A Multifragment Renderer for Material Aging
Visualization

A Thesis

submitted to the designated
by the General Assembly of Special Composition
of the Department of Computer Science and Engineering

Examination Committee
by
Georgios Adamopoulos
in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

WITH SPECIALIZATION
IN SOFTWARE

University of Ioannina

March 2018

Examining Committee:

* Joannis Fudos, Professor, Department of Computer Science and Engineering,

University of Ioannina (Advisor)

* Panos Vassiliadis, Associate Professor, Department of Computer Science and

Engineering, University of loannina

* Kostas Magoutis, Assistant Professor, Department of Computer Science and

Engineering, University of loannina

Dedication

Dedicated to my parents, Kostas and Voula, my brother Dimitris and my girlfriend
Renia, because nothing I have achieved so far would be possible without their

support and understanding.

Acknowledgements

I have to thank my supervisor Professor loannis Fudos for his guidance throughout
my Master’s Degree and all the opportunities he gave me to prove myself. Also I
would like to thank all my friends that stood by me and helped me by any means.
Special thanks to my colleagues Vangelis Eftaxopoulos for all the advices as a senior
graduate student and Anastasia Moutafidou who also had to put up with me in

everyday basis.

Table of Contents

List of Figures iii
List of Algorithms v
Glossary vi
Abstract vii
Extetopévn Mlepiindy viii
1 Introduction 1
1.1 Related Work e 3
1.2 Thesis Structure L e e 5

2 Theoretical Background 6
2.1 Rendering 6
2.1.1 OpenGL o 7

2.1.2 Shaders e 7

2.2 3D Models 8
221 Mesho e 9

2.2.2 Texture Mapso e e 10

2.3 Multipass Rendering L L o o s 14
2.3.1 Order Independent Transparency 14

2.4 PBR Lo e e e 15

3 Our Method 18
3.1 Physical Based Rendering 18
3.2 Order Independent Transparency 20

4 Implementation

4.4 Model Loading o o

4.1 Shader Loading
4.2 Shaders Implementation
4.3 Draw functions
4.4.1 Class model . . .
4.4.2 C(Class mesh . ..

4.5 Graphical User Interface
5 Experiments and Results
6 Conclusion and Future Work

Bibliography

...........................

ii

25
25
27
37
39
39
45
48

50

59

60

List of Figures

2.1 Sphere mesh withno textures 10
2.2 sphere with diffuse texture o000 10
2.3 Diffuse Map 1
2.4 Sphere mesh withnotextures. 11
2.5 Sphere with normal texture, 11
2.6 Normal Map e 12
2.7 Sphere mesh with no textures Maps 13
2.8 Sphere with Roughness and Metallic texture 13
2.9 Roughness/Gloss Map e 13
2.10 Specular/Metallic Map oo 13
2.11 Sphere mesh with no texture maps 14
2.12 Sphere with every texture applied 14
2.13 Rough Surface e 15
2.14 Roughness values and their result in reflection 16
2.15 How geometry affects shadowing 17
2.16 Fresnel effect L 17
4.1 Main Panel of our tool and its components 48
9.1 Tool performance per Object and screen fill 51
5.2 Multiple Layer performance 52
5.3 Order Independent Transparency performance without PBR 52
5.4 PBR performance without Order Independent transparency 53
5.5 Geometry of themodel, 54
5.6 Geometry + Normal Texture. 54
5.7 Geometry + Normal + Ditfuse 55
5.8 Geometry of shield o 55

1ii

5.9 Geometry + Normal Texture 55

5.10 Geometry + Normal + Ditfuse 56
511 Outer Layer o i e e e e e e e e e 57
5.12 Middle Layer e 57
5.43 Inner Layer L 58

iv

List of Algorithms

3.1 PBR computation Algorithm for a single fragment. 20
3.2 Initialize Buf fer Algorithm.00, 21
3.3 Render Bufter Algorithm. 22
3.4 Display Buffer Algorithm 24

3.5 Filter Fragments Algorithm

Glossary

abbreviation
PBR
VFX
GPU
OpenGL
GLSL
AO

RGB
BRDF
NDF
GUI

term

Physical Based Rendering

Visual Effects

Graphics Processing Unit

Open Graphics Language

OpenGL Shading Language

Ambient Occlusion

Red Green Blue

Bidirectional reflectance distribution function
Normal Distribution Function

Graphical User Interface

vi

Abstract

Georgios Adamopoulos, M.Sc. in Computer Science, Department of Computer Science
and Engineering, University of loannina, Greece, March 2018.
A Multifragment Renderer for Material Aging Visualization.

Adyvisor: Ioannis Fudos, Professor.

We report on the development of a visualization tool for material aging of cultural
heritage artifacts. The tool is aimed at curators, archaeologists and other users that
wish to observe, visualize and prevent the process of material aging in artwork objects.
The tool combines state of the art multi-fragment and physical-based rendering tech-
niques and is built based on conclusions drawn from measurements on naturally or
artificially aged objects which are comprised of multiple layers.

We introduce a method for realistically rendering outer surfaces and inner stratifica-
tion with the use of transparency in real-time. The method works in three rendering
passes using three buffers for storing and manipulating fragments (fragments are
parts of the mesh that correspond to one pixel).

The algorithms have been tuned to provide better interaction and comprehension
of the results by the user. We offer a comparative evaluation of performance and

rendering quality with existing techniques.

vii

Extetopévn Iepiindn

l'ewpyLog Adapdmoviog, M.AE. otny [TAnpopoptxn, Tunuo Mnyovixey H/Y o TTAn-
popoptxg, [lavemiotipto lwavvivwy, Mdéptiog 2018.

[ToAvbpowvopatixy amddooy Yo TV OTTTLXOTOINoN TNG CVVOEDTG TOAALWUEVWY OV TL-
XELUEVWV.

EmBAénwv: lwdvvng ®odvtog, Kabnymtis.

Ye aut) ™y gpyaoia TaPoLOLALOVUE TNV OVATTTUEY] EVOG EQYAAELOL OTTTLXOTTOL-
NONG KE QPWTOPEAALGTIXY] atddoon. H ypnon Ttov mpoopiletor yLa opyaloAdGYOLS,
CLYTNENTEG OLAAGL X0l OTTAOVG YPNOTEG UE OXOTTO TNY OTELXOVLOY, TtopaxoAovbnon
XOL CUVTNPNOY OVTLXELULEVWY TTOALTLOULXOV eVdLopEpovtos. H avdmtuEn Twy avtixet-
KLEVWY TTPOG Ttopox0AoVONoM eivol amoTéAeopor SLAPOPWY LETPNOEWY OTTO TEYVLXES
OVOXATOOKEVNG ETTLPOAVELWY, TOTO EEWMTEOLXWY OAAG KOl ECWTEPLYWY, UEYOEL YNULUNG
OVAALOYG TNG CVOTUONG TWY LALXWY TOLG WoTe Vo Ttopoyfel Aettopepg Tpooop.ol-
w01 TOCO TWY EEWTEPLUWY ETILPAVELWY O0WY XUL TWY ETWTEPLXWY SLAOTOWUATWY.

To obotnuor ouvSLAELEL TeyVLxég ToALOPOLOPATIXNG ATTO300YG OAANG %o aTTtHSO-
oNg PLOXWY LILOTNTWY LAXWY. To PBR, dnAadn n amddoon vAxwy pe Baon Tig
LOLOTNTEG TOLG Elvort Ulow CVYYQEOVY TEXVLXY] TTOL YPNOLULOTIOLELTOL OTTO UEYAAES KLVY|-
LOTOYQUPLUES TTHOOAYWYES YLOL TNV TTOPOYWYY] PEXALOTIXWY EQE 1 XOL EE OAOXANPOL
animation totvieg. Axoun mAéov Dewpeital pion amd TIg TAEOY KOLVEG TEYVLXES TTOL
YOYOLLOTTOLOVVTOL AT ETOLPELEG TTHOOYWYNG NAEXTPOVLXMY TTOLYVLOLLY YLO VO TTOO-
3WOo0LY PEAALOUO OE TTPAYLOTIXO Ypovo. Baolletar otny vAomoinon g BRDF ov-
VEETNONG ovaxAoong xo bAomoteltat o fragment shaders TEOYPAULOTO YOOPLXOY.
H ypnon g mpodmobétel Ty OmapEn Texture Maps yioo Ty atdé300m ASTTOUEPELLY
OTLG ETTLPAVELES TWY VALXWY X0l OWOTYG ETLOPUONG TOV PWTOG OE AVTEC.

H dedtepn teyvinn mov avamtOERUE €XEL WG OXOTTO TNV OWOTH ATTOS00Y] TWY EGW-

TEPLXWY TOVG SLOCTPWUIATWOEWY UE TNV XOENOY SLOPAVELOG OE TEAYLOTLXO Ypovo. H

viil

uébodog Baoileton otov A-buffer xot tnv emeEepyaocio Twv fragments pe oxomd v
dtataEn toug xoté Bébog avé Béon pixel. H pnébododg pog yonotpomotel tplo mepdi-
opato xota TN Otadtxacior amddoons, EVoL YLOL TNV QEYLXOTTOINoY EVal YLOL TNV ATtO-
3007 YPWROTOG xoL TNV amobnxevon xabwg xaL Eva yia Ty SL&TaEn omTLXOTTOlNoY
Ty amofnxevuévwy fragments otov ypNnotn. Katd tov yetptopd tou avtixelévon
0 YPNoTNg Olvel ptor emtAoyn YL To Bébog mov O€Ael va €xel xaAdTEE omtTtixy. To
TOOYQOULUO EXUETAAAEVETAL TNY ETULAOYY] QVTY] TTPAUETPOTIOLOVTOS XAUTAAANAC TNV
uébodo. Ta fragments amobnxedovtal os tpeig buffer, amapaitnrwy yia Ty evpety-
pLomoinay, Ty amobfxevon xaL Ty eneEepyaaio Toug.

[Siaitepn onuoaoctio €xel Sobel oTNY TAPAUETPOTOLNGY] TwY OAYORLOUL®WY Yo XOAD-
TEPN AAANAETTLOPOUON KO HATOVONOY TWY KTOTEAECUATWY ATtO TOV XPNotn. Ilopov-
oLalovpe TG LefGdoug TTOL VATTOEOUE XKoL CLVOLATOUE, TN OYEDLOOY XOL OVATTTUEY
ToL gpyoAeiov xobg xow aTOTEAEGUOTA GUYXOLONG UE LDTTAPYOVOES TEYVLXES, TOCO
WG TTPOG TNV ATTOSOTIXOTNTU OO0 XUL WG TTPOS TNV TTOLOTNTO TNG ATELXOVLONG. XE LEA-
AovTixa Bripato Bor propodooy vor nmovy BEATLOOELS LETA KTTO TTPOTAOELS XPNOTWY
%x000¢ %o TOPUPETPOTOLNOY OAYoPLOLWY WG TTPOG TNV XOAVTEET SLoryelpLon UVNUNG

2000 xoL GAAESG TEYVLXES ATIELXOVLONG YLt oxOuUN TLo aAnfopovy] amoteAéopoto.

ix

Chapter 1

Introduction

1.1 Related Work

1.2 Thesis Structure

The preservation of Cultural Heritage artifacts is a very tedious but important process.
Each object is crafted using selected materials that age differently and can have large
impact in the appearance of it through time. Also an artifact may have different
layers of materials, such as a painting with multiple coatings of colors, which decay
separately and may even affect the volume of an object. Archaeologists and curators
bear the responsibility to study the aging process of each material and then apply
that knowledge to restore artifacts to prior condition and prevent further decay. In
this context, it is imperative to have a tool that can visualize multi-layered objects
in different time frames and be used by scientists while curating or studying certain
artifacts.

