An Empirical Study on the Usage of Conventions
and Rules for SQL Programming in FoSS

Aggelos Papamichail

Master Thesis

Ioannina, June 2018

TMHMA MHXANIKON H/Y & [TAHPO®OPIKHE
[TANEMIETHMIO [QANNINQN

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING
UNIVERSITY OF [OANNINA

An Empirical Study on the Usage of
Conventions and Rules for SQL programming
in FoSS

A Thesis

submitted to the designated
by the General Assembly of Special Composition
of the Department of Computer Science and Engineering

Examination Committee
by
Papamichail Aggelos

in partial fulfillment of the requirements for the degree of
MASTER OF SCIENCE IN COMPUTER SCIENCE

WITH SPECIALIZATION
IN SOFTWARE

University of loannina

June 2018

Examining Committee:

Zarras Apostolos, Associate Professor, Dept. of Computer Science &
Engineering, University of loannina (Supervisor)

Vassiliadis Panagiotis, Associate Professor, Dept. of Computer Science
& Engineering, University of loannina

Mamoulis Nikos, Associate Professor, Dept. of Computer Science &

Engineering, University of loannina

DEDICATION

To my parents Aristeidis and Augoula, for all the years they assisted in my academic
pursuits.

To my sister Chrisanthi, her professionalism, work ethic and capacity will always be
inspiring, a true pioneer!

ACKNOWLEDGMENTS

I would like to thank my thesis advisor Professor Apostolos Zarras of Department of
Computer Science and Engineering at the University of loannina. His guidance, insights
and remarks not only made this thesis possible but also formed the directions of my
career as software engineer.

Furthermore | would like to thank Professor Panos Vassiliadis of Department of
Computer Science and Engineering at the University of loannina, for his assistance in
defining the concepts of this thesis.

TABLE OF CONTENTS

INAEX OF TADIES ... s Vi
INAEX OF FIQUIES ...ttt et e te et nneenns viii
ERTetolEVI TIEPTATIUM o 10
ADSTFACT ...t 13
Introduction: Initiating SQL StYIEcccveviiiieee e 14
REIAIEA WOTK ... bbb 17
SQL Style: Defining Rules, Conventions and Methodology...........cccccecevieiieieiiennnn, 23
3.1 Overview 23
3.2 SQLStyle Rules 25
3.3 SQL Style Checking, Approach And Datasets 36
3.4 Levels of Analysis 37
3.5 Examined Schemata 40
Experimental Study: Status Quo of Sql Style and a Dose of Idealism........................ 44
4.1 Do People Care About SQLStyle Rules? 44
4.2 Does the Adherence to SQL Style Rules Evolve Over Time? 50
4.3 What are the Evolution Patterns of SQL Style Rules? 63
4.4 Table Rules Evolution 65
4.5 Column Rules Evolution 66
4.6 Which are the Adherence/Violation Patterns of SQL Style Rules? 68
4.7 Which SQL Style(s) Is(Are) Actually Followed in Practice? 71
4.8 Threats to Validity 77
Conclusions: Schemas and EIgANCEccuiiiiiiiiiiirie e 79
5.1 An Interesting Future 82
BIDHOGIAPNY ..o 83

Further Statistics
Tool Related Information

ShortVita.......cccoovee .

INDEX OF TABLES

Table 1: Sql Style Rules Classification, Regarding Their Intent Also Origin And

SCOPE OF USE. ittt ettt neenne e 27
Table 3: The Results of SLA For Sgl SNIPPet 2.ooveiveieiieiece e 38
Table 4: The Results of TLA For Sql SNIPPet 2. ..o, 40
Table 5: General Information About the Schemata.cccccoovieiiiiiie, 41

Table 6: Average And Standard Deviation of the Last Known Versions of the
Schemata For Each One of the Table Rules Srad.ccccoveiiiiiiicvicceee, 45

Table 7: Average And Standard Deviation of the Last Known Versions of the
Schemata For Each One of the Column Rules Srad.ccccoevvvivieinieiieen, 45

Table 8: Table’s Srad Ranges Through the Evolution of Each Schema, Rules With
Zero Range In All of the Schemata Are Missing; Srad Range Varies Greatly
Based On the Rule Or the SChema.cccooviiiiiiiiieee e 55

Table 9: Column’s Srad Ranges Through the Evolution of Each Schema, Rules With
Zero Range In All of the Schemata Are Missing; Srad Range Varies Greatly
Based On the Rule Or the SChema.ccooiiiiiiiiii e 56

Table 10: Number of Rules That Change In Each Schema During the Evolution.57

Table 11: Ensembl’s And Opencart’s Statistical Description of the Rules’ Srad
Distribution During Evolution FOr TabIes. ..o, 61

Table 12: Wikimedia’s And Typo3’s Statistical Description of the Rules’ Srad
Distribution During Evolution FOr COlUMNS.cccceiieieiic e 62

Table 13: Probability of Fixed, Positive And Negative For Table Rules, Across the
Examined Schemas For Table Rules. Avg (Average) Change And Stdev
(Standard Deviation) Describe the Distribution of Srad In Schemata With The
Higher Propability In Between of Being Positive Or Negative.cccccvevueneen, 64

Table 14: Probability of Fixed, Positive And Negative For Table Rules, Across The
Examined Schemas For Column Rules. Avg (Average) Change And Stdev
(Standard Deviation) Describe The Distribution of Srad In Schemata With The
Higher Propability In Between of Being Positive Or Negative.ccceeuveee. 64

Table 15: Probability of Strong/Weak Adherence/Violation For Table Rules............ 69
Table 16: Probability of Strong/Weak Adherence/Violation For Column Rules. 70

Vi

file:///C:/Users/angelo/Desktop/Final/MasterThesisPapamichailAggelos.docx%23_Toc518938848
file:///C:/Users/angelo/Desktop/Final/MasterThesisPapamichailAggelos.docx%23_Toc518938848

Table 17: Weighted Sql Style - Table And Column Rules Ranked With Respect To
T USROS 72

Table 18: Euclidean Distance Between the Styles of the Examined Schemas And the
WEIGNLEA SEYIE. ..o e nre s 74

Table 19: Euclidean Distance Between the Styles of the Examined Schemas And the
RUlE BaSed StYIE. ... 75

Table 20: Examples of Table Names Taken From Slashcode (1.E., the Schema Whose
Style Is Closer To the Weighted Style), Phpwiki (I.E., the Schema Whose Style Is
Closer To the Rule Based Style), And Joomla (I.E., the Schema Whose Style Is
Farther From Both the Weighted And the Rule Based Style)...........cccccvevviienen, 76

Table 21: Examples of Column Names Taken From Ensembl (I.E., the Schema
Whose Style Is Closer To the Weighted Style), Opencart (I.E., the Schema Whose
Style Is Closer To the Rule Based Style), And Castor2 (I.E., the Schema Whose
Style Is Farther From Both the Weighted And the Rule Based Style).................. 76

vii

INDEX OF FIGURES

Figure 1: Activity Diagram and Architecture Of Dbsea.ccccccevvvveiveiciic e 25

Figure 2: Supported Special Characters and Information About The Characters Use In
VaAITOUS DBMS.....iivieiieeece ettt ste e neenne e 29

Figure 3: Percentages Representing The Number Of Table Rules In Each Schema
That Have Srad > 0%, Srad = 0%, Srad = 100% and Srad < 100% Respectively.

Figure 4: Percentages Representing The Number Of Column Rules In Each Schema
That Have Srad > 0%, Srad = 0%, Srad = 100% and Srad < 100% Respectively.

... 49
Figure 5: Changes In Srad For Table Rules During The Evolution Of The Schemata.
... 58
Figure 6: Changes In Srad For Column Rules During The Evolution Of The
SCREMALA. ...ttt 59
Figure 7: Utc Related Information The First Two Horizontal Figures Refer To The
Tables, The SECONd TO COIUMNS.ooiiiiiiiiee et 60
Figure 8: Number Of Schemata Having Weak, Medium and High Correlation, For
BACN RUIE. ...ttt 60
Figure 9 : Dbsea In A Nutshell, The Main Three Functionalities.cc.cccoeveenne. 90
Figure 10 Package Diagram For Schemata Style Extraction Toolc..cccevennene. 91
Figure 11 : Dbsea Contains The Main Static Class and Starts The User Interface.92
Figure 12 : This Class Implements The Flow For Style Analysis.c.ccccovvveinnnn. 93
Figure 13 : The Classes In Tablestylecheck Contain The Rules About A Table Entity.
... 94
Figure 14 : The Classes In Columnsstylecheck Contain The Rules About A Table
B I LY. et 95

Figure 15 : The Classes In Generalchecks Contain The Rules Shared By Tables and
Columns As Well As Some Helper CIasses.ccovvevieiiieiie i 96

viii

file:///C:/Users/angelo/Desktop/Final/MasterThesisPapamichailAggelos.docx%23_Toc519022876
file:///C:/Users/angelo/Desktop/Final/MasterThesisPapamichailAggelos.docx%23_Toc519022876
file:///C:/Users/angelo/Desktop/Final/MasterThesisPapamichailAggelos.docx%23_Toc519022876
file:///C:/Users/angelo/Desktop/Final/MasterThesisPapamichailAggelos.docx%23_Toc519022880
file:///C:/Users/angelo/Desktop/Final/MasterThesisPapamichailAggelos.docx%23_Toc519022880

Figure 16 : The Classes From The Package Statistics, Responsible Of Keep Track Of
The Violated/Adhered Rules, Setting Up The Title Of Column, Table File and Of

WIIING T IMELIICS. ettt 99
Figure 17 : Implementation of Ui, Gui Package...........ccccccevvevviiniicie e, 101
Figure 18 : The Whole Class Diagram Of SSet..........ccccoviiiiieiiiienencnesesceeeeee, 102

file:///C:/Users/angelo/Desktop/Final/MasterThesisPapamichailAggelos.docx%23_Toc519022890

EKTETAMENH IIEPIAHYH

Momopyond Ayyeiog, M.A.E. oty [TAnpogopikr|, Tunpa Mnyavikeov H/Y kot
[TAnpogopikng, [Tavemotuo loavvivev, lobviog 2018.

Eumelpucy Merétn Zyetikd pe) Xpnon Zoppacewv kot Kavoveov SQL oe EAehBepo
Kot Avorytd Aoyiopiko.

EmBrénwv: Zdppag Anoctorog, Avaminpwtig Kadnyntng

H €&EMEN tov Aoyiopkod sivar pio and Tig onuavtikotepeg mievpég tov Software
engineering pe tn GLVINPN, VO OTALTEL TOVG HGOVE OO TOVS GUVOMKA S10bEGIIOVE
nopovg. H xowvdtnto tov software engineering £xet kaver onpavtikn Tpdodo oG Tpog
MV TOWTNTO KOOKA HEG® 1TNng Ompovpyiog kot a&lomoinong TEXVIK®OV TOov
BeATioTOmO00V TNV AVATTLEN KO GLUVTHPNGT TOL OAAL KOl TNG OVATTLENG TEYVIKAOV
dwyeipiong moépwv. Ilo ocvykekpyéva, vy v TAEWOVOTNTO TOV YAOCCOV
OVTIKEEVOGTPEPOVC TPOYPULUATIGHLOD DITAPYEL £VaL GHVOLO KAVOVOV Ypapict? mov
e€acparilovv v VTapEN OLOL0YEVELNS KOl OVOYVOGILOTNTOS 6TO KMKa. [TapdAinia
opioTnKay HoTiPa Ypagng KOSIKA TOv EVIGYDOVLY GUECH TNV EMEKTOGIUOTNTAS Kot

sEAGQAAILOVY TNV PO AVTIKEIUEVOGTPEPOVC aphv oyedioonc.

Eivor yvoo1d, €101k og peyding kiipokog mpoypdupota, 6t 1 dYmapén AOYIGUIKOD
npobmoBétel TNV Vapsén Lo N TEPLocOTEP®V PAGEDV dEGOUEVMOV KOL TO OVTIGTPOQO,
EVAO aKOUTN TOAAEG POPEG TO 1010 TO AOYIGHIKO dnpovpyeiton kot eEglioetan YOp® amd
pa Baon dedopévov. H mpayuatikotnta Aoudv opilel og ioa pépM 10 AOYIoUIKO Kot
116 Bdoeig. EvAoya o meppuéve kaveig v dmapén mhovoiog kot o€ Bdbog BiAoypagio
Y 11§ PACES avTioToryn OVTAG TOL AOYIGUIKOV, OGOV agopd TNV dnuovpyio Kot

avamTuEn ToVG. AveTLY®OG OL®G N BLBAOYpaPia Eivol GOPOS TLO TEPLOPICUEVT] KO ALTO

L https://www.oracle.com/technetwork/articles/javase/codeconvtoc-136057.html
2 https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/inside-a-program/coding-conventions
3 https://sourcemaking.com/design_patterns/factory_method

4 https://sourcemaking.com/design_patterns/builder

10

LG dONGE GTO VL EPEVVIICOVLLE KO VO, GUVEICPEPOVLE GTO TOUEN TNG TOLOTNTOG TWV

Baoemv dedouEVOV.

