how our work diverges from the previous ones and

contributes to broadening our knowledge over the subject of schema

evolution.

2.1 Case Studies of Schema Evolution

One of the earliest works in the area of schema evolution was implemented in

1993 by [Sjøb93], who studied the evolution of a database for a period of 18

months and demonstrated the need for the development of a change

management tool. The main findings of his work can be outlined as follows:

 Every relation of the database has been modified during the period of

the study.

 More additions than deletions appeared in the early phases of the

databases’ lives, in contrast to the operational period in which the

additions and deletions were in balance.

21

 There was a 139% increase in the number of relations and a 274%

growth in the number of fields, concerning the period of examination.

In 2002, Amela Karahasanovic [Kara02] presented a tool for tracing the effects

of schema changes in applications developed in object – oriented systems.

This tool, namely Schema Evolution Management Tool (SEMT), receives as

input the source files of a schema, identifies the modules of the schema and

their relationships, creates a graph – based representation with the nodes

corresponding to schema’s modules and the edges to the relationships

between the modules and predicts the impacts of changes applied on the

schema. The evaluation of the tool was carried out by conducting an

experiment in which two groups of students were asked to apply changes in

the schema of a library application and subsequently identify the effects of the

changes by using SEMT. Each group used a different version of the SEMT

tool, with the first group utilizing a version that recognizes the impacts of a

change at a fine – grained level and the second one exploiting a version that

determines the affected modules at a coarse – grained level. The results of the

experiment, which consisted of the time required to complete the impact

analysis, the correctness of the answers and the user satisfaction, are the

following:

 The time required to complete the experiment was 6 minutes shorter

for the group utilizing the low – level version of the SEMT tool.

 Students using the fine – grained version of the tool committed fewer

errors in their effort to discover the parts of the schema that were

affected by a change.

 The score regarding users’ satisfaction and viewpoint about SEMT’s

efficiency was high within the two groups.

In 2008, Carlo Curino, Hyun Moon and Carlo Zaniolo [CuMZ08] introduced a

set of Schema Modification Operators (SMOs) to facilitate the evaluation of

the effects of the schema changes and minimize the maintenance costs

involved in terms of time and effort required to identify the parts affected.

Each of the SMOs corresponds to a function whose parameters are a relational

schema and the underlying database and its output is a modified version of

the initial schema and a migrated version of the database. In this context, they

developed the Panta Rhei Information & Schema Manager (PRISM) system,

which automates the completion of tasks associated with schema evolution

such as query translation, data migration and documentation of the changes.

As for the assessment of the PRISM system, they exploited the schema

evolution history of Wikipedia to quantify the efficiency of the PRISM in

22

terms of the proportion of the evolution steps automated by the system and

the percentage of the queries that were compatible with the new schema

version. The results obtained from this experimental evaluation are

summarized in the following list:

 In 97.2% of the evolution steps the PRISM system was capable of

adjusting queries to the new schema version in an automatic way.

 74% of the queries were operational after the required modifications

applied by the PRISM system, in contrast to the 16% of the compatible

queries in case of no changes would have been introduced.

 In 12% of the queries altered there appeared a gain of 35% in terms of

the execution time in favor of the manually modified queries and that

was attributed to the fact that the PRISM system was incapable of

identifying integrity constraints.

In 2008, Carlo Curino, Hyun Moon, Letizia Tanca and Carlo Zaniolo

[CMTZ08] made a thorough analysis of the evolution history of the Wikipedia

and its schema, covering a period of approximately 4.5 years. Acknowledging

the profound impact schema changes have on the applications accessing a

database, they initially performed a macro – and micro – classification of the

schema changes and then they evaluated the effect of the changes on

applications by quantifying the success rate of the queries execution among

different schema versions. The following list puts in a nutshell the key

findings of their study.

 The majority of the evolution steps (nearly 55%) included actual

schema changes and more than 40% of the steps concerned key/index

adaptations.

 The micro – classification of the schema changes revealed an

equilibrium between additions and deletions of tables and attributes,

which signifies the intention to preserve database’s contents.

 Only 22% of the queries of previous versions are functional in

subsequent versions.

Shengfeng Wu and Iulian Neamtiu [WuNe11] focused their research on

schema evolution of embedded databases and proposed a system for the

automatic retrieval of the source code, the extraction of the embedded

databases and the computation of the schema evolution. They employed 4

well – known applications containing embedded databases and studied its

23

evolution within an 18 – year period. The main findings of this study are

condensed as follows:

 The high frequency of tables and attributes deletions indicate that

embedded databases are more prone to restructuring growth rather

than a continuous one.

 The early periods in schemas’ lives are related to higher number of

changes as opposed to the latter versions which include few

modifications.

 The overall change rate for the embedded databases tends to be lower

than that of the enterprise – class databases.

In 2012, G. Papastefanatos, P. Vassiliadis, A. Simitsis and Y. Vassiliou

[PVSV12] presented their work about the impact of evolution events on the

Extract – Transform – Load (ETL) workflows and proposed a set of graph –

theoretic metrics for the assessment of the quality of ETL designs. First, they

develop a graph – based model to represent the modules of an environment

and following that they analyze its structure to determine the extent to which

evolution events can affect environment’s components. The evolution graph

representing the parts of an ETL system and its relationships was analyzed in

two levels, specifically a fine – grained level where node properties are

examined as potential predictors of node’s vulnerability to evolution actions

and a coarse – grained level concerning only relations, views and queries. The

proposed metric suite used for the structure analysis of the evolution graph

includes degree – based metrics, such as simple or transitive degrees of nodes

or modules, indicating the level of dependencies among nodes and modules

and entropy – related metrics which signifies the possibility for a node to be

affected by a random evolution event. The evaluation of the proposed metrics

was implemented by exploiting a software tool, namely Hecataeus, which in

this study analyses 7 real – world ETL scenarios for 6 months. The most

important observations derived from this experimental evaluation are

synopsized as follows:

 The schema size of a system is a crucial factor behind system’s

vulnerability to evolution events, that is to say that tables with many

attributes are more likely to be affected and affect the corresponding

work flows.

 Out – degree of nodes and modules are the most adequate predictors

for the evolution of all module types.

24

 In cases where the previous metrics fail, the out – transitive degree and

the entropy – related metrics may operate as better predictors for the

impact of evolution on ETL workflows.

In [QiLS13], authors studied the co – evolution of database schemata and the

code of the related applications in 10 open – source projects. The main

research questions addressed concerned the frequency and amount of schema

evolution, the distribution of the schema change types within databases’ lives

and the evaluation of the impact of schema changes on the corresponding

application code. They classified atomic schema changes into 24 categories,

each of which belongs to one out of 6 high – level schema change types, so as

to discriminate the dominant types of modifications and assess the effect of

each type to the surrounding applications. The following list includes the

main results of this study.

 The frequency of schema modifications is high, with the average

number of atomic changes to approximate the value of 90 in a year.

 The growth rate of tables in 60% of the databases exceeds 100% as it is

the case for the change rate in 90% of the projects examined.

 In all but 3 projects their schema size approaches the 60% of their

maximum value within the first 20% of their lifetimes.

 Regarding the distribution of schema change types in databases’ lives,

it appears that transformations, structure refactorings and data quality

refactorings are the most common categories of changes accounting for

80% of schema changes in all projects and 95% in 7 of them.

 Additions of tables/columns and datatype changes are the most

frequent changes at the low – level of change categories.

 Each atomic change affects approximately from 10 to 100 Lines of Code

on average. At a coarse – grained level, transformations and structure

refactorings are responsible for the most of the alterations required in

the source code of the surrounding applications.

In 2015, A. Cleve et al. [CGMM+15] published their findings on the adequacy

of using the database evolution history as an effective tool in reverse

engineering procedures. Specifically, they studied the evolution history of a

medical record application seeking for valuable information that would assist

system’s extendibility capacities in order to comply with new requirements.

To achieve their main goal, they developed a set of tools for retrieving,

analyzing and visualizing the schema versions of the database accessed by the

25

aforementioned application. The main results of their work are highlighted in

the following list.

 The number of tables appears to be increasing from the beginning till

the end of the period examined, unveiling an obvious reluctance to

remove tables.

 The trend in the evolution of attributes approximates that of tables.

 The addition of large tables spans the whole life of the system under

examination.

 The update activity in the database schema is far from being intense

with the majority of tables experiencing less than 4 changes in their

lives.

P. Vassiliadis, A. V. Zarras and I. Skoulis [VaZS17] performed an in – depth

analysis on the schema evolution of 8 databases aiming at perceiving how

individual tables evolve and studying the impact of various tables properties

on tables’ lives. Specifically, they investigate whether or not properties such

as schema size, birth/removal versions are associated with evolution – related

features, for instance table’s update activity, duration, survival profile. The

key findings of their study are outlined in the subsequent list.

 Wide tables, these are tables born with more than 10 attributes, are

more likely to survive, in other words to exist in the last schema

version. With the exception of 2 datasets, the percentage of those tables

exceeds 85% in all cases.

 In 50% of the datasets the portion of wide tables that were born early,

that is to say in the lowest 33% of versions, and finally survive,

surpasses 70%.

 Approximately 70% of tables of a database resides within the 10x10

box, meaning that the number of attributes at the birth version does

not exceed the value of 10 and the number of updates a table

undergoes throughout its life is less than 10.

 As for the relationship of tables’ duration with their update profile,

they introduce the “inverse Γ” pattern which indicates that short –

lived tables are related with a small amount of changes, tables of

medium duration undergo a small or medium number of changes and

long – lived tables are subjects to all kinds of updates.

26

 More than 75% of active tables, those are tables having an Average

Transitional amount of Update (ATU) greater than 0.1 and

experiencing more than 5 changes in their lifetime, are born early.

 Apart from 2 datasets, the fraction of active tables that survive is

greater than 70%.

 The probability for an active, long – lived table to survive is 100%, as it

is the probability for active, long – lived survivors to have been born

early.

 In 6 out of 8 datasets, the percentage of removed tables that experience

few updates exceeds the value of 85%.

 With 1 exception, the fraction of removed tables that were born early is

greater than 70%.

 Removed tables that are short – lived accounts for more than 75% of

the total number of “dead” tables in all but three datasets.

In 2017, P. Vassiliadis et al. [VKZZ17] studied how foreign keys evolve in the

context of schema evolution of relational databases. Recognizing the impact of

the schema evolution on the smooth operation of the surrounding

applications and the importance of predicting forthcoming schema changes

for the maintenance process, they opted for six open – source databases

derived from different domains and included foreign key constraints. First,

they represented each version of the schema of a database as a graph with

relations as nodes and foreign keys as graph’s edges and then detected a set

of changes between subsequent versions by utilizing the Parmenidian Truth

tool that models, visualizes and quantifies schema evolution of a database.

The main findings of this work are summarized as follows:

 The growth of the schemata is continuous including alternating phases

of concentrated modifications and of few or zero changes.

 In most datasets, there seems that foreign key constraints are rare and

in some cases their existence appears to be unwelcome.

 The evolution of foreign keys does not always follow that of tables.

 The heartbeat of foreign key changes is mostly rare and small in

volume.

27

2.2 Comparison to the State of the Art

In the previous section we attempted to give a synopsis of the different

approaches to the matter of schema evolution and the most significant

contributions of each work towards understanding the mechanisms that

determine how schemata evolve in terms of their main components including

tables and foreign key constraints and whether a set of tables’ properties such

as their size, duration, update activity, etc. is likely to affect their evolution.

To the best of our knowledge, this is the first study that examines the role of

tables’ topology in the evolution process, which expressed in a different way

means that we are going to focus our research on how and to what extent the

“neighborhood” of a table affects its life in terms of its survival likelihood, its

update profile or the duration of its life. Prior to studying the relationship

between tables’ evolution and their topological labels, we propose a set of

rules for classifying tables into topological categories taking into account the

changes of the corresponding labels throughout tables’ life cycles.

28

CHAPTER 3.

REFACTORING PROCESS

3.1

3.2

Aim of Refactoring

Initial Architecture and Design

3.3

3.4

Refactoring Actions

Testing

3.5

3.6

Final Architecture and Design

Evaluation

3.7 Summary of Refactoring Results

In this chapter, we present the set of modifications we applied to Parmenidian

Truth tool in order to improve its design and facilitate any attempt to extend

its functionalities. Firstly, we explain why refactoring is required in the

context of the current thesis and we show the initial design along with the

corresponding defects. Next, we describe a series of refactoring actions

applied aiming at eliminating design violations, mention the tests conducted

29

to ensure that our changes did not affect the expecting behavior of the tool

and present the design ensued after our alterations. Finally, we assess the

benefits of the refactoring process.

The Parmenidian Truth tool visualizes the evolution of relational databases’

schemata. It takes as input a set of data definition files that contain the history

of a database and produces as output the Diachronic Graph, a graph whose

nodes correspond to the tables that have existed in database’s history for at

least one version and edges model the foreign key constraints that have

identified between the tables for at least one version. Apart from the

Diachronic Graph, the Parmenidian Truth tool produces a PowerPoint

presentation, where each slide illustrates a graph modeling of each version

with the including tables depicted as nodes and the foreign keys as edges. The

graph representation of a database’s schema history was introduced in

[VKZZ17] facilitating the correlation of graph-related metrics with evolution-

related features. In this context, this tool also computes a set of graph-based

measures for each version as well as for the entire history of the database.

3.1 Aim of Refactoring

One of the main objectives of this master thesis is to utilize the functionalities

provided by the Parmenidian Truth tool. The fulfillment of new requirements

and their adaptation to the existing code entail the understanding of tool’s

design and the evaluation of its quality. In a first step, we have to obtain an

insight of Parmenidian Truth’s structure disclosing either potential violations

or lack of design principles, which might exacerbate the extension process

and complicate forthcoming maintenance efforts. In a next step, we attempt to

apply a series of modifications to source code in order to improve the design

of the software in a way that will favor the extensibility and maintainability of

the tool. This process is known with the term refactoring, which is explained

in more detail in the following paragraph.

Terminology. Refactoring is used to describe a change made to the internal

structure of software to make it easier to understand and cheaper to modify

without changing its observable behavior [FBB+99].

The rationale behind the necessity of this process derives from the fact that we

inherited the source code of the tool, so understanding its design and

determining the margins for improvements is considered to be of great

importance for the subsequent process of adding new features to the tool and

exploiting them in the application presented in Chapter 5.

30

3.2 Initial Architecture and Design

In this subsection, we discuss the architecture of Parmenidian Truth before

our refactoring took place. At first, we utilize diagram generators that offer

graphical representations of the subject system at high – level, presenting the

dependencies of its packages and also at package – level, revealing the

relationships between the entities included.

3.2.1 Package Diagram
Figure 3.2 depicts the initial package diagram of Parmenidian Truth system

before the refactoring. Each package represents a subsystem that offers a

unique functionality required by the system in order to fulfill the

requirements that this tool satisfies. As mentioned before, Parmenidian

Truth’s main functionality is the visualization of a database’s schema as a

PowerPoint presentation, so its subsystems are expected to cooperate in a way

that this functionality is provided.

Figure 3.1 summarizes the functionalities provided by each subsystem.

Subsystem Functionality

gui Contains graphical interface – related classes

core Operating as manager of the use cases system

performs

export Includes the classes that offer export – related

operations

model.Loader Organizing data using externalTools

subsystem

model Contains domain classes of the system

externalTools Consists of Hecate tool’s classes that parse

SQL files

parmenidianEnumerations Comprises useful enumerations

Figure 3.1 Functionalities of Subsystems

It is important to clarify that the externalTools package consists of classes of the

Hecate tool, which is a different system and for this reason it was not

modified during the refactoring process.

31

Figure 3.2 Initial Package Diagram of Parmenidian Truth

3.2.2 Class Diagrams
As mentioned before, each subsystem is supposed to offer a functionality that

derives from the cooperation of its components. This means that the classes of

each package are supposed to be strongly correlated to one another, aiming at

serving a single purpose. The class diagrams of this subsection show the

associations between the elements of each package giving a sense of the

degree of cohesion within it.

Figure 3.3 corresponds to the class diagram of the gui package.

32

Figure 3.3 Class Diagram of the Gui Package

Figure 3.4 depicts the class diagram of the core package.

33

Figure 3.4 Class Diagram of the Core Package

Figure 3.5 shows the classes included in the export package.

Figure 3.5 Class Diagram of the Export Package

34

Figure 3.6 presents the classes the model.Loader package consists of.

Figure 3.6 Class Diagram of the Model.Loader Package

Class diagram of the model package is shown in Figure 3.7.

35

Figure 3.7 Class Diagram of the Model Package

36

Class diagram of the parmenidianEnumerations package is depicted in Figure

3.8.

Figure 3.8 Class Diagram of the ParmenidianEnumerations Package

3.2.3 Classes Collaborations Responsibilities (CRC) Method
A more fine – grained analysis that is not constrained within the limits of a

package is carried out to provide a more comprehensive picture of the

relationships between the elements of the different subsystems. Thus, the CRC

method [BeCu89] is applied for each class of each package of Parmenidian

Truth tool. In the context of the refactoring process, CRC cards are expected to

be useful in our attempt to acquire a general overview of the responsibilities

assigned to each class and also a more clear perception of the object

interactions. In this way, we seek to identify classes which might encompass

more responsibilities than these that are supposed to discharge and evaluate

the degree of the coupling among objects.

Figures 3.9, 3.10, 3.11, 3.12, 3.13 and 3.14 depict the CRC cards for each

package of the tool.