This kind of work however require great precision and the visualization needs
to be almost a simulation of real-world materials, which in traditional Computer
Graphics require heavily detailed models, something that makes performance a seri-
ous issue. In this thesis we report the development of a visualization tool that gives
the ability to observe physical materials both along their surface and also with their
inner layers, in different points of time. Such a tool can be extended with additional

functionality needed by such scientists and is able to become cross-platform if needed.

Multiple sensors are used to capture the information of an artifact needed for
rendering. Some sensors are used to gather information about the color of the sur-
face ,others are used to capture details about the texture of the surface while others
calculate the volume of the artifact.

Microprofilometer, which is a laser scanner, gives us high detail information for the
surface of a material. We generate Normal Maps, Roughness maps and Displacement
maps based on the information we gather from it, as well as a triangulated mesh
depicting the geometry of an object. However Microprofilometer can be used to scan
small surfaces only, which leads us to photogrammetry techniques to obtain the entire
geometry of an artifact.

Reflectance Transformation Imaging measurements, or RTI, use multiple pho-
tographs of the same object lit from different directions each time, resulting in valu-
able information about the reflectance abilities of its surface. We take Albedo Maps,
which depict the color of a surface when is evenly lit and Metallic Maps which dic-
tate how the light is reflected in different areas of the surface. RTI can also provide
Ambient Occlusion Maps which are used for better shading in static lighting and also
Normal Maps for the given surface which can be used for cross-validation with the
Normal Maps from the Microprofilometer.

Ultrasound Measurements are used to calculate the inner volume of the surface
and give us details about inner layers of an object which are not visible to the eye.
Such details are transformed into triangulated meshes and are added to the general
geometry of an object.

The data collected from these sensors need to be processed and presented in
a certain format in which we will import them into our method to visualize and
interact with the user. For example, the Microprofilometer data refer to small areas
of an object, so analysis of them is required in order to simulate the overall surface
properties before rendering.

However, the detail obtained from these sensors can be very high, resulting in
very large quantity of data which can be not accepted. We encode the information in
texture maps to reduce the density of the data for the rendering process.

In computer graphics visualizing 3D models using computer programs is called
Rendering, and with the modern Graphical Processing Units, or GPUs, it has become
efficient to render high-detailed 3D models such as artwork objects. The introduction

of Shaders and their massive parallel computations made the rendering pipeline

achievable in real-time, when specific conditions are met, concerning the input data.

Our visualization tool is developed on top of a multi-fragment renderer using
vertex and fragment shaders. We use modern rendering techniques, algorithms that
process multiple fragments per pixel to render aging materials on artwork objects.
Transparency gives user the ability to observe, both outside and inside surfaces of
an artifact with low cost and in an intuitive way. Also the user has the ability to see
the changes made to an object during different time periods, when provided with
sufficient data. The aging data are either different versions of the entire object, or
changes of characteristics, based on real-world aging measurements.

Rendered objects consist of two definite types of data, triangulated mesh which
gives us a rough approximation of the geometry both in outer surface and inner layers,
and texture maps which describe detailed properties each given layer. The Physically
Based Rendering technique, or PBR technique which is widely used nowadays in
Game and Film Industry, uses these types of data to realistically portray real world
objects in virtual world with as little processing power required as possible.

In summary, in this thesis we make the following contributions:

* We develope a photorealistic visualization tool for Objects comprised of simu-

lated aging materials generated from multiple sensors

* We give the ability to observe selected inner aspects of materials, using a multi-

fragment method we developed for transperency.

¢ Achieved real-time rendering performance for very large objects

1.1 Related Work

While rendering objects using usual materials, aging information is of great impor-
tance because it adds realism to the result. Cracks, dents, corrosion or even cosmetic
detail such as dust, smudges, fingerprints contribute in more natural looks, while an
artifact rendered with spotless, ”pure” materials, seem too clean and smooth to be
true. Cosmetic detail are usually added on a surface as extra textures blended with
original ones, while aging details is another story. Thats way there is a lot of work
done trying to simulate aged materials with success. In [1], a classification of differ-

ent types of degradation is made, in an attempt to better visualize decay of different

3

materials in Computer Graphics. Degradation is categorized based on the phenomena
causing decay, the materials affected by such phenomena, with varied effectiveness,
and the different types of surface degradation as a result. In [2], the author categorizes
the morphology decay types of materials instead of only outer surface degradation
and the result of the general appearance of an object. These degradation types affect
the volume of an aged model which is imperative to the realism of the render, for
example a decaying fruit that shrinks along its decay phases.

Another subject that needs to be addressed is the appearance of a model that
is not yet manufactured, or is based on an original artifact that is heavily affected
by time, or other physical phenomena. Of course we do not mean the restoration
of broken parts of an object, for example the broken arms of a statue, but only the
material surface decay. There are many techniques used to predict the appearance of
a yet to be manufactured object. Usually artists create the appearance manually and
based on their perspective. In order to lower the labor of creating them manually,
simulation based on sample materials is used to render a result. In [3], methods for
collecting sample data needed for rendering aging materials are described, as well
as ways to make use of such sample data in simulating objects of various shapes
and morphology. While there are many simulating algorithms for aging materials,
the most common issue is that the do not scale well in larger areas, thus making
it impossible to render large scenes using these data without tedious work done by
Artists. In [4] a method to well scale such algorithms is introduced that also simulates
aging in large scenes smoothly.

To visualize different layers of objects separately we need to render transparency
efficiently using Multi-fragment Rendering. Depth-ordered fragment determination
is used in 3D game and VFX industry to achieve numerous appealing and special
visual effects in graphics applications. That method is imperative for the rendering of
a variety of algorithms in interactive speeds, such as photorealistic rendering, order-
independent transparency for forward, deferred, volumetric shading and shadowing,
visualizing hair and solid geometry.

In [5] the authors provide an overview of depth-aware methods for rendering.
They also provide modifications for such algorithms in order to overcome the prob-
lem of coplanarity, or Z — fighting, which is the phenomenon in three-dimensional
rendering where some rendering primitives have identical or similar values in the

Z-buffer. That particularity leads to 1) either intersecting surfaces, 2) overlapping

surfaces, when primitives are coplanar and overlap or 3) non-convergent surfaces
due to precision errors.

[6] introduces S-buffer, a variation of A-buffer architecture, which is efficient and
memory friendly. Alternate techniques implementing A-buffer require linked-lists or
fixed arrays to store fragments in the shared GPU memory, which scale well and
run in linear time regarding the number of fragments, but they require increased
amounts of GPU. Their approach includes an additional rendering pass in which
they count the fragments per pixel, thus allocating the exact amount of memory
for storing fragments. The result is an implementation which takes advantages of
fragment distribution and the sparsity of pixel-space with improved memory usage
and performance with the cost of one extra rendering pass. We employ this technique

to achieve real-time rendering of material aging information of artwork objects.

1.2 Thesis Structure

The thesis is composed of six chapters.

In the Chapter 2, called Background, we will provide information regarding any
specific meaning so that the reader can be familiarized with rendering, shader pro-
gramming and any other tool which was used to our work.

In Chapter 3, the methods we developed will be presented.

In Chapter 4, the implementation of our methods will be presented with more
technical details

In Chapter 5, certain experiments will be presented in order to evaluate the per-
formance and the rendering results of our tool

In Chapter 6 we conclude our work and we propose future work based on this

thesis.

Chapter 2

Theoretical Background

2.1 Rendering

2.2 3D Models

2.3 Multipass Rendering
2.4 PBR

2.1 Rendering

In Computer Graphics rendering is the automated process of creating an image based
on a collection of 2D or 3D models, which are properly loaded into memory. The
collection of such models is commonly named a scene and computer graphics appli-
cations take responsibility in loading all the models in memory and preparing data
for rendering. After that the rasterization process begins in which the scene is sep-
arated to fragments. A fragment is the collection of information needed to visualize
a single pixel in the frame buffer, which is achieved by the fragment operations.
This process as a whole is called rendering pipeline and can be fully programmed in
modern computer graphics with the development of shader programs. There is also
the need for programmers to communicate with these shader programs and load the

data into pipeline.

21.1 OpenGL

That role is covered by APIs responsible to interact with the Graphics Processor
Unit (GPU) with OpenGL or Open Graphics Library being one of them. OpenGL is a
cross-language, cross-platform library containing a set of function along with named
integer constants. It is used in almost all kinds of Computer Graphics applications,
ranging from standard image rendering to 3D animation and Computer Games. The
latest version is 4.6 and while every version is backwards compatible, because it is
designed to be entirely implemented in hardware, there might be the need to use

earlier versions for maximum compatibility.

2.1.2 Shaders

As we talked about before a shader is a type of computer program that is used to
program the rendering pipeline. They were originally used fro the computation of
shading values, which means the combination of light, darkness and color in an image,
however due to their high parallel abilities they are used in a variety of applications,
not only in computer graphics, but even topics with no relativity with them at all.

With these kind of programs it has been made possible to create custom effects,
against fixed-function pipeline that was the standard before their introduction, and
manipulate every aspect of pixel, vertices or textures, in interactive speeds. The al-
gorithms responsible for these effects are developed in shader programs and are
externally loaded with data and modified using variables, during the calling of a
shader.

Shaders are divided in types, regarding the objective they serve. The types of
shaders we concern ourselves with are the Fragment Shaders and the Vertex Shaders,
apart from which there are Geometry Shaders, Tesselation Shaders, Compute Shaders

and Primitive Shaders, whose abilities were not necessary in our work.

Vertex Shader

The first kind of shader program created were the Vertex Shaders. Such a shader is
called once for each vertex of the scene and has the ability to manipulate its position,
color, texture coordinates or other properties. The purpose of it is to transform the
local 3axis coordinates of each vertex to the equivalent 2D value in which it appears

on screen along with the depth value passed into z-buffer. The result of the Vertex

Shader is passed to the next step of the rendering pipeline, in our case the Fragment
Shader

Fragment Shader

Fragment shaders or pixel shaders, compute basically the color and also other at-
tributes of each pixel rendered. They are mostly responsible for applying the shading
algorithms that compute how the light influences each fragment of the render, and in
the same context, they apply the more evolved algorithms for shading photorealisti-
cally a scene. Algorithms that take into account texture maps, such as PBR pipeline
we used in our work, have most developing done in fragment shaders.