2e TN TV €pyocio EMKEVTPOVOUASTE 6TOV Tpoypoppotiopnd SQL. O kidplog o1dy0g
pag gtvor vo dtevpeviooovpe to PBabud otov omoio ot TPOYPUUUATIOTEG 0ELOTOLOVY
oLUPACELS Kot GTUA Ypapng kdOwka Katd Tov optopd SQL oynudtov. I'a avtd to Adyo,
ewodyovpe €va Wovikd SQL otuAd mov amoteleitoanr amd €vo GUVOAO KAVOV®OV TTOV
TPOEPYOVTAL ATd O,TL KAADTEPO LILAPYEL 6T OYETIKY PipMoypapia. To 16avikd GTLA
KOAVTITEL TOIKIAEG TAEVPEG OGOV apdpa TN mowdtnto evog SQL oyfuatoc. o va
EAEYEOLLE TNV TTOLOTNTA TOV GYNUATOS TPOTEIVOVLE Eval EPYOAEID TTOV EMTPETEL GTOVG
TPOYPUUUATIOTEG VO EAEYEOVV TNV 1KAVOTIOINGT TOV KOVOV®VY TOL 100vikoy 6TuAd. To
gpyorelo avTopATOTOEL TANP®G TOV EAEYYXO IKOVOTOINONG TOV KOVOVOV GTNV 16TOpia
eVOG oyMUatog, 6mov mg 16Topic 0pilovTot o1 SPOPETIKES EKOOGELS EVOS GYNLOTOS OO
™V apyn g VTapENG Tov MG TV TeEAEVTAin YV®OGTH £Kkdoon o€ gndc. [apdiinio pe
70 Babpd Kavomoinong TV Kavovay yia TV kébe £kdoon, e&dyel oTATIOTIKG GTOLYElN
OV TEPLYPAPOVYV TO EVPOG TYLAV TNG IKAVOTOINGNG (TLTTIKY| AmOKAoN, LEGOG OPOC K. L.)
KaOdg kol T ovoyétion peta&d tov peyébouvg tov oYNUOTOS Kot TOL Pabpov
Kavomoinong. AE0TO0VUE TIG SVVATOTNTEG TOV oG TaPEXEL TO Epyaieio dedyovtag
pwoe peydAng rkiAipokog peAétn amoteAovuevn amd 21 yvdoto, ovoryTov KMOKO,
npoypaupato (FOSS). X pedém eléyyovpe av ta SQL oyfiuota Tov TpoypoitdToy
TOV GUUUETEXOVY GE VTNV aKOAOVBOUV TOVG Kavoves. AkOpa, eEetdlovpe TV eEEMEN
TV GTVA OV akoAovBovvTe amd to kibe oynua. apdriinia, avayvopilovue potifo
eEEMENC OV TTEPTYPAPOLV TNV IKOVOTOINGT TV KAVOVMV Katd TN dtapKela (NG TV
oynpatov. Xvveyilovtog, de&dyovpe o Aemtopepn avdivon tov kébe kovova Kot
avayvopilovpe Ta avtiotorya potifa tkavomoinong 1 tapafiocng tovs. Bacilopevot
oto Topandve potifa, opilovue éva otabuiopévo (weight) ot mov aviikatontpilet
TO €VPOG YPNONG TOV KAVOVAOV OO TOLG TPOYPOUUOTIOTEG otnv mpdén. Télog,
aE0AOYOVE TNV AOCTACT) TOV EAEYOEVTOV GYNUOTOV A0 TO 10£0.TO KOl GTAOUICUEVO

GTLA.

SVYKEKPIUEVA, OTOOEIEALE OTL IKOVOTOLOVVTOL APKETOT KAVOVEG GTUA Ypapns SQL evd
0 Babuog kavomoinong emnpedletarl and to oynua, Tnv SQL ovtdtta mov eléyyovue
(mivokag 1 Kohdva) oAAd kot and tov 1o To Kavova. Meketdvtog v eEEMEN TV

oynuatwv, Ppnkape OTL Yoo TOVG Tivakeg T0 TANOOS TV KavévVeOV Tov aAldle

11

Kopaiveral omd 0 €mg 7 kot yia T1g koAwveg amd 0 €mg 8. Emiong, ot ahlayéc peyding
KMpokog copfaivouy 6e puKpd ¥povikd OACTNUOTE MG TPOG TN CLVOAIKY] OLUPKELN
oG ToL GYNUATOG Kot OTL Ta dtaoTipate avTd eivatl cuveyn. O Eleyyog g dopopag
10V Bafpod tKavomoong TV Kavovmv HETOED TPMTNG Kot TeEAevTaing ékdoomng £0e1&e
v @evomn TV aAlaydv. Ot mepiocdtepol Kavovee mapapévouy otabepol (13 y
nivakeg, 14 yio koAwveg), opiopévol eEeMocovtor apvnTika (2 Kavovee mvaxkov, 1
KOADOV®V) Kot TéA0G eAdyloTol e€ehMocovtat OTiKd (2 yia TG KOADVEG). AlEPELVOVTOG
Tov Babuod Kavomoinong oty televtaia yvootn £kdoon Pprkape Tl o1 KOVOVEG TOV
Kovomotovvton o€ peydho Pabud eivan 11 ywo tovg mivakeg 14 v T koAdveg. Ot
KOVOVEG TTOV 1KAVOTTOLOVVTOL GE LKPOTEPO Pabud ivar 2 yio Tovg mivakes kot 1 yia t1g
KoAwveg. Ot kavoveg mov mapafralovtal o€ peydro Pabud sivar 2 yio Toug mivakeg Kot
avtoi Tov mapaPrdlovrol o pkpdTEPO Pabpd etvor 2 kot apopovv TIc KoAdveg. TELOC
péom g Koatdralng tov kavoveov pe Pacn T wovomoinon Tovg amd Tovg
TPOYPOUUATIOTEG TPOGOOPIGaLLE TNG a&ia TOL KABE Kavova, OTmG TNV avTIAapuPaveTol

0 1010G 0 TPOYPOUUOTICTNG.

12

ABSTRACT

Papamichail Aggelos, M.Sc. in Computer Science, Department of Computer Science
and Engineering, University of loannina, Greece, June 2018.

An Empirical Study on the Usage of Conventions and Rules for SQL programming in
FoSS.

Supervisor: Zarras Apostolos, Associate Professor

Software evolution is one of the most important aspects of software engineering with
maintenance requiring about half of a project’s resources. The software engineering
community has made massive improvements in coding quality with the adoption of
good practices, coding conventions and styles that optimize software development and
maintenance. In this Thesis we focus on SQL programming. Our main objective is to
investigate the extent to which developers employ coding conventions and styles in the
definition of an SQL schema. To this end, we introduce a SQL style that consists of a
set of style rules found in the state of the art. This style covers various aspects of the
SQL schema quality. To assess schema quality we propose a style checking tool that
allows developers to check the adherence to the rules of the defined style. We conduct
a large scale case study consisting of 21 well-known FoSS projects. In our case study
we check whether the SQL schemas of the examined projects adhere to the rules.
Moreover, we investigate the evolution of the style that is followed by each schema.
Taking a step further, we identify evolution patterns that describe the adherence to the
rules over the lifetime of the examined schemas. Then, we perform a detailed analysis
of the individual rules and we identify respective rule adherence and violation patterns.
Based on the aforementioned patterns, we identify a weighted SQL style that reflects
the extent to which the examined rules are employed in practice. Finally, we evaluate
the distance of the examined schemas from the style we defined and the weighted style.

13

CHAPTER 1

INTRODUCTION: INITIATING SQL STYLE

Software evolution is one of the most important aspects of software engineering. It is
well known that maintenance, which is part of software evolution will may require over
half of a project’s resources [1] [2], thus the existence of practices in managing
resources and the creation of maintainable and extensible code is compulsory. So far,
the software engineering community has done greatly in both resource management
and code quality. In the last decades, several ways of managing projects have been
proposed, from the more recent, the agile® model and DevOps® to older, like the
waterfall. Moreover, there has been a massive improvement in coding quality practices
with the adoption of refactoring and restructuring techniques and the creation of tools
enabling developers to recognize and apply them as they code. Also, more refined and
specific concepts were created to further improve the quality, like the code smells. Code
smells are a well-known metaphor to describe symptoms of code decay or other issues
with code quality which can lead to a variety of maintenance problems. They usually

are diminished through globally accepted conventions and practices.

of course, one cannot think of large scale projects without the existence of one or more
databases, co-evolving with the software of the project or even being its precursor, since
many systems are built around databases. Since in a large scale project databases are of
equal, or even greater importance, with software, there ought to be at least comparable
bibliography on the subject of database’s schema evolution (i.e. the ability of a database
system to respond to changes in the real world by allowing the schema to evolve) or
restructuring and refactoring techniques. Moreover, there ought to be styles,

conventions, and good practices for SQL programming. Unfortunately, this is not the

5 https://en.wikipedia.org/wiki/Agile_software_development#The_Agile_Manifesto

6 https://en.wikipedia.org/wiki/DevOps

14

case; in the database community the state of the art in these research issues is far less
rich both in depth and variety than in the software engineering community. Actually,
when it comes to SQL programming there is no answer in the bibliography, to the

following simple yet important question:

Do people care about SQL rules?

The aim of this thesis is to address the previous question, via a study that involves 21
database schemas found in respective open source projects. To this end, we define a
SQL style [3.2] that consists of a set of rules and conventions, which have been
proposed in the literature towards improving the readability and maintainability of a
schema. These rules are style conventions and cover various styling quality aspects
(writing style, methodological, lexicographical, SQL specific) of the SQL schema.
Along with the proposed rules, we developed a fully automated SQL style checking
tool that allows the developers to check the adherence of SQL schemas to the rules.

Based on the proposed rules, we begin with a coarse-grained analysis to assess the
adherence of the examined schemas to the rules. We focus on the last know version
(LKV) of the schemas. Our results reveal that developers take into account several
rules. However, the extent to which they employ the rules varies, depending on the

schema.

Next, we investigate the evolution of the schemas from their first known version (FKV)
to the last known version available to us, to see if the adherence to the rules changes
through time. We further investigate how this is done via respective evolution patterns
and anti-patterns. Moreover, we evaluate the correlation between the evolution of the
schemas' adherence to the rules and the size of the schemas. Our results reveal the
following basic patterns: most rules (13 for tables rules, 13 for columns), follow the
fixed adherence evolution pattern, i.e., the adherence of a schema to the rule does not
evolve overtime; only few rules follow the positive evolution pattern (2 for columns

rules), i.e., the adherence of a schema to the rule slightly improves overtime; few rules

15

follow the negative evolution pattern (2 for rules, 1 for colums), i.e., the adherence of

a schema to the rule gets slightly worst overtime.

Taking a step further, we perform a fine-grained analysis that concerns each individual
rule. Specifically, for each rule we identify adherence patterns, and/or violation anti-
patterns: most rules follow the strong adherence pattern, i.e., more than 75% of the
schema elements adhere to the rule; some rules follow the weak adherence pattern, i.e.
the percentage of schema elements that follow the rule varies in [50%, 75%); few rules
follow the strong violation pattern, i.e. less than 25% of the schema elements adhere to
the rule; few some rules follow the weak violation pattern, i.e., the percentage of
schema elements that follow the rule varies in [25%, 50%).

We introduce weights for the rules that reflect the extent to which they are followed in
the examined schemas and propose a weighted SQL style, consisting of our initial list
of rules, ranked according to their weights. Along with the rule based style we also
consider the weight style based on the developers SQL rule preferences and adherence.
In particular, we evaluate the distance between each of the examined schemas and the
aforementioned styles, and we provide concrete examples that relate this distance with
specific readability issues.