37

Figure 3.9 CRC Cards of the Classes of Package Core

Figure 3.10 CRC Cards of the Classes of Package Export

38

Figure 3.11 CRC Cards of the Classes of Package Gui

39

Figure 3.12 CRC Cards of the Classes of Package Model.Loader

40

Figure 3.13 CRC Cards of the Classes of Package Model

41

Figure 3.14 CRC Cards of the Classes of Package ParmenidianEnumerations

3.3 Refactoring Actions

The previous representations were helpful in our attempt to detect design

defects and prioritize them based on their frequency of occurrence and the

implications they create in case of modifying the source code. The

classification of the defects is based on the taxonomy of [FBB+99] and is as

follows:

 Package Level Issues

 God Classes

 Lack of APIs

 Duplicated Code

 Misplaced Methods

 Redundant Components

 Convention Violations

The following sections describe the previous defects in detail and present the

refactoring techniques applied for improving tool’s design and increasing its

adaptability to imminent extension or maintenance actions.

3.3.1 Package Level Issues
The refactoring process starts from the highest level of abstraction, which is

the package level. In this level, the most obvious and important violation is

the cyclic dependency between model.Loader and model packages. One possible

and straightforward approach to deal with this defect would be to merge the

two packages, especially if we take into account the strong correlation

between them. However, this option would significantly increase the

complexity of the new package’s design.

42

We finally decided that it would be more efficient to identify the elements of

the two packages that cause the cycle and transfer them to a new package.

Moreover, the use of model.Loader’s elements in the DiachronicGraph class of

the model package created the aforementioned cyclic dependency which was

broken through creating the dataImport package containing the classes of

model.Loader and removing the dependencies of the model’s classes from the

new package in a higher level.

Another design weakness we observed was the total absence of cohesion

between the classes of the export package. In order to increase the coherence of

the package, we transferred the ExportManager class from the core package to

the export one, based on the fact that this class is the common client of export’s

elements. It is noteworthy to mention that there appears to be no resemblance

in the implementation of the export package’s classes and as a result there

were no any other available options to increase the cohesion of this package.

3.3.2 God Classes
The term “God class” refers to a class that encapsulates more than one

responsibility, violating the Single – Responsibility Principle (SRP). In

[MaMa06], the Single – Responsibility Principle is defined as “A class should

have only one reason to change”. According to this principle, each

responsibility assigned to a class is considered to be a reason to modify the

corresponding class. Every change in the requirements of a system is applied

via altering the responsibilities of its modules, and if a module undertakes

two or more responsibilities it would be difficult to adjust any kind of

changes related to one responsibility in a way that would not affect parts of

the module that fulfill other purposes.

The ordinary way of dealing with this kind of design defect is to discriminate

the methods within a class that were created to serve different purposes and

extract each group of methods in new classes.

In the initial version of the Parmenidian Truth system, a module that meets

the criteria in order to be classified as a “God class” is that of DiachronicGraph

in the model package. This class encapsulates responsibilities related to graph

manipulation and also those for the generation of reports that include various

graph metrics.

Figure 3.15 verifies this assertion by depicting methods and attributes of the

DiachronicGraph class as squares and circles respectively, where each edge

between a square and a circle denote that the method has access to the

corresponding attribute.

43

It is obvious that there are two discrete clusters of methods, which do not

have access in common attributes. This definitely shows that the methods of

each cluster fulfill different requirements and an extraction of one of the two

clusters in a new class is necessary. Our decision was to extract the group of

methods related to the generation of reports, which consisted of two discrete

sub-groups and contained additional defects that we describe in next

subsections. As a result, the DiachronicGraph class remained only with graph –

related responsibilities, increasing in this way the cohesion among the

methods of the class and abiding by the SRP.

3.3.3 Lack of APIs
Another design defect we observed was the lack of APIs, whose presence in a

system is considered to be crucial, especially when the requirements of the

system have to be modified or expanded. APIs’ main role is that of

determining a set of functionalities that another class, called “client”, needs

and imposing the implementation of these methods in classes that implement

them. In this way, it is feasible to make “client” classes independent from

changes occurring in concrete classes and agnostic to the details of the

implementation.

In a first step, we introduced an interface that serves as a contract between the

Gui class of package gui and the ParmenidianTruthManager class of package

core. The IParmenidianTruth interface contains methods required by Gui and

implemented by ParmenidianTruthManager. In this way, the Gui class does not

depend directly on classes of the core package and becomes independent of

the changes made in these modules. In Figure 3.16 the class diagram of the

previous classes after the insertion of the interface is shown.

44

Figure 3.15 Methods (squares) and Attributes (circles) of the DiachronicGraph Class

45

Figure 3.16 Class Diagram of the IParmenidianTruth interface and its client

Our next change concerns the dataImport package, which consists of classes

responsible for parsing sql files in order to create objects of the model package.

The “clients” of this package are the ModelManager and the

ParmenidianTruthManager of the core package and for this reason we created

the interfaces IParser and IHecateImportManager implemented by the Parser

and HecateImportManager classes respectively. The presence of the two

interfaces is regarded necessary since the clients are different and we attempt

to comply with the Interface – Segregation Principle (ISP), which, according to

[Mart00], can be expressed as “Many client specific interfaces are better than

one general purpose interface”. The obedience of this principle ensures that

46

we can avoid forming clients’ dependencies upon methods that clients do not

use and increase the cohesion within each interface. Apart from the two

aforementioned interfaces, we added the IGraphmlLoader implemented by the

GraphmlLoader class. In Figure 3.17, the class diagram of these interfaces along

with their clients is depicted.

Figure 3.17 Class Diagram of the Interfaces of Package DataImport and their

Clients

The model package is considered as the most complex package in terms of the

dependencies between its classes, so it is crucial to recognize those modules

that are important for the other packages and create interfaces that will

determine the functionalities required by the clients and diminish the impact

47

of possible changes introduced in classes of this package. Figures 3.18, 3.19

and 3.20 show the interfaces included in the model package.

Although IDiachronicGraph and IMetricsReport are used by the same client the

functionalities they provide are uncorrelated between each other and that was

the main reason for creating two interfaces instead of a large one that would

be more prone to changes and less coherent.

The rationale for creating the IGraphMetrics interface was the fact that the

existing implementations concerning the metrics produced by Parmenidian

Truth tool were explicitly specified for csv files. In order to provide a set of

methods that can be utilized in a subsequent different implementation, we

created the IGraphMetrics interface with the role of clients assigned to the

DiachronicGraph and the DBVersion classes.

The final introduction of an interface concerns the export package which

contains classes responsible for creating a PowerPoint presentation and a

video stream of the schema evolution of a database. The absence of cohesion

between these classes was the main reason for transferring the ExportManager

class from the core package to the export one and creating an interface that

offers functionalities required by the ParmenidianTruthManager class. Figure

3.21 depicts the aforementioned interface with its client.

48

Figure 3.18 Class Diagram of the IDiachronicGraph Interface and its Client

49

Figure 3.19 Class Diagram of the IMetricsReport Interface and its Client

50

Figure 3.20 Class Diagram of the IGraphMetrics Interface and its Clients

51

Figure 3.21 Class Diagram of the IExportManager Interface and its client

3.3.4 Duplicated Code
The implementation of the methods which are responsible for the generation

of the reports that contain various metrics consists of three discrete parts. The

first one is related to the creation of the csv file which contains the results. The

second part includes the computation of the metrics selected by the user.

Finally, the third part registers the results of the second part to the file created

in the first part. Irrespective of the metrics chosen, the first and the third parts

are implemented in the same way for all the different metrics, while the

second one can be classified in two categories (specifically (a) metrics

52

concerning the entire graph and (b) metrics related to individual nodes) as far

as its implementation is concerned. It is obvious that this part is an example of

duplicated code.

Taking into account the recommended methods for dealing with duplicated

code, we created the MetricsReportEngine abstract class. This class contains a

template method, which defines the execution order of the aforementioned

parts. As mentioned, the first and the third parts are the same for all the

metrics and for this reason they are implemented in the abstract class. On the

contrary, the second part for the metrics computation is separated into graph

and vertex related implementations. This difference resulted in the creation of

the subclasses GraphMetricsReport and VertexMetricsReport, each of them

implementing the corresponding metric computation related code. Figure 3.22

shows the class diagram of the previous classes.

Figure 3.22 Class Diagram of the Classes Responsible for Metrics Reports

Generation

53

Another occurrence of duplicated code was identified in the HecateManager

and the HecateScript classes, which both contained the same auxiliary class,

called SQLFileFilter. One of the packages included in ParmenidianTruth tool

was the fileFilter package containing the SQLFileFilter and the ImageFileFilter

classes used by the VideoGenerator class. However, this package remained

unused and in order to eliminate the duplicated code, the classes of the

fileFilter package can be utilized instead of the auxiliary ones.

3.3.5 Misplaced Methods
As described in subsection 3.3.2, the DiachronicGraph class consisted of

methods responsible for the generation of metrics reports and methods used

for graph manipulation functionalities. From our perspective, the methods

related to the generation of reports resided in a class irrelevant to the

functionality they offer and it would be more sensible to be assigned in new

classes described in subsection 3.3.4.

3.3.6 Redundant Components
The hecateImports package existed in ParmenidianTruth’s source code,

containing all the classes provided by the externalTools package. The classes of

the hecateImports package were not exploited by the other packages and for

this reason we decided to remove it.

3.3.7 Convention Violations
As far as the conventions abidance is concerned, we utilized a checkstyle tool

created by A. Papamichail, so as to identify potential violations that exist in

ParmenidianTruth. These violations concern the following conventions:

 Name conventions

 Method parameter conventions

 Class size conventions

Figure 3.23 depicts the results provided by the tool prior and after the

refactoring process. The horizontal axis includes the name of each class and

the vertical the number of the violations detected.

54

Figure 3.23 Checkstyle Violations Before and After the Refactoring Process

3.4 Testing

In this section, we describe the tests we applied in order to evaluate the

correctness of our modifications. Using the unit testing framework for Java,

JUnit, we created a test case for each of the classes that we had either added or

changed. In most cases, we utilized Mockito [Fabe07], a mocking framework

that allowed us to create objects that simulate the behavior of real objects,

without their dependencies.

The ReportFactory class contains only one method that creates the object

responsible for the generation of metrics reports. Using a mock object of the

DiachronicGraph class, we confirmed that this object is created correctly.

As for the tests performed for the abstract class that determines the execution

order for the creation of the reports, MetricsReportEngine, and its subclasses

GraphMetricsReport and VertexMetricsReport, we used mocking as well as

spying techniques. Spying is a functionality provided by the Mockito

framework and allows us to call all the normal methods of an object while still

tracking every interaction. The tests for the subclasses examined the

initializations and the non – void methods. For testing the creation of objects

that generate graph and vertex metrics reports we used spies that let us

monitor the calculation of the metrics.

Apart from the tests designed for the new classes, we also assessed the

behavior of the DiachronicGraph class which was the subject to our most

55

alterations. The results of the testing process confirmed that the object

construction and the operation of the methods involved are the expected ones.

Finally, except for the JUnit tests, we performed black – box testing for all the

parts that we modified and were responsible for the creation of the metrics

reports. More precisely, we compared the files that ParmenidianTruth

exported prior to our modifications with the ones created after our

modifications. In all cases, each of them concerning different dataset, there

was no difference between the corresponding files.

3.5 Final Architecture and Design

3.5.1 Package Diagram
This section includes the final high – level architecture of ParmenidianTruth

via the package diagram along with the corresponding dependencies,

depicted in Figure 3.24.

Figure 3.24 Updated Package Diagram of ParmenidianTruth

56

3.5.2 Class Diagrams
The following class diagrams present the new structure of each package of

ParmenidianTruth. The parmenidianEnumerations and externalTools packages

are omitted due to the fact that they were not altered during the refactoring

process and so their internal structure remained identical to the previous one.

Figure 3.25 depicts the class diagram of the gui package.

Figure 3.25 Updated Class Diagram of the Gui Package

57

Figure 3.26 shows the class diagram of the core package.

Figure 3.26 Updated Class Diagram of the Core Package

58

Figure 3.27 presents the class diagram of the dataImport package.

Figure 3.27 Updated Class Diagram of the DataImport Package

Figure 3.28 shows the class diagram of the export package.

Figure 3.28 Updated Class Diagram of the Export Package

59

Figure 3.29 depicts the class diagram of the model package.

Figure 3.29 Updated Class Diagram of the Model Package

60

3.6 Evaluation

In this section, we attempt to evaluate the software quality of

ParmenidianTruth, after the refactoring process, using various metrics. This

evaluation provides an overview of the enhancements that refactoring actions

achieved in design level by comparing the values of the metrics before and

after the refactoring procedure.

3.6.1 Abstractness – Instability Graph
In this step, we were interested in identifying how our modifications affected

the packages of the tool. To this end, we used the instability and the

abstractness metrics [Mart00] with the former metric used to reveal the effort

required to make changes in one package and the latter representing the

degree of the abstractness within each package. The instability metric assesses

the degree of the violation of Stable Dependencies Principle (SDP), which

defines as unstable a package that has many dependencies upon other

packages. The violation of this principle results in creating a system that is not

flexible to changes, since minor changes in one package can affect many

others that depend upon it. The abstractness metric evaluates the abidance to

Stable Abstractions Principle (SAP), which determines as stable a package that

consists of many abstract classes and interfaces.

Terminology. The instability metric is given by the following equation

𝐼 =
𝐶𝑒

𝐶𝑎 + 𝐶𝑒

where I is the instability of the package, Ce the number of outgoing edges to

packages upon which the package depends and Ca the number of incoming

edges from packages that depend upon it. If I = 0, the corresponding package

is independent and thus is considered as a stable package, whereas a package

with I = 1 means that there are no any other packages that depend upon it and

so the package is considered to be unstable since it only depends on other

packages.

The abstractness metric is expressed as follows

𝐴 =
𝑁𝑎

𝑁𝑐

where A is the abstractness of the package, Na the number of the abstract

classes and the interfaces included in the package and Nc the number of its

classes. If A = 0, the package consists exclusively of concrete classes and the

other packages that depend upon this package are prone to changes applied

61

to each class of the package. On the other hand, if A = 1 the package comprises

just a contract, a case which should be avoided due to the fact that a package

is supposed to contain a set of modules that depend upon each other aiming

at providing a single functionality.

At this point, we should mention that for the evaluation of the refactoring

process we exploited Structure Analysis for Java (STAN) [Buga07], which is a

tool that offers a set of code quality metrics.

Figures 3.30 and 3.31 depict these metrics for ParmenidianTruth before and

after our refactoring actions. The horizontal axis represents the abstractness of

the packages and the vertical axis their instability.

Figure 3.30 Abstractness-Instability Graph Before Refactoring Process

core

export externalTools

gui

model

model.Loader

parmenidianEnum
erations

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

In
st

ab
ili

ty

Abstractness

PT before

Main Sequence

62

Figure 3.31 Abstractness-Instability Graph After Refactoring Process

It is worth mentioning that Figure 3.30 reveals the total absence of

abstractions for the initial design of ParmenidianTruth tool, eliminating any

possibility for extension, since it is difficult to predict the effects each

modification in one package would create in the other ones. On the other

hand, it is obvious in Figure 3.31 that the refactoring process increased the

potentials for introducing new functionalities in ParmenidianTruth software

without having to alter its subsystems to a large extent. This is feasible due to

the addition of abstractions in almost all packages increasing their

abstractness, combined with the reduction of the dependencies from concrete

classes which decreases their instability.

3.6.2 Class Level Metrics
In a second approach concerning the improvements that our refactoring

actions achieved in ParmenidianTruth tool, we assessed the quality of the

classes of each package by using four metrics. Furthermore, we utilized the

number of methods, the number of fields, the Coupling Between Objects (CBO) and

the Lack of COhesion of Methods (LCOM).

core

export

externalTools

gui

model

dataImport

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

In
st

ab
ili

ty

Abstractness

PT after

Main Sequence

63

Terminology. In [ChKe92], the CBO for a class is defined as the number of

couples with other classes. In other words, an object is coupled to another one

when it uses methods or instance variables of the other. The more coupled an

object, the more sensitive to changes made in the parts that depends upon.

As for LCOM, we can define it as follows [ChKe92]:

Let C1 is a class with n methods M1, M2, …, Mn and {𝐴𝑖} the set of class’s

attributes used by method Mi with 1 ≤ 𝑖 ≤ 𝑛. Let 𝑃 = {(𝑀𝑖, 𝑀𝑗) | 𝐴𝑖 ∩ 𝐴𝑗 = ∅}

the number of pairs of methods that do not share attributes and 𝑄 =

 {(𝑀𝑖, 𝑀𝑗) | 𝐴𝑖 ∩ 𝐴𝑗 ≠ ∅} the number of pairs of methods that share at least one

attribute. LCOM is defined as

𝐿𝐶𝑂𝑀 = {
𝑃 − 𝑄, 𝑖𝑓 𝑃 − 𝑄 ≥ 0
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

This metric gives us a notion of the degree of similarity of methods within a

class, which means that the lower the value of this metric, the more cohesive

the corresponding class.

The next charts represent the distribution of classes of each package with

respect to the previous mentioned metrics. We present these metrics only for

packages that underwent a set of changes during the refactoring process. This

is the reason we excluded from this evaluation the gui, the externalTools, the

fileFilter and the parmenidianEnumerations packages.