In general fragment shaders are programs that have “access” only in pixels and
not in the geometry of the scene, which makes them unable to manipulate them
in such way. However, because of the information they hold about pixels and their
neighbors they can be used to create certain effects, such as blur, or edge detection
and can also be used alone in post-processing of images or videos already rasterized.
That ability gives them versatility and makes them really useful for creating certain

effects.

2.2 3D Models

A strictly defined structured is followed when creating a 3D model for rendering. The
data that constitute the model fall into three different categories and subcategories as
seen below:
¢ Vertices
Position
Vertex Normals
Vertex Color

Texture Coordinates
e Faces

¢ Texture Maps

Diffuse map
Normal map
Metallic map
Roughness map

Displacement map

Generally Vertex and Face data comprise the mesh of a model, while textures refer to
the visual details that the mesh can’t reproduce, or more commonly, is too expensive
to be rendered with mesh data. In certain formats such as OBJ Wave front file format
the vertex and face data are included in a single file with extension .0b; while textures
are present as image files in the filesystem. In that case there is usually a material
file .mtl with information on texture referencing and types, that are included in said

mesh.

2.21 Mesh

Each vertex is a data structure that refers to a single point of a mesh and holds
information about certain abilities of said point. The necessary information a vertex
holds is the position in 3D space, usually given in local coordinates around the center
of 3-axis (0.0, 0.0, 0.0). Without position data nothing can be rendered, while other
information needed can be exported from them if missing.

Vertex Normal is a directional vector that is associated with given vertex and is
computed by the Face in which is a part of. They are used in many lighting models
like Gouraud or Phong shading and the are need to achieve smoother shading than
the flat one created by Faces.

Each vertex might have a color value in RGB format so that in rendering color
appears. Certain file format do not support Vertex Color data by default, such as
traditional OB.J, however there are different editions of them with proper implemen-
tation of color. In most modern graphics applications, ours included, Vertex Color is
not needed due to the presence of diffuse texture maps that represent higher color-
ing detail than vertex color. In that case, the space not allocated to vertex color data
can be used to load information not typically found in vertex structure and achieve

various effects, for example use of mesh indexing in which vertex belongs to.

The combination of image (textures) and mesh data is achieved through wrapping
2d images around a 3D object. During this procedure each vertex of a 3D mesh is
connected with a pixel in an image file. Because x, y, z coordinates are already used

in vertex position, UV coordinates are used to point to that certain pixel.

2.2.2 Texture Maps

Image files used in the texture mapping method, in which an texture map is wrapped
around a surface of a mesh to add higher resolution detail than the one provided by
default. Maps can either be static data, or procedurally created images. By procedu-
rally creating images based on algorithms it is really easy to render large areas with
not repeated textures without resolution problems. Usually it procedural textures are
used to render certain materials that have a randomness in their texture such as
wood, marble, granite etc.

At first what started as texture mapping later was renamed to diffuse texturing,
means adding color detail (Fig. 2.2), while more complex types of textures where
invented to enrich a model. In PBR rendering pipeline diffuse maps are also called

albedo maps, with sole difference being that the albedo map does not include shades

in it so that the rendering is only affected by the light present in our scene.

Figure 2.1: Sphere mesh with no textures Figure 2.2: sphere with diffuse texture

10

Figure 2.3: Diffuse Map

Normal Texture Maps is the equivalent of vertex normals but with more informa-
tion, essentially faking bumps, dents and other surface irregularities when computing
shading algorithms (Fig. 2.5). They are one of the most common techniques to in-
crease the resolution of a model dramatically without high-resolution meshes. They
are images with RGB information in which 3D vector direction is encoded (Fig. 2.6).

This information is used in fragment shaders when computing light radiance.

Figure 2.4: Sphere mesh with no textures ~ Figure 2.5: Sphere with normal texture

11

Figure 2.6: Normal Map

Metallic Textures maps are usually grayscale images (Fig. 2.10), or in some cases
black and white, that determine if each fragment of the mesh is metal or not. This is
needed for the renderer to know the amount of reflectance ability that a surface has.

Supplement to Metallic Texture Maps, the Roughness maps are grayscale images
(Fig. 2.9) that provide information on how rough a surface is, metallic or not, thus de-
termining how wide and blurry are the reflections captured by it (Fig. 2.8). Typically
rough surfaces have wide and blurry reflections while smooth ones reflect smaller
and clearer. In some cases, depending on the workflow of a renderer, instead of
Roughness maps there might be a need of Smoothness/Gloss maps which are the

inverted equivalent of Roughness maps.

12

Figure 2.7: Sphere mesh with no textures Figure 2.8: Sphere with Roughness and

Maps Metallic texture

Figure 2.9: Roughness/Gloss Map Figure 2.10: Specular/Metallic Map

Displacement maps are texture maps that are used in height mapping technique.
Typically they contain information about distance of displacement of a fragment,
along its’ normal axis, encoded in grayscale images. The white value represent the
maximum positive displacement while black the maximum negative, while middle
value 0.5 represent no displacement whatsoever.

The result as we can see (Fig. 2.12) is very realistic and it only uses the number

13

of vertices the sphere originally had (Fig. 2.11)(482 vertices), while if we were to

reproduce that result using real geometry we would might need millions of vertices

making storing size many times bigger and rendering times not real-time.

Figure 2.11: Sphere mesh with no texture Figure 2.12: Sphere with every texture

maps applied

2.3 Multipass Rendering

Each OpenGL shader renders output to framebuffers with screen being the most
common one and that’s why it is also the default one. For simple needs that pipeline
is more than enough but it is limited to implementing only Vertex and Fragment
shaders, which themselves are confined when in need of more complex effects. An
output of a pass however, can be used as input to another one, thus expanding the
options of that pass. This can be useful in cases where the output might not be in a

displayable format making the second pass necessary for visualization.

2.3.1 Order Independent Transparency

In our case where transparency is needed and the performance is crucial, Order
Independent Transparency was the way to go. This method is a perfect example
of why the multi-pass rendering is needed, due to the preprocess the data needed

before visualization. The traditional way to achieve transparency is through Alpha

14

Blending, where the color of each fragment in different depths is blended according

to the alpha value of the fragment. The equation implemented was the following;:

RGBd = AS X RGBS + (10 — AS) X RGBd (21)

where: RGB is referring to the color value of the fragment and A to the Alpha value

while s and d mean source and destination fragment accordingly

2.4 PBR

The appearance of an object need to be realistic, or as said in computer graphics
photorealistic. The amount of darkness, lightness and color values that contribute to
the fragment RGB value are given by shading algorithms that are more or less based
on the same underlying theory which more closely matches the behavior of light in
the physical world. Phong, Blinn — Phong, or Cook — Torrance are common shading
algorithms present in computer graphics for many years. Our work however is based
on PBR rendering, or Physically Based Rendering, which is a collection of render
techniques that aim in mimicking light in a physically plausible way which gives

better results than traditional lighting algorithms.

/\./_f_,\,u——_________---_____________,

ROUGH SURFACE SMOOTH SURFACE

Figure 2.13: Rough Surface

It is based on the theory of microfacets, energy conservation, radiometry and
BRDF function. Microfacets are basically a theory that says that any surface under
microscopic scale can be seen as an array of small mirrors. The roughness of the
surface can drastically change the way these mirrors are aligned. That way a rough
surface has wide and blurry specular reflections while a smooth one has sharper and

stronger specular reflection

15

Figure 2.14: Roughness values and their result in reflection

The light that hits the surface of an object is partly reflected and partly refracted,
depending on the properties of the surface. This separates the light drawn to diffuse
light and reflection light. The reflection part is light that directly gets reflected and
doesn’t enter the surface; this is what we know as specular lighting. The refraction
part is the remaining light that enters the surface and gets absorbed; this is what we
know as diffuse lighting.

By observing physics law about energy conservation along with this distinction
of light in two parts leads us to the observation that these two types are mutually
exclusive. Whatever light energy gets reflected will no longer be absorbed by the
material itself. In our implementation reflected light is computed first and diffuse
light value is computed as the supplement to 1.0.

The reflectance equation is a complex equation that is used in PBR to simulate
the visuals of light. It is based in theory analyzed in radiometry, the measurement of

electromagnetic radiation. The equation is found below:

L,(p,w,) = / fr(pywiywo) Li(p, wi)n - widw; (2.2)

The value L represents the rad?ance, which is the strength of light coming from
a certain angle. A lot of values contribute in the computation of L such as Radiant
Flux , which is the light energy represented in Watts, as well as the solid angle w,
the radiant intensity and many others. The f, represents the BRDI" function which
is properly analyzed below.

The BRDF, or Bidirectional Reflective Distribution Function takes as input data
regarding the light inbound to the surface, light outbound, the microfacet roughness
value a and approximates the light value of the facet of the material. Basically, combine
all the above theories for microfacets and energy conservation in light to contribute to
the result. Many computers shading algorithms are considered BRDF functions, for

example Blinn — Phong takes similar inputs as BRDF but it is not physically based

16

because they ignore the energy conservation principle. Almost all real-time render
pipelines use a BRDF' function called Cook — Torrance BRDF'.

PBR is physically based, as it has two parts for light, one diffuse and one specular
that do not exceed the maximum energy of light when added together. The diffuse
part is typically taking surface color into account while reflection part combines the
Normal Distribution Function, Geometry function and Fresnel equation.

NDF, or Normal Distribution function, describes microfacets alignment. Geometry
function describes the self-shadowing property of the microfacets. When a surface is
relatively rough the surface’s micro-facets can overshadow other microfacets thereby
reducing the light surface reflects. And last Fresnel equation describes the ratio of
surface reflection at different surface angles. There are many different implementa-
tions of these theories, other more realistic, other more performance driven. It is wise

to pick one that cover all our needs.

GEOMETRY OBSTRUCTION GEOMETRY SHADOWING

Figure 2.15: How geometry affects shadowing

Figure 2.16: Fresnel effect

17

Chapter 3

Our Method

3.1 Physical Based Rendering

3.2 Order Independent Transparency

With all the data of the model there is a need for an appropriate viewer that can
visualize all the details. The 3D Viewer needs to be able to render the details provided
by the sensors while being fast enough. For that reason, we developed two rendering
techniques. PBR (physically based rendering) and S — buf fer. PBR is capable of
visualizing all the surface details provided by the texture maps of the model, while
S-buffer renders transparency and gives the user ability to view inner layers of a

model.

3.1 Physical Based Rendering

Our PBR method is based in the Unreal Engine 4 functions [7] which are the
Trowbridge — Reitz GGX for the computation of normal Distribution function, the
Fresnel — Schlick approximation for the Fresnel equation and the Smith's Schlick —
GGX for the Geometry function. These are used in the Cook — Torrance function to
compute reflectance. We include point lights to light our scene and make the ren-
dering more realistic. The Algorithm 3.1 presented below is describes the method we

followed for PBR computation.