Roadmap. The structure of this thesis is as follows. In Chapter 2, we discuss related
work on good practices, rules, conventions and techniques for the development of clean
software. Moreover, we discuss related work on database schema evolution patterns,
smells and refactorings. In Chapter 3 we present our methodology, the tool that we
developed and the setup of our empirical study. In Chapter 4 we present our results.
Finally, in Chapter 5 we conclude with a summary of our contribution and the future

perspectives of this work.

16

CHAPTER 2

RELATED WORK

Primarily, the present study concerns two aspects of software engineering:
* The first aspect is focused on the database domain and is about schema
evolution, see e.g. [3], SQL conventions and smells.
* The second is the existence of coding smells in general and practices to avoid

them, mainly from the software domain.

The research of Sjeberg [3] on schema evolution and its consequences on related
applications has been a breakthrough. Modification of database schemata, for example,
is one kind of change which may significantly influence database applications. So, this
paper presents a method and an appropriate tool [3] for measuring modifications to
database schemata and their consequences. The resulting measurements serve as input
to the design of change management tools. The temporal aspect of the grammatical
database model of Laine and co-authors [4] is extended to the schema and thus the
model possesses a schema capable of modification over time. The work of Roddick [5]
presents an extension to SQL to handle some of the functionality provided by schema
evolution in relational databases. Other early approaches consist the publication of
Nguyen and Rieu [6] and the one of Barenjee and co-authors [7] that focus on object-

oriented databases.

In the late ‘00's, partly due to accessibility to free open software, schema evolution in
open source environments has been quite investigated, i.e. Curino et al. [8]. Those
studies, however, focus on the statistical properties of the evolution and do not provide

details on the mechanism that governs the evolution of data base schemata.

17

The results of Meir Lehman and co-authors [9] [10] include a set of rules on the
mechanics of Software evolution [10], also known as the Laws on Software Evolution.

More precisely, Lehman's Laws as stated in a more abstract form:

* Law of Continuing Change: An E-Type software system must be continually
adapted or else it becomes progressively less satisfactory in use.

* Law of Increasing Complexity: As an E-type system is changed, its complexity
increases and becomes more difficult to evolve unless work is done to maintain
or reduce the complexity.

* Law of Self-regulation: Global E-type system evolution is feedback regulated.

* Law of Conservation of Organizational Stability: The work rate of an
organization evolving an E-type software system tends to be constant over the
operational lifetime of that system or phases of that lifetime.

* Law of Conservation of Familiarity: In general, the incremental growth (growth
ratio trend) of E-type systems is constrained by the need to maintain familiarity.

e Law of Continuing Growth: The functional capability of E-type systems must
be continually enhanced to maintain user satisfaction over system lifetime.

* Law of Declining Quality: Unless rigorously adapted and evolved to take into
account changes in the operational environment, the quality of an E-type system
will appear to be declining.

* Law of Feedback System: E-type evolution processes are multi-level, multi-

loop, multi-agent feedback systems.

The breakthrough of Lehman's work has motivated Skoulis and his colleagues [11] to
adapt the Laws of software evolution into schemata evolution. Subsequently, their
research work identified patterns and regularities of schema evolution towards a better
understanding of the underlying mechanism that governs it. By studying the evolution
of the logical schema of eight databases, collecting and cleansing the available versions
of the database schemata for the eight case studies and extracting the changes that have
been performed in these versions, finally, their research came up with usable datasets
subsequently analyzed. The main tool for this analysis came from the area of software

engineering.

18

The research axis of Vassiliadis and Zarras [11] [12] [13]is the survival of a table in the
context of schema evolution in open-source software. The authors found out that the
probability of a table with a wide schema (i.e., a large number of attributes) being
removed is systematically lower than average, as well as, that activity and duration are
related to survival too. They proposed the electrolysis pattern, due to its diagrammatic
representation, stating that dead and survivor tables live quite different lives: tables
typically die shortly after birth, with short durations and mostly no updates, whereas
survivors mostly live quiet lives with few updates, except for a small group of tables
with high update ratios that are characterized by high durations and survival. In
addition, they studied the phenomenon of gravitation to rigidity, stating that despite
some valiant efforts, relational schemata suffer from the tendency of developers to
minimize evolution as much as possible in order to minimize the resulting impact to the
surrounding code.
What is also special about this research, is that it zoomed into the lives of tables in
contrast with previous works that mostly focused on the macroscopic study of the entire
database schema. Vassiliadis his colleagues identified four major patterns [11] on the
relationship of such properties:

* The Gamma pattern studies the interrelationship of the schema size of a table

at its birth with its overall duration and indicates that tables with large schemata

tend to have long durations and avoid removal.
* The Comet pattern studies the interrelationship of the schema size of a table at

its birth with its total amount of updates. This pattern indicates that the tables

with most updates are frequently the ones with medium schema size.
* The Inverse Gamma pattern studies the interrelationship of the amount of

updates in the life of a table with its duration and indicates that tables with

medium or small durations produce amounts of updates lower than expected,
whereas tables with long duration expose all sorts of update behavior.

* The Empty Triangle pattern studies the interrelationship of a table's version of

birth with its overall duration. It indicates a significant absence of tables of

medium or long durations that were removed.

Curino and his co-workers [8] created a tool, the so-called PRISM, containing recent

theoretical advances in schema and query rewriting mapping [14] [15] [16]. This tool

19

addresses two main challenges of schema evolution, as considered by the authors,
predictability and independence of the evolution process. PRISM solves the
predictability challenge through describing the revisions of a schema with Schema
Modification Operators (SMOs) and then through a static analysis upon the SMOs
manages to give the database administrator knowledge about information preserving
properties of the new schema and redundancy generation. The second challenge,

independence, is tackled through the automation of the rewriting queries process.

Sharma and his co-workers [17] used the concept of code smells in the field of
databases. They defined thirteen smells which were evaluated by developers through
an online survey and conducted a large scale study in 357 industrial and 2568 open
source projects. For each smell defined, developers had to characterize them based on
their opinion as database smells, as a recommended practice or as neither smell nor
recommended practice. They could also state that the context of use defined the practice
as recommended or as a smell. They found that db smell detection is affected by the
developers’ subjectivity and acknowledged the importance of using a sophisticated tool
in the form of a plug-in to automate the smell detection process on the go. The most
frequent smell was index abuse (i.e. misused primary or foreign keys and even absence
of a key) and interestingly the use of ORM frameworks did not affect the number of
smells found in the project. The existence of certain smells in the schemata or queries
increased the occurrence of other smells and that open source projects are prone to

different smells than industrial ones.

Celko [18], created a comprehensive textbook on database smells and how to avoid
them. Those smells are found in a wide field of SQL use; in names, in the scales for
attributes, formatting, in the data declaration language and other. In this study we were
particularly interested in the practices referred to naming conventions and use of
punctuations and spacing which were combined with Holywell’s” point of view on
SQL style conventions. To our delight we found that Tushra’s db smells contain some

of Celko’s smells, like the index abuse, for example.

"https://www.sqlstyle.guide/

20

Robert Martin wrote Clean Code, [19], a masterpiece describing in hideous detail how
to write elegant and efficient code. In the world of a developer where deadlines may
exist in a daily basis, developers tend to write messy code in an effort of accomplishing
the tasks on time. Unfortunately, as the mess builds the productivity decreases to the
point where a project is unmaintainable and developers rebel against the managers
asking for a system redesign. Martin describes thoroughly the importance of
meaningful names, good functions, proper formatting etc. and overall manages to create
a roadmap for someone who cares about writing elegant and efficient code. Clean Code
and SQL Programming Style are in a sense like Plutarch’s parallel lives. Clean Code
assesses readability, maintainability and ultimately, extensibility from an object
oriented coding point of view while the second from the standard’s SQL. Both
influenced greatly our thesis, especially the reasoning behind each SQL style rule.

Lastly, in the domain of static analysis for SQL there has been conducted research for
measuring the complexity of embedded queries or even the creation of tools able to

reconstruct them, see [20] [21] [22].

The present study lies in the area of empirical studies that assess adherence to coding
conventions and best practices. Let us refer to important contributions to this research
area.

Smit et al [23] investigated code convention adherence in evolving software and got to
the conclusion that the violations may increase or decrease depending on the particular
project. Butler et al. [24] evaluated the quality of identifier names in 8 established open
source Java applications libraries, using a set of 12 identifier naming guidelines and
found statistically significant associations between flawed identifiers and code quality
issues by a static analysis tool. Focused on naming conventions, Butler et al. [25] found
that developers follow naming conventions to a certain degree, but adherence to specific
conventions varies widely, depending on the project.

The work of Buse et. al [26] showed positive correlations between readability,
comments and blank lines but negative correlations between readability, identifiers and
line length. The empirical study of Lawrie et al. [27] was about the impact of names in

source code comprehension. Further, the empirical studies of Binkley et al. investigated

21

the impact of identifier style to source code comprehension [22] and the impact of
vocabulary normalization on software engineering activities [21].

The paper of Capiluppi et al. [28] reports on the empirical analysis of two major forges
where OSS projects are hosted. Results from this analysis form a complex picture;
visually, all the selected metrics show a clear divide between the two forges, the first
forge that provides a set of guidelines and coding standards in the form of a coding style
for the developers and the second studied forge, SourceForge, which imposes no formal
coding standards on developers. From the statistical standpoint, however, clear
distinctions cannot be drawn amongst these quality related measures in the two forge

samples.

22

CHAPTER 3

SQL STYLE: DEFINING RULES, CONVENTIONS AND

METHODOLOGY

3.1 Overview

3.2 SQL Style Rules

3.3 SQL Style Checking, Approach and Datasets
3.4 Levels of Analysis

3.5 Examined Schemata

To cover the need for an adequate SQL style checking tool, in this thesis we created
Dbsea. In this chapter we discuss the modus operandi of the proposed tool and the
fundamental concepts of this thesis.

3.10verview

The proposed tool takes as input either a single version of a particular schema, or the
entire evolution history of the schema, which consists of a set of schema versions, from
the birth of the schema to its last known version. It is also possible to conduct style
analysis in the evolution history of multiple schemata, in this case Dbsea will parse the
schemata in depth first fashion. The SQL style checking analysis is based on a set of
rules introduced in two well-known sources of good coding practices, namely J. Celko's
SQL programming style [18], and R. Martin's book on clean code [19]. Moreover, we

consider rules derived from our own experience as developers.

Concerning their scope we can divide the rules that we consider in two categories, table
rules and column rules. Overall, we have 15 rules for tables and 17 rules for column,

with some rules being common in both cases.

23

Regarding the intent/nature of the rules' we can divide them in four categories as

follows:

e Style of writing: This category concerns the formatting of the SQL schema
specification. Hence, this category includes rules that have a visual impact on
the SQL schema specification, like the use of Pascal Case for table/column
names. Also includes practices like the use of spaces, the capitalization of the
first letter and other that affect the readability of the SQL schema specification
(e.g., Universal Type of Case, Ends with Letter or Number).

e Methodological: This category contains rules concerning the systematic use of
particular naming patterns. An example is naming “id” every primary key in a
schema.

e Language Specifics: This category includes rules derived from SQL limitations
or other specific constraints, like the length of a name being less than thirty
characters. (e.g., Proper Length, Reserved Word).

e Lexicological: This category contains rules that concern part of speech issues
for the terms used for the specification of the different schema elements (e.g.,

Contains Verb, Contains Only Singular).
The style checking analysis is done in following two levels:

Schema Level Analysis (SLA): At this level we examine a given schema as a whole,
measuring the number of elements (i.e., tables or columns, depending on the scope of

the rule), that follow each one of the rules that we consider.

Table Level Analysis (TLA): At this level, we focus on each schema element (i.e., tables
or columns, depending on the scope of the rule), checking its adherence to each one of

the rules that we consider.

While checking a schema, for each level of analysis the tool produces as output
respective CSV files that contain information about tables and columns based on the
adherence of the rules. For each of those CSV files the tool produces another file

containing statistics about the nature of the dataset.
The overall flow of the analysis is show in the activity diagram of Figure 1.

24

[Usel chooses parent folder to startthe analysis J

HSearch for a folder with schemata inside J
Yes

E?un checks on the schema revisic\n(s)}

I= there another folder?

Information Extraction

Mo

SOL Style Analysis

[Expnl‘t gathered information ta ﬂles] ‘

SQL Parser

®

Figure 1: Activity diagram and architecture of Dbsea.

3.2 SQL Style Rules

Introduction and Lineage

Differently from typical programming languages like C, C++, C#, or Java, for SQL
there is no widely accepted programming style. Nevertheless, there exist certain general
guidelines and rules found in different sources [18] [29] [19] that can be considered in

our investigation.