Figures 3.32, 3.33, 3.34 and 3.35 show the distribution of the classes of the core

package with respect to the four metrics before and after the refactoring

process. The black and gray colors denote ParmenidianTruth before and after

the refactoring, respectively. In Figure 3.32, the horizontal axis corresponds to

the number of methods in the core package and the vertical axis represents the

percentage of the classes.

64

Figure 3.32 Distribution of Classes wrt Number of Methods (range) in the

Core Package

From Figure 3.32 it is obvious that there is an elimination of the classes with

more than 20 methods and a considerable increase in the percentage of classes

that encompass from 10 to 15 methods.

In Figure 3.33, the distribution of classes with respect to the number of fields

is depicted. The x – axis presents the number of fields in the core package and

the y – axis the percentage of classes that include the corresponding number

of fields.

33,33% 33,33% 33,33%

25,00%

75,00%

0%

10%

20%

30%

40%

50%

60%

70%

80%

#methods<=5 10<#methods<=15 20<#methods<=25

P
ct

 o
f

cl
as

se
s

Number of methods

PT before

PT after

Avg #methods = 13.33
Avg #methods = 11.00

65

Figure 3.33 Distribution of Classes wrt Number of Fields (range) in the Core

Package

As far as the number of fields is concerned, the refactoring process led to a

balanced distribution between the modules that do not have any fields and

these are the interfaces included in the core package and the remaining

concrete classes.

Figure 3.34 contains the distribution of classes with respect to the Coupling

Between Objects metric. The horizontal axis represents the values of the CBO

metric and the vertical one the percentage of the classes in the core package.

The results for the Coupling Between Objects metric reveal a substantial

reduction in the number of classes having dependencies in the range from 1 to

5 classes and the equally distribution of the percentage reduction in classes

that do not have any couplings and those that depend from 6 to 10 classes.

33,33%

66,67%

50,00% 50,00%

0%

10%

20%

30%

40%

50%

60%

70%

80%

#fields=0 0<#fields<=5

P
ct

 o
f

cl
as

se
s

Number of fields

PT before

PT after

Avg #fields = 1
Avg #fields = 2.5

66

Figure 3.34 Distribution of Classes wrt CBO (range) in the Core Package

Figure 3.35 shows the spread of the classes over the values of the Lack of

Cohesion metric. The x and y – axes correspond to the values of LCOM metric

and the percentage of classes, respectively.

Figure 3.35 Distribution of Classes wrt LCOM (range) in the Core Package

We should mention that the Lack of Cohesion in the core package was

completely removed in the range from 6 to 10 and increased nearly by 10% for

the classes that are tightly cohesive.

100,00%

25,00%

50,00%

25,00%

0%

20%

40%

60%

80%

100%

120%

CBO=0 0<CBO<=5 5<CBO<=10

P
ct

 o
f

cl
as

se
s

CBO

PT before

PT after

Avg CBO = 3.67
Avg CBO = 2.75

66,67%

33,33%

75,00%

25,00%

0%

10%

20%

30%

40%

50%

60%

70%

80%

LCOM=0 0<LCOM<=5 5<LCOM<=10

P
ct

 o
f

cl
as

se
s

LCOM

PT before

PT after

Avg LCOM= 2
Avg LCOM= 0.25

67

Figures 3.36, 3.37, 3.38 and 3.39 present the distribution of the classes of the

export package for the four metrics, before and after the refactoring procedure.

Figure 3.36 depicts the distribution of the classes with respect to the numbers

of methods in the export package. The horizontal axis represents the number

of methods and the vertical one the percentage of the classes.

Figure 3.36 Distribution of Classes wrt Number of Methods (range) in the

Export Package

Figure 3.37 shows how classes are distributed with reference to the number of

fields in the export package. The x and y – axes correspond to the number of

fields and the percentage of classes, respectively.

Figure 3.37 Distribution of Classes wrt Number of Fields (range) in the Export

Package

85,71%

14,29%

83,33%

16,67%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

#methods<=5 5<#methods<=10

P
ct

 o
f

cl
as

se
s

Number of methods

PT before

PT after

Avg #methods = 3.43
Avg #methods = 3.83

57,14%

42,86%

66,67%

33,33%

0%

10%

20%

30%

40%

50%

60%

70%

80%

#fields=0 0<#fields<=5

P
ct

 o
f

cl
as

se
s

Number of fields

PT before

PT after

Avg #fields = 1.71
Avg #fields = 1.50

68

Figure 3.38 shows the distribution of the classes with regard to the CBO

metric in the export package. The horizontal axis includes the values of the

CBO metric and the vertical one the number of classes expressed with

reference to the total number of classes.

Figure 3.38 Distribution of Classes wrt CBO (range) in the Export Package

Figure 3.39 depicts the distribution of the classes with respect to the LCOM

metric in the export package. The x and y – axes represent the values of the

LCOM metric and the percentage of the classes, respectively.

Figure 3.39 Distribution of Classes wrt LCOM (range) in the Export Package

100,00%

20,00%

80,00%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

CBO=0 0<CBO<=5

P
ct

 o
f

cl
as

se
s

CBO

PT before

PT after

Avg CBO = 1.33
Avg CBO = 1.00

14,29%

71,42%

14,29%
16,67%

66,66%

16,67%

0%

10%

20%

30%

40%

50%

60%

70%

80%

LCOM=0 0<LCOM<=5 5<LCOM<=10

P
ct

 o
f

cl
as

se
s

LCOM

PT before

PT after

Avg LCOM= 2.29
Avg LCOM= 2.83

69

To summarize the results for the export package, there were some minor

fluctuations in the number of methods, the number of fields and the values of

LCOM and a 20% reduction in the CBO metric in the range from 1 to 5.

In Figures 3.40, 3.41, 3.42 and 3.43 the number of classes with regard to the

metrics for the model package is shown.

Figure 3.40 shows the distribution of the classes with respect to the number of

methods in the model package. The horizontal axis corresponds to the number

of methods and the vertical axis represents the relative number of the classes.

Figure 3.40 Distribution of Classes wrt Number of Methods (range) in the

Model Package

In Figure 3.41, the distribution of the classes with reference to the number of

fields in the model package is presented. The x and y – axes denote the number

of fields and the percentage of the classes, respectively.

6
1

,5
4

%

7
,6

9
%

7
,6

9
%

 1
5

,3
9

%

7
,6

9
%

6
3

,6
4

%

9
,0

9
%

4
,5

5
%

9
,0

9
%

9
,0

9
%

4
,5

5
%

0%

10%

20%

30%

40%

50%

60%

70%

P
ct

 o
f

cl
as

se
s

Number of methods

PT before

PT after

Avg #methods = 9.92
Avg #methods = 8.23

70

Figure 3.41 Distribution of Classes wrt Number of Fields (range) in the Model

Package

Figure 3.42 shows how the classes are divided with respect to the CBO metric

in the model package. The horizontal axis includes the values of the CBO

metric and the vertical one the relative number of the classes.

Figure 3.42 Distribution of Classes wrt CBO (range) in the Model Package

3
8

,4
6

%

3
8

,4
6

%

1
5

,3
8

%

7
,6

9
%

5
4

,5
5

%

2
2

,7
3

%

1
3

,6
4

%

9
,0

9
%

0%

10%

20%

30%

40%

50%

60%

#fields=0 0<#fields<=5 5<#fields<=10 10<#fields<=15

P
ct

 o
f

cl
as

se
s

Number of fields

PT before

PT after

Avg #fields = 3.23
Avg #fields = 2.64

85,71%

14,29%

81,25%

1
2

,5
0

%

6
,2

5
%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

CBO<=5 5<CBO<=10 10<CBO<=15

P
ct

 o
f

cl
as

se
s

CBO

PT before

PT after

Avg CBO = 4.71
Avg CBO = 3.69

71

In Figure 3.43, the distribution of the classes with regard to the LCOM metric

in the model package is presented. The x and y – axes represent the values of

the LCOM metric and the percentage of the classes, respectively.

Figure 3.43 Distribution of Classes wrt LCOM (range) in the Model Package

From the previous figures, we can claim that we managed to reduce the

number of classes that included more than 20 methods and increase the

number of modules without fields by introducing interfaces. However, there

appears a small increase in the number of classes with CBO greater than 10

and a significant growth in the number of classes with LCOM in the range of

5 to 10.

The Figures 3.44, 3.45, 3.46 and 3.47 depict the distribution of the classes of the

dataImport package concerning the four metrics.

In Figure 3.44, the division of the classes with reference to the number of the

methods in the dataImport package is shown. The x – axis correspond to the

number of the methods and the y – axis to the percentage of the classes.

30,77%

46,15%

7,69%

15,38%

31,82%

40,91%

18,18%

9,09%

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

50%

LCOM=0 0<LCOM<=5 5<LCOM<=10 LCOM>25

P
ct

 o
f

cl
as

se
s

LCOM

PT before

PT after

Avg LCOM= 19.69
Avg LCOM= 17.64

72

Figure 3.44 Distribution of Classes wrt Number of Methods (range) in the

DataImport Package

Figure 3.45 depicts the distribution of the classes with respect to the number

of the fields in the dataImport package. The horizontal axis represents the

number of the fields and the vertical one the relative number of the classes.

Figure 3.45 Distribution of Classes wrt Number of Fields (range) in the

DataImport Package

76,92%

23,08%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

#methods<=5 5<#methods<=10

P
ct

 o
f

cl
as

se
s

Number of methods

PT after

Avg #methods = 3.46

76,92%

23,08%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

#fields=0 0<#fields<=5

P
ct

 o
f

cl
as

se
s

Number of fields

PT after

Avg #fields = 0.77

73

In Figure 3.46, the distribution of the classes with respect to the CBO metric in

the dataImport package is presented. The x and y – axes correspond to the

values of the CBO metric and the percentage of the classes, respectively.

Figure 3.46 Distribution of Classes wrt CBO (range) in the DataImport

Package

Figure 3.47 depicts the distribution of the classes with regard to the LCOM

metric in the dataImport package. The horizontal axis represents the values of

the LCOM metric and the vertical one the relative number of the classes.

Figure 3.47 Distribution of Classes wrt LCOM (range) in the DataImport

Package

11,11%

77,78%

11,11%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

CBO=0 0<CBO<=5 10<CBO<=15

P
ct

 o
f

cl
as

se
s

CBO

PT after

Avg CBO = 3.44

30,77%

61,54%

7,69%

0%

10%

20%

30%

40%

50%

60%

70%

LCOM=0 0<LCOM<=5 5<LCOM<=10

P
ct

 o
f

cl
as

se
s

LCOM

PT after

Avg LCOM= 2.46

74

To synopsize the improvements achieved in the modules of the Parmenidian

Truth tool through the refactoring process, we give a brief description of the

enhancements in the following figure.

Subsystem # methods # fields CBO LCOM

core 30% less

classes with

more than 20

methods

 40% more

classes with

10 to 15

methods

 Balanced

distribution

between

classes with

no fields and

those with

less than 5

fields

 50% less

classes with

CBO in the

range 1 to 5

 30% less

classes with

LCOM in the

range 6 to 10

 10% more

tightly

cohesive

classes

export Minor

changes wrt

the number

of methods

 9% less

classes with

at least 1 field

 20% less

classes with

CBO in the

range 1 to 5

 Small

changes wrt

the LCOM

metric

model Nearly 10%

less classes

with more

than 20

methods

 16% more

modules with

no fields

(interfaces)

 A small

increase (6%)

in the

number of

classes with

CBO in the

range 11 to 15

 10% more

classes with

LCOM in the

range 6 to 10

dataImport 77% of the

modules with

less than 5

methods

 77% of the

modules with

no fields

 78% of the

modules

with CBO in

the range 1 to

5

 62% of the

modules

with LCOM

in the range

1 to 5

Figure 3.48 Summary of the Improvements of the Refactoring Process

3.7 Summary of Refactoring Results

Concluding this chapter, we summarize our actions and results as follows:

 We have eliminated violations of the Single – Responsibility Principle

by extracting methods from classes that include more than one

responsibility.

75

 We have increased Parmenidian Truth’s expandability and immunity

to modifications by introducing a set of APIs.

 We have eliminated duplicated code by utilizing the template method

design pattern.

 We have increased cohesion of methods by identifying misplaced

methods and assigning them in new classes.

 We have reduced the complexity of the code and facilitating its

evolvement by removing redundant components.

 We have complied with code conventions by identifying related

violations and making the required adjustments.

 We have verified the correctness of our modifications by creating a test

case for each of the modules we either modified or added.

76

CHAPTER 4.

TABLE TOPOLOGY AND EVOLUTION

4.1 Experimental Setup

4.2 Distribution of Tables over Degrees

4.3 Table Topological Categories

4.4 Relationship between Tables’ Topological Categories and their Properties

4.5 Summary of Findings

As already discussed in previous sections, we are equipped with both the

model and the tool support to treat database schemata as graphs, in which

nodes and edges represent the tables of the dataset and the foreign key

constraints between tables, respectively. Given that, we can exploit the

information on the position of a table in the graph to see whether such

information can be correlated to the evolution activity of the table. We use the

term “table topology” in its etymological sense, much like as it is also used

when referring to network topology, meaning the pattern of edges

surrounding nodes.

In this chapter, our main objective is to study the topology of the tables in 5

open-source datasets and identify possible patterns concerning the evolution

of the tables with reference to the topological categories they belong to. In the

first section, we introduce the datasets used in our study and describe the

77

preprocessing actions taken to eliminate data that would not help us arrive at

valid conclusions. The second section presents the distribution of the tables

over their in-, out- and total degrees, information exploited in the following

section to define the topological categories. The third section includes, apart

from the determination of the topological categories, a set of classification

rules applied to classify tables in these categories. The fourth section examines

the evolution of tables with respect to their topological categories and other

properties including tables’ duration, survival potential, version of birth,

update activity and size change. Finally, in the last section we summarize the

main conclusions derived from our study and evaluate the extent to which

our initial research questions are addressed.

4.1 Experimental Setup

In this section we present the experimental setup of our study. First, we start

with the main features of the 6 open-source datasets utilized in our study.

Next, we report on the preprocessing actions that we have taken in order to

exclude information that is considered to be useless in the context of this

research. At this point, it is worth mentioning that all the graph–related

metrics we use to study the schema and its evolution are obtained via the

Parmenidian Truth tool whose main functionalities were described in more

detail in Chapter 3.

4.1.1 Datasets

The datasets concerning this study support projects from different domains

and have a common feature, which is the availability of their source files that

allows us to conduct a research into the evolution of their structure. Figure 4.1

synopsizes for each dataset the information about the number of the tables

and the foreign keys at the first version, the last version and the Diachronic

Graph. The statistics concerning the Diachronic Graph express the total

number of unique tables or foreign keys that exist over the period that

database schema’s evolution is examined.

Atlas Trigger is the dataset that supports the ATLAS experiment which is one

of the four experiments conducted at the Large Hadron Collider in the

facilities of CERN in Geneva, Switzerland. The schema history of Atlas

Trigger consists of 85 versions including 88 tables and 88 foreign key

constraints. It started its life with 56 tables and 61 foreign keys and ended up

78

with 73 tables and 63 foreign keys. The growth of tables as well as that of

foreign keys between the first and the last version of its life is positive,

reaching the values of 30% and 3%, respectively.

BioSQL is a generic relational model for storing sequences, features and

ontologies derived from different sources aiming at facilitating the

interoperability of projects implemented by the Open Bioinformatics

Foundation (OBF). Our study concerns 47 versions that include 45 tables and

79 foreign keys. The first version includes 21 tables and 17 foreign keys and

the last one 28 tables and 43 foreign keys resulting in a growth of 33% and

153% for tables and foreign keys, respectively.

The Cern Advanced STORage (CASTOR) manager is the next database whose

schema evolution is being examined in the current study and its’ main goal is

to store and provide remote access to physics data. Its’ 194 versions comprise

91 tables and 13 foreign key constraints, with the corresponding numbers in

the first and last version to be 62, 6 and 74, 10 respectively. The growth in the

number of tables and foreign keys is 19% and 67% in the order given.

The Enabling Grids for E-sciencE (EGEE) project provided a world-wide

infrastructure for e-science, allowing the exploitation of its computer power

and the data storage capacity by numerous research groups around the

world. For the period examined, this dataset consists of 17 versions including

12 tables and 6 foreign keys, starts its life with 6 tables and 3 foreign keys and

eventually finishes up with 10 tables and 4 foreign keys. The respective

growth in the number of tables is 67% and in the number of foreign key

constraints 33%.

SlashCode is a content management system that initially used to support

Slashdot, a social news website. Its’ 399 versions encompass 126 tables and 47

foreign keys, with the first version comprising 42 tables but no foreign keys as

it is also the case for the last version where the number of tables reaches the

value of 87. The corresponding growth rate of the tables between the first and

the final version is 107%.

Zabbix is an open – source monitoring software for networks, operating

systems and applications, which comprises 160 versions with 58 tables and 38

foreign key constraints. The originating version of Zabbix includes 15 tables

and 10 foreign keys and the last one 48 tables and 2 foreign keys resulting in a

growth rate of 220% for tables and -80% for foreign keys.

It is noteworthy that in all the datasets the growth rate of tables is positive, a

trend that also holds for foreign keys, with the exceptions of Zabbix and

79

SlashCode, where in the former there appears a significant decline in the

number of foreign keys and in the latter a total absence of foreign keys in the

first and the last versions. Figure 4.2 depicts the growth rate of tables and

foreign keys for each of the aforementioned datasets.