18

For each fragment in the scene this algorithm is followed to calculate it’s final color
in RG B value. First (line:1) we load the values from Texture Maps that correspond
to the fragment’s coordinates that include albedo color, metallic, roughness and AO
value, as well as normal vector of that fragment. We have to precompute 3 a value Fj
for the Fresnel equation which is tinted from the albedo color value if the material is
metallic. Generally an object is metallic or dielectric but by passing a linear value from
0.0 to 1.0 in metallic we can simulate variations in the surface, either aging based or
dirt based, transfusing realism to our render. That value is later on (line: 13) passed
in the equation along with the viewing angle of the camera, simulating the fresnel
effect (Fig. 2.16).

For each light in the scene we have to compute it’s outgoing reflectance value
separately and add it to the overall outgoing radiance (line: 19). We calculate the
incident angle of light through it’s position in scene (line: 6) and the halfway vector
H needed for computations. The distance of light source is used to generate the
attenuation of it (line: 9), giving decreasing intensity to the light as it gets further
from the fragment.

The specular term (line: 16) of the Cook — Torrance BRDF is calculated in
two parts, the nominator of the fractal and the denominatior. Nominator comprises
of the Normal Distribution Function (line: 11), the Geometry Function (line: 12)
and the Fresnel Approximation (line: 13) while denominator is the product of two
cross-products between the normal vector and the incident angle and Hal fway vector
(lines: 14 15).

The Fresnel value corresponds to the kg value of the material so we can use
it to denote any light that reaches the material’s surface (line: 17). Since we obey
the energy conservation rule we can directly calculate the re fraction value kp of the
material as the supplement of ks to 1.0, however if a material is metallic we need to
nullify the kp value because a metallic surface do not refract any light, thus has no
diffuse reflections (line: 18). Then we have the appropriate value to contribute to the
reflectance value of the light (line: 19). The overall outgoing radiance of a fragment
can then be calculated using the finished calculations (line: 22) and be forwarded to

the next step in the rendering pipeline.

19

Algorithm 3.1 PBR computation Algorithm for a single fragment

1: Load albedo, metallic, roughness, N from Texture Maps for fragment’s coordinates

2: V < normalized vector(camera.position — WorldPosition)
3: Fy < mix(0.04, albedo, metallic)

4: L, < 0.0

5: for each light ¢ in scene do

6: L < normalized vector(i.position — WorldPosition)

7. H < normalized vector(V + L)

8: distance < length of L

9: attenuation < distla'gcé

10: radiance < i.color X attenuation x 1.5

11: NDF <—amount of microfacets aligned per H vector
12: G <+ value Geometry Shadowing of microfacets

13: F' < Fresnel equation result

14: deng < max((N -V),0.0)

15: den; < max((N - L),0.0)

NDFXGxF

16: specular < I deroxden:

17: /{35 +— F

18: kp < (1.0 — kg) x (1.0 — metallic)

19: L, + L0+ (%) x radiance x (N - L)
20: end for

21: ambient < 0.03 x albedo

22: Fragment Color <— ambient + L,

3.2 Order Independent Transparency

That is a general pipeline and up until now we haven’t talk about our algorithms
that achieved transparency and photorealism. The methodology for achieving Order
independent transparency needs multi-pass rendering, because of the preprocessing
needed on the data. Our method features three rendering passes before proceeding
to the rasterization on the screen.

The basic idea in the Order Independent Transparency is to give shaders the ability

20

to sort the fragments per Z-buffer depth and manipulate each fragment’s contribution
to the final color of the pixel accordingly. In the common Alpha Blending transparency
technique for every fragment behind a pixel, the contribution to the overall color
of the pixel is proportionate to the Alpha value that fragment (Equation: 2.1). That
technique requires either an Alpha value lower than 1.0, which is impractical because
the artifacts we render are not transparent objects, or fixed Alpha values for all the
fragments which does not give results that are acceptable because the characteristics
of inner layers are not distinct.

We use two buffers to store the fragments as they are loaded. The first one is
where fragments are stored and the second one for indexing purposes. In each pixel
we can only render finite number of fragments, meaning that the size of the buffer is
static, which we found out from our tests that 32 is an appropriate size for rendering
multi-layered objects. Because the models we render are generated from procedures
that distinct different layers we exploited that extra information for better rendering
results. We introduced a third buffer to our method with the purpose of storing the
index of the layer in which the fragment belongs to, and used that information in the
rendering to screen pass.

In Computer Graphics the rasterization to screen results in a frame and when
we want interactive programs or moving videos muliple frames are rendered per
second. As a result our algorithm is called once per frame and recalculates the result
discarding all previous knowledge. Our buffers are reloaded as a result many times
per second and we need to be sure that there will be no leftovers from previous
renders. The first pass, taken place in the Clear Buf fer Shader (Algorithm 3.2)
takes the job of initializing and resetting those three buffers (lines: 1 2 3) before

loading data.

Algorithm 3.2 Initialize Buf fer Algorithm.

1: reset fragment store buf fer for depth sorting

2: reset fragment counter for storing fragment ids

3: reset fragment layer buf fer for storing layer indexes

The second pass of the method is done through the Render Buf fer Shader (Al-
gorithm 3.3) and it is responsible for loading all fragments in the three buffers while
also computing the PBR result (line: 3). Each fragment has coordinates which we

use to store them in the buffers. A z coordinate is also included which gives us the

21

depth information of the fragment, by which we sort the fragments in later rendering
pass. Along with the RGB value of the fragment (lines: 4 6) we store that z value
in the fragment’s alpha (line: 8) to pass it to the next rendering pass. The original
alpha value of the fragment is not valuable because we give alpha values to the final
render in proportion to the layers that we want to be transparent.

Because of the massive parallel ability of modern GPUs the loading times are so
small that there is the immediate danger of two fragments compete for the same spot
in the buffers. We used atomic operations on both incrementing values (line: 1) and
storing procedures (lines: 9 10) on the buffers. That technique is introducing delay
to the execution of the algorithm, however it is imperative to achieve correct results.

If the fragment belongs to the layer that user has indicated as highlighted then
the full PBR computation is done giving photorealistic properties to the fragment
(line: 3), while all other layers are only colored by the albedotexture (line: 6) property
of PBR (line: 1). This variation is proposed for improving the clarity of results
while also improving performance because we selectively call the PBR computation

method.

Algorithm 3.3 Render Buffer Algorithm.

1: Atomic Increment fragment counter

2: if fragment’s layer is Highlighted layer then
3: Calculate PBR result 3.1

4. frag.RGB < PBR.RGB

5: else

6 frag.RGB <+ albedo.RGB

7: end if

8: frag.alpha <—fragment coordinates.z
9: store frag in fragment store buf fer

10: store layer index in fragment layer buf fer

The fragments are stored in the buffers without order in a memory that is shared
between shaders. The third pass, namely Display Buf fer Shader (Algorithm: 3.4),
is responsible for visualizing the fragments on the screen. First we take the fragment
coordinates and load the corresponding array of fragments from the buffers, creating
a local instance of them. That way the sorting can be done without affecting the

original data in the buffers and eliminating the danger of memory incoherence.

22

Due to the high parallel abilities of GPU the sorting procedure has no great in-
fluence in the performance of the tool. Therefore many different sorting algorithms
can be used. We used the common bubble — sort algorithm and also a bitonic sort for
testing purposes. The fragments are sorted in outer to inner order and after that they
are ready for rendering.

The user has also provided of a preference regarding which layer to be highlighted
in the final result. In the shader the user preference is translated as the index in the
sorted array, for example if the user wanted only to see the outer layer his preference
would be 0 and the shader would give priority to the fragment in O position of vertex.
The computation of the color value of the highlighted fragment is done according to

this preference using the below equation:

k k
col.rgh = Z col(f;).acx col(f;).rgb), where Z col(f;).a=1
i=1 i=1
and

Vas if f; is highlighted

£(1 —wv,), if f; is not highlighted

col(f;).a =

Each fragment has RG'B color value along with Alpha value. The algorithm we
follow in order to highlight a layer is as follows: the highlighted fragment color
is multiplied by v, = 0.5 alpha value(lines: 8 12), which technically gives half the
color in the final result. The other 1 — v, = 0.5 is divided by the %k total number of
fragments 10 and then multiplied by the color value of them(line: 12). The result is
then a layer highlighted and all the others present by with small contribution. Other
variations of this algorithm are possible, for example showing only certain fragments
around the highlighted, with a result of more clarity.

To achieve results with more clarity we chose not to render back-face triangles
and we also ignore any fragments that are in inner position regarding the highlighted
layer. That way we can see the highlighted layer and transparent outer layers. The
user preference regarding the highlighted layer is also inputted in the Render Buf fer
Shader (Algorithm 3.3), where we only compute the PBR method (Algorithm 3.1) for
the highlighted layer, giving the other layers only albedo color, for better visualization.
Another variation we implemented is ignoring two consequent fragments that belong
to the same layer (line: 4) (Algorithm 3.5), resulting in transparency only where there

are multiple layers in an object.

23

Algorithm 3.4 Display Buffer Algorithm

1: get fragment array corresponding to fragcoords from fragment_store_buf fer
2: create local instance of fragment store buf fer

use frag.alpha to sort in ascending order

Filter fragments in buffer

finalColor < 0

for all fragments frag; in buffer from nearest to furthest do

7. if i is highlighted by user then

8: frag;.alpha < 0.5

9: else

10: frag;.alpha < #ﬁ’mgs
11: end if

12: finalColor.rgb <— finalColor.rgb+ frag_i.rgb x frag_i.alpha
13: end for

Algorithm 3.5 Filter Fragments Algorithm

1: for all fragments do

2: if layer_fragment; <= layer_fragment;_, then

3: remove fragments after i
4: end if
5: end for

24

Chapter 4

Implementation

4.1 Shader Loading
4.2 Shaders Implementation
4.3 Draw functions
4.4 Model Loading

4.5 Graphical User Interface

The implementation of the algorithms is made using the GLSL shading language and
the tool, for loading executing them, with the Qt framework for C++ and the OpenGL
4.4 library. The C++/OpenGL/Qt part initializes the window, open files and gives the
commands to visualize the shaders developed, and the GPU part with the shaders
run the algorithms and produce the rendering result. It is important to clarify that
the shader part of the tool is not bound with the C++ implementation and that it
can easily be included in a different project even if it not developed using C++ or Qt

whatsoever.

4.1 Shader Loading

The Shaders implementing our method are stored in text files with extension .frag

for fragment and .vert for vertex shaders. We use functions (Listing 4.1) imple-

25

menting Qt wrappers for shader management to load them. Regularly the procedure
needs to load the string data and compile the shaders using the OpenGL methods
provided. However using Qt wrappers we only create one QOpenGLShaderProgram
object (line: 1) in which we add the shaders from file and it undertakes the job of
compiling and setting up the OpenGL directives(lines: 3 8). That way we can use
that object whenever we want to refer one of the three shaders. That procedure is the

same for the three shader pairs needed for our method.