25

Based on these sources and our personal experience as developers, we define a catalog
of rules for SQL scripting. In detail, Celko relies on the 1SO-111798 metadata standards
and his experience to define rules regarding the readability of SQL code. This is, to our
knowledge, the first attempt towards a unified SQL Style. On the other hand, Robert C.
Martin provides general coding conventions regarding the style of writing, for example
the code length, the readiness of code like the use of pronounciable names, avoidance
of hungarian notation, the use of nouns for class names and more, and so on. This work
inspired us to create some additional rules that will assist us to a better assesment of

the meaningfulness and readability of the names used in an SQL specification
Overall, we consider fifteen rules for tables and seventeen rules for columns. In the
following sub-sections we discuss in detail the rational of the examined rules.

Moreover, in Table 1, we provide the classification of the rules with respect to their
intent, origin, and scope.

SOL Style Rules Description and Rationale

Use universal type of case, (UTC) Origin : Authors

In general, coding conventions should not vary throughout a project. As developers, we
prefer the code to be predictable and homogeneous. In our context, a schema should

follow the same type of case for every element name.

8 https://www.iso.org/standard/60341.html

26

Rule Type Lineage Tables Columns | Acronym

Use universal type of case Style of writing Authors v v uTC
IAlways start with letter Style of writing Celko v v SWL
IAlways end with letter or number Style of writing Celko v v EWL
)Avoid camelCase Style of writing Celko v v ACC
)Avoid consecutive underscores Style of writing Celko v v ACU
IAvoid using spaces Style of writing Celko v v AUS
IAvoid special characters Style of writing Celko v v ASC
IAvoid using delimiters Style of writing Celko v v AUD
Start with capital Style of writing Celko v SWC
IAvoid concatenation of table names Methodological Celko vV ACN
Use standardized postfix Methodological Celko v USpP
Uvoid “id” as identifier Methodological Celko v All

)Avoid defining name by place Methodological Celko v NBP
Use different name for columns Methodological Celko vV DNC
Use proper length SQL Celko vV v UPL
IAvoid reserved words SQL Celko vV v ARW
Use more words Lexicological Authors vV v UMW
Columns in singular Lexicological Celko vV CIS

Tables in plural Lexicological Celko vV TIP

IAvoid using verbs Lexicological R. Martin vV v AUV

Table 1: SQL style rules classification, regarding their intent also origin and scope of

use.

This rule tends to be violated by new developers who don’t adhere to the coding

conventions of the organization of corporation they work for. The violation could lead

to frustration when a developer who writes scripts suddenly finds out the half of the

columns are in lower case with underscores and the other half is camelCase.

To check for adherence to this rule in the tool we consider six different cases that are

commonly used in practice, namely, upper case, lower case, upper case with

underscore, lower case with underscore, PascalCase, and camelCase. For a given

schema (respectively table), we identify the type of case that is followed by each table

(respectively column). Then, we find the maximum number of tables (columns) that

27

follow the same type of case. Ideally, this number should be equal to the total number

of tables (columns) that constitute the given schema (respectively tables).

Always start with a letter (SWL), Origin : Celko

The name of an SQL element should begin with a letter, this is the norm in real life why

this should not be the case the code?

Always end with letter or number (EWL), Origin : Celko

The name of an SQL element should end with a letter of a number. Using other
characters can create confusion, for example if we use underscore we could think that
something is missing, especially if the universal type of case contains underscores. If
we use something other than an underscore, one could easily think of it as typing error

inserted from the developer by mistake.

Avoid camelCase (ACC), Origin : Celko

Celko recommends avoiding camelCase, both in table and column names. camelCase
tends to disrupt the flow or reading by forcing the eye to focus on case changes, instead
of focusing on whole words. Moreover as ACC conflicts with another rule (SWC) that

demands table names should start with capital letters.

Avoid consecutive underscores (ACU), Origin : Celko

Consecutive underscores have little to no use in naming and even less appealingness to
the eye. Celko gives a real world problem with them; if a developer was to review a
printed version of a schema he would face the difficulty of reading names with
consecutive underscores because underscores are hard to be counted in a printed

version.

28

Avoid special characters (ASC), Origin : Celko

Several DBMSs do not allow special characters like $, #, or @. This means that the use

of special characters in SQL element names can potentially lead to compatibility errors.

Standard .

soL IBM Oracle Microsoft
First Letter, Letter,
Character Letter $H@ Letter #@
Later Letter, IE)eig?tr' Letter, IE)eitg;?tr'
Characters Digit, _ $4@ Digit, $#) 4@
Case Nonquoted .
Sensitive? No No identifier | OPtonal
Term Ordinary | Nonquoted | Regular

identifier identifier identifier

Figure 2: Supported special characters and information about the characters use in
various DBMS.

Avoid using spaces (AUS), Origin : Celko

Developers are not used to read names with spaces, so why use them? Also spaces will
make scripts more prone to SQL syntax errors, like in the example below, taken from
Celko’s book where the first statement is correct and the second generated by ADO

[30] is wrong.
INSERT INTO Table ([field with space]) VALUES (value);
INSERT INTO Table (field with space) VALUES (value);

So we could have compatibility errors like with special characters.

Avoid using delimiters (AUD), Origin : Celko

The use of delimiters in SQL elements names should be avoided. The main reason for

using delimiters in SQL is case sensitivity and compatibility. Case sensitivity rules vary

29

from product to product. As stated in the Oracle Database SQL Language Reference®
non quoted identifiers are not case sensitive. Oracle interprets them as uppercase.
Quoted identifiers are case sensitive. This means that by enclosing strings inside

delimiters we can create different names for example:
"employees”

"Employees"

"EMPLOYEES"

Every one of the above words is a different name in Oracle’s SQL. In the contrary, the

names below are the same:

employees

EMPLOYEES

"EMPLOYEES"

According to MSSQL?, delimiters should be used for two reasons:

i. When reserved words are used for object names or parts of object names.

ii. When you are using characters that are not listed as qualified identifiers.

IBM also limits the use of delimiters in the use of reserved words or when character

does not qualify as an ordinary identifier.

Concluding, the usage and meaning of identifiers varies with the underlying system

such variance impairs migration capabilities, thus identifiers should be avoided.

% https://docs.oracle.com/cd/A97630_01/server.920/a96540/sql_elements9a.htm

10 https://docs.microsoft.com/en-us/sql/?view=sql-server-2017.

1 https://www.ibm.com/support/knowledgecenter/en/ssw_ibm_i_72/db2/rbafzintro.htm

30

Start with capital (SWC), Origin : Celko

The names of composite schema elements like tables, views and procedures should be
capitalized. Capitalization is used to start a sentence in most of the languages So its
already a globally used practice to separate different contexts. Reading scripts is in a
way the same as reading sentences, we search for different contexts, we might as well
use a practice to help us separate them. Celko outlines an exception, when a name

naturally begins with lowercase.

Avoid concatenation of table names (ACN), Origin : Celko

Concatenation is typically used when a developer wants to show a relationship between
tables. Since databases tend to have many relationships this practice could create a lot
of tables having a part of their name common. From our own experience, names would
also be getting longer thus one should either create name with length bigger that thirty
characters or induce acronyms. Acronyms would make the database harder to read and
would increase the learning curve of the database for a new developer on the project.

As a last note, a relationship based name between two tables is always suggested, but
in the case where we need to invent one, for example by using acronyms, we better use

name concatenation.

Use standardized postfix (USP), Origin : Celko

Many corporations or organisms use standardized postfixes. For instance, a postfix
could be “ id” referring to a key of a table or ““ cat” where cat stands for category. In
the aforementioned example the meaning of “ cat” is not obvious. However, this is not
really a problem, as long as the used postfix has conceptual relationship inside the
database. Generally. the purpose behind the using uniform postfixes is mapping entities
of the outside world with objects inside the database.

To check the adherence to this rule in Dbsea we employ a list of standard, widely used
postfixes. Then, we check whether these postfixes are used as parts of the names that

are used in a given schema.

31

Avoid “id” as identifier (A1l), Origin : Celko

This rule is a well-known, popular sin among developers. Usually it is found in
databases where the primary key is an auto-increment integer. Using “id” as the primary
key makes this rule conceptual as defined in the Overview, everyone can easily
understand that a column with this name concerns a primary key. Unfortunately using

id in such manner conveys two problems.

The first problem is the vagueness. “id” is a means of identification, and that’s exactly

the limitation, there is no context at all, using only “a means” lacks context.

The second problem is that if “id” is used in a conceptual revealing manner, this means
setting all, or the at least the majority of primary keys in the database as “id”’, we would
end up having a great number of queries with statements like the one below :

Transactions.ID = Transactionld. When primary keys are named as ID and foreign keys
are created through the concatenation of the table’ name, where the primary key exists,
and the word “id”” as Celko humorously pointed “it quickly becomes a game of looking

for the period”.

Avoid defining name by place (NBP), Origin : Celko

Imagine changing your car’s plate while travelling from town to town. This would
change your car’s identity and thus is forbidden by law. An SQL element doesn’t really
differ from the car and plate paradigm. Its name should be based on its identity, not the
place where it is found, otherwise one may end up having different names for the same
element even if this element is a structural component of a database. The validity of this
rule is easy to be seen in the following simple example where in the first query the rule
is violated. There is a vehicle plate in both TRAFFIC_LAW _INFRINGEMENTS and
CARS tables, but in the first one the plate is named as
TRAFFIC_LAW_INFRINGEMENTS_PLATE and in the second as CARS_PLATE they
should both be named as PLATE:

32

SELECT TRAFFIC_LAW_INFRINGEMENTS.OWNER
FROM TRAFFIC_LAW_INFRINGEMENTS
INNER JOIN CARS ON

TRAFFIC_LAW_INFRINGEMENTS.TRAFFIC_LAW_INFRINGEMENTS_PLATE =
CARS.CARS_PLATE

SELECT TRAFFIC_LAW_INFRINGEMENTS.OWNER
FROM TRAFFIC_LAW_INFRINGEMENTS

INNER JOIN CARS ON TRAFFIC_LAW_INFRINGEMENTS.PLATE = CARS.PLATE

SQL Snippet 1: In the first select statement we do not use the Name defined
by place rule, the second select much easier to read.

It is quite common for this violation to occur when COBOL naming logic is used. The
COBOL naming logic dictates that the name of the fields should have the name of the
file in which they exist as a prefix in their name, so when a migration takes place with
minimum effort, old entities are mapped in the new system in the exact way they were

in old system.

Another reason is that developers have habits [19] they tend to use throughout their

carrier.

To assess the adherence to this rule in the tool we check if the name of a particular table

is used as prefix in the names of the table's column names.

Use different name for columns (DNC), Origin : Celko

Although in it is possible to create column names that are same as the table names, this

is not considered a good practice.

Firstly, this practice violates other rules discussed in the following like

33

Columns should be in singular (CIS), Origin :_Celko. Secondly by doing so we ought

to think if a table represents a collection or if a column represents a single characteristic.

Use proper length (UPL), Origin : Celko

The SQL-92 standards define a maximum identifier length of 18 characters. More
modern DBMSs allow for more than 30. The problem lies in complexity; Celko states
that “if you cannot say it in 18 characters, then you have a problem”. The statement
might be an exaggeration but it still holds value. It’s to our best interest to not exhaust
or abuse the features new technologies have to offer, and keep the identifiers simple
[19].

We consider a violation of this rule occurring when the length of a name is greater than

30 characters.

Avoid reserved words (ARW), Origin : Celko

Reserved words are a list of terms that have some special meaning in SQL. If used in
the context of the DBMS, they tend to convey their meaning in a straightforward
manner. On the contrary, if they are found in a table definition as column names

chances are that these names would be vague and vagueness should be avoided

For example if we were to use LANGUAGE (reserved word) as a column name inside
two different tables, where in the first one we would refer to the user language and in

the second to the program’s language wouldn’t we create confusion?

Usually confusion leads to errors. The use of reserved words as names should be

avoided.

Use more words (UMW), Origin : Authors

often, in our everyday life we use acronyms for well-known entities like a big
corporation or inside our close social circle for easiness of communication. Likely, in

the case of an SQL schema, used in the context of a real-world project this is not always

34

the case; developers may come and go and the well-known entities usually have, or at
least should, distinct names. We believe that by using distinct, simple names, we can

avoid inducing acronyms to our SQL schema. Acronyms need translation, words don’t.

