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ABSTRACT 

Konstantinos Dimolikas. MSc in Computer Science, Department of Computer Science 

and Engineering, University of Ioannina, Greece, January 2019. 

Tool Support and Topological Study of Schema Evolution in terms of Foreign Keys 

Advisor: Panos Vassiliadis, Associate Professor. 

 

Studying the evolution of databases’ structure, known as schema evolution, is of great 

importance, since it can reveal patterns that will help administrators devote less time 

for increasing databases’ information capacity with the least possible effects on the 

surrounding applications and take all the necessary maintenance actions for 

preserving and enhancing databases’ performance.  

The main research question that we attempt to answer in this Thesis can be expressed 

in this way: is there a relationship between tables’ involvement with foreign keys and their 

evolution? For answering this question, we adopt a model that considers each version 

of a schema as a graph which includes schema’s tables and foreign key constraints as 

nodes and edges, respectively. The union of the graphs forms the Diachronic Graph, 

which comprises all the tables and all the foreign keys that ever exist in schema’s 

history. We also define four categories, namely isolated, source, lookup and internal, for 

the tables with respect to the combination of their in- and out- degrees in the 

Diachronic Graph. We refer to these categories with the term topological since they 

describe the arrangement of the tables in the Diachronic Graph with respect to their 

inciting foreign keys. We then classify tables into the topological categories and we 

study how tables’ topology is associated with several evolution-related properties, 

such as tables’ duration, their update activity, their size change, etc. The schema 

histories that we utilize in the context of our work derive from 5 relational databases 

supporting open-source projects.    

The most significant results of our research work, which are also verified by the 

statistical evidence, are: (a) a relationship between tables’ topological categories and 

their probability to be born in the originating version of their databases and (b) a 

correlation between tables’ topology and their update activity. Specifically, we have 



 

x 

 

identified that the more topologically complex a table is the more intense is its life in 

terms of its update activity and the higher is the probability to be introduced in the 

very first version of its schema history.    

To facilitate the research part of the Thesis, we perform an extensive refactoring in 

the architecture of the Parmenidian Truth tool that visualizes the schema evolution of 

relational databases. After identifying and prioritizing design defects, we have 

applied a series of modifications in the source code of the tool, aiming at increasing 

tool’s extendibility potential. To verify that the changes we introduced have not 

altered tool’s expected behavior, we have created unit tests for all the modules we 

either modified or added. Finally, we have evaluated the enhancements of the 

refactoring process by comparing the design quality of the tool before and after the 

refactoring. 

Complementing the refactoring of the tool, we have also constructed a web 

application that visualizes the schema evolution of relational databases and 

summarizes the main corresponding statistics. 
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ΕΚΤΕΤΑΜΕΝΗ ΠΕΡΙΛΗΨΗ ΣΤΑ ΕΛΛΗΝΙΚΑ 

Κωνσταντίνος Δημολίκας, ΜΔΕ στην Πληροφορική, Τμήμα Μηχανικών Η/Υ και 

Πληροφορικής, Πανεπιστήμιο Ιωαννίνων, Ιανουάριος 2019. 

Μελέτη της εξέλιξης σχήματος βάσεων δεδομένων σε σχέση με τα ξένα κλειδιά 

με τη χρήση εξειδικευμένου λογισμικού  

Επιβλέπων: Παναγιώτης Βασιλειάδης, Αναπληρωτής Καθηγητής. 

 

Η μελέτη της εξέλιξης της δομής των βάσεων δεδομένων, η οποία είναι γνωστή 

με τον όρο εξέλιξη σχήματος, είναι ιδιαίτερα σημαντική καθώς μπορεί να 

αποκαλύψει μοτίβα που θα βοηθήσουν τους διαχειριστές των βάσεων να 

αφιερώνουν λιγότερο χρόνο στην αύξηση της χωρητικότητας των παρεχόμενων 

πληροφοριών με τις λιγότερες πιθανές συνέπειες για τις εξαρτημένες εφαρμογές 

και να υλοποιούν όλες τις απαραίτητες εργασίες συντήρησης για να διατηρείται 

και να βελτιώνεται η απόδοση της βάσης.     

Το βασικό, ερευνητικής φύσεως, ερώτημα που επιδιώκουμε να απαντήσουμε 

στην παρούσα εργασία μπορεί να διατυπωθεί ως εξής: Υπάρχει κάποια σχέση 

μεταξύ της συσχέτισης των πινάκων με τα ξένα κλειδιά μιας βάσης δεδομένων και 

της εξέλιξης τους; Για να απαντήσουμε στο συγκεκριμένο ερώτημα, 

χρησιμοποιούμε ένα μοντέλο που αναπαριστά κάθε έκδοση του σχήματος σαν 

έναν γράφο του οποίου οι κόμβοι και οι ακμές αντιστοιχούν στους πίνακες και τα 

ξένα κλειδιά του σχήματος, αντίστοιχα. Η ένωση αυτών των γράφων αντιστοιχεί 

στον Διαχρονικό Γράφο, ο οποίος αποτελείται από όλους τους πίνακες και όλα τα 

ξένα κλειδιά που εμφανίστηκαν σε τουλάχιστον μία έκδοση της ιστορίας του 

σχήματος. Επίσης, ορίζουμε 4 κατηγορίες για τους πίνακες, συγκεκριμένα τις 

isolated, source, lookup και  internal με βάση τον συνδυασμό των έσω- και έξω- 

βαθμών τους στον Διαχρονικό Γράφο. Χαρακτηρίζουμε τις κατηγορίες αυτές με 

τον όρο τοπολογικές, καθώς περιγράφουν τη θέση των πινάκων στον Διαχρονικό 

Γράφο σε σχέση με τα ξένα κλειδιά τους. Στη συνέχεια, ταξινομούμε τους 

πίνακες στις τοπολογικές κατηγορίες και μελετάμε πώς η τοπολογία των 

πινάκων σχετίζεται με διάφορα χαρακτηριστικά της εξέλιξης τους, όπως η 

διάρκεια ζωής τους, η δραστηριότητα τους, η αλλαγή του μεγέθους τους, κ.α. Τα 
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σχήματα που χρησιμοποιούμε στα πλαίσια της έρευνας μας προέρχονται από 5 

σχεσιακές βάσεις δεδομένων που υποστηρίζουν συστήματα λογισμικού ανοιχτού 

κώδικα.    

Τα σημαντικότερα αποτελέσματα της έρευνας μας, τα οποία επιβεβαιώνονται 

και από τα στατιστικά στοιχεία, είναι: (α) η σχέση μεταξύ των τοπολογικών 

κατηγοριών των πινάκων και της πιθανότητας εμφάνισης τους στην πρώτη 

έκδοση του σχήματος της βάσης τους και (β) η συσχέτιση της τοπολογίας των 

πινάκων με τη δραστηριότητα τους. Συγκεκριμένα, διαπιστώσαμε ότι όσο πιο 

σύνθετος τοπολογικά είναι ένας πίνακας τόσο πιο έντονη δραστηριότητα έχει 

και τόσο μεγαλύτερη είναι η πιθανότητα εμφάνισης του στην πρώτη έκδοση του 

σχήματος του. 

Για να διευκολύνουμε την έρευνα μας, υλοποιήσαμε μία εκτεταμένη 

αναμόρφωση της αρχιτεκτονικής του λογισμικού Παρμενίδεια Αλήθεια, το οποίο 

οπτικοποιεί την εξέλιξη του σχήματος σχεσιακών βάσεων δεδομένων. Έχοντας 

εντοπίσει και προτεραιοποιήσει τα σχεδιαστικά ελαττώματα, εφαρμόσαμε μια 

σειρά από τροποποιήσεις στον πηγαίο κώδικα του εργαλείου με στόχο να 

αυξήσουμε τις δυνατότητες επέκτασης των λειτουργιών που προσφέρει το 

λογισμικό αυτό. Για να επιβεβαιώσουμε ότι οι αλλαγές που υλοποιήσαμε δεν 

έχουν επηρεάσει την αναμενόμενη συμπεριφορά του λογισμικού, 

δημιουργήσαμε ελέγχους μοναδιαίων ενοτήτων για κάθε ενότητα που είτε 

τροποποιήσαμε είτε προσθέσαμε. Τέλος, αξιολογούμε τις βελτιώσεις που 

επέφερε η διαδικασία αναμόρφωσης, συγκρίνοντας την ποιότητα της σχεδίασης 

του εργαλείου πριν και μετά την αναμόρφωση.  

Συμπληρωματικά της αναμόρφωσης του λογισμικού, δημιουργήσαμε μία 

διαδικτυακή εφαρμογή που οπτικοποιεί την εξέλιξη του σχήματος σχεσιακών 

βάσεων δεδομένων και συνοψίζει τις βασικότερες πληροφορίες για την εξέλιξη 

των βάσεων. 
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CHAPTER 1.  

INTRODUCTION 

1.1 

 

1.2 

Scope 

 

Roadmap 

1.1 Scope 

There is no doubt that the life cycle of a software product includes a series of 

changes that aim to either correct potential faults or extend its existing 

functionalities. Over the course of time, applications tend to increase the 

services they offer to their users and as consequence they are becoming more 

dependent upon their databases by retrieving more information from them. 

This entails a sequence of modifications to the database that alter its internal 

structure or its schema between successive versions.  We use the term schema 

evolution to refer to these changes, which encompass tables/foreign keys 

insertions and removals as well as key and type updates.  

The importance of studying schema evolution and understanding the 

mechanisms behind the necessity for changing database’s structure can be 

realized if we consider that minor changes such as a foreign key removal or 

an attribute insertion can affect the surrounding applications leading to 

applications’ failures or information loss. Identifying potential patterns in the 

evolution of databases’ schemata can help administrators to maintain or 

develop databases in a way that eliminates the effects on the dependent 

applications and reduces the time and the effort they have to devote to apply 

the required modifications in the structure of the databases.  

The so far limited number of the existing studies on the topic of relational 

databases’ evolution can be attributed to the unavailability of a large number 
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of open-source databases’ schema histories that would allow us to establish 

solid conclusions on how schemata evolve over time and what are the factors 

that determine their evolution. It is worth mentioning that until 1993 there 

was no any in-depth study concerning schema evolution revealing a research 

gap in this topic. This gap was partially filled in the following years due to the 

presence of few open-source software projects that led to various works, 

which covered different aspects of the evolution, ranging from coarse-grained 

approximations that identify the effects of schema changes and propose 

methods for eliminating them to more fine-grained analyses that involve 

studying tables and foreign keys’ evolution and determining which tables’ 

properties are liable to affect tables’ update activity. 

Our approach on the topic of schema evolution is twofold, consisted of the 

research and the tool support parts. In the first part, we deal with the problem 

of schema evolution from a new perspective that takes into account tables’ 

involvement with foreign keys, which means that we are mainly interested in 

understanding how the patterns of edges surrounding nodes in the Diachronic 

Graph, the graph whose nodes and edges represent databases’ tables and 

foreign key constraints, respectively, is related to the evolution activity of 

databases’ schemata. We should mention that in the context of this Thesis we 

use the term topology to describe tables’ involvement with foreign keys in the 

Diachronic Graph. The second part of our work contains a principled 

refactoring process on a existing tool for the study of schema evolution and 

the utilization of this tool to construct a web application that can facilitate the 

works of research community on the topic of schema evolution.  

In a nutshell, the research question that we attempt to answer in this thesis 

can be stated as follows: “Is there a relationship between tables’ topological 

categories and their evolution?”      

To answer this question, we utilize the schema histories of 5 databases 

supporting open-source projects from different domains. First, we study the 

distribution of the tables with respect to the combination of their in- and out- 

degrees in the Diachronic Graph to define the different topological categories 

to which we append the including tables. We identify four different categories 

in terms of tables’ topology, which can be synopsized as follows: 

 Isolated tables with no references from or to other tables. 

 Lookup tables with only incoming references. 

 Source tables with only outgoing references. 
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 Internal tables with both incoming and outgoing references. 

Having determined the topological categories, we encounter the first problem 

arising from the so-called change of category phenomenon, which occurs when 

tables change category throughout their history. As a result, the tables are 

divided into those with a single topological label and those with multiple 

labels. A multi-labeling scheme does not facilitate our attempt to relate tables’ 

topological labels to their evolution profile and for this reason we manually 

track tables that change category and assign a single label to them. The 

manual inspection of the label changes also helps us to determine a list of 

filters consisted of 6 rules that would automate the classification process of 

the multi-label tables by removing or ignoring bewildering parts of tables’ 

lives that confuse the true nature of the tables. Although the misclassification 

rate between the two alternative processes is not high, we adopt the labels 

derived from the manual process, since it allows us to take into account the 

special features of the tables examined.       

Assigning a single label to each table enables us to study whether tables’ 

topological categories are related to various measures of their evolutionary 

activity, such as their lives’ duration, their survival potential, their update 

activity etc. To assert whether the topology of the tables affects their 

evolution-related properties, we accompany the results derived from our 

study with statistical evidence by utilizing the Chi-square and Fisher tests. 

The first question that we address is stated as follows: “Is there a relationship 

between tables’ topological categories and their duration?” We classify tables in 

three categories with respect to their normalized duration, which is defined for 

a table as the ratio of the number of versions that the table exists in the dataset 

over the total number of versions of its dataset. Although we identify several 

duration-related patterns, the statistical tests we conducted to evaluate the 

differentiation of tables’ duration due to their topological categories does not 

allow us to strongly support that there is a correlation between tables’ 

topology and their lives’ duration. The commonalities that we observe in the 

datasets examined are outlined in the following list: 

 Internal and lookup tables tend to lives of long duration. 

 Isolated tables avoid existing for a long period of time. 

The second relationship that we are interested in is that between tables’ 

topology and their survival potential. We describe a table as a “survivor” if it 

exists in the last known version of its dataset. The relevant research question 

that we attempt to answer can be stated as follows: “Is there a relationship 
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between tables’ topological categories and their survival potential?” The high 

survival rates, which surpass the 65% of the number of tables in all datasets, 

along with the results produced by the statistical tests indicate that is quite 

unlikely that tables’ topology affect their survival potential. Nevertheless, we 

identify two interesting patterns summarized as follows: 

 There exists a monotone decrease pattern in the percentages of the 

including “survivor” tables, starting from the source tables followed by 

lookup and ending with the internal tables. 

 Source and lookup tables’ survival rates follow the aggregate ones, while 

the survival potential of the internal tables is higher than the 

corresponding aggregate in all datasets. 

Next, we examine whether the topology of the tables is somehow related to 

the originating version of their dataset’s schema history. We can express the 

respective research question in the following way: “How is the topological 

category of a table related to the probability of being born in the originating version of 

its dataset’s schema history?” The main findings of our study on this 

relationship are synopsized as listed below: 

 Internal and lookup tables are more likely to be “born” in the originating 

version of their dataset’s history, which means that it is not probable 

that these tables are introduced in the succeeding versions. 

 Isolated and source tables tend to be born in versions that follow the 

originating one. 

 The aforementioned results are in accordance with the gravitation to 

rigidity pattern, which suggests that dependency-magnet tables, like 

internal and lookup, are not prone to experience any kind of 

modifications in the later versions of database’s schema. Thus, we 

presume that the early introduction of these tables is preferable in 

order to avoid changes caused by adding them in subsequent versions. 

The update profile of the tables and its relationship with the topological 

categories is another issue that we study. The question that concerns us can be 

formulated in this way: “Is there a relationship between the topological category of 

a table and its update activity?” We classify tables with respect to their update 

activity in three categories, using the label rigid for those with no changes in 

their lives, the label quiet for tables with few changes that do not exceed the 

value of 5 and the label active for tables with more than 5 updates and with 

Average Transitional Update (ATU) greater than 0.1. The ATU represents the 
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fraction of the number of changes a table experiences in its life over its 

duration. The main findings on the relationship between topological 

categories and tables’ update profile can be listed as follows: 

 Isolated and source tables are associated with no or few updates. 

 Lookup tables experience either few or many changes. 

 Internal tables are prone to undergo many updates. 

We also examine the probability for a table with certain update activity to 

belong to a specific topological category. We outline the most interesting 

results in the subsequent list: 

 Rigid tables are quite likely to be source in datasets where there is no 

strong presence of isolated tables, while in datasets with numerous 

isolated tables the rigid ones tend to be isolated. 

 Quiet tables are likely to belong to the source category. 

 Active tables tend to categories of high topological complexity. 

Given the aforementioned findings as well as the results from the statistical 

tests, we can claim that tables with different topological categories are subjects to 

different amounts of updates. 

The last relationship we study is that between the tables’ topological 

categories and their size change, meaning the change of their size between 

their first and last known versions. The research question we attempt to 

answer is expressed in this way: “How is the topological category of a table related 

to its size change?” We categorize tables with respect to the scale of their size 

change in three categories, with the label scale down denoting a reduction in a 

table’s size, the label steady representing tables with unchanged sizes and the 

label scale up indicating an expansion in tables’ sizes. Although the statistical 

evidence is not adequate enough to support a correlation between topological 

categories and tables’ size change, we identify the following behaviors: 

 The majority of the isolated and source tables remain steady. 

 Lookup and internal tables tend to increase their size. 

The second topic of our thesis concerns the refactoring process applied in 

Parmenidian Truth project, a tool that visualizes the evolution of relational 

databases’ schemata. The main reason for improving the design of this tool is 

that we utilize its functionalities for creating the web application presented in 
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Chapter 5, so a series of refactoring actions would facilitate the introduction 

of new functionalities required by our application. Using the Unified Modeling 

Language (UML) along with the Classes Collaborations Responsibilities (CRC) 

method, we are able to identify violations or the absence of design principles 

that would complicate our effort to add new functionalities or make use of the 

existing ones provided by the Parmenidian Truth tool. The defects we inspect 

are summarized as follows: (i) Package level issues (ii) God classes (iii) Lack 

of APIs (iv) Duplicated code (v) Misplaced methods (vi) Redundant 

components (vii) Convention violations 

To deal with each of the above mentioned defects we apply a series of 

modifications in the source code of the tool taking into consideration and 

complying with the proposed, in each case, design principles and patterns. 

Next, we create a unit test for each class we added or modified to confirm that 

our alterations have not affected the expected behavior of the tool. Finally, we 

conduct a thorough evaluation of the quality of the resulting source code after 

the refactoring actions we applied in order to assess and quantify the 

enhancements achieved in design level. 