QOpenGLShaderProgram *xtmp = new QOpenGLShaderProgram :;

// First we load and compile the vertex ..shader

bool result = tmp—>addShaderFromSourceFile(QOpenGLShader:: Vertex
vertexShaderPath);

if (l!result)

qWarning () << m_ shader—>log () ;

// ..now the fragment ..shader

result = tmp—>addShaderFromSourceFile(QOpenGLShader :: Fragment ,
fragmentShaderPath);

if (!result)

qgWarning () << m_shader—>log () ;

// ..and finally we link them to resolve any references.
result = tmp—>link () ;
if (l!result)

b))

qWarning () << ”Could not link shader program:” << tmp—>log () ;

if (type = 7Clear”){
m_ shaderClear = tmp;

}

else if(type = ”Disp”){
m_ shaderDisp = tmp;

}

else if (type = "Rend”){
m_ shader = tmp;

¥

return result ;

Listing 4.1: Load Shaders from files

26

4.2 Shaders Implementation

We use three buffers to store the fragments and sort them by their Z coordinate value.
the first buffer called d_abufferldx stores the number of fragments already seen in
a X, Y coordinate of a pixel and has dimensions relevant to the Screen Width and
Height values. That way we can access the right amount of fragments in the other
two buffers when we need to. The second buffer, called d_abuffer, stores fragments
which are comprised of the RGB value and the alpha value where we store the Z
coordinate of it for sorting. The last buffer, d_abufferMeshldx stores the layer index of
the fragment stored in the same position in d_abuffer. All three are statically defined
by the C++/OpenGL part of the tool according to the screen Width, Height and the
max depth of the buffer, which we set to 32.

Our method as we discussed in Chapter 3 is comprised of two separate proce-
dures combined into one and implemented into three shaders. The multi-fragment
method has three steps, clearing buffers, loading fragments into them, and displaying
fragments after sorting them along the Z value. The first and third shaders have the
same vertex shader called passThrough.vert whose job is only to pass the fragment’s

position to the fragment shader (Listing: 4.2).

in vec4 aPos;
smooth out vec4 fragPos;
void main () {

fragPos=aPos;

gl Position = aPos;

Listing 4.2: passThrough.vert

The fragment shader of the first pass is called clearBuffer.frag (Listing: 4.3) and
clears the three buffers needed for the method (lines: 6 7 8) in order to ensure that
there are no leftovers in memory from previous renders. It discards all the fragments

because there is no need for visualization in this pass.

2 ivec2 coords=ivec2 (gl FragCoord.xy);

//Be sure we are into the framebuffer

27

16

7

if (coords.x>=0 && coords.y>=0 && coords.x<SCREEN WIDTH && coords.y<
SCREEN_HEIGHT) {

d__abufferldx [coords.x+coords . yxSCREEN_WIDTH]=0;

d__abufferMeshlIdx [coords .x+coords . y+«SCREEN_WIDTH]|=0;

d__abuffer [coords.x+coords.y+«SCREEN_WIDTH]=vec4 (0.0 f) ;

}

//Discard fragment so nothing is writen to the framebuffer

discard ;

Listing 4.3: clearBuffer.frag

The second pass of the algorithm is the one that loads the fragments of the scene
in buffers needed for the A — buffer and also computes the PBR result for the
layer which the user has characterized as highlighted. The vertex shader of this pass,
namely pbrRenderBuffer.vert (Listing: 4.4) takes as uniform variables (lines: 14 .. 16)
the input form the user regarding the camera position and view as well as the position
of the model in world. The in variables (lines: 1 .. 4) are loaded in the loading process
of the model in the program and explained below in Section 4.4. The out Variables
(lines: 6 .. 12) are the variables computed in vertex shader and pass in the fragment
shader part. Those computations are mostly combination of in variables with vertex
attributes in order to be translated in fragment attributes.

in vec3 aPos;
in vec3 aNormal;

in vec2 aTexCoords;

in int meshlndx;

out vec2 TexCoords;

out vec3 WorldPos;

out vec3d Normal;

flat out int meshIndex;
smooth out vecd fragPos;
smooth out vec3 fragTexCoord;

smooth out vec3 fragNormal;

uniform mat4 projection;
uniform matd view;
uniform mat4 model;

uniform mat4 modellT;

28

void main ()

{
TexCoords = aTexCoords;

WorldPos = vec3(model % vecd4(aPos, 1.0));

Normal = mat3(model) * aNormal;

fragNormal = normalize ((vec4 (Normal, 1.0f)xmodellT).xyz);
fragTexCoord .xy=aPos.xy;

fragTexCoord . z=abs (fragNormal.z) ;

meshIndex = meshIndx;

fragPos = projection x view % vecd (WorldPos, 1.0);
gl _Position = fragPos;

Listing 4.4: pbrRenderBuffer.vert

The fragment shader of this pass is called pbrRender.frag and is divided in the
part that computes the PBR value of a fragment and the part that is responsible
for loading the fragment properly in the buffers for the multi-fragment rendering.
In Listing 4.5 we see the code for storing the fragments in shaders. As explained
in 3.2 there is a need for atomicity in storing the fragments because of the massive
parallel computation of modern GPUs. Each fragment is stored in the d_abuffer
array according to it’s X, Y coordinate and a variable abidx incremented atomically
regarding the other fragments (lines: 5 16).

After computing the PBR value (line: 9) the fragment color is replace by it
(line: 11) and in the alpha value of it (line: 12), the Z coordinate of the fragment
is stored, to be used in the sorting procedure. That final fragment value is stored
in the d_abuffer (line: 16) and at the d_abufferMeshIdx (line: 17), the meshIndex,
referring to the mesh the fragment belongs to, is stored in order to be distinct in later
stages. As in the first pass all fragments are discarded because there is no need for

visualization in this stage.

ivec2 coords=ivec2 (gl FragCoord.xy);
//Check we are in the framebuffer
if (coords.x>=0 && coords.y>=0 && coords.x<SCREEN WIDTH && coords.y<
SCREEN_HEIGHT) {
int abidx;
abidx=(int)atomicIncWrap (d_abufferIdx+coords.x+coords.y*SCREEN WIDTH,
ABUFFER,_SIZE) ;

29

vec4d abuffval;
vec3 col;

col = computePBR () ;

abuffval .rgb=col;

abuffval .w=fragPos.z; //Will be used for sorting

//Put fragment into A—Buffer

int temp = coords.x+coords.y+«SCREEN _WIDTH + (abidx+SCREEN_ WIDTHx
SCREEN HEIGHT) ;

d__abuffer [temp]=abuffval;

d_abufferMeshIdx [temp] = meshIndex;

discard ;

Listing 4.5: pbrRenderBuffer.frag

For the Cook — Torrance BRDF function in PBR computation we use the func-
tions based on the Epic Game’s Unreal Engine 4 (REF HERE) technical report and
specifically Trowbridge — ReitzGGX (Listing 4.6) function for computing the Normal
Distribution Function, the Fresnel — Schlick approximation (Listing 4.7) for Fres-

nel equation and the Smith’sSchlick — GGX (Listing 4.8) method for the Geometry

function.
float a = roughnessxroughness;
float a2 = axa;

float NdotH = max(dot (N, H), 0.0);
float NdotH2 = NdotHxNdotH;

float nom = a2;
float denom = (NdotH2 % (a2 — 1.0) + 1.0);

denom = PI % denom * denom;

return nom / denom;

Listing 4.6: NDF Trowbridge-Reitz GGX

return FO + (1.0 — FO0) * pow(1.0 — cosTheta, 5.0);

30

N

10

Listing 4.7: Fresnel-Schlick approximation.frag

float NdotV = max(dot (N, V), 0.0);
float NdotL = max(dot (N, L), 0.0);
float ggx2 GeometrySchlickGGX (NdotV, roughness);
float ggxl = GeometrySchlickGGX (NdotL, roughness);

return ggxl x ggx2;

Listing 4.8: Smith’s Schlick-GGX

The main part of the computation (Listing 4.9) takes values from texture maps
(lines: 1 .. 5) and then uses them to calculate the BRDF function (line: 32), while
taking into account the contribution of each of the four lights present in the scene and
their color. The energy conservation of the method is implemented when computing
as a supplement to 1 the kp (line: 39) and and kg (line: 35)variables, that indicate
the portion of light refracted as diffuse color and the portion reflected (line: 49). The
result is returned to main method of the shader (Listing 4.5, line: 9) to be saved to
the buffer.

vecd albedo = pow(texture (texture_diffusel , TexCoords).rgb, vec3(2.2));

float metallic = texture (texture_normall, TexCoords).r;
float roughness = texture (roughnessMap, TexCoords).r;
float ao = texture (aoMap, TexCoords).r;

vecd N = getNormalFromMap () ;

vec3 V = normalize (camPos — WorldPos) ;

// calculate reflectance at normal incidence; if dia—electric (like
plastic) use FO

// of 0.04 and if it’s a metal, use the albedo color as FO (metallic
workflow)

vecd FO = vec3(0.04);

FO = mix(F0, albedo, metallic);

// reflectance equation
vec3 Lo = vec3(0.0);
for(int i = 0; i < 4; i++)

{

31

// calculate per—light radiance

vecd L = normalize (lightPositions[i] — WorldPos) ;

vecd H = normalize (V + L);

float distance = length(lightPositions[i] — WorldPos) ;
float attenuation = 1.0 / (distance * distance) x 1000.0;

vec3 radiance = lightColors[i] * attenuation ;

// Cook—Torrance BRDF
float NDF = DistributionGGX (N, H, roughness);

float G = GeometrySmith(N, V, L, roughness);
vecd F = fresnelSchlick (max(dot(H, V), 0.0), F0);
vec3 nominator = NDF *x G * F;

float denominator = 4 % max(dot(N, V), 0.0) * max(dot(N, L), 0.0) +
0.001; // 0.001 to prevent divide by zero.

vec3 specular = nominator / denominator;

// kS is equal to Fresnel

vec3 kS = F;

// for energy conservation, the diffuse and specular light can’t

// be above 1.0 (unless the surface emits light); to preserve this
// relationship the diffuse component (kD) should equal 1.0 — kS.
vecd kD = vec3 (1.0) — kS;

// multiply kD by the inverse metalness such that only non—metals
// have diffuse lighting , or a linear blend if partly metal (pure
metals

// have no diffuse light).

kD = 1.0 — metallic ;

// scale light by NdotL
float NdotL = max(dot(N, L), 0.0);

// add to outgoing radiance Lo

Lo += (kD % albedo / PI + specular) * radiance % NdotL; // note that
we already multiplied the BRDF by the Fresnel (kS) so we won’t multiply
by kS again

}

// ambient lighting
vecd ambient = vec3(0.03) % albedo * ao;

vec3 color = ambient + Lo;

32

// HDR tonemapping
color = color / (color + vec3(1.0));
// gamma correct

color = pow(color, vec3(1.0/2.2));

return color;

Listing 4.9: PBR computation method

The third pass renders the result to the screen of the user, taking as import the
buffers where we loaded the fragments from the previous pass. The vertex shader is
the same as the first pass (Listing 4.2) with responsibility to pass the coordinates to
the fragment shader, which is called DisplayBuffer.frag (Listing 4.10).