To assess the adherence to this rule, we divide a name into parts, based on the type of
case it assumes. Then, we check whether these parts correspond to actual words
(specifically, nouns, adverbs and adjectives) based on WordNet!2, a large lexical
database. Nouns, adjectives and adverbs are grouped into sets of cognitive synonyms
(synsets), each expressing a distinct concept. Synsets are interlinked by means of
conceptual-semantic and lexical relations. The resulting network of meaningfully
related words and concepts can be navigated like a graph. WordNet enables us to
determine if a string is an actual English word; this is not an out of the box feature, to
induce such functionality we used two widely known libraries

[https://nlp.stanford.edu/software/[edu.smu.tspell.wordnet].

Columns should be in singular (CIS), Origin : Celko

Celko in his description of 1SO-11179-4 for scalar elements states that their name
should be in singular. Tables, by nature are collections, while columns specify
properties that are common, to all members of the collection. Thus it is better to define

a property with a singular noun and not using any word in plural at all.

To check for this rule, we employ respective functionalities of the WordNet libraries

that allow us to determine if a particular word is in singular.

12 https://wordnet.princeton.edu/

35

Tables should be in plural (TIP), Origin : Celko

Just like the columns should be in singular, 1ISO-11179-4 states that tables should be in
plural and plural only. Celko states that for this rule there is an exception, tables

consisting of only one record.

Evaluating this rule involves corresponding functionalities of the WordNet libraries that

allow us to determine if a particular word is in plural.

Avoid using verbs (AUV), Origin : R. Martin

Both Celko and Martin suggest the use of verbs in method names because verbs are
intention revealing. A scalar element or a table should not be able to act; we have
procedures, functions and queries in general for this exact reason so why would end up

with names containing words describing an action?

The evaluation of this rule is based on the same part-of speech identification

functionalities of the WordNet libraries that we employed in the case of UMW.

3.3 SQL Style Checking, Approach and Datasets

In the Levels of Analysis we explain our approach on researching the SQL style
subject, the two levels of analyses, as mentioned above. In the next subsection,
Examined Schemata, we present the schemata used to conduct our research. There are
three main type of projects in which the schemata belong, the first is scientific, the

second is medical and the third one is content management systems.

36

3.4 Levels of Analysis

Schema Level Analysis

In Schema Level Analysis (SLA) we conduct a gross-grained SQL style analysis in the
examined schemas, without drilling into the individual tables or columns of the
different schema versions and their evolution. So, in this level we see the
tables/columns of a schema as a whole and we count the ones that follow each rule.
Moreover, we focus on high-level statistical measures like the mean, median, standard
deviation of the number of tables or columns that follow each rule divided by the
respected total sum of tables/columns in a schema. We further consider possible
correlations between the number of objects that follow the rules with the size of the

schema.

To characterize the extent of use of the rules in a given schema, we introduce the SRAD
metric which stands for Schema Rule Adherence Degree.

SRAD for each rule concerning the table names in a schema is:

#table names of the schema that follow a rule

SRAD =

#table names in the schema

For the table names of a schema when used in a figure, or chart, SRAD might also be
referred as Tables_SRAD.

SRAD for each rule concerning the column names is:

#column names of the schema that follow a rule

SRAD =

#column names in the schema

SRAD for the table names of a schema when used in a figure, or chart might also be

referred as Columns_SRAD.

37

To facilitate SLA, Dbsea creates a csv file where in the vertical dimension we have the

revisions and in the horizontal dimension we give the percentage of use for each rule.

Next, we present a simple example. The script that is given in SQL Snippet 2, the script
is from a particular version of one of the Examined Schemata .The script is only a

fraction of the schema.

We focus on three rules for table names, (UTC, SWC, TIP), the format of results for

these rules, as generated in the csv file, is depicted in Table 3.

In this example we see 2 tables. All of them follow the Universal type of case rule, so
the value of the respective column is 100%. There is no table starting with a capital
letter and none of the tables contains nouns in plural. Hence, the values of the respective

columns are 0%.

CREATE TABLE I1_trigger_type (
l1tty_id NUMBER(10)NOT NULL,

CONSTRAINT I1tty_nmver UNIQUE (I1tty_name, I1tty_version)

);

CREATE TABLE I1_muctpi_info (

11mi_id NUMBER(10) NOT NULL,

I1mi_used CHAR NOT NULL,
CONSTRAINT muctpi_pk PRIMARY KEY (I1mi_id),

CONSTRAINT muctpi_nmver UNIQUE (I1mi_name, 11mi_version)

);

SQL Snippet 2: A snapshot taken from the Atlas case study.

Total tables uTC SWC TIP
2 100% 0% 0%

Table 2: The results of SLA for SQL Snippet 2.

38

Table Level Analysis

In Table Level of Analysis (TLA) we perform a fine-grained SQL style analysis in the
examined schemas. In each version, we check each table on its own. Specifically, we
examine each schema element (i.e., tables or columns, depending on the scope of the
rule), checking its adherence to each one of the rules that we consider. In the case of
tables we assess whether a table rule is followed or not in a zero or one fashion. In the
case of columns we measure the number of table columns that follow a rule and divide
this number with the total number of columns of this table. To facilitate TLA, Dbsea
creates a CSV file where in the vertical dimension for each version we have its tables
(or the sum of the columns of a table) and in the horizontal the value that measures the

satisfaction level of rule.

To characterize the extent of use of the rules we introduce the TRAD metric which
stands for Table Rule Adherence Degree.

TRAD describes the adherence of a rule for a table name or for the column names of a
table. More precisely:

TRAD for a table name:

1,rule is adhered

TRAD = { 0, otherwise

For the column names of a table:

#column names of the table that follow the rule

TRAD =

#column names in table

Getting back to the example of Atlas, in TLA lets check if the schema tables follow the
following rules: Always begin with letter, Avoid concatenation of table names and Use
proper length. Table 3 gives the results, as generated in the csv file. In the first column
we see the tables. Both columns start with letter, none of them has the name of the table

they exist concatenated and both have proper length. In the next columns we see that

39

both tables begin with a letter. Their names are not concatenations of other table names.

Finally, the length of the table names is appropriate.

Columns SWL ACN UPL
11_trigger_type 1 0 1
11_muctpi_info 1 0 1

Table 3: The results of TLA for SQL Snippet 2.

3.5 Examined Schemata

In this section we give a brief description for every dataset used in our study. The
collection of the datasets that we consider in the study was done by Athanasios

Pappas®®.

In the collection there are three types of projects; scientific, medical and Content
Management Systems. In detail, we have five scientific projects from CERN, two
medical projects and eleven CMS projects. For more information about the datasets
please refer to thebibliography.

In Table 4 we provide basic information about the schemata of our case study.
Scientific projects:

1. ATLASY: is a particle physics experiment at the Large Hadron Collider at
CERN.

13 https://github.com/DAINTINESS-Group/EvolutionDatasets

14 https://atlas.cern/

40

2. CASTOR?: is a hierarchical storage management system which was developed

at CERN for archiving physics data.
SRM2: a client system for CASTOR.

4. DQ2%%: a data management system for atlas.

Schema #Revisions #Tables at birth #Tables at LKV #Columns at birth #Columns at LKV
IAtlas 84 73 56 709 857
SRM2 58 11 11 54 84
CASTOR2 192 62 74 632 838
DQ2MySQL 54 10 26 116 184
EGEEMySQL 16 6 9 34 63
Coppermine 117 8 22 85 169
e107 17 33 34 261 274
Joomla 1,5 45 35 36 307 321
NucleusCMS 4 20 20 110 112
phpBB 133 61 65 613 565
phpwiki 21 10 10 33 49
SlashCode 398 42 87 259 610
TikiwWiki 153 207 215 1528 1628
Typo3 98 10 23 122 421
DekiWiki 16 28 40 204 315
wikimedia 322 17 50 100 318
Zabbix Oracle 27 47 48 312 313
OpenCart 165 48 114 74 230
XOOPS 7 31 32 297 129
Medbiosql 47 21 28 227 731
Ensembl 528 19 75 82 486

Table 4: General information about the schemata.

5. EGEE!: is a series of efforts to provide access to high-throughput computing

resources across Europe using grid computing techniques.

Medical projects:

15 http://castor.web.cern.ch

16 https://www-zeuthen.desy.de/technisches_seminar/texte/dg2.pdf

7 http://information-technology.web.cern.ch/about/projects/eu/egee-iii

41

Ensembl*8: is a project that produces genome databases for vertebrates and other
eukaryotic species.

BioSQL: is a joint effort between the OBF projects (BioPerl, BioJava etc), to
support a shared database schema for storing sequence data.

Content Management Systems:

Typo32%: is an enterprise CMS for managing any kind of digital content.
PhpBB?!: is an Internet forum package written in PHP.

PhpWiki?? : is a WikiWeb clone in PHP that supports multiple storage
backends, dynamic hyperlinking, and more.

Slashcode??: is the site for All Things Slash.

ZABBIX?*: is an enterprise-class open source distributed monitoring solution
that provides information about numerous parameters of a network and the
health and integrity of a server.

e107%: is a website system written in PHP and MySQL for the creation of
dynamic sites providing a flexible admin area.

Coppermine?®: is a photo gallery with a MySQL database, some of its features
are user management, private galleries and automatic thumbnail creation.
DekiWiki?": is a popular commercially supported wiki platform for creating
content and mashups using a wiki interface.

Nucleus?: is a simple CMS based on PHP and JavaScript.

18 https://www.ensembl.org/index.html]

19 http://biosql.org

20 https://typo3.com

2L https://www.phpbb.com

22 https://sourceforge.net/projects/phpwiki

2 http://www.slashcode.com/www.slashcode.com/about.shtml
24 https://www.zabbix.com

25 https://github.com/e107inc/e107

26 http://coppermine-gallery.net

27 https://www.osalt.com/mindtouch

28 https://sourceforge.net/projects/nucleuscms

42

10. OpenCart?®: is an ecommerce platform for online merchants.

11. TikiWiki®: is a powerful Content Management System (CMS).

12. XOOPS®®: is a web application platform in PHP and MySQL for developing
small or large community websites.

13. MediaWiki®?: is a wiki software package written in PHP that serves as the
platform for Wikipedia and the other Wikimedia projects.

14. Joomla! 1.5%%: is a content management system (CMS) for publishing web

content.

29 https://github.com/opencart/opencart

30 https://tiki.org/tiki-index.php

31 https://xoops.org

32 https://github.com/wikimedia/mediawiki

33 https://github.com/joomla/joomla-cms

43

CHAPTER 4

EXPERIMENTAL STUDY: STATUS QUO OF SQL STYLE

AND A DOSE OF IDEALISM

4.1 Do People Care About SQL Style Rules?

4.2 Does The Adherence To Sql Style Rules Evolve Over Time?

4.3 What are the Evolution Patterns of Sqgl Style Rules?

4.6 Which are the Adherence/Violation Patterns of SQL Style Rules?
4.7 Which SQL Style(s) is(are) Actually Followed in Practice?

4.8 Threats to Validity

4.1Do People Care About SQL Style Rules?

Coding conventions are important in the case of conventional software, as evidenced in
the related research and practice. Developers typically follow specific coding styles and
standard coding conventions, at least those who care. The issue is what happens in the
case of SQL, where the lack of related research and empirical studies is profound. To
answer the initial question of this thesis, we checked if the rules that we defined in
section SQL Style Rules, are followed by the schemata that we consider in our study.

To come up with a quick answer to the question we calculate the average values and
the standard deviation of the rules SRAD for tables and columns, based on all the

datasets of our case study. The respective results are given in.

44

So, in Table 5 we observe for most of the table rules high average SRAD values that
range from 95% to 100%, with medium-low standard deviations, ranging from 0% to
22%. Only four rules (i.e., SWC, TIP, UMW, ACN) have lower average SRAD values
that range from 15% to 70%. In Table 7, we observe a similar situation for the column
rules. Most of the column rules come with high average SRAD values that range from
93% to 100%, with medium-low standard deviations, ranging from 0% to 13%. Only
four rules (i.e., USP, AUV, UMW, CIS) have lower average SRAD values that range
from 28% to 65%.