In a nutshell, the main improvements achieved via the refactoring process can 

be outlined as follows: 

 We have increased tool’s expandability and immunity to changes by 

introducing a set of APIs 

 We have eliminated duplicated code by applying the recommended 

template method design pattern 

 We have increased cohesion of methods by moving misplaced methods 

to new classes 

 We have removed redundant components that increase code 

complexity 

 We have verified the correctness of the proposed modifications by 

creating unit tests for classes that we either added or modified  

The third part of this thesis describes the structure of a web application we 

create to visualize the schema evolution of relational databases. Our prime 

motive for creating this application was to provide the entire research 

community with a tool that can facilitate their work on the topic of schema 

evolution. We utilize the refactored version of the Parmenidian Truth tool and 

its functionalities to upload all the necessary information on the server and 



 

 

19 

 

exploit it each time a client’s request is submitted. The main functionalities 

provided by our application are summarized as follows: 

 An overview on the distribution of the tables with respect to several 

properties, like their update activity, birth version, etc. 

 Visualization of tables and foreign keys’ evolution as well as the 

depiction of the four evolution-related patterns presented in [VaZS15]. 

 Visualization of the Diachronic Graph and the intermediate versions. 

We also provide users with the capability of selecting nodes’ 

classification criterion and setting nodes’ radius based on different 

tables’ properties.   

To sum up, the main contributions of this thesis are synopsized in the next 

list: 

 A thorough study on the relationship between tables’ topology and 

their evolution. 

 An extensive restructuring of the Parmenidian Truth tool’s architecture 

and an in-depth evaluation of the refactoring process. 

 A web application that facilitates the visualization of databases’ 

schemata evolution. 

1.2 Roadmap 

The contents of this thesis can be summarized as follows. In Chapter 2, we 

highlight the most significant contributions on the topic of schema evolution 

and explain how our work differentiates from the state of the art. In Chapter 

3, we present and assess the modifications we applied to Parmenidian Truth 

tool to improve its architecture, aiming at utilizing it to create a web 

application that visualizes schema evolution. Chapter 4 contains our study on 

how tables’ topological labels are related to tables’ evolution. In Chapter 5, we 

present our web application that facilitates the study on the evolution of 

databases’ schema histories via visualizing various known patterns and 

providing the corresponding quantitative information. In Chapter 6, we 

outline the most important conclusions of our work and highlight open issues 

for future research.   
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CHAPTER 2.  

RELATED WORK 

2.1 Case Studies of Schema Evolution  

2.2 Comparison to the State of the Art 

 

In this Chapter, we present the state of the art in the related literature on the 

topic of this thesis so as to highlight the growing interest for schema evolution 

and what has been achieved over the years. In the second section, there 

appears a brief comparison of our work to the case studies of the first section, 

demonstrating how our work diverges from the previous ones and 

contributes to broadening our knowledge over the subject of schema 

evolution.        

2.1  Case Studies of Schema Evolution 

One of the earliest works in the area of schema evolution was implemented in 

1993 by [Sjøb93], who studied the evolution of a database for a period of 18 

months and demonstrated the need for the development of a change 

management tool. The main findings of his work can be outlined as follows: 

 Every relation of the database has been modified during the period of 

the study. 

 More additions than deletions appeared in the early phases of the 

databases’ lives, in contrast to the operational period in which the 

additions and deletions were in balance. 
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 There was a 139% increase in the number of relations and a 274% 

growth in the number of fields, concerning the period of examination.  

In 2002, Amela Karahasanovic [Kara02] presented a tool for tracing the effects 

of schema changes in applications developed in object – oriented systems. 

This tool, namely Schema Evolution Management Tool (SEMT), receives as 

input the source files of a schema, identifies the modules of the schema and 

their relationships, creates a graph – based representation with the nodes 

corresponding to schema’s modules and the edges to the relationships 

between the modules and predicts the impacts of changes applied on the 

schema. The evaluation of the tool was carried out by conducting an 

experiment in which two groups of students were asked to apply changes in 

the schema of a library application and subsequently identify the effects of the 

changes by using SEMT. Each group used a different version of the SEMT 

tool, with the first group utilizing a version that recognizes the impacts of a 

change at a fine – grained level and the second one exploiting a version that 

determines the affected modules at a coarse – grained level. The results of the 

experiment, which consisted of the time required to complete the impact 

analysis, the correctness of the answers and the user satisfaction, are the 

following: 

 The time required to complete the experiment was 6 minutes shorter 

for the group utilizing the low – level version of the SEMT tool. 

 Students using the fine – grained version of the tool committed fewer 

errors in their effort to discover the parts of the schema that were 

affected by a change. 

 The score regarding users’ satisfaction and viewpoint about SEMT’s 

efficiency was high within the two groups.   

In 2008, Carlo Curino, Hyun Moon and Carlo Zaniolo [CuMZ08] introduced a 

set of Schema Modification Operators (SMOs) to facilitate the evaluation of 

the effects of the schema changes and minimize the maintenance costs 

involved in terms of time and effort required to identify the parts affected. 

Each of the SMOs corresponds to a function whose parameters are a relational 

schema and the underlying database and its output is a modified version of 

the initial schema and a migrated version of the database. In this context, they 

developed the Panta Rhei Information & Schema Manager (PRISM) system, 

which automates the completion of tasks associated with schema evolution 

such as query translation, data migration and documentation of the changes. 

As for the assessment of the PRISM system, they exploited the schema 

evolution history of Wikipedia to quantify the efficiency of the PRISM in 
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terms of the proportion of the evolution steps automated by the system and 

the percentage of the queries that were compatible with the new schema 

version. The results obtained from this experimental evaluation are 

summarized in the following list: 

 In 97.2% of the evolution steps the PRISM system was capable of 

adjusting queries to the new schema version in an automatic way. 

 74% of the queries were operational after the required modifications 

applied by the PRISM system, in contrast to the 16% of the compatible 

queries in case of no changes would have been introduced.    

 In 12% of the queries altered there appeared a gain of 35% in terms of 

the execution time in favor of the manually modified queries and that 

was attributed to the fact that the PRISM system was incapable of 

identifying integrity constraints.   

In 2008, Carlo Curino, Hyun Moon, Letizia Tanca and Carlo Zaniolo 

[CMTZ08] made a thorough analysis of the evolution history of the Wikipedia 

and its schema, covering a period of approximately 4.5 years. Acknowledging 

the profound impact schema changes have on the applications accessing a 

database, they initially performed a macro – and micro – classification of the 

schema changes and then they evaluated the effect of the changes on 

applications by quantifying the success rate of the queries execution among 

different schema versions. The following list puts in a nutshell the key 

findings of their study. 

 The majority of the evolution steps (nearly 55%) included actual 

schema changes and more than 40% of the steps concerned key/index 

adaptations. 

 The micro – classification of the schema changes revealed an 

equilibrium between additions and deletions of tables and attributes, 

which signifies the intention to preserve database’s contents. 

 Only 22% of the queries of previous versions are functional in 

subsequent versions.  

Shengfeng Wu and Iulian Neamtiu [WuNe11] focused their research on 

schema evolution of embedded databases and proposed a system for the 

automatic retrieval of the source code, the extraction of the embedded 

databases and the computation of the schema evolution. They employed 4 

well – known applications containing embedded databases and studied its 
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evolution within an 18 – year period. The main findings of this study are 

condensed as follows: 

 The high frequency of tables and attributes deletions indicate that 

embedded databases are more prone to restructuring growth rather 

than a continuous one. 

 The early periods in schemas’ lives are related to higher number of 

changes as opposed to the latter versions which include few 

modifications. 

 The overall change rate for the embedded databases tends to be lower 

than that of the enterprise – class databases.  

In 2012, G. Papastefanatos, P. Vassiliadis, A. Simitsis and Y. Vassiliou 

[PVSV12] presented their work about the impact of evolution events on the 

Extract – Transform – Load (ETL) workflows and proposed a set of graph – 

theoretic metrics for the assessment of the quality of ETL designs. First, they 

develop a graph – based model to represent the modules of an environment 

and following that they analyze its structure to determine the extent to which 

evolution events can affect environment’s components. The evolution graph 

representing the parts of an ETL system and its relationships was analyzed in 

two levels, specifically a fine – grained level where node properties are 

examined as potential predictors of node’s vulnerability to evolution actions 

and a coarse – grained level concerning only relations, views and queries. The 

proposed metric suite used for the structure analysis of the evolution graph 

includes degree – based metrics, such as simple or transitive degrees of nodes 

or modules, indicating the level of dependencies among nodes and modules 

and entropy – related metrics which signifies the possibility for a node to be 

affected by a random evolution event. The evaluation of the proposed metrics 

was implemented by exploiting a software tool, namely Hecataeus, which in 

this study analyses 7 real – world ETL scenarios for 6 months. The most 

important observations derived from this experimental evaluation are 

synopsized as follows: 

 The schema size of a system is a crucial factor behind system’s 

vulnerability to evolution events, that is to say that tables with many 

attributes are more likely to be affected and affect the corresponding 

work flows. 

 Out – degree of nodes and modules are the most adequate predictors 

for the evolution of all module types. 
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 In cases where the previous metrics fail, the out – transitive degree and 

the entropy – related metrics may operate as better predictors for the 

impact of evolution on ETL workflows. 

In [QiLS13], authors studied the co – evolution of database schemata and the 

code of the related applications in 10 open – source projects. The main 

research questions addressed concerned the frequency and amount of schema 

evolution, the distribution of the schema change types within databases’ lives 

and the evaluation of the impact of schema changes on the corresponding 

application code. They classified atomic schema changes into 24 categories, 

each of which belongs to one out of 6 high – level schema change types, so as 

to discriminate the dominant types of modifications and assess the effect of 

each type to the surrounding applications. The following list includes the 

main results of this study. 

 The frequency of schema modifications is high, with the average 

number of atomic changes to approximate the value of 90 in a year. 

 The growth rate of tables in 60% of the databases exceeds 100% as it is 

the case for the change rate in 90% of the projects examined.  

 In all but 3 projects their schema size approaches the 60% of their 

maximum value within the first 20% of their lifetimes. 

 Regarding the distribution of schema change types in databases’ lives, 

it appears that transformations, structure refactorings and data quality 

refactorings are the most common categories of changes accounting for 

80% of schema changes in all projects and 95% in 7 of them. 

 Additions of tables/columns and datatype changes are the most 

frequent changes at the low – level of change categories. 

 Each atomic change affects approximately from 10 to 100 Lines of Code 

on average. At a coarse – grained level, transformations and structure 

refactorings are responsible for the most of the alterations required in 

the source code of the surrounding applications.   

In 2015, A. Cleve et al. [CGMM+15] published their findings on the adequacy 

of using the database evolution history as an effective tool in reverse 

engineering procedures. Specifically, they studied the evolution history of a 

medical record application seeking for valuable information that would assist 

system’s extendibility capacities in order to comply with new requirements. 

To achieve their main goal, they developed a set of tools for retrieving, 

analyzing and visualizing the schema versions of the database accessed by the 
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aforementioned application. The main results of their work are highlighted in 

the following list. 

 The number of tables appears to be increasing from the beginning till 

the end of the period examined, unveiling an obvious reluctance to 

remove tables. 

 The trend in the evolution of attributes approximates that of tables. 

 The addition of large tables spans the whole life of the system under 

examination. 

 The update activity in the database schema is far from being intense 

with the majority of tables experiencing less than 4 changes in their 

lives. 

P. Vassiliadis, A. V. Zarras and I. Skoulis [VaZS17] performed an in – depth 

analysis on the schema evolution of 8 databases aiming at perceiving how 

individual tables evolve and studying the impact of various tables properties 

on tables’ lives. Specifically, they investigate whether or not properties such 

as schema size, birth/removal versions are associated with evolution – related 

features, for instance table’s update activity, duration, survival profile. The 

key findings of their study are outlined in the subsequent list. 

 Wide tables, these are tables born with more than 10 attributes, are 

more likely to survive, in other words to exist in the last schema 

version. With the exception of 2 datasets, the percentage of those tables 

exceeds 85% in all cases. 

 In 50% of the datasets the portion of wide tables that were born early, 

that is to say in the lowest 33% of versions, and finally survive, 

surpasses 70%. 

 Approximately 70% of tables of a database resides within the 10x10 

box, meaning that the number of attributes at the birth version does 

not exceed the value of 10 and the number of updates a table 

undergoes throughout its life is less than 10. 

 As for the relationship of tables’ duration with their update profile, 

they introduce the “inverse Γ” pattern which indicates that short – 

lived tables are related with a small amount of changes, tables of 

medium duration undergo a small or medium number of changes and 

long – lived tables are subjects to all kinds of updates. 
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 More than 75% of active tables, those are tables having an Average 

Transitional amount of Update (ATU) greater than 0.1 and 

experiencing more than 5 changes in their lifetime, are born early. 

 Apart from 2 datasets, the fraction of active tables that survive is 

greater than 70%. 

 The probability for an active, long – lived table to survive is 100%, as it 

is the probability for active, long – lived survivors to have been born 

early. 

 In 6 out of 8 datasets, the percentage of removed tables that experience 

few updates exceeds the value of 85%. 

 With 1 exception, the fraction of removed tables that were born early is 

greater than 70%. 

 Removed tables that are short – lived accounts for more than 75% of 

the total number of “dead” tables in all but three datasets.  

In 2017, P. Vassiliadis et al. [VKZZ17] studied how foreign keys evolve in the 

context of schema evolution of relational databases. Recognizing the impact of 

the schema evolution on the smooth operation of the surrounding 

applications and the importance of predicting forthcoming schema changes 

for the maintenance process, they opted for six open – source databases 

derived from different domains and included foreign key constraints. First, 

they represented each version of the schema of a database as a graph with 

relations as nodes and foreign keys as graph’s edges and then detected a set 

of changes between subsequent versions by utilizing the Parmenidian Truth 

tool that models, visualizes and quantifies schema evolution of a database. 

The main findings of this work are summarized as follows: 

 The growth of the schemata is continuous including alternating phases 

of concentrated modifications and of few or zero changes. 

 In most datasets, there seems that foreign key constraints are rare and 

in some cases their existence appears to be unwelcome. 

 The evolution of foreign keys does not always follow that of tables. 

 The heartbeat of foreign key changes is mostly rare and small in 

volume. 
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2.2 Comparison to the State of the Art 

In the previous section we attempted to give a synopsis of the different 

approaches to the matter of schema evolution and the most significant 

contributions of each work towards understanding the mechanisms that 

determine how schemata evolve in terms of their main components including 

tables and foreign key constraints and whether a set of tables’ properties such 

as their size, duration, update activity, etc. is likely to affect their evolution. 

To the best of our knowledge, this is the first study that examines the role of 

tables’ topology in the evolution process, which expressed in a different way 

means that we are going to focus our research on how and to what extent the 

“neighborhood” of a table affects its life in terms of its survival likelihood, its 

update profile or the duration of its life. Prior to studying the relationship 

between tables’ evolution and their topological labels, we propose a set of 

rules for classifying tables into topological categories taking into account the 

changes of the corresponding labels throughout tables’ life cycles.        

  



 

 

28 

 

CHAPTER 3.  

REFACTORING PROCESS 

3.1 

 

 

3.2 

Aim of Refactoring 

 

 

Initial Architecture and Design 

3.3 

 

 

3.4 

Refactoring Actions 

 

 

Testing 

3.5 

 

 

3.6 

Final Architecture and Design 

 

 

Evaluation 

3.7 Summary of Refactoring Results 

 

In this chapter, we present the set of modifications we applied to Parmenidian 

Truth tool in order to improve its design and facilitate any attempt to extend 

its functionalities. Firstly, we explain why refactoring is required in the 

context of the current thesis and we show the initial design along with the 

corresponding defects. Next, we describe a series of refactoring actions 

applied aiming at eliminating design violations, mention the tests conducted 
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to ensure that our changes did not affect the expecting behavior of the tool 

and present the design ensued after our alterations. Finally, we assess the 

benefits of the refactoring process.  

The Parmenidian Truth tool visualizes the evolution of relational databases’ 

schemata. It takes as input a set of data definition files that contain the history 

of a database and produces as output the Diachronic Graph, a graph whose 

nodes correspond to the tables that have existed in database’s history for at 

least one version and edges model the foreign key constraints that have 

identified between the tables for at least one version. Apart from the 

Diachronic Graph, the Parmenidian Truth tool produces a PowerPoint 

presentation, where each slide illustrates a graph modeling of each version 

with the including tables depicted as nodes and the foreign keys as edges. The 

graph representation of a database’s schema history was introduced in 

[VKZZ17] facilitating the correlation of graph-related metrics with evolution-

related features. In this context, this tool also computes a set of graph-based 

measures for each version as well as for the entire history of the database.         

3.1 Aim of Refactoring 

One of the main objectives of this master thesis is to utilize the functionalities 

provided by the Parmenidian Truth tool. The fulfillment of new requirements 

and their adaptation to the existing code entail the understanding of tool’s 

design and the evaluation of its quality. In a first step, we have to obtain an 

insight of Parmenidian Truth’s structure disclosing either potential violations 

or lack of design principles, which might exacerbate the extension process 

and complicate forthcoming maintenance efforts. In a next step, we attempt to 

apply a series of modifications to source code in order to improve the design 

of the software in a way that will favor the extensibility and maintainability of 

the tool. This process is known with the term refactoring, which is explained 

in more detail in the following paragraph. 

Terminology. Refactoring is used to describe a change made to the internal 

structure of software to make it easier to understand and cheaper to modify 

without changing its observable behavior [FBB+99].  

The rationale behind the necessity of this process derives from the fact that we 

inherited the source code of the tool, so understanding its design and 

determining the margins for improvements is considered to be of great 

importance for the subsequent process of adding new features to the tool and 

exploiting them in the application presented in Chapter 5.  
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3.2 Initial Architecture and Design 

In this subsection, we discuss the architecture of Parmenidian Truth before 

our refactoring took place. At first, we utilize diagram generators that offer 

graphical representations of the subject system at high – level, presenting the 

dependencies of its packages and also at package – level, revealing the 

relationships between the entities included. 

3.2.1 Package Diagram 
Figure 3.2 depicts the initial package diagram of Parmenidian Truth system 

before the refactoring. Each package represents a subsystem that offers a 

unique functionality required by the system in order to fulfill the 

requirements that this tool satisfies. As mentioned before, Parmenidian 

Truth’s main functionality is the visualization of a database’s schema as a 

PowerPoint presentation, so its subsystems are expected to cooperate in a way 

that this functionality is provided. 

Figure 3.1 summarizes the functionalities provided by each subsystem. 