Figure 4.1 Statistics for the datasets used in our study, [VKZZ17]

Figure 4.2 Growth Rate of Tables and Foreign Keys

4.1.2 Data Preprocessing

In this subsection we discuss the interventions we performed to the collected

data, along with decisions taken to aid the extraction of valid conclusions. As

already explained in [VKZZ17], two of the datasets, SlashCode and Zabbix,

demonstrate the explicit removals of foreign keys from the schema, with the

former also introducing foreign keys late in the schema history. We have

Datasets Versions
Tables

@start

Tables

@end

Tables

@DG

Tables

Growth

FKs

@start
FKs @end FKs @DG

FKs

Growth

Atlas 85 56 73 88 30,4% 61 63 88 3,3%

BioSQL 47 21 28 45 33,3% 17 43 79 152,9%

Castor 194 62 74 91 19,4% 6 10 13 66,7%

Egee 17 6 10 12 66,7% 3 4 6 33,3%

Slashcode 399 42 87 126 107,1% 0 0 47 0,0%

Zabbix 160 15 48 58 220,0% 10 2 38 -80,0%

3
0

,4
%

3
3

,3
%

1
9

,4
%

 6
6

,7
%

 1
0

7
,1

%

220,0%

3
,3

%

1
5

2
,9

%

6
6

,7
%

3
3

,3
%

-80,0%

Table
Growth
Rate
FK Growth
Rate

80

decided to omit the periods where foreign keys were massively absent from

the schema, since no table could possibly have any topological properties

during these periods. Figure 4.3 depicts the evolution of foreign keys in these

datasets.

Figure 4.3 Evolution of Foreign Keys in SlashCode and Zabbix

In case of the SlashCode dataset depicted in the upper part of Figure 4.3, we

distinguish the first 74 versions with no foreign keys as well as the interval

0

10

20

30

40

50

60

70

80

90

1 70 139 208 277 346

N
u

m
b

e
r

o
f

fo
re

ig
n

 k
e

y
s

Version id

Evolution of Foreign Keys (SlashCode)

0

10

20

30

40

50

60

1 20 39 58 77 96 115 134 153

N
u

m
b

e
r

o
f

fo
re

ig
n

 k
e

y
s

Version id

Evolution of Foreign Keys (Zabbix)

81

after the version 260 after which we observe a continuing decrease in the

number of foreign keys until the last version examined. As a result, we opted

for limiting our study in the interval bounded by versions 74 and 260.

In a similar way, we examined the evolution of foreign keys in the Zabbix

dataset and identified a steep decline in the number of foreign keys after

version 150. Thus, we constrain our research in the period defined by versions

1 and 150.

4.2 Distribution of Tables over Degrees

As already mentioned in the introduction of this chapter, our main goal is to

study the evolution of the tables with respect to the topological categories

they belong to. Thus, prior to specifying the categories, it is vital to

understand and obtain a comprehensive overview of the distribution of tables

over the total degrees, in-degrees and out-degrees at the Diachronic Graph.

Having done that, we will be able to assign the tables in the corresponding

categories and study their evolution throughout their existence in the

respective database schemata.

Figure 4.4 presents the distribution of the tables over their total degrees at the

Diachronic Graph for the 6 studied datasets. The graphical part provides us

with some interesting insights about the breakdown of tables over degrees

summarized as follows:

 In 3 out of the 6 datasets, we encounter a substantial majority of zero-

degree tables that in all cases surpasses the half of the respective total

number of tables.

 In 4 out of the 6 datasets, there appears a decrease in the number of

tables as the degree increases. This pattern, which is described in

[VKZZ19] as a monotone decrease pattern, is the case for all the datasets

with the exceptions of Atlas and BioSQL.

 Atlas and BioSQL present a different behavior, with the former

following the so-called battleship pattern [VKZZ19], which starts with an

increase in the number of including tables of degree from 0 to 2

followed by a significant decrease in the percentages of tables of higher

degrees. On the contrary, the latter dataset demonstrates a “balanced”

distribution of its tables among the different degrees with the majority

of tables clustered in the degrees of 1 and 2.

82

Figure 4.4 Distribution of Tables over Total Degrees

The distribution of the tables over their total degrees at the Diachronic Graph

offered us the first useful information which is the strong presence of tables

that have no references to other tables throughout their entire lives.

Datasets 0 1 2 3 >= 4 Total

Atlas 11 25 35 7 10 88

BioSQL 5 15 15 6 4 45

Castor 75 8 6 2 0 91

Egee 6 2 2 2 0 12

SlashCode 90 21 7 1 7 126

Zabbix 23 15 13 2 5 58

Degree @DG

13
%

1
1

%

8
2

%

50
%

7
1

%

40
%

2
8

% 33
%

9%

17
%

17
%

26
%

4
0

%

33
%

7
%

17
%

6%

2
2

%

8%

13
%

2%

1
7

%

1%

3
%

1
1

%

9%

6%

9
%

Atlas

(88 tables)
BioSQL

(45 tables)
Castor

(91 tables)
Egee

(12 tables)
SlashCode

(126 tables)
Zabbix

(58 tables)

0

1

2

3

>= 4

83

Our next step concerns a more in-depth analysis of tables’ topology which

will facilitate the process of defining the different table categories based on

their in- and out-degrees at the Diachronic Graph. Figure 4.5 depicts the

distribution of the tables of the datasets studied over their in-degrees.

The most intriguing observations concerning the breakdown of tables per in-

degree at the Diachronic Graph are outlined in the following list:

 The tables with zero in-degree are the dominating ones, accounting for

at least the 55% of the overall table population. Furthermore, in all the

datasets, the number of tables in the “zero in-degree” bucket is an

absolute majority, and frequently, a very large one.

 The trend for decreasing numbers of tables as the in-degree increases is

also present in this breakdown and it holds in all the datasets. We

should clarify that the increasing percentages of tables of in-degree

higher than three are due to the aggregation nature of this category and

this is the reason why the decrease in the number of tables is not

shown as monotone in Figure 4.5.

 The tables with in-degree greater than 2 constitute a small minority

that corresponds to values less than 4% in the datasets Castor, Egee

and SlashCode. Compared to those datasets, Atlas, BioSQL and Zabbix

encompass more tables of high in-degree, though the respective

percentages do not exceed the value of 15%.

In a nutshell, we notice that few tables ever get an incoming edge and the

probability of having more incoming edges monotonically decreases with the

in-degree.

84

Figure 4.5 Distribution of Tables over In-Degrees

Figure 4.6 shows the distribution of the tables of the 6 datasets with reference

to their out-degrees at the Diachronic Graph. As far as this distribution is

concerned, we can make the following comments:

 Apart from Atlas and BioSQL, all the other datasets present a strong

tendency towards the zero out-degree, a behavior similar to that

encountered in the in-degree distribution but with a more moderate

intensity here.

 The declining numbers of tables while out-degree increases are more

obvious in the last three datasets, in contrast to the first two which

concentrate a significant number of tables in the out-degrees of value 1

Datasets 0 1 2 3 >= 4 Total

Atlas 48 18 11 4 7 88

BioSQL 30 6 2 1 6 45

Castor 81 8 1 1 0 91

Egee 8 2 2 0 0 12

SlashCode 114 4 3 0 5 126

Zabbix 42 7 4 2 3 58

In Degree @DG

55
%

6
7

%

89
%

6
7

%

9
0

%

72
%

2
0

%

13
%

9%

1
7

%

3
%

12
%

1
3

%

4%

1
%

1
7

%

2%

7
%

5% 2% 1
% 3
%8%

1
3

%

4
% 5%

Atlas
(88 tables)

BioSQL
(45 tables)

Castor
(91 tables)

Egee
(12 tables)

SlashCode
(126 tables)

Zabbix
(58 tables)

0

1

2

3

>= 4

85

and 2. Especially, the tables of out-degree 2 account for the one third of

the total table population in both datasets. After manual inspection, we

attribute this phenomenon to the existence of several N:M

relationships, modeled via tables of out-degree exactly equal to 2.

 As for the tables of out-degree higher than 2, they represent a small

population in all the datasets excluding that of BioSQL. Compared to

tables of in-degree higher than 2, tables of high out-degree are less and

this can be attributed to the presence of lookup tables which attract a

high number of incoming edges from other tables.

Figure 4.6 Distribution of Tables over Out-Degrees

Overall, we observe that in 4 of the 6 datasets the number of tables with out-

degree in the range from 1 to 2 is higher compared to the respective number

in the distribution over in-degrees. We should also stress the sparse

population of tables with out-degree higher than 2, with the exception of

Datasets 0 1 2 3 >= 4 Total

Atlas 43 14 28 0 3 88

BioSQL 7 12 14 9 3 45

Castor 83 3 5 0 0 91

Egee 7 4 1 0 0 12

SlashCode 95 20 8 2 1 126

Zabbix 32 15 10 1 0 58

Out Degree @DG

49
%

1
6

%

91
%

5
8

%

75
%

5
5

%

16
%

2
7

%

3
%

3
3

%

16
%

26
%32

%

31
%

5%

8% 6
%

1
7

%2
0

%

2% 2
%3
% 7

%

1
%

Atlas
(88 tables)

BioSQL
(45 tables)

Castor
(91 tables)

Egee
(12 tables)

SlashCode
(126 tables)

Zabbix
(58 tables)

0

1

2

3

>= 4

86

BioSQL, in which high out-degree tables are more than those with high in-

degree.

4.3 Table Topological Categories

After having acquired a general overview of how tables are spread with

respect to their in- , out- and total degrees at the Diachronic Graph, we now

shift our focus to the combination of in- and out- degrees in order to define

the distinctive categories utilized for studying tables’ evolution with reference

to the topological categories.

4.3.1 Definition of Topological Categories

In this subsection, we present the distinctive topological categories of tables

based on their references to and from other tables. Figure 4.7 depicts the

distribution of tables over the combination of their in- and out-degrees at the

Diachronic Graph for the 6 datasets.

Figure 4.7 Breakdown of tables wrt In- and Out-Degrees at the Diachronic

Graph

In-Degree @DG Out-Degree @ DG Atlas BioSQL Castor Egee SlashCode Zabbix

0 0 11 2 75 6 90 23

≠0 0 32 5 8 1 5 9

0 ≠0 37 28 6 2 24 19

≠0 ≠0 8 10 2 3 7 7

88 45 91 12 126 58Total

13%

4%

82%

50%

71%

40%
36%

11%
9% 8%

4%

16%

42%

62%

7%

17%
19%

33%

9%

22%

2%

25%

6%

12%

Atlas
(88 tables)

BioSQL
(45 tables)

Castor
(91 tables)

Egee
(12 tables)

SlashCode
(126 tables)

Zabbix
(58 tables)

In Deg: 0, Out Deg:0

In Deg: >0, Out Deg: 0

In Deg:0, Out Deg:>0

In Deg: >0, Out Deg: >0

87

In the sequel, we introduce the different topological categories, which are

determined on the basis of the topology of the Diachronic Graph.

The most obvious information portrayed in Figure 4.7 is the strong presence

of tables with no inciting edges in 4 of the 6 datasets. Moreover, in two of

these datasets, namely Castor and SlashCode, zero degree tables constitute an

overwhelming majority. Given that our interest concerns the evolution of

tables with respect to the graph topology, we concluded that tables without

any references would not provide us with useful insights answering our

research questions. Due to this, we will frequently accompany the statistical

analyses with extra frequency tables where these tables, which from now on

we will call isolated, are omitted and the respective percentages are counted

over the set of tables with at least one inciting edge.

The next category consists of tables with no incoming references and at least

one outgoing foreign key. This category of tables, which includes populations

varying from 7% to 62%, is identified by the label source since the tables

contained have only references to other tables.

The third category includes tables with only incoming references, so we

distinct them with the label lookup. In the 6 datasets, there is a small group of

tables that lie in this category, not exceeding the value of 36%, but we

consider them to occupy a key role in a database’s schema as they carry

valuable information exploited by other tables, so it is worth studying their

evolution as a standalone group.

The last two categories contain tables that have both in- and out-degrees.

Although their population would not justify their division into two discrete

groups, we assumed that there might be divergence between the tables of the

two categories with respect to the nature of their role. The first of these two

categories includes tables with in- and out-degrees equal to 1 and we use the

term chain link for the participating tables, due to the fact that they operate as

intermediate nodes in the topology of the Diachronic Graph. The second

category, which encompasses tables with total degree greater than 2 and with

both incoming and outgoing references, is defined with the term mini-hub

since the tables included are neither fountains nor sinks of the graph, and

thus, they are hub nodes in any possible path of the graph. Figure 4.8 presents

the distribution of the tables within these two categories.

The overall population of tables included in the last two categories ranges

between 2% and 25% of the population of their datasets, with each dataset not

containing more than 10 such tables. Figure 4.8 demonstrates that the mini-hub

category is the superior one in 5 of the 6 datasets, with the corresponding

88

populations ranging from 57% to 100% with respect to the total number of

tables included. Over the course of our study, and specifically in the phase of

assigning a single label to each table, we realized that the number of tables

included in the chain link category was too small and as a result they were

absorbed by the mini-hub class, forming a unified category identified by the

label internal.

Figure 4.8 Breakdown of Tables over the Chain Link and Mini-Hub

Categories

Figure 4.9 illustrates how the categories, previously described, are determined

based on the topology of the Diachronic Graph.

10%

50%

33%

14%

43%

100%

90%

50%

67%

86%

57%

Atlas
(8 tables)

BioSQL
(10 tables)

Castor
(2 tables)

Egee
(3 tables)

SlashCode
(7 tables)

Zabbix
(7 tables)

CHAIN LINK

MINI-HUB

89

Name Figure Description

ISOLATED Tables without edges

SOURCE Tables with only outgoing edges

LOOKUP

Tables having only incoming edges

CHAIN LINK
Tables with exactly 1 incoming and

exactly 1 outgoing edge

MINI-HUB
 Tables with total degree >2 and

both incoming and outgoing edges

Figure 4.9 Table Categories Based on the Topology of the Diachronic Graph

4.3.2 Rules for Table Classification

Having decided which the categories are, we are now ready to label the

tables. Given a graph of any version of a schema’s history, it is

straightforward to assign labels of topological categories to every table due to

the simplicity of the patterns. However, there exist tables that change label

throughout their history (a phenomenon that we call change-of-category) and

as a result we end up with the following categories of tables with respect to

their labels:

 Single label tables, which have a unique topological label throughout

their entire lives.

 Multi-label tables, which have more than one label during their

existence in the dataset.

Figure 4.10 presents the distribution of tables between the ones with a single

label and those with more than one label. Apart from Zabbix, in the rest of the

datasets the majority of tables have a single label in their lives.

90

Figure 4.10 Distribution of Tables over the Single and Multi-labels Categories

A problem that arises is that we would like to relate the labels of the tables to

their activity profile and their survival potential and a multi-labeling scheme

would not facilitate this attempt. To address this problem, we have manually

inspected the tables with change-of-category and decided to assign a single

label to each of them, since their number is so small that would not entail any

major loss of information. We have distilled the phenomena of label changes

for a table in the following list:

1. Changes that include an ephemeral transition to a different category

and the return to the former category.

2. Changes from the isolated category to a different category.

3. Changes soon after the table’s “birth”.

4. Changes leading to labels assigned for a short period in terms of the

number of versions.

5. Changes caused by the introduction or the removal of self-references to

the table.

Figure 4.11 demonstrates the breakdown of multi-label tables according to the

aforementioned enumeration of changes that induce label change. A subtle

point to clarify is that the reported frequencies concern occurrences of label

change and not of tables belonging to the respective category (i.e., a table can

experience more than one label changes due to more than one types of

changes). A second subtle point is that a single occurrence of a change may

belong to more than one categories of the enumeration (for example, a change

(a) from isolated to non-isolated, (b) soon after a table’s birth pertains to both

single

label
>1 label

Atlas 88 76 12

BioSQL 45 39 6

Castor 91 84 7

Egee 12 9 3

SlashCode 126 97 29

Zabbix 58 30 28

#Tables with…

Datasets

Total

#tables

91

these two types of changes). We resolve this issue by counting only the

occurrence in one of the two categories: the resolution of which category to

assign to, is done with decreasing order over the enumerated list of the above

enumeration (i.e., an occurrence is assigned to the first category to which it

pertains).

Figure 4.11 Occurrences of Label Changes per Type of Change

Having done all that, we discovered that the process of assigning a category

label to multi-label tables can be automated by passing the history of labels of

each table through a list of filters that either remove or ignore parts of the

history with labels that would confuse the understanding of the true nature of

the tables. The input in this automated process is the list of labels of a table’s

history, one label per version that the table exists. The history is then passed

through the list of filters to remove the possibly bewildering parts and

produce as an output a single label for the table.

Figure 4.12 summarizes the rules that represent the list of filters utilized to

classify tables in the topological categories. We should clarify that this list of

filters defines the order according to which the rules are applied on the list of

labels of each table to produce a single label. If we had implemented the

automatic process of filtering, we would have ended up with identical labels

with those of the manual classification for the tables that abide by any of the

rules R0-R5, but we would have misclassified few tables that eventually fire

the rule R6.

At this point, we should define the terms First Known Version and Most

Frequent category which are included in Figure 4.12. The First Known Version

of a table refers to the first version that the table is present in the database’s

schema. The Most Frequent category for a table is the topological category with

the highest frequency in table’s life.