From the d_abufferIdx buffer we get the number of fragments stored for the pixel
position X, Y (line: 7). We use a method which takes that number and the coordinates
of the pixel to store all the fragments in local arrays (Listing 4.11) to ensure that the
data in the three buffers are kept and not meshed with. For sorting algorithm we
use a common bubble sorting algorithm(Listing 4.12) but have also used a bitonic
sorting algorithm(Listing 4.13) to use for our experiments on the performance of our
method.

The visualization of the fragments using transparency is done i

ivec2 coords=ivec2 (gl FragCoord.xy):

int abNumFrag;

if (coords.x>=0 && coords.y>=0 && coords.x<SCREEN WIDTH && coords.y<
SCREEN_HEIGHT) {

//Load the number of fragments in the current pixel.
abNumFrag=(int)d_abufferldx [coords.x+coords.y*SCREEN_WIDTH] ;

if (abNumFrag<0)
abNumFrag=0;

if (abNumFrag>ABUFFER_SIZE) {
abNumFrag=ABUFFER, SIZE;

}

if (abNumFrag > 0){

//Copy fragments in local array

33

10

fillFragmentArray (coords , abNumFrag) ;

//Sort fragments in local memory array

bubbleSort (abNumFrag) ;

outFragColor = resolveKBlend (SHOW_INDEX, 4, abNumFrag) ;
}
else{

discard ;

Listing 4.10: DisplayBuffer.frag

for (int i=0; i<abNumFrag; i++){
if (ABUFFER USE TEXTURES — 1){
fragmentList [i]=imageLoad (abufferImg , ivec3 (coords, i));

}

else{
fragmentList [i]=d__abuffer [coords.x+coords.y*SCREEN _WIDTH + (ix
SCREEN. WIDTH+SCREEN HEIGHT) | ;
meshIndexList [i]=d__abufferMeshIdx [coords .x+coords .y*SCREEN _WIDTH + (i
SCREEN_WIDTH+SCREEN_HEIGHT) | ;

}

Listing 4.11: fill fragments in local arrays

for (int i = (array_size — 2); i >= 0; —i) {
for (int j = 0; j <= 1i; ++j) {
if (fragmentList[j].w > fragmentList[j+1].w) {
vecd temp = fragmentList [j+1];
fragmentList [j+1] = fragmentList [j];
fragmentList [j] = temp;

float temp2= meshIndexList[j+1];
meshIndexList [j+1] = meshIndexList[j];
meshIndexList [j] = temp2;

Listing 4.12: Bubble Sort

34

void bitonicSort(int n) {
int i,j,k;
for (k=2;k<=n;k=2xk) {
for (j=k>>1;j>0;j=j>>1) {
for (i=0;i<n;i++) {
int ixj=i"j;

it ((ixi)>1) {

if ((i&k)==0 && fragmentList[i].w>fragmentList[ix]j].w){

swapFragArray (i, ixj);

}

if ((i&k)!=0 && fragmentList[i].w<fragmentList[ixj].w) {

swapFragArray (i, ixj);

void swapFragArray (int n0, int nl){
vecd temp = fragmentList [nl];
fragmentList [nl] = fragmentList [n0];
fragmentList [n0] = temp;

Listing 4.13: bitonic Sort

The visualization of fragments using transparency is done in a different method
(line: 19)(Listing 4.14) using the highlighted layer preference, passed as a uniform to
the shader, after we process them first.

The cleaning of the fragments loaded in the local shaders is imperative for better
visualizing the layers of an object (see REF HERE TO METHOD). In our implemen-
tation we use layer indexes for identifying the separate layers but we assume that
these indexes are given in an order from the outer to the inner layer, for example
layer O is the outmost layer and layer N is the inner one. We need that classification to
achieve that cleaning on the array of fragments as follows. We keep all the fragments
until we find one from a layer that should be in an earlier position or is repeated for
a second time(lines: 4). That way we only see transparency in the front part of an

object and not something that we do not need to see.

35

The resulted cleaned array is for rendering and start by taking each fragment in it

one by one. When we find the highlighted layer we pass an alpha value of 0.5 to the

0.5
nuumber of fragments in pixel

fragment belonging to it (lines: 19) and we put a value of
all the other layers (lines: 24) for clarity. The final RGB value is computed (lines: 26)
according to that alpha value of each fragment. All the fragments after the highlighted

one are not rendered in screen for visualization purposes (lines: 12).

vecd finalColor=vec4 (0.0,0.0,0.0,1.0);
finalColor=vec4 (0.0f);

* INSERT LAYER RESOLVING CODE HERE

*/
for (int i=0; i<abNumFrag; i++){

if (i > showIndex—1)

continue ;

vecd frag=fragmentList[i];

vecd col;

if (i = showIndex—1){
col.rgb = frag.rgh;
col.w= 0.5f;

}
else{
col.rghb=frag.rgb;

col.w = 0.5/ float (abNumFrag) ;
}

finalColor .rgb = finalColor.rgb 4+ col.rgbxcol.a;

finalColor.a = 1.0f;

return finalColor;
Listing 4.14: Render Transparency

36

4.3 Draw functions

The main C++ part also has a paint function which is called once per frame and is
responsible for setting the dynamic parameters in our shader program and call the
appropriate shaders. In Listing 4.15 we give a part of paint method where we set
some uniform variables in shaders and we call the display methods for drawing each
one of the three.

Each of the four lights present in the scene has it’s own position so we have to
pass each one separately (line: 2). The positions can be changed from the GUI part
of the tool. The camera and the projection of view is set accordingly(line: 9) and the
same is done for the position of the model(line: 16).

Then the drawing functions of the three shaders is called in the right order after
some implementation uniform variables are set for each one(lines: 20 22 24).

for (int 1 = 0; i< 4 ; i++){
m_ shader—>setUniformValue ((”"lightPositions [” + std::to_string(i) + 7]”).

c_str(), lightPositions[i]);

}

m_ shader—>setUniformValue (projection , m_proj);

m_ shader—>setUniformValue (view, m_view * m_world) ;
(0);

m_shader—>enableAttributeArray (1) ;
(2

)5

m_ shader—>enableAttributeArray

m_ shader—enableAttributeArray

m_model. setToldentity () ;

m_model. scale (scaleVal);

m_model. rotate (180.0f — (m_xRot / 16.0f), 1, 0, 0);
m_model. rotate (m_yRot / 16.0f, 0, 1, 0);
m_model. rotate (m_zRot / 16.0f, 0, 0, 1);

m_ shader—>setUniformValue (model, m_model) ;

DisplayRender = 1;

displayClearABuffer Basic () ;
shaderBooleanUpdates () ;
displayRender ABuffer_ Basic () ;
shaderBooleanUpdates () ;
displayResolveABuffer_Basic () ;
DisplayRender = 1;

37

26

update () ;

Listing 4.15: Paint method

Each of the functions has the same logic (Listing 4.16) of binding the appro-

priate variables needed for rendering and then calling a glDraw OpenGL func-

tion(Listing 4.17).

GLuint prog = m_shader—>programld () ;

//Assign uniform parameters

”

functions2 —>glProgramUniformui64NV (prog, glGetUniformLocation (prog,
d_abuffer”), abufferGPUAddress);

7

functions2 —>glProgramUniformui64NV (prog, glGetUniformLocation (prog,
d abufferIdx”), abufferCounterGPUAddress);

functions2 —>glProgramUniformui64NV (prog, glGetUniformLocation (prog,
d_abufferMeshIdx”), abufferMeshIndex);

//Pass matrices to the shader

9

functions —>glProgramUniformMatrix4fv (prog, glGetUniformLocation (prog,
projection”), 1, GL FALSE, m_proj.constData());

functions —>glProgramUniformMatrix4fv (prog, glGetUniformLocation (prog,
model”), 1, GL_FALSE, m_model.constData ());

QMatrix4x4 modelViewMatrixIT=m_model. inverted () .transposed () ;

”

functions —>glProgramUniformMatrix4fv (prog, glGetUniformLocation (prog,
modelIT”), 1, GL_FALSE, modelViewMatrixIT.constData());

//Render the model

drawModel (prog) ;

Listing 4.16: Draw shader function

glUseProgram (prog);

38

10

ourModel . Draw (m_ shader) ;

Listing 4.17: Draw model function

4.4 Model Loading

We used the ASSIMP library to open 3D model files, which makes our program
compatible with every common 3D model format available in the industry. It is quite
possible that a model consists of many parts, either for organization purposes or for
best memory management. Each part is a separate mesh with its own list of vertices,
faces, normals, Textures, etc and for that reason we need an procedure that can load
multi-meshed models and keep track of all their properties. So, we developed two
C++ classes to load each model to our scene, the model.h and the mesh.h needed for

importing.

4.4.1 Class model

The model.h class uses the ASSIMP structs to import a model to the scene. We use
two vectors for each model, one that keeps a list of the meshes loaded in that model
and one for the textures. The constructor of the model.h class call the loadModel
method which creates an ASSIMP::aiScene object in which it imports all the data of
the file given (line: 3). After error checking it starts the processnode method with the

first node at scene->mrootNode position.

Assimp :: Importer ximporter = new Assimp:: Importer;

const aiScenex scene = new const aiScene;

scene = importer—>ReadFile (path.c_str(), aiProcess_Triangulate |
aiProcess_FlipUVs | aiProcess_CalcTangentSpace | aiProcess_GenNormals);

// check for errors

if (!scene || scene—>mFlags & Al SCENE FLAGS INCOMPLETE || !scene—>
mRootNode) // if is Not Zero

{

cout << "ERROR::ASSIMP:: ” << importer—>GetErrorString () << endl;

39

N

~

return ;

}

// retrieve the directory path of the filepath

directory = path.substr (0, path.find last_of(’/’));

// process ASSIMP’s root node recursively

processNode (scene—>mRootNode, scene, m_ vertexBuffer);

Listing 4.18: Load File with ASSIMP

The structure of the ASSIMP::aiScene object follows a tree structure scheme with
multiple children nodes and meshes. That way if a node has only mesh children it
is considered an object and when a node has only node children it refers to a family
of objects. That structure is not useful in our pipeline because we only import objects
that visualize cultural heritage artifacts, however we have included that utility to our
code in order to be scheme independent and be used in different cases.

The processNode method recursively processes nodes (line: 12) and when there
are meshes it creates an ASSIMP::aiMesh object (line: 6) which calls the processMesh
method for each mesh in the node, while pushing the result in the list of meshes
(line: 7). This way we keep a list with all the meshes in the scene which we can
address later on, eg. while rendering.

// process each mesh located at the current node

for (unsigned int i = 0; i < node—>mNumMeshes; i++)

// the node object only contains indices to index the actual objects in
the scene.