Subsystem Functionality 

gui Contains graphical interface – related classes 

core Operating as manager of the use cases system 

performs 

export Includes the classes that offer export – related 

operations 

model.Loader Organizing data using externalTools 

subsystem 

model Contains domain classes of the system 

externalTools Consists of Hecate tool’s classes that parse 

SQL files 

parmenidianEnumerations Comprises useful enumerations 

Figure 3.1 Functionalities of Subsystems 

It is important to clarify that the externalTools package consists of classes of the 

Hecate tool, which is a different system and for this reason it was not 

modified during the refactoring process. 
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Figure 3.2 Initial Package Diagram of Parmenidian Truth 

3.2.2 Class Diagrams 
As mentioned before, each subsystem is supposed to offer a functionality that 

derives from the cooperation of its components. This means that the classes of 

each package are supposed to be strongly correlated to one another, aiming at 

serving a single purpose. The class diagrams of this subsection show the 

associations between the elements of each package giving a sense of the 

degree of cohesion within it.  

Figure 3.3 corresponds to the class diagram of the gui package. 
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Figure 3.3 Class Diagram of the Gui Package 

Figure 3.4 depicts the class diagram of the core package. 
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Figure 3.4 Class Diagram of the Core Package 

Figure 3.5 shows the classes included in the export package. 

 

Figure 3.5 Class Diagram of the Export Package 
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Figure 3.6 presents the classes the model.Loader package consists of. 

 

Figure 3.6 Class Diagram of the Model.Loader Package 

Class diagram of the model package is shown in Figure 3.7. 
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Figure 3.7 Class Diagram of the Model Package 
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Class diagram of the parmenidianEnumerations package is depicted in Figure 

3.8. 

 

Figure 3.8 Class Diagram of the ParmenidianEnumerations Package 

3.2.3 Classes Collaborations Responsibilities (CRC) Method 
A more fine – grained analysis that is not constrained within the limits of a 

package is carried out to provide a more comprehensive picture of the 

relationships between the elements of the different subsystems. Thus, the CRC 

method [BeCu89] is applied for each class of each package of Parmenidian 

Truth tool. In the context of the refactoring process, CRC cards are expected to 

be useful in our attempt to acquire a general overview of the responsibilities 

assigned to each class and also a more clear perception of the object 

interactions. In this way, we seek to identify classes which might encompass 

more responsibilities than these that are supposed to discharge and evaluate 

the degree of the coupling among objects. 

Figures 3.9, 3.10, 3.11, 3.12, 3.13 and 3.14 depict the CRC cards for each 

package of the tool. 
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Figure 3.9 CRC Cards of the Classes of Package Core 

 

Figure 3.10 CRC Cards of the Classes of Package Export 
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Figure 3.11 CRC Cards of the Classes of Package Gui 
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Figure 3.12 CRC Cards of the Classes of Package Model.Loader 
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Figure 3.13 CRC Cards of the Classes of Package Model 
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Figure 3.14 CRC Cards of the Classes of Package ParmenidianEnumerations 

3.3 Refactoring Actions 

The previous representations were helpful in our attempt to detect design 

defects and prioritize them based on their frequency of occurrence and the 

implications they create in case of modifying the source code. The 

classification of the defects is based on the taxonomy of [FBB+99] and is as 

follows: 

 Package Level Issues 

 God Classes 

 Lack of APIs 

 Duplicated Code 

 Misplaced Methods 

 Redundant Components 

 Convention Violations 

The following sections describe the previous defects in detail and present the 

refactoring techniques applied for improving tool’s design and increasing its 

adaptability to imminent extension or maintenance actions. 

3.3.1 Package Level Issues 
The refactoring process starts from the highest level of abstraction, which is 

the package level. In this level, the most obvious and important violation is 

the cyclic dependency between model.Loader and model packages. One possible 

and straightforward approach to deal with this defect would be to merge the 

two packages, especially if we take into account the strong correlation 

between them. However, this option would significantly increase the 

complexity of the new package’s design.  
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We finally decided that it would be more efficient to identify the elements of 

the two packages that cause the cycle and transfer them to a new package. 

Moreover, the use of model.Loader’s elements in the DiachronicGraph class of 

the model package created the aforementioned cyclic dependency which was 

broken through creating the dataImport package containing the classes of 

model.Loader and removing the dependencies of the model’s classes from the 

new package in a higher level. 

Another design weakness we observed was the total absence of cohesion 

between the classes of the export package. In order to increase the coherence of 

the package, we transferred the ExportManager class from the core package to 

the export one, based on the fact that this class is the common client of export’s 

elements. It is noteworthy to mention that there appears to be no resemblance 

in the implementation of the export package’s classes and as a result there 

were no any other available options to increase the cohesion of this package.    

3.3.2 God Classes 
The term “God class” refers to a class that encapsulates more than one 

responsibility, violating the Single – Responsibility Principle (SRP). In 

[MaMa06], the Single – Responsibility Principle is defined as “A class should 

have only one reason to change”. According to this principle, each 

responsibility assigned to a class is considered to be a reason to modify the 

corresponding class. Every change in the requirements of a system is applied 

via altering the responsibilities of its modules, and if a module undertakes 

two or more responsibilities it would be difficult to adjust any kind of 

changes related to one responsibility in a way that would not affect parts of 

the module that fulfill other  purposes. 

The ordinary way of dealing with this kind of design defect is to discriminate 

the methods within a class that were created to serve different purposes and 

extract each group of methods in new classes. 

In the initial version of the Parmenidian Truth system, a module that meets 

the criteria in order to be classified as a “God class” is that of DiachronicGraph 

in the model package. This class encapsulates responsibilities related to graph 

manipulation and also those for the generation of reports that include various 

graph metrics.  

Figure 3.15 verifies this assertion by depicting methods and attributes of the 

DiachronicGraph class as squares and circles respectively, where each edge 

between a square and a circle denote that the method has access to the 

corresponding attribute. 
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It is obvious that there are two discrete clusters of methods, which do not 

have access in common attributes. This definitely shows that the methods of 

each cluster fulfill different requirements and an extraction of one of the two 

clusters in a new class is necessary. Our decision was to extract the group of 

methods related to the generation of reports, which consisted of two discrete 

sub-groups and contained additional defects that we describe in next 

subsections. As a result, the DiachronicGraph class remained only with graph – 

related responsibilities, increasing in this way the cohesion among the 

methods of the class and abiding by the SRP.     

3.3.3 Lack of APIs 
Another design defect we observed was the lack of APIs, whose presence in a 

system is considered to be crucial, especially when the requirements of the 

system have to be modified or expanded. APIs’ main role is that of 

determining a set of functionalities that another class, called “client”, needs 

and imposing the implementation of these methods in classes that implement 

them. In this way, it is feasible to make “client” classes independent from 

changes occurring in concrete classes and agnostic to the details of the 

implementation.  

In a first step, we introduced an interface that serves as a contract between the 

Gui class of package gui and the ParmenidianTruthManager class of package 

core. The IParmenidianTruth interface contains methods required by Gui and 

implemented by ParmenidianTruthManager. In this way, the Gui class does not 

depend directly on classes of the core package and becomes independent of 

the changes made in these modules. In Figure 3.16 the class diagram of the 

previous classes after the insertion of the interface is shown. 
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Figure 3.15 Methods (squares) and Attributes (circles) of the DiachronicGraph Class 
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Figure 3.16 Class Diagram of the IParmenidianTruth interface and its client 

Our next change concerns the dataImport package, which consists of classes 

responsible for parsing sql files in order to create objects of the model package. 

The “clients” of this package are the ModelManager and the 

ParmenidianTruthManager of the core package and for this reason we created 

the interfaces IParser and IHecateImportManager implemented by the Parser 

and HecateImportManager classes respectively.  The presence of the two 

interfaces is regarded necessary since the clients are different and we attempt 

to comply with the Interface – Segregation Principle (ISP), which, according to 

[Mart00], can be expressed as “Many client specific interfaces are better than 

one general purpose interface”. The obedience of this principle ensures that 
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we can avoid forming clients’ dependencies upon methods that clients do not 

use and increase the cohesion within each interface. Apart from the two 

aforementioned interfaces, we added the IGraphmlLoader implemented by the 

GraphmlLoader class. In Figure 3.17, the class diagram of these interfaces along 

with their clients is depicted. 

 

Figure 3.17 Class Diagram of the Interfaces of Package DataImport and their 

Clients 

The model package is considered as the most complex package in terms of the 

dependencies between its classes, so it is crucial to recognize those modules 

that are important for the other packages and create interfaces that will 

determine the functionalities required by the clients and diminish the impact 
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of possible changes introduced in classes of this package.  Figures 3.18, 3.19 

and 3.20 show the interfaces included in the model package. 

Although IDiachronicGraph and IMetricsReport are used by the same client the 

functionalities they provide are uncorrelated between each other and that was 

the main reason for creating two interfaces instead of a large one that would 

be more prone to changes and less coherent. 

The rationale for creating the IGraphMetrics interface was the fact that the 

existing implementations concerning the metrics produced by Parmenidian 

Truth tool were explicitly specified for csv files. In order to provide a set of 

methods that can be utilized in a subsequent different implementation, we 

created the IGraphMetrics interface with the role of clients assigned to the 

DiachronicGraph and the DBVersion classes. 

The final introduction of an interface concerns the export package which 

contains classes responsible for creating a PowerPoint presentation and a 

video stream of the schema evolution of a database. The absence of cohesion 

between these classes was the main reason for transferring the ExportManager 

class from the core package to the export one and creating an interface that 

offers functionalities required by the ParmenidianTruthManager class. Figure 

3.21 depicts the aforementioned interface with its client. 
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Figure 3.18 Class Diagram of the IDiachronicGraph Interface and its Client 
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Figure 3.19 Class Diagram of the IMetricsReport Interface and its Client 
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Figure 3.20 Class Diagram of the IGraphMetrics Interface and its Clients 
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Figure 3.21 Class Diagram of the IExportManager Interface and its client 

3.3.4 Duplicated Code 
The implementation of the methods which are responsible for the generation 

of the reports that contain various metrics consists of three discrete parts. The 

first one is related to the creation of the csv file which contains the results. The 

second part includes the computation of the metrics selected by the user. 

Finally, the third part registers the results of the second part to the file created 

in the first part. Irrespective of the metrics chosen, the first and the third parts 

are implemented in the same way for all the different metrics, while the 

second one can be classified in two categories (specifically (a) metrics 



 

 

52 

 

concerning the entire graph and (b) metrics related to individual nodes) as far 

as its implementation is concerned. It is obvious that this part is an example of 

duplicated code. 

Taking into account the recommended methods for dealing with duplicated 

code, we created the MetricsReportEngine abstract class. This class contains a 

template method, which defines the execution order of the aforementioned 

parts. As mentioned, the first and the third parts are the same for all the 

metrics and for this reason they are implemented in the abstract class. On the 

contrary, the second part for the metrics computation is separated into graph 

and vertex related implementations. This difference resulted in the creation of 

the subclasses GraphMetricsReport and VertexMetricsReport, each of them 

implementing the corresponding metric computation related code. Figure 3.22 

shows the class diagram of the previous classes. 

 

Figure 3.22 Class Diagram of the Classes Responsible for Metrics Reports 

Generation 
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Another occurrence of duplicated code was identified in the HecateManager 

and the HecateScript classes, which both contained the same auxiliary class, 

called SQLFileFilter. One of the packages included in ParmenidianTruth tool 

was the fileFilter package containing the SQLFileFilter and the ImageFileFilter 

classes used by the VideoGenerator class. However, this package remained 

unused and in order to eliminate the duplicated code, the classes of the 

fileFilter package can be utilized instead of the auxiliary ones. 

3.3.5 Misplaced Methods 
As described in subsection 3.3.2, the DiachronicGraph class consisted of 

methods responsible for the generation of metrics reports and methods used 

for graph manipulation functionalities. From our perspective, the methods 

related to the generation of reports resided in a class irrelevant to the 

functionality they offer and it would be more sensible to be assigned in new 

classes described in subsection 3.3.4. 

3.3.6 Redundant Components 
The hecateImports package existed in ParmenidianTruth’s source code, 

containing all the classes provided by the externalTools package. The classes of 

the hecateImports package were not exploited by the other packages and for 

this reason we decided to remove it. 

3.3.7 Convention Violations 
As far as the conventions abidance is concerned, we utilized a checkstyle tool 

created by A. Papamichail, so as to identify potential violations that exist in 

ParmenidianTruth. These violations concern the following conventions: 

 Name conventions 

 Method parameter conventions 

 Class size conventions 

Figure 3.23 depicts the results provided by the tool prior and after the 

refactoring process. The horizontal axis includes the name of each class and 

the vertical the number of the violations detected. 
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Figure 3.23 Checkstyle Violations Before and After the Refactoring Process 

3.4 Testing 

In this section, we describe the tests we applied in order to evaluate the 

correctness of our modifications. Using the unit testing framework for Java, 

JUnit, we created a test case for each of the classes that we had either added or 

changed. In most cases, we utilized Mockito [Fabe07], a mocking framework 

that allowed us to create objects that simulate the behavior of real objects, 

without their dependencies. 

The ReportFactory class contains only one method that creates the object 

responsible for the generation of metrics reports. Using a mock object of the 

DiachronicGraph class, we confirmed that this object is created correctly. 

As for the tests performed for the abstract class that determines the execution 

order for the creation of the reports, MetricsReportEngine, and its subclasses 

GraphMetricsReport and VertexMetricsReport, we used mocking as well as 

spying techniques. Spying is a functionality provided by the Mockito 

framework and allows us to call all the normal methods of an object while still 

tracking every interaction. The tests for the subclasses examined the 

initializations and the non – void methods. For testing the creation of objects 

that generate graph and vertex metrics reports we used spies that let us 

monitor the calculation of the metrics. 

Apart from the tests designed for the new classes, we also assessed the 

behavior of the DiachronicGraph class which was the subject to our most 
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alterations. The results of the testing process confirmed that the object 

construction and the operation of the methods involved are the expected ones. 

Finally, except for the JUnit tests, we performed black – box testing for all the 

parts that we modified and were responsible for the creation of the metrics 

reports. More precisely, we compared the files that ParmenidianTruth 

exported prior to our modifications with the ones created after our 

modifications. In all cases, each of them concerning different dataset, there 

was no difference between the corresponding files.    

3.5 Final Architecture and Design 

3.5.1 Package Diagram 
This section includes the final high – level architecture of ParmenidianTruth 

via the package diagram along with the corresponding dependencies, 

depicted in Figure 3.24. 

 

Figure 3.24 Updated Package Diagram of ParmenidianTruth 
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3.5.2 Class Diagrams 
The following class diagrams present the new structure of each package of 

ParmenidianTruth. The parmenidianEnumerations and externalTools packages 

are omitted due to the fact that they were not altered during the refactoring 

process and so their internal structure remained identical to the previous one. 

Figure 3.25 depicts the class diagram of the gui package. 

 

Figure 3.25 Updated Class Diagram of the Gui Package 
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Figure 3.26 shows the class diagram of the core package. 

 

Figure 3.26 Updated Class Diagram of the Core Package 
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Figure 3.27 presents the class diagram of the dataImport package. 

 

Figure 3.27 Updated Class Diagram of the DataImport Package 

Figure 3.28 shows the class diagram of the export package. 

 

Figure 3.28 Updated Class Diagram of the Export Package 
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Figure 3.29 depicts the class diagram of the model package. 

 

Figure 3.29 Updated Class Diagram of the Model Package 
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3.6 Evaluation 

In this section, we attempt to evaluate the software quality of 

ParmenidianTruth, after the refactoring process, using various metrics. This 

evaluation provides an overview of the enhancements that refactoring actions 

achieved in design level by comparing the values of the metrics before and 

after the refactoring procedure. 

3.6.1 Abstractness – Instability Graph 
In this step, we were interested in identifying how our modifications affected 

the packages of the tool. To this end, we used the instability and the 

abstractness metrics [Mart00] with the former metric used to reveal the effort 

required to make changes in one package and the latter representing the 

degree of the abstractness within each package. The instability metric assesses 

the degree of the violation of Stable Dependencies Principle (SDP), which 

defines as unstable a package that has many dependencies upon other 

packages. The violation of this principle results in creating a system that is not 

flexible to changes, since minor changes in one package can affect many 

others that depend upon it. The abstractness metric evaluates the abidance to 

Stable Abstractions Principle (SAP), which determines as stable a package that 

consists of many abstract classes and interfaces. 

Terminology. The instability metric is given by the following equation 

𝐼 =  
𝐶𝑒

𝐶𝑎 + 𝐶𝑒
 

where I is the instability of the package, Ce the number of outgoing edges to 

packages upon which the package depends and Ca the number of incoming 

edges from packages that depend upon it. If I = 0, the corresponding package 

is independent and thus is considered as a stable package, whereas a package 

with I = 1 means that there are no any other packages that depend upon it and 

so the package is considered to be unstable since it only depends on other 

packages.      

The abstractness metric is expressed as follows 

𝐴 =  
𝑁𝑎

𝑁𝑐
 

where A is the abstractness of the package, Na the number of the abstract 

classes and the interfaces included in the package and Nc the number of its 

classes. If A = 0, the package consists exclusively of concrete classes and the 

other packages that depend upon this package are prone to changes applied 
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to each class of the package. On the other hand, if A = 1 the package comprises 

just a contract, a case which should be avoided due to the fact that a package 

is supposed to contain a set of modules that depend upon each other aiming 

at providing a single functionality. 

At this point, we should mention that for the evaluation of the refactoring 

process we exploited Structure Analysis for Java (STAN) [Buga07], which is a 

tool that offers a set of code quality metrics.   

Figures 3.30 and 3.31 depict these metrics for ParmenidianTruth before and 

after our refactoring actions. The horizontal axis represents the abstractness of 

the packages and the vertical axis their instability. 

 

Figure 3.30 Abstractness-Instability Graph Before Refactoring Process 
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Figure 3.31 Abstractness-Instability Graph After Refactoring Process 

It is worth mentioning that Figure 3.30 reveals the total absence of 

abstractions for the initial design of ParmenidianTruth tool, eliminating any 

possibility for extension, since it is difficult to predict the effects each 

modification in one package would create in the other ones. On the other 

hand, it is obvious in Figure 3.31 that the refactoring process increased the 

potentials for introducing new functionalities in ParmenidianTruth software 

without having to alter its subsystems to a large extent. This is feasible due to 

the addition of abstractions in almost all packages increasing their 

abstractness, combined with the reduction of the dependencies from concrete 

classes which decreases their instability. 

3.6.2   Class Level Metrics 
In a second approach concerning the improvements that our refactoring 

actions achieved in ParmenidianTruth tool, we assessed the quality of the 

classes of each package by using four metrics. Furthermore, we utilized the 

number of methods, the number of fields, the Coupling Between Objects (CBO) and 

the Lack of COhesion of Methods (LCOM).   
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Terminology. In [ChKe92], the CBO for a class is defined as the number of 

couples with other classes. In other words, an object is coupled to another one 

when it uses methods or instance variables of the other. The more coupled an 

object, the more sensitive to changes made in the parts that depends upon. 