Datasets

Ephemeral

(DO-UNDO)

ISOLATED ->

new category

Soon after

birth

Short - lasting

labels

Self-

references Other

Atlas 6 0 0 1 0 7

BioSQL 0 1 0 3 5 0

Castor 2 6 0 3 0 0

Egee 0 1 1 2 0 1

SlashCode 20 3 1 0 0 5

Zabbix 0 4 2 3 0 4

Type of Change

92

Figure 4.13 shows the misclassification rate of the automatic labeling process,

in case the rule R6 was stricter allowing one instead of two categories. Except

for the Atlas, all the datasets have the minimum misclassification rate when

we use the most frequent category. Observe that in the case of labeling via the

most-frequent category, the range of misclassifications is between 0% and 3%, which

we deem really low. Although the misclassification rate in most datasets is not

high, in the rest of our deliberations, we adopt the labels derived from the manual

classification process, which provides a more accurate picture of tables’

topological categories, taking into consideration the special features of the

tables included.

Rule Description of Changes Specific Criteria Category Decision

R0 No category change - The respective

category

R1 Ephemeral category changes

(DO-UNDO)

Changes must be

successive

The first category

prior to the first

change

R2 Changing from ISOLATED to

another category

- The category after

the change

R3 Changing category soon after

the First Known Version (FKV)

The upper limit is

set to 10 versions

The category after

the change

R4 Changing to a category with

short duration

Duration should

not exceed 10

versions

The category prior to

the change

R5 Changing category due to the

presence of self-references

- The category prior to

the change

R6 Changes not abiding by any of

the previous rules

- The Most Frequent

category or the

category at the First

Known Version

(FKV)

Figure 4.12 Rules for Tables’ Categories Determination

93

Datasets #tables

Misclassified Tables (wrt to #tables)

Use Most Frequent

Category Use Category at FKV

Atlas 88 2% 0%

BioSQL 45 2% 2%

Castor 91 3% 7%

Egee 12 0% 17%

SlashCode 126 2% 5%

Zabbix 58 2% 16%

Figure 4.13 Misclassification Rate of Assigning Labels via the Automatic

Process

In the remainder of this chapter we examine how tables’ topological

categories are related to various measures of their evolutionary behavior, such

as their lives’ duration, their survival potential, their update activity etc.

4.4 Relationship between Tables’ Topological Categories and

their Properties

Having determined the categories in the previous section, we are now capable

of studying whether tables’ topological categories are related with various

measures of their evolutionary activity. Before that, we provide a general

overview of how tables are classified in the topological categories after the

classification process we performed in the six datasets.

Figure 4.14 depicts a heatmap with the breakdown of tables over the different

categories defined in the forgoing section. The colors of the cells are based on

their values creating a color scale that spans from white, soft red to intense

red with the first indicating the lowest values, the second corresponding to

values around the median and the last one highlighting the highest values.

The groups with the highest cardinality, which are presented with intense red

background color and white font, consist of isolated tables in 4 of the 6

94

datasets, in contrast to the two scientific datasets in which source tables form

the most populated class.

Figure 4.14 Breakdown of Tables over Topological Categories

Figure 4.15 depicts the distribution of the tables in the topological categories

with respect to the total number of the tables.

Figure 4.15 Distribution of Tables over Categories including Isolated Category

We complement the absolute breakdown of tables with a breakdown of tables

that have at least one inciting edge. Figure 4.16 shows how tables are spread

over the categories after having removed tables of the isolated class. We

highlight the maximum values with red color and bold style, the values that

exceed the average by 10% with red color and those that are equal or lower

than the average by 10% with blue color.

Atlas BioSQL Castor Egee SlashCode Zabbix

ISOLATED 11 2 75 6 35 22

SOURCE 38 29 6 2 22 20

LOOKUP 32 8 9 1 7 11

MINI-HUB 6 6 1 0 4 2

CHAIN LINK 1 0 0 3 0 1

Total 88 45 91 12 68 56

Total w/o

ISO
77 43 16 6 33 34

DatasetsTopological

Category

Atlas BioSQL Castor Egee SlashCode Zabbix

ISOLATED 13% 4% 82% 50% 51% 39%

SOURCE 43% 64% 7% 17% 32% 36%

LOOKUP 36% 18% 10% 8% 10% 20%

MINI-HUB 7% 13% 1% 0% 6% 4%

CHAIN LINK 1% 0% 0% 25% 0% 2%

Total 88 45 91 12 68 56

DatasetsTopological

Category

95

Figure 4.16 Distribution of Tables over Categories excluding Isolated

Category

The most interesting observations derived from the last figure can be

summarized as follows:

 In 4 of the 6 datasets, the source tables constitute an overwhelming

majority accounting for the 49% at least and 67% at most with respect

to the total number of the tables with at least one edge.

 There appears a decreasing tendency for dependence, since the last two

categories that represent complicated relationships include a small

number of tables. In accordance with this tendency we see that in all

datasets, except Egee, the lookup tables exceed the sum of mini-hub and

chain link tables.

 The chain link category contains a negligible portion of tables that do

not surpass the 3% of the total number of tables, except for the Egee

dataset in which this category encompasses the one half of the tables.

However, the small number of tables in the Egee dataset and the total

absence of tables of this type in three other datasets are deterrent

factors for preserving this class as an independent category. Thus, as

we previously mentioned, it would be wiser to incorporate them in the

mini-hub category forming a new category for which we will use the

label internal.

Having presented the breakdown of values for the different topological

categories of tables, we now move on to investigate whether the topological

categories of tables are related to their evolutionary behavior. In the sequel,

we will not include the Egee dataset in our study due to the small number of

its tables and our intuition that any statistical results provided for this dataset

would not offer a more adequate answer to the upcoming research questions.

Atlas BioSQL Castor Egee SlashCode Zabbix

SOURCE 49% 67% 38% 33% 67% 59%

LOOKUP 42% 19% 56% 17% 21% 32%

MINI-HUB 8% 14% 6% 0% 12% 6%

CHAIN LINK 1% 0% 0% 50% 0% 3%

Total 77 43 16 6 33 34

DatasetsTopological

Category

96

4.4.1 Relationship between Topological Categories and Duration

First, we study how table duration is related to the topological categories. The

research question that we attempt to address in this subsection can be stated

as follows:

Research Question: is there a relationship between the topological category of a table

and its duration?

The duration of a table represents the number of versions in which the table

exists in the dataset. We decided to use the categories of duration presented in

[VaZS15], where the authors define three different duration categories based

on the measure of the normalized duration.

Terminology. The normalized duration of a table is defined as the number of

versions that the table exists in the dataset over the total number of versions

of its dataset.

Figure 4.17 presents the bounds of the duration categories as they derived

from applying a k-means clustering based on the values of the normalized

duration. The limits provided by k-means in [VaZS15] are 0.33 and 0.77,

determining the following categories of tables:

i. Tables of short duration, which constitute the second most popular

category with respect to the total number of the tables of the six

datasets.

ii. Tables of medium duration.

iii. Tables of long duration, which account for more than half of the total

number of tables included.

Tables… Range #Tables

Percentages (wrt

to the total

#Tables)

Short Lived < 0.33 98 28%

Medium Lived 0.33-0.77 73 21%

Long Lived > 0.77 179 51%

Total 350 100%

Figure 4.17 Distribution of Tables per Normalized Duration Category

97

Figure 4.18 depicts how tables in each dataset are spread over the categories

of the normalized duration. We highlight with intense red color the dominant

category, which in 4 of the 6 datasets is that of the long lived tables. The

distribution of the tables over the duration categories among the different

datasets can be summarized as follows:

 Short lived tables constitute a population that ranges from 23% to 32%

of the total number of tables.

 Medium lived tables represent a population that varies from 14% to 28%

with respect to the total number of tables, with the exception of BioSQL

dataset in which tables with medium life duration represent the most

populated category. This differentiation is mainly attributed to a

significant schema restructuring at the middle of the database’s life.

 Long lived tables add up to a population that ranges from 40% to 59% of

the total number of tables, with the exception of BioSQL.

Figure 4.18 Distribution of Tables over the Normalized Duration Categories

Figure 4.19 illustrates the distribution of the tables with respect to the

combination of their topological and duration categories. In the upper part of

the figure the tables of the isolated category are included, while the lower part

ignores them and computes the respective percentages over the total number

SHORT

LIVED

MEDIUM

LIVED

LONG

LIVED

Total

#Tables

Atlas 32% 14% 55% 88

BioSQL 31% 38% 31% 45

Castor 24% 16% 59% 91

SlashCode 23% 19% 58% 69

Zabbix 32% 28% 40% 57

BREAKDOWN OF TABLES WRT NORMALIZED DURATION

(PERCENTAGES OVER TOTAL #TABLES)

NORMALIZED DURATION

CATEGORY

98

of the tables with at least one reference. The most interesting observations

derived from the data shown in Figure 4.19 are outlined as follows:

 The most populated category in three of the five datasets is that of the

source tables with medium or long durations.

 The least populated categories, in all datasets apart from BioSQL, are

those of the internal tables with short or medium life durations.

Figure 4.20 presents the distribution of the tables over the topological and

duration categories within each of the topological categories. We see that the

distributions of the source tables are in accordance with the aggregate ones in

three of the five datasets, except for the Castor and the SlashCode datasets. It

is also obvious that in all datasets lookup tables with long life duration exceed

the respective aggregate percentages. To put in a nutshell the most significant

commonalities among the datasets, we mention the following observations:

 The majority of lookup tables tend to live long lives in all the datasets.

 The long lived category is also the most popular in case of the source

tables in 4 out of the 5 datasets, with the exception of the BioSQL

dataset.

 The internal tables avoid lives of short or medium duration, except for

those of the BioSQL and the Zabbix datasets, even though they do not

form a population that exceeds the 10% of the total number of their

dataset’s tables. In case of BioSQL, we attribute the different behavior

to the major schema restructuring occurred at the middle of the

database’s life while the short lives of the internal tables of Zabbix are

due to occasional deletions.

 In contrast to the previous topological categories, the isolated tables

incline to lives of short and medium duration, apart from those of the

Castor dataset that demonstrate a clear proclivity for lives of long

duration.

Having quantified the number of tables per topological and duration

categories, we performed the Chi-square and Fisher tests to assert whether

tables’ behavior concerning their normalized duration is differentiated due to

their topological categories. The contingency table we used consists of four

rows, each representing a topological category, and three columns that

correspond to the three duration categories (short, medium and long lived).

Both tests cannot strongly support that the differences among the duration

categories are caused by the topology of the tables, since the p-values that do

99

not exceed the limit of 5% are 4.998E-06 in case of the Atlas dataset and

3.349E-02 for SlashCode.

To sum up, we studied how tables are spread over the combination of their topological

and duration categories identifying several duration-related patterns, out of which we

distinguish internal and lookup tables’ tendency to lives of long duration and the

isolated tables’ disinclination to longevity. However, the statistical evidence does not

allow us to emphatically suggest that there is a correlation between tables’ topological

categories and their duration.

100

Figure 4.19 Distribution of Tables per Topological and Duration Categories with and without the ISOLATED Category

Total

#Tables

SHORT

LIVED

MEDIUM

LIVED

LONG

LIVED

SHORT

LIVED

MEDIUM

LIVED

LONG

LIVED

SHORT

LIVED

MEDIUM

LIVED

LONG

LIVED

SHORT

LIVED

MEDIUM

LIVED

LONG

LIVED

SHORT

LIVED

MEDIUM

LIVED

LONG

LIVED

Atlas 88 3% 8% 1% 17% 5% 22% 11% 1% 24% 0% 0% 8% 32% 14% 55%

BioSQL 45 2% 2% 0% 22% 24% 18% 4% 4% 9% 2% 7% 4% 31% 38% 31%

Castor 91 24% 13% 45% 0% 1% 5% 0% 2% 8% 0% 0% 1% 24% 16% 59%

SlashCode 69 19% 12% 20% 3% 6% 23% 0% 1% 9% 0% 0% 6% 23% 19% 58%

Zabbix 57 14% 16% 9% 11% 7% 18% 4% 5% 11% 2% 0% 4% 32% 28% 40%

Total

#Tables

SHORT

LIVED

MEDIUM

LIVED

LONG

LIVED

SHORT

LIVED

MEDIUM

LIVED

LONG

LIVED

SHORT

LIVED

MEDIUM

LIVED

LONG

LIVED

SHORT

LIVED

MEDIUM

LIVED

LONG

LIVED

Atlas 77 19% 5% 25% 13% 1% 27% 0% 0% 9% 32% 6% 61%

BioSQL 43 23% 26% 19% 5% 5% 9% 2% 7% 5% 30% 37% 33%

Castor 16 0% 6% 31% 0% 13% 44% 0% 0% 6% 0% 19% 81%

SlashCode 33 6% 12% 48% 0% 3% 18% 0% 0% 12% 6% 15% 79%

Zabbix 34 18% 12% 29% 6% 9% 18% 3% 0% 6% 26% 21% 53%

SOURCE LOOKUP INTERNAL
Aggregate per Duration

Category

Aggregate per Duration

Category

ISOLATED

TOPOLOGICAL CATEGORY

TOPOLOGICAL CATEGORY

SOURCE LOOKUP INTERNAL

BREAKDOWN OF ALL TABLES PER TOPOLOGICAL AND DURATION CATEGORIES (PERCENTAGES OVER TOTAL #TABLES)

BREAKDOWN OF TABLES WITH AT LEAST ONE EDGE PER TOPOLOGICAL AND DURATION CATEGORIES (PERCENTAGES OVER TOTAL #TABLES)

101

Figure 4.20 Probability for a Table of a Topological Category to Belong to a Certain Duration Category

Total

#Tables

SHORT

LIVED

MEDIUM

LIVED

LONG

LIVED

Total

#Tables

SHORT

LIVED

MEDIUM

LIVED

LONG

LIVED

Total

#Tables

SHORT

LIVED

MEDIUM

LIVED

LONG

LIVED

Total

#Tables

SHORT

LIVED

MEDIUM

LIVED

LONG

LIVED

Total

#Tables

SHORT

LIVED

MEDIUM

LIVED

LONG

LIVED

Atlas 11 27% 64% 9% 38 39% 11% 50% 32 31% 3% 66% 7 0% 0% 100% 88 32% 14% 55%

BioSQL 2 50% 50% 0% 29 34% 38% 28% 8 25% 25% 50% 6 17% 50% 33% 45 31% 38% 31%

Castor 75 29% 16% 55% 6 0% 17% 83% 9 0% 22% 78% 1 0% 0% 100% 91 24% 16% 59%

SlashCode 35 37% 23% 40% 22 9% 18% 73% 7 0% 14% 86% 4 0% 0% 100% 68 22% 19% 59%

Zabbix 22 36% 41% 23% 20 30% 20% 50% 11 18% 27% 55% 3 33% 0% 67% 56 30% 29% 41%

PROBABILITY FOR A TABLE OF A TOPOLOGICAL CATEGORY TO BELONG TO A CERTAIN DURATION CATEGORY (PERCENTAGES OVER TOTAL #TABLES OF EACH TOPOLOGICAL CATEGORY)

ISOLATED

TOPOLOGICAL CATEGORY

SOURCE LOOKUP INTERNAL Aggregate per Duration Category

102

4.4.2 Relationship between Topological Categories and Survival

The next property that we study in reference to the topological categories is

the tables’ survival potential. We describe a table as a “survivor” if the table

exists in the last known version of its dataset. The respective research

question that we attempt to address is the following:

Research Question: is there a relationship between the topological category of a table

and its survival potential?

Figure 4.21 depicts the population of survivors in each dataset with respect to

the topological categories they belong to. The including percentages are

computed with reference to the total number of each dataset’s tables. The red

and blue colors represent the most and the least populated categories,

respectively.

Figure 4.21 Distribution of “Survivors” per Topological Category

It is obvious that, in four out of the five datasets studied, there appears a

decreasing sequence of percentages of the tables included among the

categories as presented in Figure 4.21, with the highest cardinality of

survivors to be assigned to the source tables and the lowest one attributed to

the internal tables. Figure 4.21 also contains the aggregate percentages of the

survivors, which are surprisingly high in all datasets varying from 65% to

97% of the corresponding total number of tables. The last three columns

include the overall percentages of tables per topological category, regardless

of their survival potential. We see that the “survivors” of the internal category

follow the respective aggregate percentages, which means that the survival

potential for these tables will be high.

Total

#Tables SOURCE LOOKUP INTERNAL

Aggregate

%Survivors SOURCE LOOKUP INTERNAL

Atlas 77 39% 34% 9% 82% 49% 42% 9%

BioSQL 43 44% 12% 9% 65% 67% 19% 14%

Castor 16 31% 44% 6% 81% 38% 56% 6%

SlashCode 33 64% 21% 12% 97% 67% 21% 12%

Zabbix 34 53% 24% 6% 85% 59% 32% 9%

TOPOLOGICAL CATEGORY (FOR SURVIVORS)
Aggregate per Topological Category

(ind. of survival)

DISTRIBUTION OF SURVIVORS WITH AT LEAST ONE EDGE PER TOPOLOGICAL CATEGORY (PERCENTAGES OVER TOTAL #TABLES)

103

In the previous figure we ignored the existence of the isolated tables, counting

the “survivors” with reference to the tables with at least one edge. If we

include the isolated tables, we will observe few differentiations concerning the

spread of the tables among the topological categories. Figure 4.22 depicts the

distribution of the tables-survivors over the topological categories including

the isolated category. Once again, the red color signifies the most populated

category, in terms of the number of survivors, and the blue color the least one.