AS\SESG SSE,DAlgf Average | STD of
SRAD | SRAD
uTC 99% 3%
uTc 94% 14%
UPL 98% 6%
UPL 100% 0%
SWL 95% 22%
SWL 100% 0%
EWL 100% 0%
EWL 100% 0%
UMW 56% 24%
UMW 59% 21%
TIP 17% 19%
USP 28% 14%
Swc 15% 36%
CIS 65% 23%
ACC 100% 0%
ACC 93% 18%
ARW 100% 0%
ARW 100% 0%
ACU 95% 22%
ACU 100% 0%
AUS 100% 0%
AUS 100% 0%
ASC 100% 0%
ASC 100% 0%
AUD 100% 0%
AUD 100% 0%
AUV 100% 0%
AUV 51% 18%
ACN 70% 21%
All 98% 4%
ACN 100% 0%
NBP 93% 16%
Table 5: Average and standard Table 6: Average and
deviation of the last known standard deviation of the
versions of the schemata for each last known versions of the
one of the table rules SRAD. schemata for each one of

the column rules SRAD.

Overall, we have a first sign that people do care about SQL style rules to a certain
extent. To get a more detailed view of what happens in our case studies we further
calculate for each schema the percentage of rules followed by all of the schema elements

(tables/columns) and the percentage of rules that are not followed by any element.

45

Moreover, we look at the percentage of rules followed by at least some of the schema
elements and the percentage of rules that are not followed by some elements. In detail,
we focus on the LKV of each schema. For the table rules we provide a bar chart that

gives:

e the percentage of rules followed by all tables (i.e. SRAD = 100%),

e the percentage of rules not followed by any tables (i.e. the percentage of rules
for which SRAD = 0%),

e the percentage of rules followed by some tables (i.e. the percentage of rules for
which SRAD > 0%),

e the percentage of rules not followed by some tables (i.e. the percentage of rules
for which SRAD < 100%).

Similarly, for the column rules we provide a bar chart that gives:

e the percentage of rules followed by all columns (i.e. the percentage of rules for
which SRAD = 100%),

e the percentage of rules not followed by any column (i.e. the percentage of rules
for which SRAD = 0%),

e the percentage of rules followed by some columns (i.e. the percentage of rules
for which SRAD > 0%),

e the percentage of rules not followed by some columns (i.e. the percentage of
rules for which SRAD < 100%).

To dive into further details, for each schema we also provide bar charts that show what
happens with each table. In particular, for the table rules we provide a bar chart that
gives for each table the percentage of rules that are followed by the table (i.e. the
percentage of rules for which TRAD = 1) and the percentage of rules that are not
followed by the table (i.e. the percentage of rules for which TRAD = 0). Similarly for
the column rules we provide a bar chart that gives for each table the percentage of rules
followed by all columns (i.e. the percentage of rules for which TRAD = 100%), the
percentage of rules not followed by any column (i.e. the percentage of rules for which
TRAD = 0%), the percentage of rules followed by some columns (i.e. the percentage
of rules for which TRAD > 0%), the percentage of rules not followed by some columns
(i.e. the percentage of rules for which TRAD < 100%).

46

The respective results for SRAD are given in Figure 3 and Figure 4. The figures group
the results of the different cases studies alphabetically. Similarly, the results for
TRAD are illustrated in pages 86 and 88 in

Appendix A

Concerning the detailed results, in all schemas we observe the following schema-level
adherence pattern:

Tables:

e The percentage of rules that hold at least for some tables is high, ranging from
80% to 100%.

e The percentage of rules that are violated by some tables is medium, varying
from 13% to 40%.

e The percentage of rules that hold at least for some tables is always higher than
the percentage of rules that are not followed by some tables.

e The percentage of rules that hold for all tables is medium high, varying from
60% to 87%.

e The percentage of rules that do not hold for any table is low, ranging from 0%
to 20%.

e The percentage of rules that hold for all tables is always higher than the

percentage of rules that do not hold for any table.
Columns:

e All rules hold at least for some columns is 100% in all the schemata.

e The percentage of rules that hold for all columns is medium high, varying from
59% to 76%.

e The percentage of rules that do not hold for some columns is low medium,

ranging from 24% to 41%.

Jointly:

e The percentage of rules that do not hold for any table is always higher than
the respective percentage for columns in a schema.
e The percentage of rules adhered by all the tables is usually lower than the

respective percentage for columns.

47

ATLAS, Tables_SRAD CASTOR2, Tables_SRAD phpBB, Tables_SRAD
100,00% 100,00% 100,00%
5 o B o HET
E H H
6 oa00 B oo S eoook
© 2 g
1 g g
5 4000k E A0,00% E 40,00%
e i - d
o0k 000% - oo -
SRAD>0 SRAD=0 SRAD=1 SRAD<1 SRAD>0 SRAD=0 SRAD=1 SRAD<1 SRAD>0 SRAD=0 SRAD=1 SRAD<1
COPPERMINE, Tables_SRAD DekiWiki, Tables_SRAD SlashCode, Tables_SRAD
100,00% 100,00% 100,00%
B sooon & mom B snoos
3 Z z
6 0o S 6000% T 000k
- H &
£ 000 2 ook 2 o
g 8 §
5 aoon g oo l 8 oo I
ot || oo | - . -
SRAD>0 SRAD=0 SRAD=1 SRAD<1 SRAD>0 SRAD=0 SRAD=1 SRAD<1 SRAD>0 SRAD=0 SRAD=1 SRAD<1
DQ2MySQL, Tables_SRAD EGEEMySQL, Tables_SRAD Tikiwiki, Tables_SRAD
100,00% 100,00% 100,00%
8 mom § wom B sooo
3 z 3
'S so00% B w00 6 eanos
o o o
7 g ¥
£ 4000% E A0,00% E 40,00%
::' 0004 . § ook l & anoox I
s || oy | . -
SRAD>0 SRAD=0 SRAD=1 SRAD<1 SRAD>0 SRAD=0 SRAD=1 SRAD<1 SRAD>0 SRAD=0 SRAD=1 SRAD<1
€107, Tables_SRAD Joomla 1.5, Tables_SRAD XOOPS, Tables_SRAD
100,00% 100,00% 100,00%
1 oo & mom 3 sooon
2 2 2
S s000% B o T 000k
L) o L]
7 g 4
£ 40008 £ a000% £ 2000%
; ; I ;
PR & now $ woow I
. - o | . -
SRAD>0 SRAD=0 SRAD=1 SRAD<1 SRAD>0 SRAD=0 SRAD=1 SRAD<1 SRAD>0 SRAD=0 SRAD=1 SRAD<1
Medbiosql, Tables_SRAD MedEnsembl, Tables_SRAD ZABBIX Oracle, Tables_SRAD
100,00% 100,00% 100,00%
2 so0 8 o 3 w0
2 2 Z
S eoook B oo B o0
(] 1 (]
g g
£ 2000% E 40,005 E 40,008
E 2000% I & w00 I & 000
o00s - o005 . oo0s -
SRAD>0 SRAD=0 SRAD=1 SRAD<1 SRAD>0 SRAD=0 SRAD=1 SRAD<1 SRAD>0 SRAD=0 SRAD=1 SRAD<1
Nucleus, Tables_SRAD OpenCart, Tables_SRAD wikimedia, Tables_SRAD
100,00% 100,00% 100,00%
o
% BO00% % B000% 1 oo
Z z Z
B s B o S soo0x
o 1] L)
2 g g
E A0,00% £ 4000% £ a000%
g 8 H
o 14
5 20006 I & mows I £ woon .
o
o | | _ - H s -
SRAD>0 SRAD=0 SRAD=1 SRAD<1 SRAD>0 SRAD=0 SRAD=1 SRAD<1 SRAD>0 SRAD=0 SRAD=1 SRAD<1
Typo3, Tables_SRAD SRM2, Tables_SRAD phpwiki, Tables_SRAD
100,00% 100,00% 100,00%
& snoox & mom § sooon
2 z :
S oo B o T o00x
) & $
2 anoox £ oo £ an00
8
E 20004 I § mom . g 0004 .
0.00% | 0.00% . 0.00% -
SRAD>0 SRAD=0 SRAD=1 SRAD<1 SRAD>0 SRAD=0 SRAD=1 SRAD<1 SRAD>0 SRAD=0 SRAD=1 SRAD<1

Figure 3: Percentages representing the number of table rules in each schema that have

SRAD > 0%, SRAD = 0%, SRAD = 100% and SRAD < 100% respectively.

48

ATLAS, Columns_SRAD CASTOR2, Columns_SRAD SlashCode, Columns_SRAD
100,00% - 100,00% 100,00%
8 soom L soom £ sooon
7 2 H
S 6000k E 6000% G eoom
] L]
$ g H
£ a0k E oo : 40,00%
o
1
e | [I - B
0,00% ' . 0,00% T T 0,00% —
SRAD>0 SRAD=0 SRAD=1 SRAD<1 SRAD>0 SRAD=0 SRAD=1 SRAD<1 SRAD>0 SRAD=0 SRAD=1 SRAD<1
Coppermine, Columns_SRAD DQ2MySQL, Columns_SRAD SRM2, Columns_SRAD
100,00% 100,00% 100,00%
8 woon & soo0x & soom
2 H 2
5 6000% T B00cs B e0oc
1] 1] [}
E F ¥
20,00% £ a000% € 000
g g 8
& woos & 000 I & w00
0,00% . . 0,00% 0,00%
SRAD>0 SRAD=0 SRAD=1 SRAD<1 SRAD>0 SRAD=0 SRAD=1 SRAD<1 SRAD>0 SRAD=0 SRAD=1 SRAD<1
DekiWiki, Columns_SRAD EGEEMySQL, Columns_SRAD Tikiwiki, Columns_SRAD
100,00% - 100,00% 100,00%
& soo & soo0% 8 so0m
Z E 3
E B000% E 60,00% B 0o
[
¥ ¥ E
T 000 £ 4000% 40,00%
g g 8
o | I o]
0,00% — T T 0,00% 0,00%
SRAD>0 SRAD=0 SRAD=1 SRAD<1 SRAD>0 SRAD=0 SRAD=1 SRAD<1 SRAD>0 SRAD=0 SRAD=1 SRAD<1
2107, Columns_SRAD Joomla 1.5, Columns_SRAD Typo3, Columns_SRAD
100,00% - 100,00% 100,00%
§ 000 B sooox 8 so0m
E] 2 2
S a0k T so00x B 0o
[o v
5 F E’
£ a0k £ d000% 40,00%
] 8
g 8 8
& woo% I 2 2000% I 3 2000% I
0,00% . . 0,00% 0,00%
SRAD> 0 SRAD=0 SRAD=1 SRAD < 1 SRAD >0 SRAD =0 SRAD=1 SRAD < 1 SRAD > 0 SRAD=0 SRAD =1 SRAD<1
Nucleus, Columns_SRAD Medbiosq|, Columns_SRAD wikipedia, Columns_SRAD
100,00% - 100,00% 100,00%
& sooo 8 soo0x 8 soom
Z Z z
S a0k B so00x B 0o
o o o
: H H
£ a000% 40,00% 10,00%
g g
£ [- B
0,00% 0,00% T T 0,00%
SRAD>0 SRAD=0 SRAD=1 SRAD<1 SRAD>0 SRAD=0 SRAD=1 SRAD<1 SRAD>0 SRAD=0 SRAD=1 SRAD<1
MedEnsembl, Columns_SRAD phpBB, Columns_SRAD Zabbix Oracle, Columns_SRAD
100,00% 100,00% 100,00%
8 soom B snom B oo
2 2 2
B 6000 T a000% T oo
o o (]
¥ E‘ ¥
£ a000% 000% € 4000
g g §
& 2000 l & oo . & 2000
0,00% — T T 0,00% T T 0,00%
SRAD>0 SRAD=0 SRAD=1 SRAD<1 SRAD>0 SRAD=0 SRAD=1 SRAD<1 SRAD>0 SRAD=0 SRAD=1 SRAD<1
phpwiki, Columns_SRAD OpenCart, Columns_SRAD XOOPS, Columns_SRAD
100,00% 100,00% 100,00%
8 soom & oo 5 s000%
2 E H
E 60,00% E 60,00% B 6000%
1)
¥ ¥ H
B 4000% £ 4000% £ a000%
3] H
3 woo & 000 . & o0 l
000% - - - 0.00% 000% - .
SRAD>0 SRAD=0 SRAD=1 SRAD<1 SRAD>0 SRAD=0 SRAD=1 SRAD<1 SRAD>0 SRAD=0 SRAD=1 SRAD<1

Figure 4: Percentages representing the number of column rules in each schema that
have SRAD > 0%, SRAD = 0%, SRAD = 100% and SRAD < 100% respectively.