// the scene contains all the data, node is just to keep stuff organized

(like relations between nodes).

aiMesh* mesh = scene—>mMeshes |[node—>mMeshes[i]];
meshes.push back(processMesh (mesh, scene, m_vertexBuffer, i));
// after we’ve processed all of the meshes (if any) we then recursively

process each of the children nodes
for (unsigned int i = 0; i < node—>mNumChildren; i++)

{

processNode (node—>mChildren[i], scene, m_ vertexBuffer);

}

40

Listing 4.19: processNode method

For each mesh we keep three vectors for vertices, indices and textures. A vertex is a
struct containing the vertex Position, Normal, texture Coordinates, Tangent, Bitangent
and the index of the mesh it belongs. When the processMesh method is called we
first do a pass of all the vertices comprising the mesh and we find the minimum and
maximum values for each of teh X, Y, Z coordinates. This way we can compute the
Bounding Box (Listing: 4.20) of the mesh and therefore move the mesh in the center

of the scene.

float bboxMinX=1000000.0f; float bboxMinY=1000000.0f; float bboxMinZ
=1000000.0f;
float bboxMaxX=-1000000.0f; float bboxMaxY=-—1000000.0f; float bboxMaxZ
=-—1000000.0f ;
for (uint v=0; v < mesh-—>mNumVertices; ++v){
float valX=mesh—>mVertices|[v].x;
float valY=mesh—>mVertices|[v].y;
float valZ=mesh—>mVertices|[v].z;
if (valX<bboxMinX)
bboxMinX=valX ;
if (valX>bboxMaxX)
bboxMaxX=valX ;
if (valY<bboxMinY)
bboxMinY=valY ;
if (valY>bboxMaxY)
bboxMaxY=valY ;
if (valZ<bboxMinZ)
bboxMinZ=valZ;
if (valZ>bboxMaxZ)
bboxMaxZ=valZ

float sizeX=(bboxMaxX—bboxMinX) ;
float sizeY=(bboxMaxY—bboxMinY) ;
float sizeZ=(bboxMaxZ—bboxMinZ) ;

float maxSize=max(sizeX , max(sizeY , sizeZ));

Listing 4.20: Find Bounding Box

41

We load each vertex and each properties from the ASSIMP::aiMesh in the vertices

vector using the Vertex struct fields (Listing: 4.21).

for (unsigned int i = 0; i < mesh—>mNumVertices; i-++)

Vertex vertex;

glm::vec3 vector; // we declare a placeholder vector since assimp uses
its own vector class that doesn’t directly convert to glm’s vec3 class
so we transfer the data to this placeholder glm::vec3 first.

// positions

float tmpx = (mesh—>mVertices|[i].x—bboxMinX) /(maxSize) ;
float tmpy = (mesh—>mVertices[i].y—bboxMinY) /(maxSize);
float tmpz = (mesh—>mVertices[i].z—bboxMinZ) /(maxSize);
vector .x = mesh—>mVertices[i].x;
vector.y = mesh—>mVertices[i].y;
vector .z = mesh—>mVertices[i].z;
vertex . Position = vector;
// mnormals
vector.x = mesh—>mNormals[i].x;
vector.y = mesh—>mNormals[i].y;
vector.z = mesh—>mNormals[i].z;
vertex .Normal = vector;
vertex . meshIndx = MeshIndex;
// texture coordinates
if (mesh—>mTextureCoords[0]) // does the mesh contain texture
coordinates?
{
glm::vec2 vec;
// a vertex can contain up to 8 different texture coordinates. We
thus make the assumption that we won’t
// use models where a vertex can have multiple texture coordinates so
we always take the first set (0).
vec.x = mesh—>mTextureCoords [0][1].x;
vec.y = mesh—>mTextureCoords [0][i].y;
vertex . TexCoords = vec;
}
else
vertex . TexCoords = glm::vec2(0.0f, 0.0f);
// tangent

vector .x = mesh—>mTangents[i].x;

42

vector .y = mesh—>mTangents[i].y;
vector.z = mesh—>mTangents[i].z;
vertex . Tangent = vector;

// bitangent

vector .x = mesh—>mBitangents[i].x;
vector.y = mesh—>mBitangents|[i].y;
vector.z = mesh—>mBitangents[i].z;
vertex . Bitangent = vector;

vertices .push_back(vertex);

Listing 4.21: Load vertex data

We then proceed to load the indices of the mesh to indices vector (Listing: 4.22)
with the same logic.
// now wak through each of the mesh’s faces (a face is a mesh its
triangle) and retrieve the corresponding vertex indices.

for (unsigned int i = 0; i < mesh—>mNumFaces; i++)

{

aiFace face = mesh—>mFaces|[i];

// retrieve all indices of the face and store them in the indices
vector

for (unsigned int j = 0; j < face.mNumlndices; j++)

indices .push_back(face.mlIndices[]]) ;

Listing 4.22: Load indices data

The last thing that comprises a mesh is the material with the Textures. The AS-
SIMP::aiScene keeps a struct of materials in relation to the meshes they refer to and
which we take and load each Texture separately by its type (Listing: 4.23). It is easier
to load the textures right now in the GPU memory and we use newTextureFromFile

method (Listing: 4.24) to do that.

aiMaterial* material = scene—>mMaterials [mesh—>mMateriallndex |;

// 1. diffuse maps

vector<Texture> diffuseMaps = loadMaterialTextures (material ,
aiTextureType_ DIFFUSE, 7texture diffuse”);

textures.insert (textures.end (), diffuseMaps.begin(), diffuseMaps.end());

43

// 2. specular maps
vector<Texture> specularMaps = loadMaterialTextures (material ,
aiTextureType SPECULAR, ”texture specular”);

textures.insert (textures.end (), specularMaps.begin(), specularMaps.end())

// 3. normal maps

std :: vector<Texture> normalMaps = loadMaterialTextures (material ,
aiTextureType HEIGHT, ”texture normal”);

textures.insert (textures.end (), normalMaps.begin (), normalMaps.end());

// 4. height maps

std :: vector<Texture> heightMaps = loadMaterialTextures (material ,
aiTextureType AMBIENT , 7texture height”);

textures.insert (textures.end (), heightMaps.begin (), heightMaps.end());

Listing 4.23: read Material Data

In this method we have to load the data of the Texture using the stbimage library

for image manipulation. When we load texture data to a shader use the glGenTextures
method (line: 2) of OpenGL to create a Texture Buffer which we then bind (line: 17)
when we want to pass data (line: 18) to it along with some parameters (line: 24).
While reading the Texture data from file (line: 5) we also get some information
regarding the image encoding and size (line: 4) where the Texture is saved and we

also pass it to the buffer (line: 18).

unsigned int texturelD ;

glGenTextures (1, &texturelD);

int width, height , nrComponents;

unsigned char xdata = stbi_load (filename.c_str(), &width, &height ,
&nrComponents, 0);

if (data)

GLenum format ;

if (nrComponents = 1)
format = GL_RED;

else if (nrComponents = 3)
format = GL_RGB;

else if (nrComponents = 4)

format = GL _RGBA;

44

16

he)

QOpenGLFunctions *f = QOpenGLContext :: currentContext ()—>functions () ;
glBindTexture (GL_TEXTURE 2D, texturelD);
glTexImage2D (GL_TEXTURE 2D, 0, format, width, height, 0,
format , GL_UNSIGNED_BYTE, data);
f—>glGenerateMipmap (GL_TEXTURE 2D) ;

glTexParameteri (GL_TEXTURE_2D, GL_TEXTURE WRAP_S, GL_REPEAT) ;
glTexParameteri (GL_TEXTURE_2D, GL_TEXTURE WRAP_ T, GL_REPEAT) ;
glTexParameteri (GL_TEXTURE 2D, GL TEXTURE MIN FILTER,

GL_LINEAR MIPMAP LINEAR) ;
glTexParameteri (GL_TEXTURE_2D, GL_TEXTURE MAG FILTER, GL_LINEAR) ;

stbi_image free(data);

}

else

{
std :: cout << "Texture failed to load at path: 7 << path << std::endl;
stbi_image_ free(data);

}

r

eturn texturelD ;

Listing 4.24: newTextureFromFile method

Now all the information about the mesh are loaded in the Mesh vector and then

we pass them in the mesh.h class constructor (Listing: 4.25) which is responsible for
loading them in GPU memory, except for the texture information which are already
loaded.

Mesh #m = new Mesh(vertices , indices, textures, m_vertexBuffer);

Listing 4.25: call mesh.h constructor after data parsed

4.4.2 Class mesh

the mesh.h class job is to pass the mesh data to the GPU memory appropriately
without conflicts with other buffers and by binding different buffers for each mesh
we ensure that the memory integrity is ensured. For each mesh we create three

buffers, one vertex array object (line: 2), one array buffer (line: 3) where we store the

45

vertex data and one element buffer object (line: 4) where we store the indices data.
The vertex array object is basically a descriptor of how the vertex attributes are stored
in memory and also introduces an easier way of rendering in later stages.

After binding the vertex array object and the vertex buffer object we pass vertex
data by calling the glBufferData method (line: 9).The same procedure is followed for
the indices and the element buffer object (line: 12). Finally we need to update the
shader with the size and the memory position where each vertex attributes can be

found during rendering stage (line: 19).

// create buffers/arrays
f2—>glGenVertexArrays (1, &VAO);
f—>glGenBuffers (1, &VBO);
f—>glGenBuffers (1, &EBO);

f2—>glBindVertexArray (VAO) ;

// load data into vertex buffers

f—>glBindBuffer (GL_ARRAY BUFFER, VBO) ;

f—>glBufferData (GL_ARRAY BUFFER, vertices.size() % sizeof (Vertex),
&vertices [0], GL_STATIC DRAW) ;

f—>glBindBuffer (GL _ELEMENT ARRAY BUFFER, EBO) ;
f—>glBufferData (GL_ELEMENT ARRAY BUFFER, indices.size () x
sizeof (unsigned int), &indices [0], GL_STATIC DRAW) ;

// set the vertex attribute pointers

// vertex Positions

f—>glEnableVertexAttribArray (0) ;

f—>glVertexAttribPointer (0, 3, GL_FLOAT, GL_FALSE, sizeof(Vertex),
(void=*)0);

// vertex normals

f—glEnableVertexAttribArray (1) ;

f—>glVertexAttribPointer (1, 3, GL FLOAT, GL_FALSE, sizeof (Vertex),
(voidx*)offsetof (Vertex, Normal));

// vertex texture coords

f—>glEnableVertexAttribArray (2);

f—>glVertexAttribPointer (2, 2, GL _FLOAT, GL_FALSE, sizeof (Vertex),
(voidx*)offsetof (Vertex, TexCoords));

f—>glEnableVertexAttribArray (3);

46

f—>glVertexAttribPointer (5, 1, GL FLOAT, GL_FALSE, sizeof(Vertex),
(void=*)offsetof (Vertex, meshIndx));

// vertex tangent

f—>glEnableVertexAttribArray (4) ;

f—>glVertexAttribPointer (3, 3, GL FLOAT, GL FALSE, sizeof(Vertex),
(void=*)offsetof (Vertex, Tangent));

// vertex bitangent

f—>glEnableVertexAttribArray (5) ;

f—>glVertexAttribPointer (4, 3, GL FLOAT, GL_FALSE, sizeof(Vertex),
(void=*)offsetof (Vertex, Bitangent));

Listing 4.26: mesh.h constructor

DRAW FUNCTIONS

After we open the 3D model files we need to interpret the data of them accordingly,
in order to be passed in the GPU memory for rendering. As we analyzed in the basics
chapter, a 3D model is com-prised of mesh and textures.