As for LCOM, we can define it as follows [ChKe92]: 

Let C1 is a class with n methods M1, M2, …, Mn and {𝐴𝑖} the set of class’s 

attributes used by method Mi with 1 ≤ 𝑖 ≤ 𝑛. Let 𝑃 =  {(𝑀𝑖, 𝑀𝑗) | 𝐴𝑖 ∩ 𝐴𝑗 =  ∅} 

the number of pairs of methods that do not share attributes and 𝑄 =

 {(𝑀𝑖, 𝑀𝑗) | 𝐴𝑖 ∩ 𝐴𝑗 ≠  ∅} the number of pairs of methods that share at least one 

attribute. LCOM is defined as 

𝐿𝐶𝑂𝑀 =  {
𝑃 − 𝑄, 𝑖𝑓 𝑃 − 𝑄 ≥ 0
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

This metric gives us a notion of the degree of similarity of methods within a 

class, which means that the lower the value of this metric, the more cohesive 

the corresponding class. 

The next charts represent the distribution of classes of each package with 

respect to the previous mentioned metrics. We present these metrics only for 

packages that underwent a set of changes during the refactoring process. This 

is the reason we excluded from this evaluation the gui, the externalTools, the 

fileFilter and the parmenidianEnumerations packages. 

Figures 3.32, 3.33, 3.34 and 3.35 show the distribution of the classes of the core 

package with respect to the four metrics before and after the refactoring 

process. The black and gray colors denote ParmenidianTruth before and after 

the refactoring, respectively. In Figure 3.32, the horizontal axis corresponds to 

the number of methods in the core package and the vertical axis represents the 

percentage of the classes.  
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Figure 3.32 Distribution of Classes wrt Number of Methods (range) in the 

Core Package 

From Figure 3.32 it is obvious that there is an elimination of the classes with 

more than 20 methods and a considerable increase in the percentage of classes 

that encompass from 10 to 15 methods.  

In Figure 3.33, the distribution of classes with respect to the number of fields 

is depicted. The x – axis presents the number of fields in the core package and 

the y – axis the percentage of classes that include the corresponding number 

of fields.  
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Figure 3.33 Distribution of Classes wrt Number of Fields (range) in the Core 

Package 

As far as the number of fields is concerned, the refactoring process led to a 

balanced distribution between the modules that do not have any fields and 

these are the interfaces included in the core package and the remaining 

concrete classes.   

Figure 3.34 contains the distribution of classes with respect to the Coupling 

Between Objects metric. The horizontal axis represents the values of the CBO 

metric and the vertical one the percentage of the classes in the core package. 

The results for the Coupling Between Objects metric reveal a substantial 

reduction in the number of classes having dependencies in the range from 1 to 

5 classes and the equally distribution of the percentage reduction in classes 

that do not have any couplings and those that depend from 6 to 10 classes.   
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Figure 3.34 Distribution of Classes wrt CBO (range) in the Core Package 

Figure 3.35 shows the spread of the classes over the values of the Lack of 

Cohesion metric. The x and y – axes correspond to the values of LCOM metric 

and the percentage of classes, respectively.   

 

Figure 3.35 Distribution of Classes wrt LCOM (range) in the Core Package 

We should mention that the Lack of Cohesion in the core package was 

completely removed in the range from 6 to 10 and increased nearly by 10% for 

the classes that are tightly cohesive. 
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Figures 3.36, 3.37, 3.38 and 3.39 present the distribution of the classes of the 

export package for the four metrics, before and after the refactoring procedure. 

Figure 3.36 depicts the distribution of the classes with respect to the numbers 

of methods in the export package. The horizontal axis represents the number 

of methods and the vertical one the percentage of the classes. 

 

Figure 3.36 Distribution of Classes wrt Number of Methods (range) in the 

Export Package 

Figure 3.37 shows how classes are distributed with reference to the number of 

fields in the export package. The x and y – axes correspond to the number of 

fields and the percentage of classes, respectively.  

 

Figure 3.37 Distribution of Classes wrt Number of Fields (range) in the Export 

Package 
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Figure 3.38 shows the distribution of the classes with regard to the CBO 

metric in the export package. The horizontal axis includes the values of the 

CBO metric and the vertical one the number of classes expressed with 

reference to the total number of classes.  

 

Figure 3.38 Distribution of Classes wrt CBO (range) in the Export Package 

Figure 3.39 depicts the distribution of the classes with respect to the LCOM 

metric in the export package. The x and y – axes represent the values of the 

LCOM metric and the percentage of the classes, respectively. 

 

Figure 3.39 Distribution of Classes wrt LCOM (range) in the Export Package 
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To summarize the results for the export package, there were some minor 

fluctuations in the number of methods, the number of fields and the values of 

LCOM and a 20% reduction in the CBO metric in the range from 1 to 5. 

In Figures 3.40, 3.41, 3.42 and 3.43 the number of classes with regard to the 

metrics for the model package is shown. 

Figure 3.40 shows the distribution of the classes with respect to the number of 

methods in the model package. The horizontal axis corresponds to the number 

of methods and the vertical axis represents the relative number of the classes. 

 

Figure 3.40 Distribution of Classes wrt Number of Methods (range) in the 

Model Package 

In Figure 3.41, the distribution of the classes with reference to the number of 

fields in the model package is presented. The x and y – axes denote the number 

of fields and the percentage of the classes, respectively. 
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Figure 3.41 Distribution of Classes wrt Number of Fields (range) in the Model 

Package 

Figure 3.42 shows how the classes are divided with respect to the CBO metric 

in the model package. The horizontal axis includes the values of the CBO 

metric and the vertical one the relative number of the classes.   

 

Figure 3.42 Distribution of Classes wrt CBO (range) in the Model Package 
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In Figure 3.43, the distribution of the classes with regard to the LCOM metric 

in the model package is presented. The x and y – axes represent the values of 

the LCOM metric and the percentage of the classes, respectively. 

 

Figure 3.43 Distribution of Classes wrt LCOM (range) in the Model Package 

From the previous figures, we can claim that we managed to reduce the 
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number of modules without fields by introducing interfaces. However, there 

appears a small increase in the number of classes with CBO greater than 10 

and a significant growth in the number of classes with LCOM in the range of 

5 to 10. 

The Figures 3.44, 3.45, 3.46 and 3.47 depict the distribution of the classes of the 

dataImport package concerning the four metrics. 

In Figure 3.44, the division of the classes with reference to the number of the 

methods in the dataImport package is shown. The x – axis correspond to the 

number of the methods and the y – axis to the percentage of the classes.  
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Figure 3.44 Distribution of Classes wrt Number of Methods (range) in the 

DataImport Package 

Figure 3.45 depicts the distribution of the classes with respect to the number 

of the fields in the dataImport package. The horizontal axis represents the 

number of the fields and the vertical one the relative number of the classes. 

 

Figure 3.45 Distribution of Classes wrt Number of Fields (range) in the 

DataImport Package 
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In Figure 3.46, the distribution of the classes with respect to the CBO metric in 

the dataImport package is presented. The x and y – axes correspond to the 

values of the CBO metric and the percentage of the classes, respectively.  

 

Figure 3.46 Distribution of Classes wrt CBO (range) in the DataImport 

Package 

Figure 3.47 depicts the distribution of the classes with regard to the LCOM 

metric in the dataImport package. The horizontal axis represents the values of 

the LCOM metric and the vertical one the relative number of the classes. 

 

Figure 3.47 Distribution of Classes wrt LCOM (range) in the DataImport 

Package 
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To synopsize the improvements achieved in the modules of the Parmenidian 

Truth tool through the refactoring process, we give a brief description of the 

enhancements in the following figure. 

Subsystem # methods # fields CBO LCOM 

core  30% less 

classes with 

more than 20 

methods 

 40% more 

classes with 

10 to 15 

methods 

 Balanced 

distribution 

between 

classes with 

no fields and 

those with 

less than 5 

fields 

 50% less 

classes with 

CBO in the 

range 1 to 5 

 30% less 

classes with 

LCOM in the 

range 6 to 10 

 10% more 

tightly 

cohesive 

classes 

export  Minor 

changes wrt 

the number 

of methods 

 9% less 

classes with 

at least 1 field 

 20% less 

classes with 

CBO in the 

range 1 to 5 

 Small 

changes wrt 

the LCOM 

metric  

model  Nearly 10% 

less classes 

with more 

than 20 

methods 

 16% more 

modules with 

no fields 

(interfaces) 

 A small 

increase (6%) 

in the 

number of 

classes with  

CBO in the 

range 11 to 15 

 10% more 

classes with 

LCOM in the 

range 6 to 10 

dataImport  77% of the 

modules with 

less than 5 

methods 

 77% of the 

modules with 

no fields 

 78% of the 

modules  

with CBO in 

the range 1 to 

5 

 62% of the 

modules 

with LCOM 

in the range 

1 to 5 

Figure 3.48 Summary of the Improvements of the Refactoring Process   

3.7   Summary of Refactoring Results 

Concluding this chapter, we summarize our actions and results as follows: 

 We have eliminated violations of the Single – Responsibility Principle 

by extracting methods from classes that include more than one 

responsibility. 
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 We have increased Parmenidian Truth’s expandability and immunity 

to modifications by introducing a set of APIs. 

 We have eliminated duplicated code by utilizing the template method 

design pattern.   

 We have increased cohesion of methods by identifying misplaced 

methods and assigning them in new classes. 

 We have reduced the complexity of the code and facilitating its 

evolvement by removing redundant components. 

 We have complied with code conventions by identifying related 

violations and making the required adjustments. 

 We have verified the correctness of our modifications by creating a test 

case for each of the modules we either modified or added.  
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CHAPTER 4.  

TABLE TOPOLOGY AND EVOLUTION 

4.1 Experimental Setup 

4.2 Distribution of Tables over Degrees 

4.3  Table Topological Categories 

4.4 Relationship between Tables’ Topological Categories and their Properties 

4.5 Summary of Findings 

 

As already discussed in previous sections, we are equipped with both the 

model and the tool support to treat database schemata as graphs, in which 

nodes and edges represent the tables of the dataset and the foreign key 

constraints between tables, respectively. Given that, we can exploit the 

information on the position of a table in the graph to see whether such 

information can be correlated to the evolution activity of the table. We use the 

term “table topology” in its etymological sense, much like as it is also used 

when referring to network topology, meaning the pattern of edges 

surrounding nodes.  

In this chapter, our main objective is to study the topology of the tables in 5 

open-source datasets and identify possible patterns concerning the evolution 

of the tables with reference to the topological categories they belong to. In the 

first section, we introduce the datasets used in our study and describe the 
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preprocessing actions taken to eliminate data that would not help us arrive at 

valid conclusions. The second section presents the distribution of the tables 

over their in-, out- and total degrees, information exploited in the following 

section to define the topological categories. The third section includes, apart 

from the determination of the topological categories, a set of classification 

rules applied to classify tables in these categories. The fourth section examines 

the evolution of tables with respect to their topological categories and other 

properties including tables’ duration, survival potential, version of birth, 

update activity and size change. Finally, in the last section we summarize the 

main conclusions derived from our study and evaluate the extent to which 

our initial research questions are addressed.         

4.1 Experimental Setup 

In this section we present the experimental setup of our study. First, we start 

with the main features of the 6 open-source datasets utilized in our study. 

Next, we report on the preprocessing actions that we have taken in order to 

exclude information that is considered to be useless in the context of this 

research. At this point, it is worth mentioning that all the graph–related 

metrics we use to study the schema and its evolution are obtained via the 

Parmenidian Truth tool whose main functionalities were described in more 

detail in Chapter 3.      

4.1.1 Datasets 

The datasets concerning this study support projects from different domains 

and have a common feature, which is the availability of their source files that 

allows us to conduct a research into the evolution of their structure. Figure 4.1 

synopsizes for each dataset the information about the number of the tables 

and the foreign keys at the first version, the last version and the Diachronic 

Graph. The statistics concerning the Diachronic Graph express the total 

number of unique tables or foreign keys that exist over the period that 

database schema’s evolution is examined.       

Atlas Trigger is the dataset that supports the ATLAS experiment which is one 

of the four experiments conducted at the Large Hadron Collider in the 

facilities of CERN in Geneva, Switzerland. The schema history of Atlas 

Trigger consists of 85 versions including 88 tables and 88 foreign key 

constraints. It started its life with 56 tables and 61 foreign keys and ended up 
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with 73 tables and 63 foreign keys. The growth of tables as well as that of 

foreign keys between the first and the last version of its life is positive, 

reaching the values of 30% and 3%, respectively.  

BioSQL is a generic relational model for storing sequences, features and 

ontologies derived from different sources aiming at facilitating the 

interoperability of projects implemented by the Open Bioinformatics 

Foundation (OBF). Our study concerns 47 versions that include 45 tables and 

79 foreign keys. The first version includes 21 tables and 17 foreign keys and 

the last one 28 tables and 43 foreign keys resulting in a growth of 33% and 

153% for tables and foreign keys, respectively. 

The Cern Advanced STORage (CASTOR) manager is the next database whose 

schema evolution is being examined in the current study and its’ main goal is 

to store and provide remote access to physics data. Its’ 194 versions comprise 

91 tables and 13 foreign key constraints, with the corresponding numbers in 

the first and last version to be 62, 6 and 74, 10 respectively. The growth in the 

number of tables and foreign keys is 19% and 67% in the order given. 

The Enabling Grids for E-sciencE (EGEE) project provided a world-wide 

infrastructure for e-science, allowing the exploitation of its computer power 

and the data storage capacity by numerous research groups around the 

world. For the period examined, this dataset consists of 17 versions including 

12 tables and 6 foreign keys, starts its life with 6 tables and 3 foreign keys and 

eventually finishes up with 10 tables and 4 foreign keys. The respective 

growth in the number of tables is 67% and in the number of foreign key 

constraints 33%. 

SlashCode is a content management system that initially used to support 

Slashdot, a social news website. Its’ 399 versions encompass 126 tables and 47 

foreign keys, with the first version comprising 42 tables but no foreign keys as 

it is also the case for the last version where the number of tables reaches the 

value of 87. The corresponding growth rate of the tables between the first and 

the final version is 107%. 

Zabbix is an open – source monitoring software for networks, operating 

systems and applications, which comprises 160 versions with 58 tables and 38 

foreign key constraints. The originating version of Zabbix includes 15 tables 

and 10 foreign keys and the last one 48 tables and 2 foreign keys resulting in a 

growth rate of 220% for tables and -80% for foreign keys. 

It is noteworthy that in all the datasets the growth rate of tables is positive, a 

trend that also holds for foreign keys, with the exceptions of Zabbix and 
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SlashCode, where in the former there appears a significant decline in the 

number of foreign keys and in the latter a total absence of foreign keys in the 

first and the last versions. Figure 4.2 depicts the growth rate of tables and 

foreign keys for each of the aforementioned datasets.      

 

Figure 4.1 Statistics for the datasets used in our study, [VKZZ17] 

 

Figure 4.2 Growth Rate of Tables and Foreign Keys 

4.1.2 Data Preprocessing 

In this subsection we discuss the interventions we performed to the collected 

data, along with decisions taken to aid the extraction of valid conclusions. As 

already explained in [VKZZ17], two of the datasets, SlashCode and Zabbix, 

demonstrate the explicit removals of foreign keys from the schema, with the 

former also introducing foreign keys late in the schema history. We have 
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decided to omit the periods where foreign keys were massively absent from 

the schema, since no table could possibly have any topological properties 

during these periods. Figure 4.3 depicts the evolution of foreign keys in these 

datasets. 

 

Figure 4.3 Evolution of Foreign Keys in SlashCode and Zabbix 
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after the version 260 after which we observe a continuing decrease in the 

number of foreign keys until the last version examined. As a result, we opted 

for limiting our study in the interval bounded by versions 74 and 260. 

In a similar way, we examined the evolution of foreign keys in the Zabbix 

dataset and identified a steep decline in the number of foreign keys after 

version 150. Thus, we constrain our research in the period defined by versions 

1 and 150.  

4.2 Distribution of Tables over Degrees   

As already mentioned in the introduction of this chapter, our main goal is to 

study the evolution of the tables with respect to the topological categories 

they belong to. Thus, prior to specifying the categories, it is vital to 

understand and obtain a comprehensive overview of the distribution of tables 

over the total degrees, in-degrees and out-degrees at the Diachronic Graph. 

Having done that, we will be able to assign the tables in the corresponding 

categories and study their evolution throughout their existence in the 

respective database schemata. 

Figure 4.4 presents the distribution of the tables over their total degrees at the 

Diachronic Graph for the 6 studied datasets. The graphical part provides us 

with some interesting insights about the breakdown of tables over degrees 

summarized as follows: 

 In 3 out of the 6 datasets, we encounter a substantial majority of zero-

degree tables that in all cases surpasses the half of the respective total 

number of tables.   

 In 4 out of the 6 datasets, there appears a decrease in the number of 

tables as the degree increases. This pattern, which is described in 

[VKZZ19] as a monotone decrease pattern, is the case for all the datasets 

with the exceptions of Atlas and BioSQL.   

 Atlas and BioSQL present a different behavior, with the former 

following the so-called battleship pattern [VKZZ19], which starts with an 

increase in the number of including tables of degree from 0 to 2 

followed by a significant decrease in the percentages of tables of higher 

degrees. On the contrary, the latter dataset demonstrates a “balanced” 

distribution of its tables among the different degrees with the majority 

of tables clustered in the degrees of 1 and 2. 
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Figure 4.4 Distribution of Tables over Total Degrees 

The distribution of the tables over their total degrees at the Diachronic Graph 

offered us the first useful information which is the strong presence of tables 

that have no references to other tables throughout their entire lives. 
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Our next step concerns a more in-depth analysis of tables’ topology which 

will facilitate the process of defining the different table categories based on 

their in- and out-degrees at the Diachronic Graph. Figure 4.5 depicts the 

distribution of the tables of the datasets studied over their in-degrees. 

The most intriguing observations concerning the breakdown of tables per in-

degree at the Diachronic Graph are outlined in the following list: 

 The tables with zero in-degree are the dominating ones, accounting for 

at least the 55% of the overall table population. Furthermore, in all the 

datasets, the number of tables in the “zero in-degree” bucket is an 

absolute majority, and frequently, a very large one.  

 The trend for decreasing numbers of tables as the in-degree increases is 

also present in this breakdown and it holds in all the datasets. We 

should clarify that the increasing percentages of tables of in-degree 

higher than three are due to the aggregation nature of this category and 

this is the reason why the decrease in the number of tables is not 

shown as monotone in Figure 4.5.  