49

4.2 Does The Adherence To Sqgl Style Rules Evolve Over Time?

In RQ1 we used the LKV of each schema to assess whether the examined schemata
adhere to SQL style rules. In our second research question we start from the birth of a
schema and move towards the LKV; we analyze the history of the schema to find out
which rules evolve. To this end, we use typical statistic measures (i.e., average, median,
mode, standard deviation, min, max and skewness) to describe the distribution of

SRAD for each rule in the history of the schema.

For each schema we further provide a line chart. Specifically, each line in the chart
corresponds to a rule whose SRAD changes over the history of the schema versions;
the x-axis of the chart depicts the history of the schema versions in terms of version
IDs, while the y-axis depicts the value of SRAD for the particular rule. The line charts
are depicted in Figure 5 and Figure 6. Lastly we use the Kendall correlations provided
between the rules” SRAD and the size of a schema, provided by DBsea. We find and
identify the significance of correlation between the rules’ SRAD fluctuation across the
history of a schema and it’s changes in size (i.e. number of tables or columns in a given
revision). For each type of SQL element we divide the values of correlations in two
categories the positive and negative, each category is further divided in three based on

the range of the correlation values. The three buckets refer to:

1. low correlation
a. positive: (0%, 30%]
b. negative: [-30%, 0%)]
2. medium correlation
a. positive: (30%, 60%]
b. negative: [-60%, -30%)
3. high correlation
a. positive: (60%, 100%]
b. negative: [-100%, -60%]

The results are shown in Figure 8.

As a summary of our results, in Table 7 and

50

Table 8 we provide for each rule the maximum evolution range of SRAD (i.e., the
difference between the maximum and the minimum SRAD as an absolute value) across

the examined schemas.

Overall, the typical schema-level adherence evolution pattern that we observe in all

schemas and across the different levels of detailed results is summarized below:

e Table and column rules do evolve during the life of a schema (see Figure 5 and
Figure 6) .

e However, only some rules change (see Table 9) with the number of rules that

change in the examined schemas varying from zero to seven for tables and zero
to eight for columns.
Typically the rules that change the most are lexicological and methodological,
followed by the writing style rules. The range of the changes of SRAD may vary
a lot depending on the schemas, the rules, and the schema elements involved. In
the case of table rules for instance the maximum range of SRAD varies from an
astonishing 91% for ACN to a minor 3% for SWL (Table 3 left). Moreover, in
the case of columns the maximum range of SRAD varies from 41% for USP a
minor 1% (Table 3 right).

e If a rule changes significantly (>10%), the biggest portion of rule’s SRAD

fluctuation will occur in a minor fraction of the schema’s history.

The most interesting line charts for tables are from the schemata Coppermine, SRM2,
Typo3, DQ2 and Ensembl. Coppermine managed in less than ten consecutive revisions
to increase TIP’s SRAD by 40%. SRM2 in less than five revisions increased ACN’s
SRAD by 70%. OpenCart decreased in only one revision its UMW’s SRAD by 35%
and kept it this way with minor fluctuations until the LKV. Typo3 in got ACN’s SRAD
decreased by 20% in less than ten revisions and in the next ten it decreased by 20%.
The same phenomenon with Typo3 was found in DQ2 for ACN’s SRAD, but in even
smaller number of revisions, less than 3 revisions in decreased by 40% and in the next
three increased by 30%. The most lively schema, based on the number of rules having
their SRAD fluctuating and the multitude of SRAD is Ensembl which also is has the
longest history (>500 schemata). Ensembl has an interesting fluctuation of UTC’s

o1

SRAD falling from a full adherence to about 80% and after fifty revisions returning
back to 100% SRAD.

The most interesting line charts for columns are from BioSQL, DQ2, EGEE, Phpwiki,
SRM2 and Wikimedia. In BioSQL the SRADs of UMW, USP and NBP change by 10%
in less than five consecutive revisions. In DQ2 in less than five revisions there are
significant changes for five rules, AUV decreases by 15% and then increases by about
15%, UMW and CIS increase by 20% and then decrease by approximately 15%. EGEE
in less than two revisions has its AUV’s SRAD increased by 10%, CIS’s, USP’s and
UMW'’s SRAD decreased by approximately 8%. In the case of Phpwiki in less than
three revisions CIS’s and UMW's increase by 25% and AUV’s decreases by 20%.
SRM2 in less than five versions has the SRADs of AUV increased by 20%, CIS’s and
UTC’s by 10%, while its ACC’s decreased by 10%. Lastly wikimedia in less than two
revisions has the SRAD of AUV decreased by 15% and NBP’s increased by 10%.

We focus specifically on the UTC of each schema, because the SRAD of UTC is based
on the most popular type of case in a schema it hides changes in the actual type of case
used by the schema. Our argument is more clear through an extreme example; if we a
schema was using uppercase with underscores in all of its names UTC’s SRAD would
be 100%, if the type of case was to change in the next revision in all of the names to
PascalCase the SRAD would still be 100%. We explored the possibility of significant
changes in the primary type of case with four charts (see Figure 6), two describing the
change in the UTC for each schema (one for tables, one for columns for SLA) between
the last and the first version and two charts describing the change in the used type of

case for each schema respectively.

Interestingly, UTC changes through the variance type of cases usage. For example in
SRMZ2, columns use three different type of cases, the usage for two those decreased by
6% and 2% while for the third increased by 7% (see Figure 4) the UTC’s SRAD
increased by 8%. Tables on the other hand have a more stable UTC and the different

type of cases used in a schema are less.

52

Tables rules correlation with size

For tables the positive correlation is fairly low both in terms of number of schemata
having positive correlation and in correlation’s value. For UTC we there is a schema
with low and one with medium correlation from the twenty one of the case study. TIP
and SWC both have two schemata with low correlations. ACC has two low correlated
schemata and one with medium and lastly ACN has two medium correlations. Overall

it seems that table rules adherence is not correlated positively with the schema’s size.

On the contrary, we observe some degree of negative correlation for a few rules. More
specifically TIP and ACN are medium or highly correlated with the schema size. For
TIP’s SRAD there are four schemas highly and three medium correlated. For ACN the
are seven with medium and five with high. Concluding, from the eight rules found
having correlation with the table size of the schemata, six of them had insignificant
positive or negative correlation and two of them had medium to strong negative

correlation.

Columns rules correlation with size

Columns have greater correlation than tables and in more rules. The rules that had
significant positive correlation where UTC, UMW, USP, CIS, All and NBP. More
specifically, for UTC the positive correlation has two weak, four medium and one high
when the number of schemata where changes exist are eight, UMW has four high, one
medium and five minor in the eighteen datasets where changes of SRAD occur. USP in
a total of eighteen datasets has eight minor, three medium and two strong while All in
a total of eight datasets has four of them highly correlated and one medium correlated.
Lastly NBP from a total of ten datasets with SRAD changes, has four of them being
highly correlated, one medium and two low. The verdict is that column rules have, in
some cases, strong correlations especially for style of writing, lexicological and

methodological rules, leaving out the SQL specifics.

In the negative correlations there are two rules being strongly correlated with size, CIS

and AUV. For CIS there are four low, three medium and four highly correlated

53

schemata and in AUV there are three with low, five with medium and seven with high

correlation.

SRADs’ distribution description during evolution

In Table 11 and Table 12 we show two descriptions for each of the SQL elements. For
tables we used Ensembl and OpenCart, for columns Wikimedia and Typo3. It should
be noted that these table are representative for all the schemata. We observe for all the
rules the lack of skewness when we have standard deviation or some skewness when
there is not important standard deviations (e.g. UPL in Wikimedia). Standard deviation
is below 10% and usually the average, median and mode have very similar values.
Interestingly we observe in the case where minimum and maximum values of SRAD
for a given rule have a significant difference, mode is usually closer to the maximum

value.

54

ululs|lul| T]s]|al|a
TP |w| ™ | c
Llce|fw]| P |c|c]|N

ATLAS 0% | 0% 5% 0%
CASTOR? 0% | 0% | 21% | 8% 38%
SRM2 0% | 0% | 0% | 27% | 0% | 0% | 0% | 91%
DQ2MySQL | 0% | 0% | 0% | 7% | 0% | 0% | 0% | 61%
EGEEMySQL | 0% | 0% | 0% 0% | 0% | 0% | 25%
Coppermine 0% | 0% | 0% 43% | 0% | 0% 0%
Zabbix 0% | 0% [0% | 1% | 2% | 0% | 0% | 3%
DekiWiki 0% | 0% | 0% 6% | 0% | 0% | 4%
e107 0% 0% | 0% | 1% | 0% | 0% | 0% | 0%
Nucleus 0% | 0% | 0% | 0% 0% 0% [0% | 0%
OpenCart 0% | 6% | 0% | 36% | 0% | 0% | 0% | 21%
phpBB 0% | 0% [0% | 5% | 2% | 0% | 0% | 8%
phpwiki 0% | 0% | 0% 0% | 0% | 0% | 0%
SlashCode 0% | 0% | 0% 0% | 0%
Tikiwiki 0% | 0% [0% | 1% | 1% | 0% | 0% | 3%
wikimedia 3% | 3% | 3% 9% | 0% | 0% | 22%
Typo3 0% | 6% | 0% | 27% | 28% | 0% | 0% | 30%
XOOPS 0% 0% | 0% | 2% | 0% | 0% | 0% | 2%
Joomla 1,5 0% 0% | 0% | 0% | 1% | 0% | 0% | 3%
biosql 0% | 0% | 0% 5% | 0% | 0% | 35%
Ensembl 3% | 0% | 26% | 5% 3% 35%
xiéig‘“m 19% | 6% | 3% | 36% | 43% | 14% | 15% | 91%

Table 7: Table’s SRAD ranges through the evolution of each schema, rules with zero
range in all of the schemata are missing; SRAD range varies greatly based on the rule
or the schema.

55

ATLAS

0%

0%

0%

4%

6%

6%

0%

6%

0%

0%

0%

CASTOR2

23%

0%

0%

24%

39%

23%

9%

0%

0%

SRM2

0%

0%

4%

20%

8%

0%

4%

DQ2

0%

0%

0%

0%

8%

0%

0%

EGEE

0%

0%

0%

0%

0%

0%

0%

Coppermine

3%

0%

0%

9%

5%

8%

2%

9%

0%

0%

0%

Zabbix

0%

0%

1%

2%

1%

2%

0%

1%

0%

0%

1%

DekiWiki

0%

0%

0%

7%

7%

8%

0%

8%

0%

0%

2%

el07

0%

0%

0%

2%

1%

1%

0%

1%

0%

0%

1%

Nucleus

0%

0%

0%

0%

0%

0%

0%

0%

0%

0%

0%

OpenCart

0%

0%

0%

3%

6%

3%

0%

4%

0%

0%

phpBB

0%

0%

0%

4%

6%

1%

0%

1%

0%

0%

0%

phpwiki

0%

0%

0%

7%

19%

0%

4%

1%

SlashCode

2%

0%

0%

7%

9%

8%

2%

9%

2%

0%

0%

TikiWiki

1%

0%

0%

1%

0%

1%

1%

0%

1%

0%

0%

wikimedia

0%

1%

0%

3%

9%

0%

21%

0%

1%

30%

Typo3

6%

0%

0%

8%

7%

4%

5%

1%

0%

0%

XOO0PS

0%

0%

0%

0%

1%

0%

0%

1%

0%

0%

1%

Joomla 1.5

0%

0%

0%

1%

1%

2%

0%

2%

0%

0%

0%

Biosqgl

2%

0%

0%

7%

4%

1%

8%

0%

0%

Ensembl

5%

0%

0%

29%

41%

28%

5%

0%

Maximum
range

23%

1%

1%

29%

41%

28%

39%

23%

15%

1%

30%

Table 8: Column’s SRAD ranges through the evolution of each schema, rules with
zero range in all of the schemata are missing; SRAD range varies greatly based on the

rule or the schema.

56

Table 9:

#table rules that change

#column rules that
change

ATLAS

4

CASTOR2

SRM2

DQ2

EGEE

Coppermine

Zabbix

DekiWiki

el07

Nucleus

OpenCart

phpBB

phpwiki

SlashCode

TikiWiki

wikimedia

Typo3

XOOPS

Joomla 1,5

Biosqgl

Ensembl

~N|jw|IN|IN]RARllOlWIWIRP|IWlWlOlRP]ITW|lWINMIN]IWIN]O]| O

O |IN|lPdP|lOWIN|IN|JO|IN|N]PMPlOJlOJlOW|l OO | B>|]OW]|O00]| N

Number of rules that change in each schema during the evolution.