A mesh is made of triangles that each has, of course three vertices. The data in
files are generally given as vertices, properties of these vertices and also the indices
of the vertices that take part in each triangle/face are given. We create four lists that
we fill with mesh data, one for vertex position, one for vertex normal, one for the
UV coordinates of that vertex and one for the face index-es. Then we use OpenGL
functions to create the appropriate buffers in GPU memory to pass the data and we
transfer them. A similar process is used for the textures too.

We have three fragment shaders, the clearShader.frag the renderShader.frag
and the displayShader.frag. We also have two vertex shaders that are only used
as medium for the data in the fragment shader because we do not do any vertex
manipulation in our work.

The interface of the renderer is divided in three parts: Model selection and dif-
ferent aging times for said model. An object manipulation part that is used to move,
rotate, scale the model, the camera or the lights in the scene.

And finally, a shader algorithm selection part that is used to render both PBR
shader and S-buffer. User is given the ability to select the number of layers to render
and the specified one to be high-lighted.

The User Interface successfully passes variables to the shader program which then

are properly manipulated by the shader language to be rendered.

47

W7 3DViewer - [m] x

Open Mesh Search Directory st

Mesh Selection

Bronze Statue ~ MESH TO ¥ AGING

Mesh and Light
manipulator

LIGHTS

Intensity I

CAMERA

TEXTURES

Hoffusemsp Shader Options
[Normal Map
Metallic Map
Roughness Map
Shader Optians

Highlchted Laver Index |

Figure 4.1: Main Panel of our tool and its components

4.5 Graphical User Interface

As seen in Fig. 4.1, our tool has two distinct components, the general options panel
and the OpenGL window where the rendering result is shown. We have a mesh
selector part that we can use to navigate through different models and time periods
for the selected object which have previously imported in the tool. If we decide to
ignore this button the time ?;, will be automatically chosen.

In the Mesh and Light Manipulation section are some basic functions such as
rotation translation and scale, so that we can have visual contact with our object so
we can very easily focus on a desired area of interest. Of course, we are given the
opportunity to come as close or as far as we want (zoom) to our mesh, so that we can
observe very small details that may concern us. The same manipulation can be done
in the lights present to the scene. We have included four light that can be moved
around the object and which also can vary in the intensity of their radiance.

The last part of our interface belongs to the shader options of our tool. The most
important step of our approach is to define textures for our meshes. For each mesh

we have a number of possible textures to add on. Each texture provides a different

48

optical result. In the process of importing the mesh in the tool, we look the textures
included with the mesh and we enable the option to the user to include them in the
render or not. In the background we have stored default values in case where there
is no texture present and we also give the option to give uniform values in roughness

and metallic values of the mesh.

49

Chapter 5

Experiments and Results

The results of our work can be measured regarding the performance of the method
in different cases. In Computer Graphics the performance is usually calculated using
frames per second (F'PS), where each frame is a rasterization of the rendering pipeline
in the screen or a picture. Real-time rendering value is considered when each frames
takes less than 1/30th of a second to render, or when we get more than 30FPS.

Our method is affected by many parameters such as the triangle count of the mesh,
the screen dimensions and the percentage of them filled with fragments. Because our
method is fragment based the amount of fragments, eg. pixels, affects the performance
more than the triangle count of a mesh. Below we can see (Fig. 5.1) the FPS count
of three different objects in the same screen resolution (1024x1024) and on different
screen fill percentages(50% 75% 100%).

50

Performance Per Object and screen fill (Higher is Better)
600

500

N
o
]

300

Frames per Second (FPS)

N
[=]
o

100

46,530 Triangles 186120 Triangles 744480 Triangles

m50% m75% = 100%

Figure 5.1: Tool performance per Object and screen fill

The objects we used are comprised of three layers and they are exactly the same
but with different number of triangles. The low polycount one has 46.530 triangles,
the mid polycount has 186.120 triangles and the High poly one has 744.480 trian-
gles. We can see than the number of triangles, despite been largely varied does not
have equivalent drop in FPS. Even if we multiply the number of layers there is not
considerable difference (Fig. 5.2). What has a big influence is the screen percent-
age covered by the model. That can be explained because the method implements
buffers for all the fragments, therefore when a larger percentage of the screen is filled
with a mesh there are more buffers filled with fragments and there are way more

computations to be done.

51

Performance per multiple layers.
350

300

250

200

150

Frames per Second (FPS)

100

3 planes 6 planes 9 planes

Figure 5.2: Multiple Layer performance

We need to evaluate the performance of each method separately to understand
the influence it has in the overall performance of the tool. It is easily understood that
the Multi-fragment rendering algorithm has a great overhead because of the buffers
used and below we can see that the influence of PBR is almost negligible comparing

to multi-fragment (Fig. 5.3).

Multifragment Rendering performance Without PBR (Higher is Better)

L

46,530 Triangles 186120 Triangles 744480 Triangles

700

600

500

400

300

Frames per Second (FPS)

200

100

m50% m75% m100%

Figure 5.3: Order Independent Transparency performance without PBR

52

In Fig. 5.4 we see that for high number of triangles we have pretty low per-
formance rate, while for small number of triangles we see tremendous performance
values. Taking into respect that the Low polycount can portray almost the same level
of detail as the high polycount one we can understand why the PBR pipeline is so
common in the Game and Movie industry.

PBR performance only (Higher is Better)

1600
1400
1200
1000

800

600

Frames per Second (FPS)

400

200

46,530 Triangles 186120 Triangles 744480 Triangles

m50% W75% m100%

Figure 5.4: PBR performance without Order Independent transparency

The Results of the PBR pipeline can be seen below where we have the geometry
of the model in Fig. 5.5 without any color information. In Fig. 5.6 we can observe
the little details in the surface of the model such as the corrosion in the right arm,
which was captured by photogrammetry , however the file size of the original mesh

is many times larger. In Fig. 5.7 the final result of the PBR method is shown.

53

Figure 5.5: Geometry of the model

Figure 5.6: Geometry + Normal Texture

o4

Figure 5.7: Geometry + Normal + Diffuse

We can also see a different and more interesting angle were we can see high
detail in the shield of the statue and the influence of PBR in the final result (Fig-
ures 5.8 5.9 5.10.

Figure 5.9: Geometry + Normal Texture

Figure 5.8: Geometry of shield

55

Figure 5.10: Geometry + Normal + Diffuse

Here in Fig. 5.11 we can see the outer layer of the object zoomed in the lower
part of the right arm and in the next Fig. 5.12 we see the inner layer, while in the
last Fig. 5.13 we can fully observe the three layers of the model, all in real-time. The
inner layers of the model are colored differently for clarity purposes and the layers
were simulated and not based on ultrasound measurements. However we can see that
the results are rendered without issues, they are straightforward and the rendering

is completed with real-time performance.

56

Figure 5.11: Outer Layer

Figure 5.12: Middle Layer

57

Figure 5.13: Inner Layer

58

Chapter 6

Conclusion and Future Work

The complexity of data and their amount led us to state of the art solutions for
visualization. In our work we presented the methods we developed and combined
for a tool that will be of great help for archaeologists, curators and even everyday
users that have the curiosity to observe the aging process of a cultural heritage object.
Our tool can load almost any common 3D file format along with its properties and
render the result in real-time. Overall we report on a finished tool that can be used
as a standalone viewer or be integrated in a bigger project if needed.

From that point on propositions regarding the improvement of the tool can be
made through the feedback taken from the end users in a form of a case study. Also
interface changes can be made to improve the interaction user has with the tool and
overall usability of it. Some features like user annotation and observation notes can
be implemented in later versions for more detailed analysis on an artifact.

Regarding the algorithmic part of our work there are certain improvements that
could be made. In the multi-fragment part, the memory allocation for the 3 buffers is
currently static which leads to excessive memory needs. An extra pass could be added
to analyze the number of fragments in each pixel, thus enabling us to allocate proper
amount of memory for our model. In that case we could investigate whether an extra
pass, and its affect on the performance, is tradeable for smaller memory demands.
Performance improvements can also being researched Also in the PBR part of our
method we could add Global Lightning for better results or implement methods that

are currently being introduced in the industry.

59

Bibliography

[1] S. Mérillou and D. Ghazanfarpour, “Technical section: A survey of aging and

weathering phenomena in computer graphics,” Comput. Graph., vol. 32, pp. 159—
174, Apr. 2008.

[2] D. Frerichs, A. Vidler, and C. Gatzidis, “A survey on object deformation and
decomposition in computer graphics,” Comput. Graph., vol. 52, pp. 18-32, Now.
2015.

[3] H. Rushmeier, Computer Graphics Techniques for Capturing and Rendering the Ap-
pearance of Aging Materials, pp. 283-292. Springer US, 2009.

[4] J. T. Kider, Jr., Simulation of Three-dimensional Model, Shape, and Appearance Aging
by Physical, Chemical, Biological, Environmental, and Weathering Effects. PhD thesis,
Philadelphia, PA, USA, 2012. AAI3542821.

[5] A.-A. Vasilakis and I. Fudos, “Depth-fighting aware methods for multifragment
rendering,” IEEE Trans. Vis. Comput. Graph., vol. 19, no. 6, pp. 967-977, 2013.

[6] A. Vasilakis and I. Fudos, “S-buffer: Sparsity-aware multi-fragment rendering,”

in Eurographics (Short Papers), pp. 101-104, 2012.

[7] B. Karis and E. Games, “Real shading in unreal engine 4.”

60

Short Biography

I was born and raised in Kalamata city in southern Greece. Computers and modern
technologies were always my passion. That passion led me in 2009 as an undergradu-
ate student in the Department of Computer Science and Engineering in the University
of Ioannina from which I graduated in 2015. Since February 2016 I am a graduate
student in the same Department and also part of the Computer Graphics Reasearch
Group under the supervision of Professor Ioannis Fudos. I have also worked as an
research associate in CERTH (CEntre for Research and Technology Hellas) in the

team of Dr Dimitrios Tsovaras since July 2017.

	Table of Contents
	List of Figures
	List of Algorithms
	Glossary
	Abstract
	Εκτεταμένη Περίληψη
	Introduction
	Related Work
	Thesis Structure

	Theoretical Background
	Rendering
	OpenGL
	Shaders

	3D Models
	Mesh
	Texture Maps

	Multipass Rendering
	Order Independent Transparency

	PBR

	Our Method
	Physical Based Rendering
	Order Independent Transparency

	Implementation
	Shader Loading
	Shaders Implementation
	Draw functions
	Model Loading
	Class model
	Class mesh

	Graphical User Interface

	Experiments and Results
	Conclusion and Future Work
	Bibliography
	Short Biography