 The tables with in-degree greater than 2 constitute a small minority 

that corresponds to values less than 4% in the datasets Castor, Egee 

and SlashCode. Compared to those datasets, Atlas, BioSQL and Zabbix 

encompass more tables of high in-degree, though the respective 

percentages do not exceed the value of 15%. 

In a nutshell, we notice that few tables ever get an incoming edge and the 

probability of having more incoming edges monotonically decreases with the 

in-degree.    
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Figure 4.5 Distribution of Tables over In-Degrees 

Figure 4.6 shows the distribution of the tables of the 6 datasets with reference 

to their out-degrees at the Diachronic Graph. As far as this distribution is 
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and 2.  Especially, the tables of out-degree 2 account for the one third of 

the total table population in both datasets. After manual inspection, we 

attribute this phenomenon to the existence of several N:M 

relationships, modeled via tables of out-degree exactly equal to 2. 

 As for the tables of out-degree higher than 2, they represent a small 

population in all the datasets excluding that of BioSQL. Compared to 

tables of in-degree higher than 2, tables of high out-degree are less and 

this can be attributed to the presence of lookup tables which attract a 

high number of incoming edges from other tables. 

 

Figure 4.6 Distribution of Tables over Out-Degrees 
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BioSQL, in which high out-degree tables are more than those with high in-

degree. 

4.3 Table Topological Categories 

After having acquired a general overview of how tables are spread with 

respect to their in- , out- and total degrees at the Diachronic Graph, we now 

shift our focus to the combination of in- and out- degrees in order to define 

the distinctive categories utilized for studying tables’ evolution with reference 

to the topological categories. 

4.3.1 Definition of Topological Categories 

In this subsection, we present the distinctive topological categories of tables 

based on their references to and from other tables. Figure 4.7 depicts the 

distribution of tables over the combination of their in- and out-degrees at the 

Diachronic Graph for the 6 datasets. 

 

Figure 4.7 Breakdown of tables wrt In- and Out-Degrees at the Diachronic 

Graph 
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In the sequel, we introduce the different topological categories, which are 

determined on the basis of the topology of the Diachronic Graph. 

The most obvious information portrayed in Figure 4.7 is the strong presence 

of tables with no inciting edges in 4 of the 6 datasets. Moreover, in two of 

these datasets, namely Castor and SlashCode, zero degree tables constitute an 

overwhelming majority. Given that our interest concerns the evolution of 

tables with respect to the graph topology, we concluded that tables without 

any references would not provide us with useful insights answering our 

research questions. Due to this, we will frequently accompany the statistical 

analyses with extra frequency tables where these tables, which from now on 

we will call isolated, are omitted and the respective percentages are counted 

over the set of tables with at least one inciting edge.  

The next category consists of tables with no incoming references and at least 

one outgoing foreign key. This category of tables, which includes populations 

varying from 7% to 62%, is identified by the label source since the tables 

contained have only references to other tables. 

The third category includes tables with only incoming references, so we 

distinct them with the label lookup. In the 6 datasets, there is a small group of 

tables that lie in this category, not exceeding the value of 36%, but we 

consider them to occupy a key role in a database’s schema as they carry 

valuable information exploited by other tables, so it is worth studying their 

evolution as a standalone group. 

The last two categories contain tables that have both in- and out-degrees. 

Although their population would not justify their division into two discrete 

groups, we assumed that there might be divergence between the tables of the 

two categories with respect to the nature of their role. The first of these two 

categories includes tables with in- and out-degrees equal to 1 and we use the 

term chain link for the participating tables, due to the fact that they operate as 

intermediate nodes in the topology of the Diachronic Graph. The second 

category, which encompasses tables with total degree greater than 2 and with 

both incoming and outgoing references, is defined with the term mini-hub 

since the tables included are neither fountains nor sinks of the graph, and 

thus, they are hub nodes in any possible path of the graph. Figure 4.8 presents 

the distribution of the tables within these two categories. 

The overall population of tables included in the last two categories ranges 

between 2% and 25% of the population of their datasets, with each dataset not 

containing more than 10 such tables. Figure 4.8 demonstrates that the mini-hub 

category is the superior one in 5 of the 6 datasets, with the corresponding 
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populations ranging from 57% to 100% with respect to the total number of 

tables included. Over the course of our study, and specifically in the phase of 

assigning a single label to each table, we realized that the number of tables 

included in the chain link category was too small and as a result they were 

absorbed by the mini-hub class, forming a unified category identified by the 

label internal. 

 

 

Figure 4.8 Breakdown of Tables over the Chain Link and Mini-Hub 

Categories 

Figure 4.9 illustrates how the categories, previously described, are determined 

based on the topology of the Diachronic Graph. 
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Name Figure Description 

ISOLATED  Tables without edges 

SOURCE  Tables with only outgoing edges 

LOOKUP 
 

Tables having only incoming edges 

CHAIN LINK  
Tables with exactly 1 incoming and 

exactly 1 outgoing edge 

MINI-HUB 
 Tables with total degree >2 and 

both incoming and outgoing edges 

Figure 4.9 Table Categories Based on the Topology of the Diachronic Graph  

4.3.2 Rules for Table Classification  

Having decided which the categories are, we are now ready to label the 

tables. Given a graph of any version of a schema’s history, it is 

straightforward to assign labels of topological categories to every table due to 

the simplicity of the patterns. However, there exist tables that change label 

throughout their history (a phenomenon that we call change-of-category) and 

as a result we end up with the following categories of tables with respect to 

their labels: 

 Single label tables, which have a unique topological label throughout 

their entire lives. 

 Multi-label tables, which have more than one label during their 

existence in the dataset. 

Figure 4.10 presents the distribution of tables between the ones with a single 

label and those with more than one label. Apart from Zabbix, in the rest of the 

datasets the majority of tables have a single label in their lives. 
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Figure 4.10 Distribution of Tables over the Single and Multi-labels Categories 

A problem that arises is that we would like to relate the labels of the tables to 

their activity profile and their survival potential and a multi-labeling scheme 

would not facilitate this attempt. To address this problem, we have manually 

inspected the tables with change-of-category and decided to assign a single 

label to each of them, since their number is so small that would not entail any 

major loss of information. We have distilled the phenomena of label changes 

for a table in the following list: 

1. Changes that include an ephemeral transition to a different category 

and the return to the former category. 

2. Changes from the isolated category to a different category. 

3. Changes soon after the table’s “birth”. 

4. Changes leading to labels assigned for a short period in terms of the 

number of versions. 

5. Changes caused by the introduction or the removal of self-references to 

the table. 

Figure 4.11 demonstrates the breakdown of multi-label tables according to the 

aforementioned enumeration of changes that induce label change. A subtle 

point to clarify is that the reported frequencies concern occurrences of label 

change and not of tables belonging to the respective category (i.e., a table can 

experience more than one label changes due to more than one types of 

changes). A second subtle point is that a single occurrence of a change may 

belong to more than one categories of the enumeration (for example, a change 

(a) from isolated to non-isolated, (b) soon after a table’s birth pertains to both 

single 

label
>1 label

Atlas 88 76 12

BioSQL 45 39 6

Castor 91 84 7

Egee 12 9 3

SlashCode 126 97 29

Zabbix 58 30 28

#Tables with…

Datasets

Total 

#tables



 

 

91 

 

these two types of changes). We resolve this issue by counting only the 

occurrence in one of the two categories: the resolution of which category to 

assign to, is done with decreasing order over the enumerated list of the above 

enumeration (i.e., an occurrence is assigned to the first category to which it 

pertains). 

 

Figure 4.11 Occurrences of Label Changes per Type of Change 

Having done all that, we discovered that the process of assigning a category 

label to multi-label tables can be automated by passing the history of labels of 

each table through a list of filters that either remove or ignore parts of the 
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rules R0-R5, but we would have misclassified few tables that eventually fire 

the rule R6. 

At this point, we should define the terms First Known Version and Most 

Frequent category which are included in Figure 4.12. The First Known Version 

of a table refers to the first version that the table is present in the database’s 

schema. The Most Frequent category for a table is the topological category with 

the highest frequency in table’s life. 

Datasets

Ephemeral 

(DO-UNDO)

ISOLATED -> 

new category

Soon after 

birth

Short - lasting 

labels

Self-

references Other

Atlas 6 0 0 1 0 7

BioSQL 0 1 0 3 5 0

Castor 2 6 0 3 0 0

Egee 0 1 1 2 0 1

SlashCode 20 3 1 0 0 5

Zabbix 0 4 2 3 0 4

Type of Change



 

 

92 

 

Figure 4.13 shows the misclassification rate of the automatic labeling process, 

in case the rule R6 was stricter allowing one instead of two categories. Except 

for the Atlas, all the datasets have the minimum misclassification rate when 

we use the most frequent category. Observe that in the case of labeling via the 

most-frequent category, the range of misclassifications is between 0% and 3%, which 

we deem really low. Although the misclassification rate in most datasets is not 

high, in the rest of our deliberations, we adopt the labels derived from the manual 

classification process, which provides a more accurate picture of tables’ 

topological categories, taking into consideration the special features of the 

tables included. 

Rule Description of Changes Specific Criteria Category Decision 

R0 No category change - The respective 

category  

R1 Ephemeral category changes 

(DO-UNDO) 

Changes must be 

successive 

The first category 

prior to the first 

change 

R2 Changing from ISOLATED to 

another category 

- The category after 

the change   

R3 Changing category soon after 

the First Known Version (FKV) 

The upper limit is 

set to 10 versions 

The category after 

the change 

R4 Changing to a category with 

short duration 

Duration should 

not exceed 10 

versions 

The category prior to 

the change 

R5 Changing category due to the 

presence of self-references  

- The category prior to 

the change 

R6 Changes not abiding by any of 

the previous rules 

- The Most Frequent 

category or the 

category at the First 

Known Version 

(FKV) 

Figure 4.12 Rules for Tables’ Categories Determination 



 

 

93 

 

Datasets #tables 

Misclassified Tables (wrt to #tables) 

Use Most Frequent 

Category Use Category at FKV 

Atlas 88 2% 0% 

BioSQL 45 2% 2% 

Castor 91 3% 7% 

Egee 12 0% 17% 

SlashCode 126 2% 5% 

Zabbix 58 2% 16% 

Figure 4.13 Misclassification Rate of Assigning Labels via the Automatic 

Process 

In the remainder of this chapter we examine how tables’ topological 

categories are related to various measures of their evolutionary behavior, such 

as their lives’ duration, their survival potential, their update activity etc. 

4.4 Relationship between Tables’ Topological Categories and 

their Properties 

Having determined the categories in the previous section, we are now capable 

of studying whether tables’ topological categories are related with various 

measures of their evolutionary activity. Before that, we provide a general 

overview of how tables are classified in the topological categories after the 

classification process we performed in the six datasets.  

Figure 4.14 depicts a heatmap with the breakdown of tables over the different 

categories defined in the forgoing section. The colors of the cells are based on 

their values creating a color scale that spans from white, soft red to intense 

red with the first indicating the lowest values, the second corresponding to 

values around the median and the last one highlighting the highest values. 

The groups with the highest cardinality, which are presented with intense red 

background color and white font, consist of isolated tables in 4 of the 6 
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datasets, in contrast to the two scientific datasets in which source tables form 

the most populated class. 

 

Figure 4.14 Breakdown of Tables over Topological Categories 

Figure 4.15 depicts the distribution of the tables in the topological categories 

with respect to the total number of the tables.  

 

Figure 4.15 Distribution of Tables over Categories including Isolated Category 

We complement the absolute breakdown of tables with a breakdown of tables 

that have at least one inciting edge. Figure 4.16 shows how tables are spread 

over the categories after having removed tables of the isolated class. We 

highlight the maximum values with red color and bold style, the values that 

exceed the average by 10% with red color and those that are equal or lower 

than the average by 10% with blue color. 

Atlas BioSQL Castor Egee SlashCode Zabbix

ISOLATED 11 2 75 6 35 22

SOURCE 38 29 6 2 22 20

LOOKUP 32 8 9 1 7 11

MINI-HUB 6 6 1 0 4 2

CHAIN LINK 1 0 0 3 0 1

Total 88 45 91 12 68 56

Total w/o 

ISO
77 43 16 6 33 34

DatasetsTopological 

Category

Atlas BioSQL Castor Egee SlashCode Zabbix

ISOLATED 13% 4% 82% 50% 51% 39%

SOURCE 43% 64% 7% 17% 32% 36%

LOOKUP 36% 18% 10% 8% 10% 20%

MINI-HUB 7% 13% 1% 0% 6% 4%

CHAIN LINK 1% 0% 0% 25% 0% 2%

Total 88 45 91 12 68 56

DatasetsTopological 

Category
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Figure 4.16 Distribution of Tables over Categories excluding Isolated 

Category 

The most interesting observations derived from the last figure can be 

summarized as follows: 

 In 4 of the 6 datasets, the source tables constitute an overwhelming 

majority accounting for the 49% at least and 67% at most with respect 

to the total number of the tables with at least one edge. 

 There appears a decreasing tendency for dependence, since the last two 

categories that represent complicated relationships include a small 

number of tables. In accordance with this tendency we see that in all 

datasets, except Egee, the lookup tables exceed the sum of mini-hub and 

chain link tables. 

 The chain link category contains a negligible portion of tables that do 

not surpass the 3% of the total number of tables, except for the Egee 

dataset in which this category encompasses the one half of the tables. 

However, the small number of tables in the Egee dataset and the total 

absence of tables of this type in three other datasets are deterrent 

factors for preserving this class as an independent category. Thus, as 

we previously mentioned, it would be wiser to incorporate them in the 

mini-hub category forming a new category for which we will use the 

label internal.     

Having presented the breakdown of values for the different topological 

categories of tables, we now move on to investigate whether the topological 

categories of tables are related to their evolutionary behavior. In the sequel, 

we will not include the Egee dataset in our study due to the small number of 

its tables and our intuition that any statistical results provided for this dataset 

would not offer a more adequate answer to the upcoming research questions.  

Atlas BioSQL Castor Egee SlashCode Zabbix

SOURCE 49% 67% 38% 33% 67% 59%

LOOKUP 42% 19% 56% 17% 21% 32%

MINI-HUB 8% 14% 6% 0% 12% 6%

CHAIN LINK 1% 0% 0% 50% 0% 3%

Total 77 43 16 6 33 34

DatasetsTopological 

Category
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4.4.1 Relationship between Topological Categories and Duration 

First, we study how table duration is related to the topological categories. The 

research question that we attempt to address in this subsection can be stated 

as follows: 

Research Question: is there a relationship between the topological category of a table 

and its duration? 

The duration of a table represents the number of versions in which the table 

exists in the dataset. We decided to use the categories of duration presented in 

[VaZS15], where the authors define three different duration categories based 

on the measure of the normalized duration. 

Terminology. The normalized duration of a table is defined as the number of 

versions that the table exists in the dataset over the total number of versions 

of its dataset.   

Figure 4.17 presents the bounds of the duration categories as they derived 

from applying a k-means clustering based on the values of the normalized 

duration. The limits provided by k-means in [VaZS15] are 0.33 and 0.77, 

determining the following categories of tables:  

i. Tables of short duration, which constitute the second most popular 

category with respect to the total number of the tables of the six 

datasets. 

ii. Tables of medium duration. 

iii. Tables of long duration, which account for more than half of the total 

number of tables included. 

Tables… Range #Tables 

Percentages (wrt 

to the total 

#Tables) 

Short Lived < 0.33 98 28% 

Medium Lived 0.33-0.77 73 21% 

Long Lived > 0.77 179 51% 

Total  350 100% 

Figure 4.17 Distribution of Tables per Normalized Duration Category 
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Figure 4.18 depicts how tables in each dataset are spread over the categories 

of the normalized duration. We highlight with intense red color the dominant 

category, which in 4 of the 6 datasets is that of the long lived tables. The 

distribution of the tables over the duration categories among the different 

datasets can be summarized as follows: 

 Short lived tables constitute a population that ranges from 23% to 32% 

of the total number of tables. 

 Medium lived tables represent a population that varies from 14% to 28% 

with respect to the total number of tables, with the exception of BioSQL 

dataset in which tables with medium life duration represent the most 

populated category. This differentiation is mainly attributed to a 

significant schema restructuring at the middle of the database’s life.  

 Long lived tables add up to a population that ranges from 40% to 59% of 

the total number of tables, with the exception of BioSQL. 

 

Figure 4.18 Distribution of Tables over the Normalized Duration Categories 

Figure 4.19 illustrates the distribution of the tables with respect to the 

combination of their topological and duration categories. In the upper part of 

the figure the tables of the isolated category are included, while the lower part 

ignores them and computes the respective percentages over the total number 

SHORT 

LIVED

MEDIUM 

LIVED

LONG 

LIVED

Total 

#Tables

Atlas 32% 14% 55% 88

BioSQL 31% 38% 31% 45

Castor 24% 16% 59% 91

SlashCode 23% 19% 58% 69

Zabbix 32% 28% 40% 57

BREAKDOWN OF TABLES WRT NORMALIZED DURATION 

(PERCENTAGES OVER TOTAL #TABLES)

NORMALIZED DURATION 

CATEGORY
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of the tables with at least one reference. The most interesting observations 

derived from the data shown in Figure 4.19 are outlined as follows: 

 The most populated category in three of the five datasets is that of the 

source tables with medium or long durations. 

 The least populated categories, in all datasets apart from BioSQL, are 

those of the internal tables with short or medium life durations.   

Figure 4.20 presents the distribution of the tables over the topological and 

duration categories within each of the topological categories. We see that the 

distributions of the source tables are in accordance with the aggregate ones in 

three of the five datasets, except for the Castor and the SlashCode datasets. It 

is also obvious that in all datasets lookup tables with long life duration exceed 

the respective aggregate percentages. To put in a nutshell the most significant 

commonalities among the datasets, we mention the following observations: 

 The majority of lookup tables tend to live long lives in all the datasets. 

 The long lived category is also the most popular in case of the source 

tables in 4 out of the 5 datasets, with the exception of the BioSQL 

dataset. 

 The internal tables avoid lives of short or medium duration, except for 

those of the BioSQL and the Zabbix datasets, even though they do not 

form a population that exceeds the 10% of the total number of their 

dataset’s tables. In case of BioSQL, we attribute the different behavior 

to the major schema restructuring occurred at the middle of the 

database’s life while the short lives of the internal tables of Zabbix are 

due to occasional deletions.   