We should mention that in two datasets, namely Castor and SlashCode, the

isolated “survivors” form a clear majority, which is largely explained by the

strong presence of the tables of the isolated group in these two datasets. The

isolated “survivors” are the second most populated group of tables in Zabbix,

as opposed to Atlas where they are the second least popular category. Finally,

BioSQL does not encompass “survivors” of the isolated category at all.

Figure 4.22 Distribution of “Survivors” per Topological Category (including

ISOLATED)

Figure 4.23 illustrates how the tables that survive are spread over the

topological categories with respect to the total number of tables of each

category. The patterns that we observe in this figure can be outlined as

follows:

 The distributions of the survivors of the categories source and lookup are

similar to the respective aggregate distributions in all datasets, with the

exception of the lookup survivors of the Zabbix dataset.

 The internal category ensures that each participating table is sure to

survive and this observation holds in all the datasets apart from

BioSQL. In all the datasets, the percentages of the internal survivors

exceed the respective aggregate portions of survivors.

Total

#Tables ISOLATED SOURCE LOOKUP INTERNAL

Aggregate

%Survivors ISOLATED SOURCE LOOKUP INTERNAL

Atlas 88 11% 34% 30% 8% 83% 13% 43% 36% 8%

BioSQL 45 0% 42% 11% 9% 62% 4% 64% 18% 13%

Castor 91 67% 5% 8% 1% 81% 82% 7% 10% 1%

SlashCode 68 44% 31% 10% 6% 91% 51% 32% 10% 6%

Zabbix 56 30% 32% 14% 5% 82% 39% 36% 20% 5%

Aggregate per Topological Category (ind. of

survival)
TOPOLOGICAL CATEGORY (FOR SURVIVORS)

DISTRIBUTION OF ALL SURVIVORS PER TOPOLOGICAL CATEGORY (PERCENTAGES OVER TOTAL #TABLES)

104

Figure 4.23 Probability of Survival per Topological Category

Total

#Tables #Survivors %Survivors

Total

#Tables #Survivors %Survivors

Total

#Tables #Survivors %Survivors

Total

#Tables %Survivors

Atlas 38 30 79% 32 26 81% 7 7 100% 77 82%

BioSQL 29 19 66% 8 5 63% 6 4 67% 43 65%

Castor 6 5 83% 9 7 78% 1 1 100% 16 81%

SlashCode 22 21 95% 7 7 100% 4 4 100% 33 97%

Zabbix 20 18 90% 11 8 73% 3 3 100% 34 85%

Aggregate Survival

ProbabilitySOURCE LOOKUP INTERNAL

TOPOLOGICAL CATEGORY

PROBABILITY OF SURVIVAL PER TOPOLOGICAL CATEGORY (PERCENTAGES OVER TOTAL #TABLES OF EACH TOPOLOGICAL CATEGORY)

105

Figure 4.24 shows the probability of survival for the isolated tables. The

survival potential for the tables of this category is significantly high in all the

datasets except for BioSQL. It is also noteworthy that the including

percentages approach the aggregate ones in four of the five datasets.

Figure 4.24 Probability of Survival for the ISOLATED Tables

The high percentages of “survivors”, regardless of the topological categories,

prejudiced us against the impact of the categories on the survival potential of

a table. This intuition was confirmed by the statistical tests we conducted by

forming 4x2 contingency tables, with their rows corresponding to the

topological categories (isolated, source, lookup, internal) and their two

columns representing the populations of the tables that exist in the last known

version and those that do not. The lowest p-value the Chi-square and Fisher

tests returned was 0.3238, indicating that there are no sufficient data to

support the correlation between the topological categories and the survival

potential.

Overall, we should stress the high survival potential of the tables disregarding their

topological categories, which along with the statistical results are strong indications

that tables’ topology is not likely to be related to their probability to exist in the last

known version.

Total

#Tables #Survivors %Survivors

Total

#Tables %Survivors

Atlas 11 10 91% 88 83%

BioSQL 2 0 0% 45 62%

Castor 75 61 81% 91 81%

SlashCode 35 30 86% 68 91%

Zabbix 22 17 85% 56 86%

PROBABILITY OF SURVIVAL FOR THE ISOLATED TABLES (PERCENTAGES OVER

TOTAL #TABLES)

Aggregate Survival

Probability

106

4.4.3 Relationship between Tables’ Topological Categories and

Birth Version

In this subsection we investigate if birth versions of the tables are related to

their topological categories. We are particularly interested in the relationship

between the probability that a table is born in the originating version of the

schema history and the topological category it belongs to. In this context, we

can formulate the relevant research question as follows:

Research Question: how is the topological category of a table related to the probability

of being born in the originating version of its dataset’s schema history?

Figure 4.25 illustrates the populations of the tables born in the very first

version of their datasets history. The left part of the figure ignores tables of

the isolated category, while the right part includes them. We can observe that

in three out of the five datasets, the tables born in the originating version form

overwhelming majorities that exceed the 70% of the total number of the

tables.

Figure 4.25 Populations of Tables (left: without ISOLATED; right: with

ISOLATED) Born in the Originating Version

In Figure 4.26 we present how the tables born in the first version are spread

over the topological categories. The red and blue colors indicate the most and

the least populated topological categories with respect to the total number of

each dataset’s tables.

Total

#Tables #Tables %Tables

Total

#Tables #Tables %Tables

Atlas 77 55 71% 88 56 64%

BioSQL 43 19 44% 45 21 47%

Castor 16 14 88% 91 62 68%

SlashCode 33 26 79% 68 41 60%

Zabbix 34 13 38% 56 15 27%

DISTRIBUTION OF TABLES BORN @v0 (PERCENTAGES OVER TOTAL #TABLES)

TABLES WITH AT LEAST ONE

EDGE
ALL TABLES

Born @v0 Born @v0

107

It is worth mentioning that, in three of the five datasets, source tables born in

the first version of their dataset’s history are the most popular category, even

though only in one of them, namely BioSQL, they are the dominating group

as it is illustrated in Figure 4.15 that presents the distribution of the tables

over the topological categories. In Atlas, we notice that lookup tables born in

the very first version exceed those of the source category, though the latter are

the most popular among the dataset’s tables irrespectively of their “birth”

version.

Figure 4.26 Distribution of Tables Born in the Originating Version per

Topological Category

Figure 4.27 depicts the potential the tables of each topological category have

to exist in the first version of their schema’s history.

The commonalities that we encounter with reference to the probability of

tables being “born” in the earliest version of their schema can be summarized

as follows:

 The tables of the internal category are 100% certain to be “born” in the

originating version in three out of the five datasets. In BioSQL and

Zabbix, although the overall population of the internal tables is not

present in the first version, the corresponding percentages are high

(67% in both cases).

 Lookup tables have higher probabilities to be “born” in the first version

compared to the respective average probability, and in fact, their

majority is present at the first version for four out of five datasets. The

same holds for the corresponding probabilities of the source tables.

Total

#Tables ISOLATED SOURCE LOOKUP INTERNAL Total

Atlas 88 1% 26% 28% 8% 64%

BioSQL 45 4% 24% 9% 9% 47%

Castor 91 53% 5% 9% 1% 68%

SlashCode 68 22% 24% 9% 6% 60%

Zabbix 56 4% 11% 9% 4% 27%

TOPOLOGICAL CATEGORY

DISTRIBUTION OF TABLES BORN @v0 PER TOPOLOGICAL CATEGORY

(PERCENTAGES OVER TOTAL #TABLES)

108

Figure 4.27 Probability to be “born” in the First Version per Topological Category

Total

#Tables Born @v0

Total

#Tables Born @v0

Total

#Tables Born @v0

Total

#Tables Born @v0

Total

#Tables Born @v0

Total

#Tables Born @v0

Atlas 11 9% 38 61% 32 78% 7 100% 77 71% 88 64%

BioSQL 2 100% 29 38% 8 50% 6 67% 43 44% 45 47%

Castor 75 64% 6 83% 9 89% 1 100% 16 88% 91 68%

SlashCode 35 43% 22 73% 7 86% 4 100% 33 79% 68 60%

Zabbix 22 9% 20 30% 11 45% 3 67% 34 38% 56 27%

PROBABILITY TO BE BORN @v0 PER TOPOLOGICAL CATEGORY (PERCENTAGES OVER TOTAL #TABLES OF EACH TOPOLOGICAL CATEGORY)

SOURCE LOOKUP INTERNALISOLATED

TOPOLOGICAL CATEGORY AGGREGATE BORN @v0

TABLES WITH AT LEAST

ONE EDGE
ALL TABLES

109

 The tables of the isolated category have the lowest potential for being

“born” in the originating version of their datasets, in four of the five

datasets. Equivalently, we can claim that it is easier to add tables of this

category over the course of a database’s schema evolution than

introducing lookup or internal tables.

 The probability for a source table to be introduced in the first version of

its dataset’s history is, approximately, in accordance with the average

probability and, in all datasets, is lower than the respective potential of

the lookup tables.

The common features among the datasets related to the probability for a table

to be “born” in the originating version if it belongs to a certain topological

category are supported to some extent by the statistical evidence that assess

the independence of the birth version from the topological categories.

Specifically, we performed the Chi-square and Fisher statistical tests by

utilizing a contingency table consisted of four rows representing the

topological categories and two columns corresponding to tables born in the

first version and those that are not. The p-values that do not exceed the limit

of 5% are 4.74E-02 for Atlas, 1.36E-02 for SlashCode and 3.22E-02 for Zabbix.

To sum up, we observed that internal and lookup tables are more likely to be “born”

in the originating version of their dataset’s history, which, expressed in a different

way, means that it is quite unlikely that they are “born” after this version. In

contrast, isolated and source tables are less probable to be introduced in the first

version, which entails that it is more probable that versions succeeding the originating

one include new tables of these two categories. The behavior of the lookup and the

internal tables can be attributed to the so-called gravitation to rigidity pattern

[VaZS17], according to which it is fairly improbable that dependency-magnet tables,

as those of the two aforementioned categories, experience any kind of change in later

versions of database’s schema. In this context, we can assume that administrators

prefer creating tables that attract foreign keys in the early if not in the originating

versions of the database in order to avoid changes caused by inserting them in

subsequent versions.

4.4.4 Relationship between Tables’ Topological Categories and

Update Activity

The next issue that we are interested in is that of the update profile of the

tables with respect to their topological categories. Thus, the research question

that arises can be put in the following way:

110

Research Question: is there a relationship between the topological category of a table

and its update activity?

To ease the process of analyzing tables’ update behavior with respect to their

topological categories we decided to utilize the activity classes defined in

[VaZS15], which are summarized as follows:

i. Rigid tables, which experience no updates throughout their entire lives

in their datasets.

ii. Quiet tables, with the total number of updates not exceeding the value

of 5 and the Average Transitional Update (ATU) to be less than 0.1.

iii. Active tables, which undergo more than 5 updates and have an ATU

higher than 0.1.

Terminology. The Average Transitional Update (ATU) of a table is defined as

the fraction of the sum of updates the table undergoes throughout its life over

its duration. [VaZS15]

Figure 4.28 presents the distribution of the tables over the aforementioned

activity classes. The upper part of the figure ignores the presence of the

isolated tables, whereas the lower part includes them. The largest and the

smallest classes in terms of the tables’ population are highlighted with red

and blue colors, respectively.

Ignoring the isolated tables, we observe that, in four of the five datasets, the

most multitudinous group is that of the quiet tables, accounting for nearly or

more than the one half of tables’ population. But, if we take into account the

isolated tables, we can identify a decrease of small or large magnitude in the

numbers of quiet tables in all the datasets, apart from Atlas, and a

simultaneous increase in the cardinality of the rigid tables. As for the active

tables, if we include the isolated category, there appears a decrease in their

numbers in all the datasets to an extent varying from 1% to 11% with respect

to the total number of the tables.

111

Figure 4.28 Distribution of Tables per Activity Class (top: without the

ISOLATED; bottom: with the ISOLATED)

Next, we examine the impact of the topological categories on tables’ update

activity. Figure 4.29 shows how tables are divided into the different

combinations of the topological and activity categories. As we mentioned

Total

#Tables RIGID QUIET ACTIVE RIGID QUIET ACTIVE

Atlas 77 15 37 25 19% 48% 32%

BioSQL 43 14 13 16 33% 30% 37%

Castor 16 7 7 2 44% 44% 13%

SlashCode 33 3 19 11 9% 58% 33%

Zabbix 34 11 21 2 32% 62% 6%

Total

#Tables RIGID QUIET ACTIVE RIGID QUIET ACTIVE

Atlas 88 18 43 27 20% 49% 31%

BioSQL 45 16 13 16 36% 29% 36%

Castor 91 57 31 3 63% 34% 3%

SlashCode 68 15 38 15 22% 56% 22%

Zabbix 56 23 30 3 41% 54% 5%

Activity Class Activity Class (%)

BREAKDOWN OF TABLES WITH AT LEAST ONE EDGE WRT ACTIVITY CLASS

(PERCENTAGES OVER TOTAL #TABLES)

BREAKDOWN OF ALL TABLES WRT ACTIVITY CLASS (PERCENTAGES OVER

TOTAL #TABLES)

Activity Class Activity Class (%)

112

before, we used the red color to signify the most populated group of tables in

each dataset and the blue one for the least popular group after the groups

with no including tables. As far as the distribution of the tables of the

different topological categories over the activity classes is concerned, we

should mention the following observations:

 In two of the five datasets, namely Atlas and Zabbix, the source tables

with moderate update activity are the most popular with respect to the

total number of the tables. In Castor and SlashCode, the isolated tables

with no and quiet update activity, respectively, form the leading

groups of tables, while in BioSQL we see that the most popular groups

are those of the source tables with all kinds of update activities.

 We observe that in the least populated groups are included the internal

tables with moderate activity in BioSQL, Castor and SlashCode, the

isolated tables with intense activity in Zabbix and the lookup tables with

no updates in Atlas.

The upper part of Figure 4.30 depicts the probability for a table of a certain

topological category to develop a certain update activity during its existence

in its dataset. Once again, the red and blue colors correspond to the largest

and smallest groups respectively, but in this case with reference to the

number of tables of each topological category.

We outline the most interesting information derived from this figure in the

following list:

 Isolated tables experience no or few updates with a probability that is

higher than 82%.

 The likelihood for a source table to undergo no or few changes

throughout its life is at least 82% in all datasets, apart from BioSQL.

 In three of the five datasets, the lookup tables with intense update

activity exceed 38%, while those of the Castor and Zabbix datasets are

pertained to quiet lives in terms of the changes they experience.

 In four of the five datasets, the internal tables are expected to undergo

numerous updates.

113

Figure 4.29 Distribution of Tables per Topological and Activity Categories

Total

#Tables RIGID QUIET ACTIVE RIGID QUIET ACTIVE RIGID QUIET ACTIVE RIGID QUIET ACTIVE RIGID QUIET ACTIVE

Atlas 88 3% 7% 2% 13% 25% 6% 5% 17% 15% 0% 0% 8% 19% 48% 32%

BioSQL 45 4% 0% 0% 22% 20% 22% 4% 7% 7% 4% 2% 7% 33% 30% 37%

Castor 91 55% 26% 1% 4% 1% 1% 3% 5% 1% 0% 1% 0% 44% 44% 13%

SlashCode 68 18% 28% 6% 4% 22% 6% 0% 4% 6% 0% 1% 4% 9% 58% 33%

Zabbix 56 21% 16% 2% 13% 23% 0% 5% 14% 0% 2% 0% 4% 32% 62% 6%

INTERNAL

BREAKDOWN OF TABLES PER TOPOLOGICAL CATEGORY AND ACTIVITY CLASS (PERCENTAGES OVER TOTAL #TABLES)

TOPOLOGICAL CATEGORY
Aggregate per Activity

ClassISOLATED SOURCE LOOKUP

114

Figure 4.30 Probability for a Table of a Topological Category to Develop Specific Update Activity and vice versa

Total

#Tables RIGID QUIET ACTIVE

Total

#Tables RIGID QUIET ACTIVE

Total

#Tables RIGID QUIET ACTIVE

Total

#Tables RIGID QUIET ACTIVE

Total

#Tables RIGID QUIET ACTIVE

Atlas 11 27% 55% 18% 38 29% 58% 13% 32 13% 47% 41% 7 0% 0% 100% 88 20% 49% 31%

BioSQL 2 100% 0% 0% 29 34% 31% 34% 8 25% 38% 38% 6 33% 17% 50% 45 36% 29% 36%

Castor 75 67% 32% 1% 6 67% 17% 17% 9 33% 56% 11% 1 0% 100% 0% 91 63% 34% 3%

SlashCode 35 34% 54% 11% 22 14% 68% 18% 7 0% 43% 57% 4 0% 25% 75% 68 22% 56% 22%

Zabbix 22 55% 41% 5% 20 35% 65% 0% 11 27% 73% 0% 3 33% 0% 67% 56 41% 54% 5%

Total

#Tables ISOLATED SOURCE LOOKUP INTERNAL

Total

#Tables ISOLATED SOURCE LOOKUP INTERNAL

Total

#Tables ISOLATED SOURCE LOOKUP INTERNAL

Total

#Tables ISOLATED SOURCE LOOKUP INTERNAL

Atlas 18 17% 61% 22% 0% 43 14% 51% 35% 0% 27 7% 19% 48% 26% 88 13% 43% 36% 8%

BioSQL 16 13% 63% 13% 13% 13 0% 69% 23% 8% 16 0% 63% 19% 19% 45 4% 64% 18% 13%

Castor 57 88% 7% 5% 0% 31 77% 3% 16% 3% 3 33% 33% 33% 0% 91 82% 7% 10% 1%

SlashCode 15 80% 20% 0% 0% 38 50% 39% 8% 3% 15 27% 27% 27% 20% 68 51% 32% 10% 6%

Zabbix 23 52% 30% 13% 4% 30 30% 43% 27% 0% 3 33% 0% 0% 67% 56 39% 36% 20% 5%

QUIET ACTIVE

ACTIVITY CLASS

INTERNALISOLATED SOURCE LOOKUP

PROBABILITY FOR A TABLE OF A TOPOLOGICAL CATEGORY TO DEVELOP A CERTAIN UPDATE ACTIVITY (PERCENTAGES OVER TOTAL #TABLES OF EACH TOPOLOGICAL CATEGORY)

TOPOLOGICAL CATEGORY

Aggregate per Activity Class

Aggregate per Topological Category

PROBABILITY FOR A TABLE OF AN ACTIVITY CLASS TO BELONG TO A CERTAIN TOPOLOGICAL CATEGORY (PERCENTAGES OVER TOTAL #TABLES OF EACH ACTIVITY CLASS)

RIGID

115

The bottom part of Figure 4.30 presents the probability for a table with a

certain activity profile to belong to a specific topological category. In a

nutshell, we can identify the subsequent commonalities among the datasets:

 The likelihood for a rigid table to be source is very high, especially in the

datasets with no strong presence of isolated tables, while in datasets

with numerous isolated tables, the rigid tables are more likely to be

isolated. On the other hand, it is not quite possible for a rigid table to be

lookup, since in all datasets this probability is less than the average one,

and it is completely impossible a rigid table to be internal in three of the

five datasets.