 In contrast to the previous topological categories, the isolated tables 

incline to lives of short and medium duration, apart from those of the 

Castor dataset that demonstrate a clear proclivity for lives of long 

duration. 

Having quantified the number of tables per topological and duration 

categories, we performed the Chi-square and Fisher tests to assert whether 

tables’ behavior concerning their normalized duration is differentiated due to 

their topological categories. The contingency table we used consists of four 

rows, each representing a topological category, and three columns that 

correspond to the three duration categories (short, medium and long lived). 

Both tests cannot strongly support that the differences among the duration 

categories are caused by the topology of the tables, since the p-values that do 
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not exceed the limit of 5% are 4.998E-06 in case of the Atlas dataset and 

3.349E-02 for SlashCode. 

To sum up, we studied how tables are spread over the combination of their topological 

and duration categories identifying several duration-related patterns, out of which we 

distinguish internal and lookup tables’ tendency to lives of long duration and the 

isolated tables’ disinclination to longevity. However, the statistical evidence does not 

allow us to emphatically suggest that there is a correlation between tables’ topological 

categories and their duration.      
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Figure 4.19 Distribution of Tables per Topological and Duration Categories with and without the ISOLATED Category 

Total 

#Tables

SHORT 

LIVED

MEDIUM 

LIVED

LONG 

LIVED

SHORT 

LIVED

MEDIUM 

LIVED

LONG 

LIVED

SHORT 

LIVED

MEDIUM 

LIVED

LONG 

LIVED

SHORT 

LIVED

MEDIUM 

LIVED

LONG 

LIVED

SHORT 

LIVED

MEDIUM 

LIVED

LONG 

LIVED

Atlas 88 3% 8% 1% 17% 5% 22% 11% 1% 24% 0% 0% 8% 32% 14% 55%

BioSQL 45 2% 2% 0% 22% 24% 18% 4% 4% 9% 2% 7% 4% 31% 38% 31%

Castor 91 24% 13% 45% 0% 1% 5% 0% 2% 8% 0% 0% 1% 24% 16% 59%

SlashCode 69 19% 12% 20% 3% 6% 23% 0% 1% 9% 0% 0% 6% 23% 19% 58%

Zabbix 57 14% 16% 9% 11% 7% 18% 4% 5% 11% 2% 0% 4% 32% 28% 40%

Total 

#Tables

SHORT 

LIVED

MEDIUM 

LIVED

LONG 

LIVED

SHORT 

LIVED

MEDIUM 

LIVED

LONG 

LIVED

SHORT 

LIVED

MEDIUM 

LIVED

LONG 

LIVED

SHORT 

LIVED

MEDIUM 

LIVED

LONG 

LIVED

Atlas 77 19% 5% 25% 13% 1% 27% 0% 0% 9% 32% 6% 61%

BioSQL 43 23% 26% 19% 5% 5% 9% 2% 7% 5% 30% 37% 33%

Castor 16 0% 6% 31% 0% 13% 44% 0% 0% 6% 0% 19% 81%

SlashCode 33 6% 12% 48% 0% 3% 18% 0% 0% 12% 6% 15% 79%

Zabbix 34 18% 12% 29% 6% 9% 18% 3% 0% 6% 26% 21% 53%

SOURCE LOOKUP INTERNAL
Aggregate per Duration 

Category

Aggregate per Duration 

Category

ISOLATED

TOPOLOGICAL CATEGORY

TOPOLOGICAL CATEGORY

SOURCE LOOKUP INTERNAL

BREAKDOWN OF ALL TABLES PER TOPOLOGICAL AND DURATION CATEGORIES (PERCENTAGES OVER TOTAL #TABLES)

BREAKDOWN OF TABLES WITH AT LEAST ONE EDGE PER TOPOLOGICAL AND DURATION CATEGORIES (PERCENTAGES OVER TOTAL #TABLES)
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Figure 4.20 Probability for a Table of a Topological Category to Belong to a Certain Duration Category 

 

 

 

 

 

Total 

#Tables

SHORT 

LIVED

MEDIUM 

LIVED

LONG 

LIVED

Total 

#Tables

SHORT 

LIVED

MEDIUM 

LIVED

LONG 

LIVED

Total 

#Tables

SHORT 

LIVED

MEDIUM 

LIVED

LONG 

LIVED

Total 

#Tables

SHORT 

LIVED

MEDIUM 

LIVED

LONG 

LIVED

Total 

#Tables

SHORT 

LIVED

MEDIUM 

LIVED

LONG 

LIVED

Atlas 11 27% 64% 9% 38 39% 11% 50% 32 31% 3% 66% 7 0% 0% 100% 88 32% 14% 55%

BioSQL 2 50% 50% 0% 29 34% 38% 28% 8 25% 25% 50% 6 17% 50% 33% 45 31% 38% 31%

Castor 75 29% 16% 55% 6 0% 17% 83% 9 0% 22% 78% 1 0% 0% 100% 91 24% 16% 59%

SlashCode 35 37% 23% 40% 22 9% 18% 73% 7 0% 14% 86% 4 0% 0% 100% 68 22% 19% 59%

Zabbix 22 36% 41% 23% 20 30% 20% 50% 11 18% 27% 55% 3 33% 0% 67% 56 30% 29% 41%

PROBABILITY FOR A TABLE OF A TOPOLOGICAL CATEGORY TO BELONG TO A CERTAIN DURATION CATEGORY (PERCENTAGES OVER TOTAL #TABLES OF EACH TOPOLOGICAL CATEGORY)

ISOLATED

TOPOLOGICAL CATEGORY 

SOURCE LOOKUP INTERNAL Aggregate per Duration Category 
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4.4.2 Relationship between Topological Categories and Survival 

The next property that we study in reference to the topological categories is 

the tables’ survival potential. We describe a table as a “survivor” if the table 

exists in the last known version of its dataset. The respective research 

question that we attempt to address is the following: 

Research Question: is there a relationship between the topological category of a table 

and its survival potential? 

Figure 4.21 depicts the population of survivors in each dataset with respect to 

the topological categories they belong to. The including percentages are 

computed with reference to the total number of each dataset’s tables. The red 

and blue colors represent the most and the least populated categories, 

respectively. 

 

Figure 4.21 Distribution of “Survivors” per Topological Category 

It is obvious that, in four out of the five datasets studied, there appears a 

decreasing sequence of percentages of the tables included among the 

categories as presented in Figure 4.21, with the highest cardinality of 

survivors to be assigned to the source tables and the lowest one attributed to 

the internal tables. Figure 4.21 also contains the aggregate percentages of the 

survivors, which are surprisingly high in all datasets varying from 65% to 

97% of the corresponding total number of tables. The last three columns 

include the overall percentages of tables per topological category, regardless 

of their survival potential. We see that the “survivors” of the internal category 

follow the respective aggregate percentages, which means that the survival 

potential for these tables will be high. 

Total 

#Tables SOURCE LOOKUP INTERNAL

Aggregate  

%Survivors SOURCE LOOKUP INTERNAL

Atlas 77 39% 34% 9% 82% 49% 42% 9%

BioSQL 43 44% 12% 9% 65% 67% 19% 14%

Castor 16 31% 44% 6% 81% 38% 56% 6%

SlashCode 33 64% 21% 12% 97% 67% 21% 12%

Zabbix 34 53% 24% 6% 85% 59% 32% 9%

TOPOLOGICAL CATEGORY (FOR SURVIVORS)
Aggregate per Topological Category 

(ind. of survival)

DISTRIBUTION OF SURVIVORS WITH AT LEAST ONE EDGE PER TOPOLOGICAL CATEGORY (PERCENTAGES OVER TOTAL #TABLES)
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In the previous figure we ignored the existence of the isolated tables, counting 

the “survivors” with reference to the tables with at least one edge. If we 

include the isolated tables, we will observe few differentiations concerning the 

spread of the tables among the topological categories. Figure 4.22 depicts the 

distribution of the tables-survivors over the topological categories including 

the isolated category. Once again, the red color signifies the most populated 

category, in terms of the number of survivors, and the blue color the least one. 

We should mention that in two datasets, namely Castor and SlashCode, the 

isolated “survivors” form a clear majority, which is largely explained by the 

strong presence of the tables of the isolated group in these two datasets. The 

isolated “survivors” are the second most populated group of tables in Zabbix, 

as opposed to Atlas where they are the second least popular category. Finally, 

BioSQL does not encompass “survivors” of the isolated category at all.   

 

Figure 4.22 Distribution of “Survivors” per Topological Category (including 

ISOLATED) 

Figure 4.23 illustrates how the tables that survive are spread over the 

topological categories with respect to the total number of tables of each 

category. The patterns that we observe in this figure can be outlined as 

follows:  

 The distributions of the survivors of the categories source and lookup are 

similar to the respective aggregate distributions in all datasets, with the 

exception of the lookup survivors of the Zabbix dataset. 

 The internal category ensures that each participating table is sure to 

survive and this observation holds in all the datasets apart from 

BioSQL. In all the datasets, the percentages of the internal survivors 

exceed the respective aggregate portions of survivors.    

Total 

#Tables ISOLATED SOURCE LOOKUP INTERNAL

Aggregate 

%Survivors ISOLATED SOURCE LOOKUP INTERNAL

Atlas 88 11% 34% 30% 8% 83% 13% 43% 36% 8%

BioSQL 45 0% 42% 11% 9% 62% 4% 64% 18% 13%

Castor 91 67% 5% 8% 1% 81% 82% 7% 10% 1%

SlashCode 68 44% 31% 10% 6% 91% 51% 32% 10% 6%

Zabbix 56 30% 32% 14% 5% 82% 39% 36% 20% 5%

Aggregate per Topological Category (ind. of 

survival)
TOPOLOGICAL CATEGORY (FOR SURVIVORS)

DISTRIBUTION OF ALL SURVIVORS PER TOPOLOGICAL CATEGORY (PERCENTAGES OVER TOTAL #TABLES)
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Figure 4.23 Probability of Survival per Topological Category 

 

 

 

 

 

Total 

#Tables #Survivors %Survivors

Total 

#Tables #Survivors %Survivors

Total 

#Tables #Survivors %Survivors

Total 

#Tables %Survivors

Atlas 38 30 79% 32 26 81% 7 7 100% 77 82%

BioSQL 29 19 66% 8 5 63% 6 4 67% 43 65%

Castor 6 5 83% 9 7 78% 1 1 100% 16 81%

SlashCode 22 21 95% 7 7 100% 4 4 100% 33 97%

Zabbix 20 18 90% 11 8 73% 3 3 100% 34 85%

Aggregate Survival 

ProbabilitySOURCE LOOKUP INTERNAL

TOPOLOGICAL CATEGORY

PROBABILITY OF SURVIVAL PER TOPOLOGICAL CATEGORY (PERCENTAGES OVER TOTAL #TABLES OF EACH TOPOLOGICAL CATEGORY)
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Figure 4.24 shows the probability of survival for the isolated tables. The 

survival potential for the tables of this category is significantly high in all the 

datasets except for BioSQL. It is also noteworthy that the including 

percentages approach the aggregate ones in four of the five datasets. 

 

Figure 4.24 Probability of Survival for the ISOLATED Tables  

The high percentages of “survivors”, regardless of the topological categories, 

prejudiced us against the impact of the categories on the survival potential of 

a table. This intuition was confirmed by the statistical tests we conducted by 

forming 4x2 contingency tables, with their rows corresponding to the 

topological categories (isolated, source, lookup, internal) and their two 

columns representing the populations of the tables that exist in the last known 

version and those that do not. The lowest p-value the Chi-square and Fisher 

tests returned was 0.3238, indicating that there are no sufficient data to 

support the correlation between the topological categories and the survival 

potential.    

Overall, we should stress the high survival potential of the tables disregarding their 

topological categories, which along with the statistical results are strong indications 

that tables’ topology is not likely to be related to their probability to exist in the last 

known version. 

Total 

#Tables #Survivors %Survivors

Total 

#Tables %Survivors

Atlas 11 10 91% 88 83%

BioSQL 2 0 0% 45 62%

Castor 75 61 81% 91 81%

SlashCode 35 30 86% 68 91%

Zabbix 22 17 85% 56 86%

PROBABILITY OF SURVIVAL FOR THE ISOLATED TABLES (PERCENTAGES OVER 

TOTAL #TABLES)

Aggregate Survival 

Probability
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4.4.3 Relationship between Tables’ Topological Categories and 

Birth Version 

In this subsection we investigate if birth versions of the tables are related to 

their topological categories. We are particularly interested in the relationship 

between the probability that a table is born in the originating version of the 

schema history and the topological category it belongs to. In this context, we 

can formulate the relevant research question as follows: 

Research Question: how is the topological category of a table related to the probability 

of being born in the originating version of its dataset’s schema history? 

Figure 4.25 illustrates the populations of the tables born in the very first 

version of their datasets history. The left part of the figure ignores tables of 

the isolated category, while the right part includes them. We can observe that 

in three out of the five datasets, the tables born in the originating version form 

overwhelming majorities that exceed the 70% of the total number of the 

tables.   

 

Figure 4.25 Populations of Tables (left: without ISOLATED; right: with 

ISOLATED) Born in the Originating Version 

In Figure 4.26 we present how the tables born in the first version are spread 

over the topological categories. The red and blue colors indicate the most and 

the least populated topological categories with respect to the total number of 

each dataset’s tables. 

Total 

#Tables #Tables %Tables

Total 

#Tables #Tables %Tables

Atlas 77 55 71% 88 56 64%

BioSQL 43 19 44% 45 21 47%

Castor 16 14 88% 91 62 68%

SlashCode 33 26 79% 68 41 60%

Zabbix 34 13 38% 56 15 27%

DISTRIBUTION OF TABLES BORN @v0 (PERCENTAGES OVER TOTAL #TABLES)

TABLES WITH AT LEAST ONE 

EDGE
ALL TABLES

Born @v0 Born @v0
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It is worth mentioning that, in three of the five datasets, source tables born in 

the first version of their dataset’s history are the most popular category, even 

though only in one of them, namely BioSQL, they are the dominating group 

as it is illustrated in Figure 4.15 that presents the distribution of the tables 

over the topological categories. In Atlas, we notice that lookup tables born in 

the very first version exceed those of the source category, though the latter are 

the most popular among the dataset’s tables irrespectively of their “birth” 

version. 

 

Figure 4.26 Distribution of Tables Born in the Originating Version per 

Topological Category  

Figure 4.27 depicts the potential the tables of each topological category have 

to exist in the first version of their schema’s history. 

The commonalities that we encounter with reference to the probability of 

tables being “born” in the earliest version of their schema can be summarized 

as follows: 

 The tables of the internal category are 100% certain to be “born” in the 

originating version in three out of the five datasets. In BioSQL and 

Zabbix, although the overall population of the internal tables is not 

present in the first version, the corresponding percentages are high 

(67% in both cases). 

 Lookup tables have higher probabilities to be “born” in the first version 

compared to the respective average probability, and in fact, their 

majority is present at the first version for four out of five datasets. The 

same holds for the corresponding probabilities of the source tables.  

Total 

#Tables ISOLATED SOURCE LOOKUP INTERNAL Total

Atlas 88 1% 26% 28% 8% 64%

BioSQL 45 4% 24% 9% 9% 47%

Castor 91 53% 5% 9% 1% 68%

SlashCode 68 22% 24% 9% 6% 60%

Zabbix 56 4% 11% 9% 4% 27%

TOPOLOGICAL CATEGORY

DISTRIBUTION OF TABLES BORN @v0 PER TOPOLOGICAL CATEGORY 

(PERCENTAGES OVER TOTAL #TABLES)
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Figure 4.27 Probability to be “born” in the First Version per Topological Category 

Total 

#Tables Born @v0

Total 

#Tables Born @v0

Total 

#Tables Born @v0

Total 

#Tables Born @v0

Total 

#Tables Born @v0

Total 

#Tables Born @v0

Atlas 11 9% 38 61% 32 78% 7 100% 77 71% 88 64%

BioSQL 2 100% 29 38% 8 50% 6 67% 43 44% 45 47%

Castor 75 64% 6 83% 9 89% 1 100% 16 88% 91 68%

SlashCode 35 43% 22 73% 7 86% 4 100% 33 79% 68 60%

Zabbix 22 9% 20 30% 11 45% 3 67% 34 38% 56 27%

PROBABILITY TO BE BORN @v0 PER TOPOLOGICAL CATEGORY (PERCENTAGES OVER TOTAL #TABLES OF EACH TOPOLOGICAL CATEGORY)

SOURCE LOOKUP INTERNALISOLATED

TOPOLOGICAL CATEGORY AGGREGATE BORN @v0

TABLES WITH AT LEAST 

ONE EDGE
ALL TABLES
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 The tables of the isolated category have the lowest potential for being 

“born” in the originating version of their datasets, in four of the five 

datasets. Equivalently, we can claim that it is easier to add tables of this 

category over the course of a database’s schema evolution than 

introducing lookup or internal tables.  

 The probability for a source table to be introduced in the first version of 

its dataset’s history is, approximately, in accordance with the average 

probability and, in all datasets, is lower than the respective potential of 

the lookup tables.  

The common features among the datasets related to the probability for a table 

to be “born” in the originating version if it belongs to a certain topological 

category are supported to some extent by the statistical evidence that assess 

the independence of the birth version from the topological categories. 

Specifically, we performed the Chi-square and Fisher statistical tests by 

utilizing a contingency table consisted of four rows representing the 

topological categories and two columns corresponding to tables born in the 

first version and those that are not.  The p-values that do not exceed the limit 

of 5% are 4.74E-02 for Atlas, 1.36E-02 for SlashCode and 3.22E-02 for Zabbix. 

To sum up, we observed that internal and lookup tables are more likely to be “born” 

in the originating version of their dataset’s history, which, expressed in a different 

way, means that it is quite unlikely that they are “born” after this version. In 

contrast, isolated and source tables are less probable to be introduced in the first 

version, which entails that it is more probable that versions succeeding the originating 

one include new tables of these two categories. The behavior of the lookup and the 

internal tables can be attributed to the so-called gravitation to rigidity pattern 

[VaZS17], according to which it is fairly improbable that dependency-magnet tables, 

as those of the two aforementioned categories, experience any kind of change in later 

versions of database’s schema. In this context, we can assume that administrators 

prefer creating tables that attract foreign keys in the early if not in the originating 

versions of the database in order to avoid changes caused by inserting them in 

subsequent versions.     

4.4.4 Relationship between Tables’ Topological Categories and 

Update Activity 

The next issue that we are interested in is that of the update profile of the 

tables with respect to their topological categories. Thus, the research question 

that arises can be put in the following way: 
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Research Question: is there a relationship between the topological category of a table 

and its update activity? 

To ease the process of analyzing tables’ update behavior with respect to their 

topological categories we decided to utilize the activity classes defined in 

[VaZS15], which are summarized as follows: 

i. Rigid tables, which experience no updates throughout their entire lives 

in their datasets. 

ii. Quiet tables, with the total number of updates not exceeding the value 

of 5 and the Average Transitional Update (ATU) to be less than 0.1. 

iii. Active tables, which undergo more than 5 updates and have an ATU 

higher than 0.1. 

Terminology. The Average Transitional Update (ATU) of a table is defined as 

the fraction of the sum of updates the table undergoes throughout its life over 

its duration. [VaZS15]   

Figure 4.28 presents the distribution of the tables over the aforementioned 

activity classes. The upper part of the figure ignores the presence of the 

isolated tables, whereas the lower part includes them. The largest and the 

smallest classes in terms of the tables’ population are highlighted with red 

and blue colors, respectively. 

Ignoring the isolated tables, we observe that, in four of the five datasets, the 

most multitudinous group is that of the quiet tables, accounting for nearly or 

more than the one half of tables’ population. But, if we take into account the 

isolated tables, we can identify a decrease of small or large magnitude in the 

numbers of quiet tables in all the datasets, apart from Atlas, and a 

simultaneous increase in the cardinality of the rigid tables. As for the active 

tables, if we include the isolated category, there appears a decrease in their 

numbers in all the datasets to an extent varying from 1% to 11% with respect 

to the total number of the tables. 
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Figure 4.28 Distribution of Tables per Activity Class (top: without the 

ISOLATED; bottom: with the ISOLATED)  

Next, we examine the impact of the topological categories on tables’ update 

activity. Figure 4.29 shows how tables are divided into the different 

combinations of the topological and activity categories. As we mentioned 

Total 

#Tables RIGID QUIET ACTIVE RIGID QUIET ACTIVE

Atlas 77 15 37 25 19% 48% 32%

BioSQL 43 14 13 16 33% 30% 37%

Castor 16 7 7 2 44% 44% 13%

SlashCode 33 3 19 11 9% 58% 33%

Zabbix 34 11 21 2 32% 62% 6%

Total 

#Tables RIGID QUIET ACTIVE RIGID QUIET ACTIVE

Atlas 88 18 43 27 20% 49% 31%

BioSQL 45 16 13 16 36% 29% 36%

Castor 91 57 31 3 63% 34% 3%

SlashCode 68 15 38 15 22% 56% 22%

Zabbix 56 23 30 3 41% 54% 5%

Activity Class Activity Class (%)

BREAKDOWN OF TABLES WITH AT LEAST ONE EDGE WRT ACTIVITY CLASS 

( PERCENTAGES OVER TOTAL #TABLES)

BREAKDOWN OF ALL TABLES WRT ACTIVITY CLASS ( PERCENTAGES OVER 

TOTAL #TABLES)

Activity Class Activity Class (%)
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before, we used the red color to signify the most populated group of tables in 

each dataset and the blue one for the least popular group after the groups 

with no including tables. As far as the distribution of the tables of the 

different topological categories over the activity classes is concerned, we 

should mention the following observations: 

 In two of the five datasets, namely Atlas and Zabbix, the source tables 

with moderate update activity are the most popular with respect to the 

total number of the tables. In Castor and SlashCode, the isolated tables 

with no and quiet update activity, respectively, form the leading 

groups of tables, while in BioSQL we see that the most popular groups 

are those of the source tables with all kinds of update activities.   

 We observe that in the least populated groups are included the internal 

tables with moderate activity in BioSQL, Castor and SlashCode, the 

isolated tables with intense activity in Zabbix and the lookup tables with 

no updates in Atlas.  

The upper part of Figure 4.30 depicts the probability for a table of a certain 

topological category to develop a certain update activity during its existence 

in its dataset. Once again, the red and blue colors correspond to the largest 

and smallest groups respectively, but in this case with reference to the 

number of tables of each topological category. 

We outline the most interesting information derived from this figure in the 

following list: 

 Isolated tables experience no or few updates with a probability that is 

higher than 82%. 

 The likelihood for a source table to undergo no or few changes 

throughout its life is at least 82% in all datasets, apart from BioSQL.  

 In three of the five datasets, the lookup tables with intense update 

activity exceed 38%, while those of the Castor and Zabbix datasets are 

pertained to quiet lives in terms of the changes they experience. 

 In four of the five datasets, the internal tables are expected to undergo 

numerous updates.   
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Figure 4.29 Distribution of Tables per Topological and Activity Categories 

Total 

#Tables RIGID QUIET ACTIVE RIGID QUIET ACTIVE RIGID QUIET ACTIVE RIGID QUIET ACTIVE RIGID QUIET ACTIVE

Atlas 88 3% 7% 2% 13% 25% 6% 5% 17% 15% 0% 0% 8% 19% 48% 32%

BioSQL 45 4% 0% 0% 22% 20% 22% 4% 7% 7% 4% 2% 7% 33% 30% 37%

Castor 91 55% 26% 1% 4% 1% 1% 3% 5% 1% 0% 1% 0% 44% 44% 13%

SlashCode 68 18% 28% 6% 4% 22% 6% 0% 4% 6% 0% 1% 4% 9% 58% 33%

Zabbix 56 21% 16% 2% 13% 23% 0% 5% 14% 0% 2% 0% 4% 32% 62% 6%

INTERNAL

BREAKDOWN OF TABLES PER TOPOLOGICAL CATEGORY AND ACTIVITY CLASS (PERCENTAGES OVER TOTAL #TABLES)

TOPOLOGICAL CATEGORY
Aggregate per Activity 

ClassISOLATED SOURCE LOOKUP
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Figure 4.30 Probability for a Table of a Topological Category to Develop Specific Update Activity and vice versa 

Total 

#Tables RIGID QUIET ACTIVE

Total 

#Tables RIGID QUIET ACTIVE

Total 

#Tables RIGID QUIET ACTIVE

Total 

#Tables RIGID QUIET ACTIVE

Total 

#Tables RIGID QUIET ACTIVE

Atlas 11 27% 55% 18% 38 29% 58% 13% 32 13% 47% 41% 7 0% 0% 100% 88 20% 49% 31%

BioSQL 2 100% 0% 0% 29 34% 31% 34% 8 25% 38% 38% 6 33% 17% 50% 45 36% 29% 36%

Castor 75 67% 32% 1% 6 67% 17% 17% 9 33% 56% 11% 1 0% 100% 0% 91 63% 34% 3%

SlashCode 35 34% 54% 11% 22 14% 68% 18% 7 0% 43% 57% 4 0% 25% 75% 68 22% 56% 22%

Zabbix 22 55% 41% 5% 20 35% 65% 0% 11 27% 73% 0% 3 33% 0% 67% 56 41% 54% 5%

Total 

#Tables ISOLATED SOURCE LOOKUP INTERNAL

Total 

#Tables ISOLATED SOURCE LOOKUP INTERNAL

Total 

#Tables ISOLATED SOURCE LOOKUP INTERNAL

Total 

#Tables ISOLATED SOURCE LOOKUP INTERNAL

Atlas 18 17% 61% 22% 0% 43 14% 51% 35% 0% 27 7% 19% 48% 26% 88 13% 43% 36% 8%

BioSQL 16 13% 63% 13% 13% 13 0% 69% 23% 8% 16 0% 63% 19% 19% 45 4% 64% 18% 13%

Castor 57 88% 7% 5% 0% 31 77% 3% 16% 3% 3 33% 33% 33% 0% 91 82% 7% 10% 1%

SlashCode 15 80% 20% 0% 0% 38 50% 39% 8% 3% 15 27% 27% 27% 20% 68 51% 32% 10% 6%

Zabbix 23 52% 30% 13% 4% 30 30% 43% 27% 0% 3 33% 0% 0% 67% 56 39% 36% 20% 5%

QUIET ACTIVE

ACTIVITY CLASS

INTERNALISOLATED SOURCE LOOKUP

PROBABILITY FOR A TABLE OF A TOPOLOGICAL CATEGORY TO DEVELOP A CERTAIN UPDATE ACTIVITY (PERCENTAGES OVER TOTAL #TABLES OF EACH TOPOLOGICAL CATEGORY) 

TOPOLOGICAL CATEGORY

Aggregate per Activity Class

Aggregate per Topological Category

PROBABILITY FOR A TABLE OF AN ACTIVITY CLASS TO BELONG TO A CERTAIN TOPOLOGICAL CATEGORY (PERCENTAGES OVER TOTAL #TABLES OF EACH ACTIVITY CLASS) 

RIGID
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The bottom part of Figure 4.30 presents the probability for a table with a 

certain activity profile to belong to a specific topological category. In a 

nutshell, we can identify the subsequent commonalities among the datasets: 

 The likelihood for a rigid table to be source is very high, especially in the 

datasets with no strong presence of isolated tables, while in datasets 

with numerous isolated tables, the rigid tables are more likely to be 

isolated. On the other hand, it is not quite possible for a rigid table to be 

lookup, since in all datasets this probability is less than the average one, 

and it is completely impossible a rigid table to be internal in three of the 

five datasets. 

 In three of the five datasets, quiet tables are likely to belong to the source 

category, with the exceptions of Castor and SlashCode, in which quiet 

tables tend to be isolated. It is also obvious that the distribution of the 

quiet tables over the topological categories is in agreement with the 

aggregate one in all datasets.  

 As for the active tables we notice a tendency towards categories of high 

topological complexity. This is verified by the fact that, in all datasets, 

the chances for an active table to belong to a topologically complex 

category are higher compared to the average probabilities. This is 

another way to identify internals’ inclination towards intense update 

activity.   

The statistical evidence provided by Chi-square and Fisher tests is fairly 

strong. For each dataset, we utilized a contingency table consisted of four 

rows, each of which represents a topological category and three columns 

corresponding to the different activity classes. The p-values derived from 

these tests are below the critical value of 5% in four of the five datasets, 

ranging from 9.6E-05 (Zabbix) to 3.89E-02 (Castor). The statistical results 

confirm that tables with different topological categories are subjects to different 

amounts of updates.  

Altogether, we established that the topological category of a table is related to its 

update activity. Giving a summary of the findings, we can associate isolated and 

source tables with no or few updates, lookup tables with few or many changes and 

internal tables with many updates. These two different patterns can be regarded as an 

example of the “electrolysis” pattern presented in [VaZa17], where the authors 

identified two completely inverse behaviors concerning the relationship between 

tables’ duration and their survival potential, with “dead” tables living for short 

durations and “survivors” related to lives of long duration. In the same sense, we can 

claim that topologically simplest tables are associated with few or no changes, whereas 

complex tables in terms of their topology are related to lives of intense update activity.  
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4.4.5 Relationship between Tables’ Topological Categories and 

Size Change 

Studying the relationship between tables’ topological categories and their 

activity profiles we were surprised by the significant portions of lookup tables 

that undergo few or many updates over their lives in three of the five 

datasets. One would expect that tables which are dependency magnets are not 

prone to changes, since the dependents are certain to be affected. Given that, 

we decided to study how the topological category of a table is related to its 

size change between its first and last known versions. Naturally, the relative 

research question is expressed in the following way: 

Research Question: how is the topological category of a table related to its size 

change? 

Intuitively, we classified tables with respect to the scale of their size change in 

three categories that each of them expresses size reduction, stability or 

expansion. The scale of one table’s size change is defined as the fraction of its 

size in the last version over its size in its first version. In a nutshell, the three 

size scale categories can be defined as follows: 

i. Scale down, when there is a reduction in table’s size, with the respective 

size scale to be less than 1. 

ii. Steady, when table’s sizes in the first and last versions are even, with 

the scale to be equal to 1. 

iii. Scale up, when there is an expansion in table’s size, with the scale to be 

greater than 1.   

Figure 4.31 shows how the tables of each dataset are spread over the size scale 

categories. It is obvious that in all the datasets more than one half of the tables 

remain steady in terms of their size, while a considerable number of tables 

expand their size between their first and last versions. As for those that 

downsize their number of attributes, we observe that they do not constitute 

groups that exceed the 10% of the total number of the tables.     
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Figure 4.31 Distribution of Tables per Size Scale Category 

We present in the upper part of Figure 4.32 the distribution of the tables over 

their size scale and topological category. The percentages included are 

quantified with reference to the total number of tables of each dataset. The red 

and blue colors represent the largest and smallest groups of tables with 

respect to the total number of tables, without taking into account the 

categories with no participating tables. 

We outline the most noteworthy information derived from the upper part of 

Figure 4.32 in the upcoming list: 

 In three out of the five datasets, the largest group of tables is that 

consisted of isolated tables with steady size scale. In Atlas and BioSQL 

the most populated category comprises the source tables with steady 

size scale. 

 We should also mention the low percentages of tables that experience a 

size reduction in all topological categories. The corresponding values 

do not surpass the 2% of the total number of tables of each dataset.

Total 

#tables <=0,99 1 >1

Atlas 88 6% 69% 25%

BioSQL 45 7% 53% 40%

Castor 91 3% 67% 30%

SlashCode 68 3% 50% 47%

Zabbix 56 2% 55% 43%

Size Scale Categories

BREAKDOWN OF TABLES PER SIZE SCALE 

CATEGORY (PERCENTAGES OVER TOTAL #TABLES)
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Figure 4.32 Top: Distribution of Tables over Topological and Size Scale Categories; Bottom: Probability for a Table to Have a 

Certain Size Scale 

Total 

#Tables <=0,99 1 >1 <=0,99 1 >1 <=0,99 1 >1 <=0,99 1 >1 <=0,99 1 >1

Atlas 88 1% 9% 2% 2% 35% 6% 1% 22% 14% 1% 3% 3% 6% 69% 25%

BioSQL 45 0% 4% 0% 7% 40% 18% 0% 4% 13% 0% 4% 9% 7% 53% 40%

Castor 91 1% 59% 22% 0% 4% 2% 2% 3% 4% 0% 0% 1% 3% 67% 30%

SlashCode 68 1% 35% 15% 1% 13% 18% 0% 1% 9% 0% 0% 6% 3% 50% 47%

Zabbix 56 2% 27% 11% 0% 20% 16% 0% 7% 13% 0% 2% 4% 2% 55% 43%

Total 

#Tables <=0,99 1 >1

Total 

#Tables <=0,99 1 >1

Total 

#Tables <=0,99 1 >1

Total 

#Tables <=0,99 1 >1

Total 

#Tables <=0,99 1 >1

Atlas 11 9% 73% 18% 38 5% 82% 13% 32 3% 59% 38% 7 14% 43% 43% 88 6% 69% 25%

BioSQL 2 0% 100% 0% 29 10% 62% 28% 8 0% 25% 75% 6 0% 33% 67% 45 7% 53% 40%

Castor 75 1% 72% 27% 6 0% 67% 33% 9 22% 33% 44% 1 0% 0% 100% 91 3% 67% 30%

SlashCode 35 3% 69% 29% 22 5% 41% 55% 7 0% 14% 86% 4 0% 0% 100% 68 3% 50% 47%

Zabbix 22 5% 68% 27% 20 0% 55% 45% 11 0% 36% 64% 3 0% 33% 67% 56 2% 55% 43%

TOPOLOGICAL CATEGORY

Aggregate per Size Scale 

Category

PROBABILITY FOR A TABLE OF A TOPOLOGICAL CATEGORY TO HAVE CERTAIN SIZE SCALE  (PERCENTAGES OVER TOTAL #TABLES OF EACH TOPOLOGICAL CATEGORY)

ISOLATED SOURCE LOOKUP INTERNAL

ISOLATED SOURCE LOOKUP

BREAKDOWN OF TABLES PER TOPOLOGICAL AND SIZE SCALE CATEGORIES (PERCENTAGES OVER TOTAL #TABLES)

INTERNAL
Aggregate per Size Scale 

Category

TOPOLOGICAL CATEGORY
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The lower part of Figure 4.32 contains the probability for a table of a certain 

topological category to experience a specific change in its size. Once again, the 

red and blue colors signify the most and the least populated groups of tables 

respectively, within each topological category without taking into account the 

total absence of including tables. 

 The similarities with regard to the combination of topological and size scale 

categories we identified among datasets can be summarized as follows: 

 In all datasets, the absolute majority of the isolated tables remain steady 

in terms of their size. 

 In four of the five datasets, the probability that a source table remains 

steady exceeds the value of 55%. 

 Contrary to the behavior of the source tables, the lookup tables 

demonstrate a proclivity for increasing their attributes. This 

observation, which holds in four of the five datasets, except for Atlas, 

gives us an insight into the observation we briefly mentioned in the 

beginning of this subsection about the intense activity of the lookup 

tables. We can claim that, at least in four datasets, lookup tables’ 

heightened update activity results in the expansion of their size. 

 As regards the internal tables, in all the datasets it is highly likely that 

they undergo an expansion of their size during their existence in their 

datasets. 

 Compared to the average probability of experiencing a certain size 

change, we distinguished two different patterns: the one according to 

which the isolated and source tables follow the average probability for 

size reduction, have higher probability for size steadiness and lower 

for size expansion and the other including lookup and internal tables 

with a potential for size reduction lower than the average with few 

exceptions, a probability for size steadiness below the average and a 

higher likelihood for size expansion.         

Despite the patterns we observed with reference to the size scale of tables 

within each topological category, the evidence derived from the statistical 

tests are inadequate to support the correlation between the topological 

categories and the size scale ones. We utilized a 4x3 contingency table with its 

rows consisting of the topological categories and its columns representing the 

size scale categories. Apart from Castor and SlashCode for which the tests 

returned p-values 1.41E-02 and 6.8E-03 respectively, the statistical results for 



 

 

120 

 

the rest of the datasets surpass the limit of 5% with the lowest p-value to be 

0.089 in the case of the Atlas dataset. 

In a nutshell, we distinguished two different behaviors concerning tables’ size change 

and topological categories. The majority of the isolated and source tables remain 

steady, whereas the lookup and internal tables tend to increase their size.        

4.5 Summary of Findings 

In this chapter, our main objective was to study to what extent tables’ 

topology can determine their evolutionary activity. Given that, we defined 

four topological categories at first based on the topology of the Diachronic 

Graph. We then used the schema histories of five open-source datasets to 

classify their tables into the topological categories and examined whether 

these categories are related with various measures of tables’ activity. The 

labeling process posed the dilemma of how to handle tables that change 

topological categories throughout their lives and for this reason we manually 

inspected the changes of these tables. This manual examination led to a set of 

rules that applied to the tables’ history would remove parts that would be 

confusing for the understanding of the true nature of the tables and would 

make feasible the automation of the classification process. However, we opted 

for utilizing the labels derived from the manual classification of the tables. 