 In three of the five datasets, quiet tables are likely to belong to the source

category, with the exceptions of Castor and SlashCode, in which quiet

tables tend to be isolated. It is also obvious that the distribution of the

quiet tables over the topological categories is in agreement with the

aggregate one in all datasets.

 As for the active tables we notice a tendency towards categories of high

topological complexity. This is verified by the fact that, in all datasets,

the chances for an active table to belong to a topologically complex

category are higher compared to the average probabilities. This is

another way to identify internals’ inclination towards intense update

activity.

The statistical evidence provided by Chi-square and Fisher tests is fairly

strong. For each dataset, we utilized a contingency table consisted of four

rows, each of which represents a topological category and three columns

corresponding to the different activity classes. The p-values derived from

these tests are below the critical value of 5% in four of the five datasets,

ranging from 9.6E-05 (Zabbix) to 3.89E-02 (Castor). The statistical results

confirm that tables with different topological categories are subjects to different

amounts of updates.

Altogether, we established that the topological category of a table is related to its

update activity. Giving a summary of the findings, we can associate isolated and

source tables with no or few updates, lookup tables with few or many changes and

internal tables with many updates. These two different patterns can be regarded as an

example of the “electrolysis” pattern presented in [VaZa17], where the authors

identified two completely inverse behaviors concerning the relationship between

tables’ duration and their survival potential, with “dead” tables living for short

durations and “survivors” related to lives of long duration. In the same sense, we can

claim that topologically simplest tables are associated with few or no changes, whereas

complex tables in terms of their topology are related to lives of intense update activity.

116

4.4.5 Relationship between Tables’ Topological Categories and

Size Change

Studying the relationship between tables’ topological categories and their

activity profiles we were surprised by the significant portions of lookup tables

that undergo few or many updates over their lives in three of the five

datasets. One would expect that tables which are dependency magnets are not

prone to changes, since the dependents are certain to be affected. Given that,

we decided to study how the topological category of a table is related to its

size change between its first and last known versions. Naturally, the relative

research question is expressed in the following way:

Research Question: how is the topological category of a table related to its size

change?

Intuitively, we classified tables with respect to the scale of their size change in

three categories that each of them expresses size reduction, stability or

expansion. The scale of one table’s size change is defined as the fraction of its

size in the last version over its size in its first version. In a nutshell, the three

size scale categories can be defined as follows:

i. Scale down, when there is a reduction in table’s size, with the respective

size scale to be less than 1.

ii. Steady, when table’s sizes in the first and last versions are even, with

the scale to be equal to 1.

iii. Scale up, when there is an expansion in table’s size, with the scale to be

greater than 1.

Figure 4.31 shows how the tables of each dataset are spread over the size scale

categories. It is obvious that in all the datasets more than one half of the tables

remain steady in terms of their size, while a considerable number of tables

expand their size between their first and last versions. As for those that

downsize their number of attributes, we observe that they do not constitute

groups that exceed the 10% of the total number of the tables.

117

Figure 4.31 Distribution of Tables per Size Scale Category

We present in the upper part of Figure 4.32 the distribution of the tables over

their size scale and topological category. The percentages included are

quantified with reference to the total number of tables of each dataset. The red

and blue colors represent the largest and smallest groups of tables with

respect to the total number of tables, without taking into account the

categories with no participating tables.

We outline the most noteworthy information derived from the upper part of

Figure 4.32 in the upcoming list:

 In three out of the five datasets, the largest group of tables is that

consisted of isolated tables with steady size scale. In Atlas and BioSQL

the most populated category comprises the source tables with steady

size scale.

 We should also mention the low percentages of tables that experience a

size reduction in all topological categories. The corresponding values

do not surpass the 2% of the total number of tables of each dataset.

Total

#tables <=0,99 1 >1

Atlas 88 6% 69% 25%

BioSQL 45 7% 53% 40%

Castor 91 3% 67% 30%

SlashCode 68 3% 50% 47%

Zabbix 56 2% 55% 43%

Size Scale Categories

BREAKDOWN OF TABLES PER SIZE SCALE

CATEGORY (PERCENTAGES OVER TOTAL #TABLES)

118

Figure 4.32 Top: Distribution of Tables over Topological and Size Scale Categories; Bottom: Probability for a Table to Have a

Certain Size Scale

Total

#Tables <=0,99 1 >1 <=0,99 1 >1 <=0,99 1 >1 <=0,99 1 >1 <=0,99 1 >1

Atlas 88 1% 9% 2% 2% 35% 6% 1% 22% 14% 1% 3% 3% 6% 69% 25%

BioSQL 45 0% 4% 0% 7% 40% 18% 0% 4% 13% 0% 4% 9% 7% 53% 40%

Castor 91 1% 59% 22% 0% 4% 2% 2% 3% 4% 0% 0% 1% 3% 67% 30%

SlashCode 68 1% 35% 15% 1% 13% 18% 0% 1% 9% 0% 0% 6% 3% 50% 47%

Zabbix 56 2% 27% 11% 0% 20% 16% 0% 7% 13% 0% 2% 4% 2% 55% 43%

Total

#Tables <=0,99 1 >1

Total

#Tables <=0,99 1 >1

Total

#Tables <=0,99 1 >1

Total

#Tables <=0,99 1 >1

Total

#Tables <=0,99 1 >1

Atlas 11 9% 73% 18% 38 5% 82% 13% 32 3% 59% 38% 7 14% 43% 43% 88 6% 69% 25%

BioSQL 2 0% 100% 0% 29 10% 62% 28% 8 0% 25% 75% 6 0% 33% 67% 45 7% 53% 40%

Castor 75 1% 72% 27% 6 0% 67% 33% 9 22% 33% 44% 1 0% 0% 100% 91 3% 67% 30%

SlashCode 35 3% 69% 29% 22 5% 41% 55% 7 0% 14% 86% 4 0% 0% 100% 68 3% 50% 47%

Zabbix 22 5% 68% 27% 20 0% 55% 45% 11 0% 36% 64% 3 0% 33% 67% 56 2% 55% 43%

TOPOLOGICAL CATEGORY

Aggregate per Size Scale

Category

PROBABILITY FOR A TABLE OF A TOPOLOGICAL CATEGORY TO HAVE CERTAIN SIZE SCALE (PERCENTAGES OVER TOTAL #TABLES OF EACH TOPOLOGICAL CATEGORY)

ISOLATED SOURCE LOOKUP INTERNAL

ISOLATED SOURCE LOOKUP

BREAKDOWN OF TABLES PER TOPOLOGICAL AND SIZE SCALE CATEGORIES (PERCENTAGES OVER TOTAL #TABLES)

INTERNAL
Aggregate per Size Scale

Category

TOPOLOGICAL CATEGORY

119

The lower part of Figure 4.32 contains the probability for a table of a certain

topological category to experience a specific change in its size. Once again, the

red and blue colors signify the most and the least populated groups of tables

respectively, within each topological category without taking into account the

total absence of including tables.

 The similarities with regard to the combination of topological and size scale

categories we identified among datasets can be summarized as follows:

 In all datasets, the absolute majority of the isolated tables remain steady

in terms of their size.

 In four of the five datasets, the probability that a source table remains

steady exceeds the value of 55%.

 Contrary to the behavior of the source tables, the lookup tables

demonstrate a proclivity for increasing their attributes. This

observation, which holds in four of the five datasets, except for Atlas,

gives us an insight into the observation we briefly mentioned in the

beginning of this subsection about the intense activity of the lookup

tables. We can claim that, at least in four datasets, lookup tables’

heightened update activity results in the expansion of their size.

 As regards the internal tables, in all the datasets it is highly likely that

they undergo an expansion of their size during their existence in their

datasets.

 Compared to the average probability of experiencing a certain size

change, we distinguished two different patterns: the one according to

which the isolated and source tables follow the average probability for

size reduction, have higher probability for size steadiness and lower

for size expansion and the other including lookup and internal tables

with a potential for size reduction lower than the average with few

exceptions, a probability for size steadiness below the average and a

higher likelihood for size expansion.

Despite the patterns we observed with reference to the size scale of tables

within each topological category, the evidence derived from the statistical

tests are inadequate to support the correlation between the topological

categories and the size scale ones. We utilized a 4x3 contingency table with its

rows consisting of the topological categories and its columns representing the

size scale categories. Apart from Castor and SlashCode for which the tests

returned p-values 1.41E-02 and 6.8E-03 respectively, the statistical results for

120

the rest of the datasets surpass the limit of 5% with the lowest p-value to be

0.089 in the case of the Atlas dataset.

In a nutshell, we distinguished two different behaviors concerning tables’ size change

and topological categories. The majority of the isolated and source tables remain

steady, whereas the lookup and internal tables tend to increase their size.

4.5 Summary of Findings

In this chapter, our main objective was to study to what extent tables’

topology can determine their evolutionary activity. Given that, we defined

four topological categories at first based on the topology of the Diachronic

Graph. We then used the schema histories of five open-source datasets to

classify their tables into the topological categories and examined whether

these categories are related with various measures of tables’ activity. The

labeling process posed the dilemma of how to handle tables that change

topological categories throughout their lives and for this reason we manually

inspected the changes of these tables. This manual examination led to a set of

rules that applied to the tables’ history would remove parts that would be

confusing for the understanding of the true nature of the tables and would

make feasible the automation of the classification process. However, we opted

for utilizing the labels derived from the manual classification of the tables.

Having assigned a single label to each table, we studied how the topological

category of a table is related to various measures of its evolutionary activity,

including duration, survival potential, birth version, update activity and the

scale of its size change. The remainder of this section includes the most

important findings concerning our study on tables’ topology and evolution.

Concerning the normalized duration of the tables, we noticed that tables of

long duration constitute the most popular group in four of the five datasets

and those of short duration are the second largest category without exception

among datasets. Studying the relationship between the topological category

of a table and its normalized duration, we observed that if we ignore the

existence of the isolated tables, the distributions of the source and lookup tables

over the duration categories follow the average distributions, with the

exceptions of BioSQL and Zabbix. We also identify the following interesting

similarities among the datasets:

 In all datasets, lookup tables are prone to lives of long duration.

121

 In four of the five datasets, at least half of the source tables are long

lived, apart from those of the BioSQL dataset.

 The internal tables avoid lives of short or medium duration, with the

exception of BioSQL.

 As for the isolated tables, they avoid living for long periods, except

for those of the Castor dataset.

The inclination of the tables towards lives of long duration holds for three of

the four topological categories with few exceptions and this is an indication

that it is quite unlikely that the topological categories are associated with

tables’ duration. This was also confirmed by the statistical tests we conducted

for assessing the independence of tables’ duration from their topological

categories.

As far as survivors’ distribution over the topological categories is concerned,

we identified a monotone decrease pattern in the size of the categories’

populations, starting from the source tables followed by lookup and ending

with the internal tables in all datasets, except Castor. As for the relationship

between the topological categories and the survival, we observed that the

corresponding percentages are high in all datasets, excluding the isolated

tables of the BioSQL dataset. The only difference between the topological

categories is that the survival rate for the source and lookup tables follows the

aggregate one, while in case of the internal tables the respective percentages

are higher compared to the aggregate ones. The statistical evidence produced

by the Chi-square and Fisher tests was not adequate to verify that topological

categories can determine the survival rate of the including tables.

As regards the relationship between topological categories and tables’ “birth”

version, we were specifically interested to examine if the topological category

of a table can have an effect on the probability to be introduced in the

originating version of its dataset’s history. Concerning the overall

percentages of the tables “born” in the very first version of their datasets and

excluding tables with no edges, we set apart the high portions of tables in

three datasets, namely Atlas, Castor and SlashCode, in which the relative

percentages exceed the value of 70%. The findings with reference to the

relationship between the topological categories and the “birth” version can be

summarized as follows:

 The internal and lookup tables demonstrate high probability to exist in

the first version of their datasets, with the involved percentages of the

former reaching the value of 100% in three of the five datasets.

122

 The source tables in all datasets, except BioSQL, present the second

lowest potential for being born in the originating version of their

datasets after the isolated tables.

 Compared to the aggregate probability of being created in the first

version of a dataset and ignoring isolated category, the source and lookup

tables approach the overall potential, while internal significantly exceed

it.

We attributed the high probability for a lookup or internal table to be “born” in

the first version to the gravitation to rigidity pattern, according to which it is

not preferable to creating tables that attract foreign key constraints in later

versions of the schema history. The statistical tests we performed were to

some extent in favor of the relationship between one table’s topological

category and the probability of being created in the originating version.

Concerning tables’ update activity and its relationship with topological

categories, we initially classified tables with respect to their update profile in

three categories, which are the rigid with no changes, the quiet with few

updates and the active with more than five updates. We saw that the majority

of the tables in four datasets are those with few changes, though we observed

an increase in the number of the rigid tables after including tables of the

isolated category. As for the distribution of the tables with reference to the

topological categories and their update profile, we highlighted the following

observations:

 Concerning the largest groups of tables, we encountered an

inconsistent behavior, with source tables with a quiet update profile

being the most popular in Atlas and Zabbix, with the isolated tables

with no or few updates constituting the most multitudinous categories

in Castor and SlashCode and with the source tables with all kinds of

updates being the most populated groups in BioSQL.

 The least popular groups of tables are those of the internal category

with no or few updates.

After that, we quantified the probability for a table of a certain topological

category to develop a certain update activity. The most noteworthy findings

are presented in the upcoming list:

 Isolated tables experience no or few updates during their lives.

 Apart from BioSQL, the source tables are very likely to sustain no or

few updates.

123

 In three of the five datasets, lookup tables are subjects to few or many

updates.

 In four of the five datasets, internal tables are expected to undergo

many updates throughout their lives.

Concerning the potential for a table of certain update profile to belong to a

specific topological category, we noticed that rigid tables are possible to

belong to the categories of the isolated and source tables with a probability that

is greater than 76%. Quiet tables are likely to be source in three of the five

datasets, with the exceptions of Castor and SlashCode, in which quiet tables

tend to be isolated. As regards active tables, there is not a consistent tendency

among the datasets, except for the datasets of Castor and SlashCode, where

the odds for active tables to be isolated, source or lookup are even.

The statistical tests we conducted for the relationship between topological

categories and update activity returned low p-values for four of the five

datasets and that makes us believe that there is a correlation between tables’

topology and their update profile.

In the last part of our study we examined whether topological categories are

related with the changes in the size of the tables. We group tables in three

categories with respect to the change of their sizes between their first and last

versions. We use the term scale down for tables that undergo a size reduction,

the term steady for those with no change in their size and the term scale up for

tables with a size expansion. We saw, on the one hand, the absolute majority

of tables remain steady in terms of their size and a large portion increase their

size and, on the other hand, tables that experience a size reduction to account

for no more than 10% of the total number of tables in each dataset. Taking into

consideration the topological categories of the tables, we end up with the

following commonalities among the datasets:

 In three of the five datasets, the isolated tables with steady size create

the largest groups with respect to the entire population of the tables.

The only exceptions to that pattern are Atlas and BioSQL, in which

source tables with steady size are the most populated group of tables.

 As for the least popular groups of tables, internal tables with all

kinds of size changes along with tables of the other categories with

size reduction or steadiness form groups whose cardinality does not

surpass the 4% of the total number of tables per dataset.

124

Concerning the probability for a table of a specific topological category to go

through a certain size change, we briefly describe the similarities we

encountered as follows:

 The absolute majority of the isolated tables remain steady.

 In four of the five datasets, the probability for a source table to remain

steady is greater than 55%.

 In four of the five datasets, lookup tables are prone to size expansion,

which is not at all what one would expect since their size expansion is

likely to affect tables that depend upon them.