Having assigned a single label to each table, we studied how the topological 

category of a table is related to various measures of its evolutionary activity, 

including duration, survival potential, birth version, update activity and the 

scale of its size change. The remainder of this section includes the most 

important findings concerning our study on tables’ topology and evolution. 

Concerning the normalized duration of the tables, we noticed that tables of 

long duration constitute the most popular group in four of the five datasets 

and those of short duration are the second largest category without exception 

among datasets. Studying the relationship between the topological category 

of a table and its normalized duration, we observed that if we ignore the 

existence of the isolated tables, the distributions of the source and lookup tables 

over the duration categories follow the average distributions, with the 

exceptions of BioSQL and Zabbix. We also identify the following interesting 

similarities among the datasets: 

 In all datasets, lookup tables are prone to lives of long duration. 
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 In four of the five datasets, at least half of the source tables are long 

lived, apart from those of the BioSQL dataset. 

 The internal tables avoid lives of short or medium duration, with the 

exception of BioSQL. 

 As for the isolated tables, they avoid living for long periods, except 

for those of the Castor dataset. 

The inclination of the tables towards lives of long duration holds for three of 

the four topological categories with few exceptions and this is an indication 

that it is quite unlikely that the topological categories are associated with 

tables’ duration. This was also confirmed by the statistical tests we conducted 

for assessing the independence of tables’ duration from their topological 

categories. 

As far as survivors’ distribution over the topological categories is concerned, 

we identified a monotone decrease pattern in the size of the categories’ 

populations, starting from the source tables followed by lookup and ending 

with the internal tables in all datasets, except Castor. As for the relationship 

between the topological categories and the survival, we observed that the 

corresponding percentages are high in all datasets, excluding the isolated 

tables of the BioSQL dataset. The only difference between the topological 

categories is that the survival rate for the source and lookup tables follows the 

aggregate one, while in case of the internal tables the respective percentages 

are higher compared to the aggregate ones. The statistical evidence produced 

by the Chi-square and Fisher tests was not adequate to verify that topological 

categories can determine the survival rate of the including tables. 

As regards the relationship between topological categories and tables’ “birth” 

version, we were specifically interested to examine if the topological category 

of a table can have an effect on the probability to be introduced in the 

originating version of its dataset’s history.  Concerning the overall 

percentages of the tables “born” in the very first version of their datasets and 

excluding tables with no edges, we set apart the high portions of tables in 

three datasets, namely Atlas, Castor and SlashCode, in which the relative 

percentages exceed the value of 70%. The findings with reference to the 

relationship between the topological categories and the “birth” version can be 

summarized as follows: 

 The internal and lookup tables demonstrate high probability to exist in 

the first version of their datasets, with the involved percentages of the 

former reaching the value of 100% in three of the five datasets. 



 

 

122 

 

 The source tables in all datasets, except BioSQL, present the second 

lowest potential for being born in the originating version of their 

datasets after the isolated tables. 

 Compared to the aggregate probability of being created in the first 

version of a dataset and ignoring isolated category, the source and lookup 

tables approach the overall potential, while internal significantly exceed 

it. 

We attributed the high probability for a lookup or internal table to be “born” in 

the first version to the gravitation to rigidity pattern, according to which it is 

not preferable to creating tables that attract foreign key constraints in later 

versions of the schema history. The statistical tests we performed were to 

some extent in favor of the relationship between one table’s topological 

category and the probability of being created in the originating version.   

Concerning tables’ update activity and its relationship with topological 

categories, we initially classified tables with respect to their update profile in 

three categories, which are the rigid with no changes, the quiet with few 

updates and the active with more than five updates. We saw that the majority 

of the tables in four datasets are those with few changes, though we observed 

an increase in the number of the rigid tables after including tables of the 

isolated category.  As for the distribution of the tables with reference to the 

topological categories and their update profile, we highlighted the following 

observations: 

 Concerning the largest groups of tables, we encountered an 

inconsistent behavior, with source tables with a quiet update profile 

being the most popular in Atlas and Zabbix, with the isolated tables 

with no or few updates constituting the most multitudinous categories   

in Castor and SlashCode and with the source tables with all kinds of 

updates being the most populated groups in BioSQL. 

 The least popular groups of tables are those of the internal category 

with no or few updates. 

After that, we quantified the probability for a table of a certain topological 

category to develop a certain update activity. The most noteworthy findings 

are presented in the upcoming list: 

 Isolated tables experience no or few updates during their lives. 

 Apart from BioSQL, the source tables are very likely to sustain no or 

few updates. 
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 In three of the five datasets, lookup tables are subjects to few or many 

updates. 

 In four of the five datasets, internal tables are expected to undergo 

many updates throughout their lives. 

Concerning the potential for a table of certain update profile to belong to a 

specific topological category, we noticed that rigid tables are possible to 

belong to the categories of the isolated and source tables with a probability that 

is greater than 76%. Quiet tables are likely to be source in three of the five 

datasets, with the exceptions of Castor and SlashCode, in which quiet tables 

tend to be isolated. As regards active tables, there is not a consistent tendency 

among the datasets, except for the datasets of Castor and SlashCode, where 

the odds for active tables to be isolated, source or lookup are even.   

The statistical tests we conducted for the relationship between topological 

categories and update activity returned low p-values for four of the five 

datasets and that makes us believe that there is a correlation between tables’ 

topology and their update profile. 

In the last part of our study we examined whether topological categories are 

related with the changes in the size of the tables. We group tables in three 

categories with respect to the change of their sizes between their first and last 

versions. We use the term scale down for tables that undergo a size reduction, 

the term steady for those with no change in their size and the term scale up for 

tables with a size expansion. We saw, on the one hand, the absolute majority 

of tables remain steady in terms of their size and a large portion increase their 

size and, on the other hand, tables that experience a size reduction  to account 

for no more than 10% of the total number of tables in each dataset. Taking into 

consideration the topological categories of the tables, we end up with the 

following commonalities among the datasets: 

 In three of the five datasets, the isolated tables with steady size create 

the largest groups with respect to the entire population of the tables. 

The only exceptions to that pattern are Atlas and BioSQL, in which 

source tables with steady size are the most populated group of tables. 

 As for the least popular groups of tables, internal tables with all 

kinds of size changes along with tables of the other categories with 

size reduction or steadiness form groups whose cardinality does not 

surpass the 4% of the total number of tables per dataset. 
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Concerning the probability for a table of a specific topological category to go 

through a certain size change, we briefly describe the similarities we 

encountered as follows: 

 The absolute majority of the isolated tables remain steady. 

 In four of the five datasets, the probability for a source table to remain 

steady is greater than 55%. 

 In four of the five datasets, lookup tables are prone to size expansion, 

which is not at all what one would expect since their size expansion is 

likely to affect tables that depend upon them. 

 For the internal tables, it is likely (specifically, the least probability is 

43%) that they will increase their size and it is highly improbable that 

they will end up with less attributes than those they consisted of in 

their first known version. 

The results returned from the statistical tests we implemented are not 

adequate to reject the null hypothesis on the independence of tables’ size 

changes from their topological categories. Nevertheless, we distinguished two 

different behaviors, the one of the isolated and source tables associated with a 

tendency towards not changing their size and the second one concerning 

lookup and internal tables that represents an inclination for size expansion. 

Altogether, having conducted an in-depth survey concerning the impact of 

tables’ topological categories on various measures of their evolutionary 

activity, we ended up with various findings, with the most significant being 

the correlations of topological categories with “birth” version as well as with 

update activity. These relationships were also confirmed by the statistical tests 

we conducted in order to evaluate to what extent the metrics of tables’ 

evolution are related to their topological categories. As for the rest of the 

measures and their relationships with the topological categories, although we 

highlighted a few patterns among the datasets, the statistical evidence was 

not sufficient in order to support the existence of a statistically significant 

correlation between tables’ topology and the measures of their evolution.      
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CHAPTER 5.  

 EXPORTING PARMENIDIAN TRUTH AS A 

WEB APPLICATION 

5.1 Architecture of a Web Application 

5.2 Design of Parmenidian Truth Web Application 

 

The refactoring process of the Parmenidian Truth tool aimed at creating a 

project that will be incorporated easily in any other project providing all its 

functionalities through an interface. In this chapter, we exploit the new design 

of Parmenidian Truth tool to create a web application that will make possible 

for a user to visualize the evolution of a database’s schema by running the 

application on a server. The first section of this chapter gives the necessary 

background on the architecture of a web application describing its main 

components and their roles. The second section presents the design of the web 

application that utilizes the functionalities of the Parmenidian Truth tool to 

analyze the schema evolution of a database.     

5.1 Architecture of a Web Application 

A web application enables the execution of an application resided in a server 

via the web. The users of the application exploit the client/server model 

sending requests to the server and receiving responses from the server. Figure 
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5.1 depicts the client/server model which we use to create the Parmenidian 

Truth web application. 

 

 

Figure 5.1 Client/Server Communication Model 

The architecture of the server application is based on the Model-View-Presenter 

(MVP) design pattern. This pattern, which is derivative of the well-known 

Model-View-Controller (MVC) design model [KrPo88], was first introduced in 

[Pote96] in which author proposes a three-part decomposition of an 

application into the following components: 

 Model: represents the domain of the application that includes the main 

data structures. 

 View: includes every Graphical User Interface (GUI) utilized to present 

data provided by the presenter. 
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 Presenter: retrieves data from model component and formats it to be 

displayed in the view component.  

The essential difference between the MVP and the MVC patterns is that in the 

former the view component has the passive role of displaying data and 

delegating user requests to the presenter component, while in the latter the 

view component updates itself whenever the model part changes. In other 

words, in MVP model there is no direct dependency between the view and the 

model components with their communication being implemented via the 

presenter part.    

In our application, the role of the model component is assigned to java classes 

that make use of the Parmenidian Truth tool’s functionalities and create 

objects that facilitate the presentation of the data in the view part of the 

application. The view component consists of JavaServer Pages (JSP) that allow 

users to develop web pages with dynamic content along with the static one, 

like that of HTML markup language. In this component, we also exploit the 

JavaScript language to incorporate the D3 library [BoHO11], a JavaScript 

library for data visualization.  As for the presenter part, it consists of java 

servlets and classes, which receive clients’ requests, communicate with the 

model module and update the view elements.    

5.2 Design of Parmenidian Truth Web Application 

Apart from the existing functionalities provided by the Parmenidian Truth 

tool, we enriched our application with new ones that visualize the patterns 

presented in [VaZS15], in order to acquire a better view of whether and how 

evolution-related metrics are related to tables’ properties. We also accompany 

the visualization results with a set of statistics that give an overview of the 

relationships between the measures and the properties previously mentioned. 

In a nutshell, the main functionalities provided by our web application are 

summarized as follows: 

 Create/load a project in/from the server. 

 Visualize Diachronic Graph/versions/evolution-related patterns. 

 Compute evolution-related statistics. 
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5.2.1 Package Diagram 

Figure 5.2 shows the package diagram of the web application’s java resources, 

consisted of the following packages: 

 Servlets: classes that are responsible for receiving clients’ requests and 

sending responses back to them, playing along with the modules of the 

core package the role of an MVP presenter. 

 Core: classes and interfaces that define the main functionalities of the 

application. 

 Model: classes that represent the data structures of the application. 

 Enums: enum types that help us to implement sets of predefined 

constants representing different categories of tables.    

 

 

Figure 5.2 Package Diagram of the Application’s Java Resources 

5.2.2 Class Diagrams 

In this subsection, we present the including classes of the aforementioned 

packages of the web application. We do not include the class diagrams of the 

Parmenidian Truth tool, since we consider it as an independent project whose 
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functionalities, presented in Chapter 3, we utilize to create the web 

application.  

A. Servlets package  

This package includes three classes each of which is responsible for receiving 

clients’ requests related to the main functionalities provided by the 

application. Figure 5.3 depicts the class diagram of the servlets package along 

with the interfaces of the core package that they use. 

 

Figure 5.3 Class Diagram of the Servlets Package (along with the Interfaces of 

the Core Package) 

The absence of relationships between the classes of the servlets package is due 

to the fact that each of them serves different types of requests. More 

specifically, the ProjectCreatorServlet class is responsible for receiving requests 

for the creation of a new project. It then receives a set of data definition files 

containing database’s history and by utilizing Parmenidian Truth tool as well 

as the classes of the core package a model of the schema evolution is created. 

It finally sends back to application’s front-end information related to the 

evolution of the database’s schema. The ProjectLoaderServlet class utilizes the 

aforementioned model that contains the required information for 

implementing all the functionalities our application provides without the 

necessity of submitting successive requests to the Parmenidian Truth tool. The 
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VisualizationServlet class processes requests concerning the visualization of the 

patterns, presented in [VaZS15], the Diachronic Graph and the versions it 

consists of. As mentioned in Chapter 3, the Diachronic Graph is a graph with its 

nodes and edges corresponding to database’s tables and foreign keys, 

respectively. 

B. Core package 

The core package implements the business logic part of the application via 

retrieving the data provided by the model package, processing them and 

producing the responses to the clients’ requests. It consists of three interfaces, 

namely ProjectServer, ParmenidianServer and StatisticsServer which offer the 

required methods for implementing the main functionalities of the 

application. 

The ProjectServer interface has the central role of serving the classes of the 

servlets package via providing all the necessary data derived from the model 

package. The ParmenidianServer interface defines the methods that offer the 

data derived from the Parmenidian Truth tool. The StatisticsServer interface 

comprises the methods that process the data and create a set of statistical 

information that summarize the evolution of the database’s schema. Apart 

from the interfaces, there also exist two classes, the JsonConverter and Bubble 

classes, which convert data in a format that will facilitate their visualization. 

Figure 5.4 presents the participating classes and the dependencies between 

them in the core package. 

C. Model package  

This package encompasses the domain classes of the application that model 

the versions, the tables and the foreign keys of a database. It also includes the 

Model module that represents the data needed to load a project and the 

XmlProvider class used to convert the objects of the Model class to data in xml 

format and vice versa. Figure 5.5 illustrates the components of the model 

package.  
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Figure 5.4 Class Diagram of the Core Package 
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Figure 5.5 Class Diagram of the Model Package 
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D. Enums package 

The enum types included in this package define tables’ categories based on 

their activity profile, their originating version, their duration in schema 

history and their survival status based on their existence in the last version of 

database’s schema. These types are used to quantify tables’ distribution over 

the different categories and to facilitate the visualization of the Diachronic 

Graph. Figure 5.6 depicts the class diagram of the enums package.   

The ActivityStatus type defines three table categories based on tables’ update 

activity during their existence in the database. The DurationLabel type 

classifies tables in terms of their normalized duration, which is the number of 

the versions they exist over the total number of the versions. The 

BirthVersionLabel type includes three constants corresponding to the different 

tables’ categories pertaining to their birth versions. The SurvivalStatus type 

assigns to each table a label based on whether or not it exists in the last 

version of database’s schema history. The last type, Labels, is only used to 

provide the including constants as labels to the methods that compute the 

evolution-related statistical information.     

 

 

Figure 5.6 Class Diagram of the Enums Package 
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CHAPTER 6.  

 CONCLUSIONS AND FUTURE WORK 

6.1 Conclusions 

6.2 Future work 

 

The final chapter of the current thesis summarizes the major findings of our 

study, outlines the answers to the research questions we stated in the 

introductory chapter and finally suggests potential issues for future work. 

6.1 Conclusions 

The twofold objective of this thesis was: (a) to examine whether there is a 

correlation between tables’ topological properties and various metrics of their 

evolutionary activity and (b) to improve the internal quality of an existing tool 

for the study of schema evolution with respect to foreign keys, by introducing 

principled rectification mechanisms and applying a set of recommended 

refactoring patterns. Thus, we conducted an in-depth analysis by classifying 

tables in four topological categories, namely isolated, source, lookup and 

internal and then we study how these categories are likely to determine 

tables’ durations, their potential to exist in the last version of the schema 

history, the probability for a table to exist in the very first version of their 

database, tables’ update profile and their size change between the first and the 

last versions.  

The most important findings that are also supported by the corresponding 

statistical tests were that there exist: (a) a relationship between tables’ 
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topological categories and the probability to be born in the originating version 

as well as (b) a correlation between tables’ topology and their update activity. 

As for the former relationship, we identified two different behaviors among 

the topological categories, with the lookup and the internal tables 

demonstrating a proclivity for existing in the early, if not in the very first, 

versions of their database’s history, while the isolated and the source tables are 

more likely to be introduced in versions succeeding the originating one. 

Concerning the latter correlation, we recognize a monotone increase pattern in 

the intense of tables’ update activity with their topological complexity. 

Specifically, the isolated and the source tables are associated with no or few 

updates, the lookup tables with few or many updates and the internal tables 

with many changes. For the rest of the measures and their relationships with 

tables’ topological categories although we pointed out several commonalities 

among the datasets examined, we could not present solid evidence that 

would verify the existence of these correlations.       

We also presented a principled refactoring process applied in the 

Parmenidian Truth tool, which visualizes the schema evolution of relational 

databases. First, we inspected design defects that would complicate any 

expendability efforts and the reusability of the tool. For each defect, we 

applied the necessary modifications in tool’s source code aiming at 

eliminating it and complying with the recommended design principles and 

patterns. For the modules we either modified or added, we created unit tests 

to verify that tool’s expected behavior has not altered after the refactoring 

process. Finally, having performed all the refactoring actions, we assessed the 

improvements in the tool’s architecture derived from the restructuring 

process.  

Following the refactoring process, we utilized the modified Parmenidian 

Truth tool to create a web application that comprises an alternative solution 

for visualizing the evolution of databases’ schemata and quantifying the 

respective statistical information. 

6.2 Future work 

To the best of our knowledge, this was the first work that revolved around the 

relationship of tables’ involvement with foreign keys with their evolutionary 

behavior. In a follow-up work, one can investigate if a different topological 

classification of the tables would lead to different conclusions on the role of 

tables’ topology in the schema evolution. In our study, we chose to assign a 
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single label to each table, since the single label scheme facilitated our goal to 

associate the topological labels with the evolutionary measures. A multi-

labeling scheme that does not ignore the label changes that a table experiences 

is likely to reveal evolutionary features that our work neglected.     

The second issue that can be the objective of future research has to do with 

what we call a “second-pass” in tables’ classification process. In our work we 

assign a label to each table based on its inciting edges without considering the 

labels of its adjacent tables. It would be interesting to see, after classifying 

tables via the process we proposed, whether a second classification phase that 

takes into account tables’ neighborhood, practically resulting in a different set 

of topological categories, would provide us with new information about the 

ways tables evolve with respect to the topological categories they belong to.    
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