 For the internal tables, it is likely (specifically, the least probability is

43%) that they will increase their size and it is highly improbable that

they will end up with less attributes than those they consisted of in

their first known version.

The results returned from the statistical tests we implemented are not

adequate to reject the null hypothesis on the independence of tables’ size

changes from their topological categories. Nevertheless, we distinguished two

different behaviors, the one of the isolated and source tables associated with a

tendency towards not changing their size and the second one concerning

lookup and internal tables that represents an inclination for size expansion.

Altogether, having conducted an in-depth survey concerning the impact of

tables’ topological categories on various measures of their evolutionary

activity, we ended up with various findings, with the most significant being

the correlations of topological categories with “birth” version as well as with

update activity. These relationships were also confirmed by the statistical tests

we conducted in order to evaluate to what extent the metrics of tables’

evolution are related to their topological categories. As for the rest of the

measures and their relationships with the topological categories, although we

highlighted a few patterns among the datasets, the statistical evidence was

not sufficient in order to support the existence of a statistically significant

correlation between tables’ topology and the measures of their evolution.

125

CHAPTER 5.

 EXPORTING PARMENIDIAN TRUTH AS A

WEB APPLICATION

5.1 Architecture of a Web Application

5.2 Design of Parmenidian Truth Web Application

The refactoring process of the Parmenidian Truth tool aimed at creating a

project that will be incorporated easily in any other project providing all its

functionalities through an interface. In this chapter, we exploit the new design

of Parmenidian Truth tool to create a web application that will make possible

for a user to visualize the evolution of a database’s schema by running the

application on a server. The first section of this chapter gives the necessary

background on the architecture of a web application describing its main

components and their roles. The second section presents the design of the web

application that utilizes the functionalities of the Parmenidian Truth tool to

analyze the schema evolution of a database.

5.1 Architecture of a Web Application

A web application enables the execution of an application resided in a server

via the web. The users of the application exploit the client/server model

sending requests to the server and receiving responses from the server. Figure

126

5.1 depicts the client/server model which we use to create the Parmenidian

Truth web application.

Figure 5.1 Client/Server Communication Model

The architecture of the server application is based on the Model-View-Presenter

(MVP) design pattern. This pattern, which is derivative of the well-known

Model-View-Controller (MVC) design model [KrPo88], was first introduced in

[Pote96] in which author proposes a three-part decomposition of an

application into the following components:

 Model: represents the domain of the application that includes the main

data structures.

 View: includes every Graphical User Interface (GUI) utilized to present

data provided by the presenter.

127

 Presenter: retrieves data from model component and formats it to be

displayed in the view component.

The essential difference between the MVP and the MVC patterns is that in the

former the view component has the passive role of displaying data and

delegating user requests to the presenter component, while in the latter the

view component updates itself whenever the model part changes. In other

words, in MVP model there is no direct dependency between the view and the

model components with their communication being implemented via the

presenter part.

In our application, the role of the model component is assigned to java classes

that make use of the Parmenidian Truth tool’s functionalities and create

objects that facilitate the presentation of the data in the view part of the

application. The view component consists of JavaServer Pages (JSP) that allow

users to develop web pages with dynamic content along with the static one,

like that of HTML markup language. In this component, we also exploit the

JavaScript language to incorporate the D3 library [BoHO11], a JavaScript

library for data visualization. As for the presenter part, it consists of java

servlets and classes, which receive clients’ requests, communicate with the

model module and update the view elements.

5.2 Design of Parmenidian Truth Web Application

Apart from the existing functionalities provided by the Parmenidian Truth

tool, we enriched our application with new ones that visualize the patterns

presented in [VaZS15], in order to acquire a better view of whether and how

evolution-related metrics are related to tables’ properties. We also accompany

the visualization results with a set of statistics that give an overview of the

relationships between the measures and the properties previously mentioned.

In a nutshell, the main functionalities provided by our web application are

summarized as follows:

 Create/load a project in/from the server.

 Visualize Diachronic Graph/versions/evolution-related patterns.

 Compute evolution-related statistics.

128

5.2.1 Package Diagram

Figure 5.2 shows the package diagram of the web application’s java resources,

consisted of the following packages:

 Servlets: classes that are responsible for receiving clients’ requests and

sending responses back to them, playing along with the modules of the

core package the role of an MVP presenter.

 Core: classes and interfaces that define the main functionalities of the

application.

 Model: classes that represent the data structures of the application.

 Enums: enum types that help us to implement sets of predefined

constants representing different categories of tables.

Figure 5.2 Package Diagram of the Application’s Java Resources

5.2.2 Class Diagrams

In this subsection, we present the including classes of the aforementioned

packages of the web application. We do not include the class diagrams of the

Parmenidian Truth tool, since we consider it as an independent project whose

129

functionalities, presented in Chapter 3, we utilize to create the web

application.

A. Servlets package

This package includes three classes each of which is responsible for receiving

clients’ requests related to the main functionalities provided by the

application. Figure 5.3 depicts the class diagram of the servlets package along

with the interfaces of the core package that they use.

Figure 5.3 Class Diagram of the Servlets Package (along with the Interfaces of

the Core Package)

The absence of relationships between the classes of the servlets package is due

to the fact that each of them serves different types of requests. More

specifically, the ProjectCreatorServlet class is responsible for receiving requests

for the creation of a new project. It then receives a set of data definition files

containing database’s history and by utilizing Parmenidian Truth tool as well

as the classes of the core package a model of the schema evolution is created.

It finally sends back to application’s front-end information related to the

evolution of the database’s schema. The ProjectLoaderServlet class utilizes the

aforementioned model that contains the required information for

implementing all the functionalities our application provides without the

necessity of submitting successive requests to the Parmenidian Truth tool. The

130

VisualizationServlet class processes requests concerning the visualization of the

patterns, presented in [VaZS15], the Diachronic Graph and the versions it

consists of. As mentioned in Chapter 3, the Diachronic Graph is a graph with its

nodes and edges corresponding to database’s tables and foreign keys,

respectively.

B. Core package

The core package implements the business logic part of the application via

retrieving the data provided by the model package, processing them and

producing the responses to the clients’ requests. It consists of three interfaces,

namely ProjectServer, ParmenidianServer and StatisticsServer which offer the

required methods for implementing the main functionalities of the

application.

The ProjectServer interface has the central role of serving the classes of the

servlets package via providing all the necessary data derived from the model

package. The ParmenidianServer interface defines the methods that offer the

data derived from the Parmenidian Truth tool. The StatisticsServer interface

comprises the methods that process the data and create a set of statistical

information that summarize the evolution of the database’s schema. Apart

from the interfaces, there also exist two classes, the JsonConverter and Bubble

classes, which convert data in a format that will facilitate their visualization.

Figure 5.4 presents the participating classes and the dependencies between

them in the core package.

C. Model package

This package encompasses the domain classes of the application that model

the versions, the tables and the foreign keys of a database. It also includes the

Model module that represents the data needed to load a project and the

XmlProvider class used to convert the objects of the Model class to data in xml

format and vice versa. Figure 5.5 illustrates the components of the model

package.

131

Figure 5.4 Class Diagram of the Core Package

132

Figure 5.5 Class Diagram of the Model Package

133

D. Enums package

The enum types included in this package define tables’ categories based on

their activity profile, their originating version, their duration in schema

history and their survival status based on their existence in the last version of

database’s schema. These types are used to quantify tables’ distribution over

the different categories and to facilitate the visualization of the Diachronic

Graph. Figure 5.6 depicts the class diagram of the enums package.

The ActivityStatus type defines three table categories based on tables’ update

activity during their existence in the database. The DurationLabel type

classifies tables in terms of their normalized duration, which is the number of

the versions they exist over the total number of the versions. The

BirthVersionLabel type includes three constants corresponding to the different

tables’ categories pertaining to their birth versions. The SurvivalStatus type

assigns to each table a label based on whether or not it exists in the last

version of database’s schema history. The last type, Labels, is only used to

provide the including constants as labels to the methods that compute the

evolution-related statistical information.

Figure 5.6 Class Diagram of the Enums Package

134

CHAPTER 6.

 CONCLUSIONS AND FUTURE WORK

6.1 Conclusions

6.2 Future work

The final chapter of the current thesis summarizes the major findings of our

study, outlines the answers to the research questions we stated in the

introductory chapter and finally suggests potential issues for future work.

6.1 Conclusions

The twofold objective of this thesis was: (a) to examine whether there is a

correlation between tables’ topological properties and various metrics of their

evolutionary activity and (b) to improve the internal quality of an existing tool

for the study of schema evolution with respect to foreign keys, by introducing

principled rectification mechanisms and applying a set of recommended

refactoring patterns. Thus, we conducted an in-depth analysis by classifying

tables in four topological categories, namely isolated, source, lookup and

internal and then we study how these categories are likely to determine

tables’ durations, their potential to exist in the last version of the schema

history, the probability for a table to exist in the very first version of their

database, tables’ update profile and their size change between the first and the

last versions.

The most important findings that are also supported by the corresponding

statistical tests were that there exist: (a) a relationship between tables’

135

topological categories and the probability to be born in the originating version

as well as (b) a correlation between tables’ topology and their update activity.

As for the former relationship, we identified two different behaviors among

the topological categories, with the lookup and the internal tables

demonstrating a proclivity for existing in the early, if not in the very first,

versions of their database’s history, while the isolated and the source tables are

more likely to be introduced in versions succeeding the originating one.

Concerning the latter correlation, we recognize a monotone increase pattern in

the intense of tables’ update activity with their topological complexity.

Specifically, the isolated and the source tables are associated with no or few

updates, the lookup tables with few or many updates and the internal tables

with many changes. For the rest of the measures and their relationships with

tables’ topological categories although we pointed out several commonalities

among the datasets examined, we could not present solid evidence that

would verify the existence of these correlations.

We also presented a principled refactoring process applied in the

Parmenidian Truth tool, which visualizes the schema evolution of relational

databases. First, we inspected design defects that would complicate any

expendability efforts and the reusability of the tool. For each defect, we

applied the necessary modifications in tool’s source code aiming at

eliminating it and complying with the recommended design principles and

patterns. For the modules we either modified or added, we created unit tests

to verify that tool’s expected behavior has not altered after the refactoring

process. Finally, having performed all the refactoring actions, we assessed the

improvements in the tool’s architecture derived from the restructuring

process.

Following the refactoring process, we utilized the modified Parmenidian

Truth tool to create a web application that comprises an alternative solution

for visualizing the evolution of databases’ schemata and quantifying the

respective statistical information.

6.2 Future work

To the best of our knowledge, this was the first work that revolved around the

relationship of tables’ involvement with foreign keys with their evolutionary

behavior. In a follow-up work, one can investigate if a different topological

classification of the tables would lead to different conclusions on the role of

tables’ topology in the schema evolution. In our study, we chose to assign a

136

single label to each table, since the single label scheme facilitated our goal to

associate the topological labels with the evolutionary measures. A multi-

labeling scheme that does not ignore the label changes that a table experiences

is likely to reveal evolutionary features that our work neglected.

The second issue that can be the objective of future research has to do with

what we call a “second-pass” in tables’ classification process. In our work we

assign a label to each table based on its inciting edges without considering the

labels of its adjacent tables. It would be interesting to see, after classifying

tables via the process we proposed, whether a second classification phase that

takes into account tables’ neighborhood, practically resulting in a different set

of topological categories, would provide us with new information about the

ways tables evolve with respect to the topological categories they belong to.

137

BIBLIOGRAPHY

[FBB+99]

[MaMa06]

[Mart00]

[ChKe92]

[BeCu89]

[Fabe07]

[Buga07]

[Sjøb93]

[Kara02]

[CuMZ08]

[CMTZ08]

M. Fowler, K. Beck, J. Brant, W. Opdyke, D. Roberts. Refactoring: Improving

the Design of Existing Code, pp. 46-47, 63-72, Addison Wesley Longman, Inc,

1999.

R. C. Martin, M. Martin. Agile Principles, Patterns, and Practices in C#, pp.

155, Prentice Hall, 2006.

R. C. Martin. Design Principles and Design Patterns, pp. 14-16, 24-26,

Objectmentor.com, 2000.

S. R. Chidamper, C. F. Kemerer. A Metrics Suite for Object Oriented Design,

pp. 19-21, 24-27, Center for Information Systems Research, Sloan School of

Management, Massachusetts Institute of Technology, 1992.

K. Beck, W. Cunningham. A Laboratory for Teaching Object Oriented

Thinking, Conference Proceedings on Object-Oriented Programming

Systems, Languages and Applications (OOPSLA '89), pp. 1-6, New Orleans,

Louisiana, USA, October 1989.

S. Faber. Mockito Framework. Available at HTTP://SITE.MOCKITO.ORG/ ,

2007.

Bugan IT Consulting UG. Structure Analysis for Java. Available at

HTTP://STAN4J.COM/ , 2007.

Dag Sjøberg. Quantifying Schema Evolution. Information and Software

Technology, 35(1), pp. 35-44, January 1993.

Amela Karahasanovic. Identifying Impacts of Database Schema Changes on

Applications. Available at HTTPS://WWW.RESEARCHGATE.NET/ , 2002.

Carlo A. Curino, Hyun J. Moon, Carlo Zaniolo. Graceful Database Schema

Evolution: the PRISM Workbench. Proceedings of VLDB Endowment, 1(1),

pp. 761-772, August 2008.

Carlo A. Curino, Hyun J. Moon, Letizia Tanca, Carlo Zaniolo. Schema

Evolution in Wikipedia: toward a Web Information System Benchmark. In

Proc. of 10th International Conference on Enterprise Information Systems

(ICEIS 2008), pp. 323-332, Barcelona, Spain, June 2008.

http://site.mockito.org/
http://stan4j.com/
https://www.researchgate.net/publication/2911575_Identifying_Impacts_of_Database_Schema_Changes_on_Applications

138

[WuNe11]

[PVSV12]

[QiLS13]

[CGMM+15]

[VaZS15]

[VaZS17]

[VaZa17]

[VKZZ17]

[VKZZ19]

[KrPo88]

[Pote96]

Shengfeng Wu, Iulian Neamtiu. Schema Evolution Analysis for Embedded

Databases. In Proc. 27th International Conference on Data Engineering

Workshops (ICDEW 2011), pp. 151-155, Hannover, Germany, April 2011.

G. Papastefanatos, P. Vassiliadis, A. Simitsis, Y. Vassiliou. Metrics for the

Prediction of Evolution Impact in ETL Ecosystems: A Case Study. Journal on

Data Semantics, 1(2), pp. 75-97, August 2012.

D. Qiu, B. Li, Z. Su. An Empirical Analysis of the Co – evolution of Schema

and Code in Database Applications. In Proc. of 9th Joint Meeting on

Foundations of Software Engineering (ESEC/FSE 2013), pp. 125-135, Saint

Petersburg, Russia, August 2013.

A. Cleve, M. Gobert, L. Meurice, J. Maes, J. Weber. Understanding Database

Schema Evolution: A Case Study. Science of Computer Programming, 97(1),

pp. 113-121, January 2015.

P. Vassiliadis, A. V. Zarras, I. Skoulis. How is Life for a Table in an Evolving

Relational Schema? Birth, Death and Everything In Between. In:

Johannesson P., Lee M., Liddle S., Opdahl A., Pastor López Ó. (eds .)

Conceptual Modeling ER 2015. LNCS, 9381, pp. 453-466, December 2015.

P. Vassiliadis, A. V. Zarras, I. Skoulis. Gravitating to Rigidity: Patterns of

Schema Evolution – and its Absence – in the Lives of Tables. Information

Systems, 63, pp.24-46, January 2017.

P. Vassiliadis, A. V. Zarras. Survival in Schema Evolution: Putting the Lives

of Survivor and Dead Tables in Counterpoint. 29th International Conference

on Advanced Information Systems Engineering (CAiSE 2017), Essen,

Germany, June 2017.

P. Vassiliadis, M. Kolozoff, M. Zerva, A. V. Zarras. Schema Evolution and

Foreign Keys: Birth, Eviction, Change and Absence. In Proc. of 36th

International Conference on Conceptual Modeling (ER 2017), pp. 106-119,

Valencia, Spain, November 2017.

P. Vassiliadis, M. Kolozoff, M. Zerva, A. V. Zarras. Schema Evolution and

Foreign Keys: a Study on Usage, Heartbeat of Change and Relationship of

Foreign Keys to Table Activity. Computing (2019), pp. 1-26, January 2019.

G. E. Krasner, S. T. Pope. A Cookbook for Using the Model-View-Controller

User Interface Paradigm in Smalltalk-80. Journal of Object-Oriented

Programming (JOOP), 1(3), pp. 26-49, Aug./Sep. 1988.

M. Potel. MVP: Model-View-Presenter. The Taligent Programming Model

for C++ and Java. Taligent Inc, 1996.

139

[BoHO11] M. Bostock, J. Heer, V. Ogievetsky. D3.js. Available at

HTTPS://GITHUB.COM/D3/D3, 2011.

https://github.com/d3/d3

140

SHORT CV

Konstantinos Dimolikas was born in Ioannina, Greece. In 2013, he received his

Diploma in Electrical & Computer Engineering from the National Technical

University of Athens. After fulfilling his military service and for 8 months he

worked as a Programmer-Analyst at the software development department of

the Independent Power Transmission Operator (IPTO). In 2016, he started his

graduate studies at the Department of Computer Science & Engineering in the

University of Ioannina while working as a Programmer in the public sector.