S7

ATLAS, changes in table rules' SRAD

CASTOR?2, changes in table rules' SRAD

DQ2, changes in table rules' SRAD

100,00% - 100,005 100,00% -
80005 - 80,008 80,008
o 6000 a 000
60,005 -
2 — UMw v A0,000 o 06
— — L [
gm,uu% 1 s T —Tp — TP —upL
— e SWC 0006 ACN 20,008
20,00% - o —
e ACN R 0008 oo e
000% T 121 41 61 81 101 121 141 161 181 1w o ;a5
1on HS hm 4;‘ s 61 71 B Schema revisions Schema revisions
chema Kevisions
EGEE, changes in table rules' SRAD DekiWiki, changes in table rules' SRAD SlashCode, changes in table rules'
100,00% j—‘—_ 100,00% SRAD
soos _ I sooms - e 100,00% -
A 600 Q 6000k T e e— — .
3 =TT — UMW
v 40,00% UMW v 40,005 -
ACN —— —__. —TIP
20,008 0006 L ACN
0,00% —— — e 0,00%
1 [11 16 1 6 1 16 1 41 B1 121 161 201 241 281 321 361
Schema revisions Schema revisions Schema revisions
. . i d e .
Coppermine, changes in table rules' SRM2, changes in table rules SRAD phpWiki, changes in table rules' SRAD
SRAD 100,00%
100,00%
100,00% w000 20,005
80,0085 ‘ :
\ o 6000%
(a] 0056 60,005
g e I‘s\ — UMW g UMW B
w000 e m—a e ——— A 40,00% —ACN —umw
2000% - ===TIP 2000%
20,00%
0008 o
1 21 a1 38 81 101 0,00% e — — " - 1 3 11 16 21

Schema revisions

21 . a1 51
Schema Revisions

Schema revisions

OpenCart, changesin table rules'

SRAD
100005 o ey
—_—
80,005 l
0O 60008 -

o 4000% -
20005 -

0,008 T
4

Schema revisions

Ensembl, changes in table rules' SRAD

0,00% -l
151101151 201 251 301 351 401 451 501

Schema revisions

Typo3, changes in table rules' SRAD

100,00% ittt [
[.
80,000 - . ! !
land 1
a 00

v 4000%

1 11 21 31 41 51 61 71 & 91

Schema revisions

phpBB, changes in table rules' SRAD

100,00%
80,00% -
| T
o 6000% o
s L —umw
woao0m -
: —
—
20,00% = ACN
0,00%

1021 41 61 Bl 101 121

Schema revisions

Biosq|, changes in table rules' SRAD

100,00%
H0,00F4 -
o 6000
t}--,--\’_-(-\‘,r---f--- - UMW
w000 -l
] \ B TIP
20,008 = — ACN

0,00% E
1

Schema revisions

wikimedia, changes in table rules'

SRAD
— uMw
—— —Tip
- ACN

81 121 161 201 241 281 3N
Schema revisions

Figure 5: Changes in SRAD for table rules during the evolution of the schemata.

58

ATLAS, changes in column rules' SRAD Biosql, changes in column rules' OpenCart, changes in column rules'
100,00% SRAD SRAD
R0,00% - 100,00% 10000% |
o sos T ThTmemmmmeste- fm= —UMW 00 — UMW B000%
Q ok Q 0o
B = g || 8 == | 27
S SR as o a000% as & oo
2000% = ————— 00 2000
—==AWV =AUV
Q00% wmmmr w——— - 0,00% 0,00% - ——— —— —— G———-—— — - —
1 21 41 61 81 1 11 21 £y a1 ===NBP 1 1 41 61 81 101 121 141 161
Schema revisions Schema revisions Schema revisions
Coppermine, changes in column rules' CASTOR2, changes in column rules' SlashCode, changes in column rules'
SRAD SRAD SRAD
W00 ———— o — 100,00%
80,00% —uTC B0 [e e —— e ——UIC
Q 6000% o 600 —— =]
< UMW | g o - T s
E A000% % O e e P . —_sP % 1000 ‘-.-i-"'-:-'i"r""m'---'-r" see CIS
w¥enmemnmmemaam=msane== ===U5P —_us e, — el
2000% as 2000% - 2000% = —ACC
Q0% rrr=se e T 0,00% -4y e T ——— AV 0,00% — AUV
1 a4 6 8 — AUV 1 21 41 61 8L 101 121 141 161 181 Al 1 51 100 151 200 251 301 351
Schema revisions Schema revisions Schema revisions oAl
DQ2, changes in column rule's SRAD DekiWiki, changes in column rules' SRM2, changes in column rules' SRAD
e SRAD 10000% |
8000% \/~ 100,00%
—UMw 00 | ==, N .
a0 L T e e
—UspP O 0o | — _ — UMW
w1 A000% - —_——
’ ~CIS B0 | == ——USP
2000% —ALV 0,005 ===CIs
0,00% —All 0,00% - — AUV 000 f T T — AUV
1 11 21 31 41 51 1 11 1 6 11 16 21 26 31 36 41 46 51 56
Schema revisions Schema revisions Schema revisions — Al
EGEE, changes in column rules' SRAD Ensembl, changes in column rules' SRAD Typo3, changes in column rules' SRAD
100,00% - 100,00% 100,00%
80,00% 80,00% . 80,00% —UTC
a 6000k a 60k "n.~"--.'"' [usp a 0o — UMW
4
n 1000% % oo ~ ---Usp
T v
20,00% 20,008
------ ACC
0,00% 0,00% +
1 b 11 16 1 m m am anm L ——NBP 1 11 21 31 41 51 61 71 81 9N - AUV
Schema revisions Schema revisions Schema revisions
phpwiki, changes in column rules' phpBB, changes in column rules' SRAD wikimedia, changes in column rules'
SRAD 100005 SRAD
0000% Jmmmomsmmmmmmmmmamnmn e S 1o
000% | MW 8000%
. o 6000%
Q s000% I usp g a 600k
g 40,00% :, o e — - CIS o 000k g 40,00% -
200008 7 — AUV 2000% 2000%
0,00% T T T T T oAl 0,00% 0,00%
1 6 u 16 21 1 51104 151 200 351 301 ===NBP
Schema revisions -==-DNC Schema revisions Schema revisions

Figure 6: Changes in SRAD for column rules during the evolution of the schemata.

59

Universal Type of Case Change

Universal Type of Case Change

0,00% 8005 -
2,00%
-4,00% B00% -
®
g ¥
T s s
- 8
5 100 - &
Bome
[
14.00%
16.00% 000
o e s & & g & é’s# qws»g @“Qd'“.’,e“
F & & F 08 O FFFEF S "v‘*é‘ A & ¥ «
& ev&@iﬁ: f@ & & ‘\;"OQ,« & & @*}‘5@ E & ‘p‘)é‘
Schemata e Schemata
Change of type of case in the table names of the schemata Change of type of case in the column names of the schemata
20,00% B00%
1500% - 6.00%
10,00% 4,00%
° ®
Fonl 4 oo, e P ORNFRPAR s [y syl
g & o PSS & y ~9-° &i.l &S o 3 & 80 . . N
P DT I REGES G | Vo VI E LT LAY TS
-10,00% 4,005
15.00% 6,00%
-20,00% £,00%
Schemata Schemata
Figure 7: UTC related information the first two horizontal figures refer to the tables,
the second to columns.
Positive correlation buckets for tables Negative correlation buckets for tables
3 8
7
6
2
s]
E mlow E ulLow
o @4
5 = Medium S = Medium
A) High 2: = High
2
1 I I I
o [
utc UPL SWL umw TIP SWC ACC ACN uTtc UPL SWL umw TIP SWC ACC ACN
Positive correlation buckets for columns Negative correlation buckets for columns
9 8
8 7
’ 6
6
L] [5
%, %
E =Low £ = Low
o o 4
£ = Medium E m Medium
ﬁ 5 High ﬁ 3 = High
2 2
. . II

UPL EWL UMW USP CIS ACC ALV Al

UPL EWL UMW USP CIS Al ACN NBP

Figure 8: Number of schemata having weak, medium and high correlation, for each rule.

60

Ensembl | Skewness | Median | STD | Mode | Average | Max Min
uTC -2,86 100% 5% | 100% 98% 100% | 81%
UPL -2 100% 1% | 100% 100% 100% | 97%
SWL 0 100% 0% | 100% 100% 100% | 100%
EWL 0 100% 0% | 100% 100% 100% | 100%
umMw 1,34 63% 5% 63% 64% 83% | 57%
TIP 2,72 0% 1% 0% 0% 5% 0%
SWC 2,78 0% 1% 0% 0% 3% 0%
ACC -2,91 100% 3% | 100% 99% 100% | 85%
ARW 0 100% 0% | 100% 100% 100% | 100%
ACU 0 100% 0% | 100% | 100% | 100% | 100%
AUS 0 100% 0% | 100% | 100% | 100% | 100%
ASC 0 100% 0% | 100% | 100% | 100% | 100%
AUD 0 100% 0% | 100% 100% 100% | 100%
AUV 0 100% 0% | 100% 100% 100% | 100%
ACN 0,29 49% % 49% 48% 66% | 31%
OpenCart | Skewness | Median | STD | Mode | Average | Max | Min
uTC 0 100% | 0% | 100% | 100% | 100% | 100%
UPL -0,53 98% 1% | 99% 98% 100% | 94%
SWL 0 100% 0% | 100% 100% 100% | 100%
EWL 0 100% 0% | 100% 100% 100% | 100%
uMw 1,62 61% 8% 59% 63% 87% | 51%
TIP 0 0% 0% 0% 0% 0% 0%
SWC 0 0% 0% 0% 0% 0% 0%
ACC 0 100% 0% | 100% 100% 100% | 100%
ARW 0 100% 0% | 100% 100% 100% | 100%
ACU 0 100% | 0% | 100% | 100% | 100% | 100%
AUS 0 100% | 0% | 100% | 100% | 100% | 100%
ASC 0 100% | 0% | 100% | 100% | 100% | 100%
AUD 0 100% 0% | 100% 100% 100% | 100%
AUV 0 100% 0% | 100% 100% 100% | 100%
ACN 1,7 26% 5% | 25% 28% 44% | 23%

Table 10: Ensembl’s and OpenCart’s statistical description of the rules” SRAD

distribution during evolution for tables.

61

wikimedia | Skewness | Median | STD | Mode | Average | Max Min
uTC 0 100% | 0% | 100% | 100% | 100% | 100%
UPL -4,5 100% 0% | 100% 100% 100% | 99%
SWL 0 100% 0% | 100% 100% 100% | 100%
EWL 0 100% 0% | 100% 100% 100% | 100%
uMw -0,95 51% 3% 53% 51% 55% | 42%
USP -0,12 15% 1% 16% 15% 17% 14%
CIS 0,33 78% 2% 78% 78% 83% 74%
ACC 0 100% 0% | 100% 100% 100% | 100%
ARW 0 100% 0% | 100% 100% 100% | 100%
ACU 0 100% | 0% | 100% | 100% | 100% | 100%
AUS 0 100% | 0% | 100% | 100% | 100% | 100%
ASC 0 100% | 0% | 100% | 100% | 100% | 100%
AUD 0 100% | 0% | 100% | 100% | 100% | 100%
AUV 1,77 47% 5% 48% 48% 64% | 43%
All 0 100% 0% | 100% 100% 100% | 100%
ACN -7,15 100% 0% | 100% 100% 100% | 99%
NBP -1,57 85% 7% 86% 83% 91% 61%
Typo3 Skewness | Median | STD | Mode | Average | Max Min
uTC -0,89 95% 1% | 95% 94% 96% | 90%
UPL 0 100% | 0% | 100% | 100% | 100% | 100%
SWL 0 100% 0% | 100% 100% 100% | 100%
EWL 0 100% 0% | 100% 100% 100% | 100%
umMw 0,14 38% 2% | 41% 38% 43% | 35%
usp 0,26 30% 2% | 30% 30% 3% | 27%
CIS 0,96 37% 4% | 36% 38% 47% | 34%
ACC -0,41 97% 1% 97% 96% 98% | 94%
ARW 0 100% 0% | 100% 100% 100% | 100%
ACU 0 100% | 0% | 100% | 100% | 100% | 100%
AUS 0 100% | 0% | 100% | 100% | 100% | 100%
ASC 0 100% 0% | 100% 100% 100% | 100%
AUD 0 100% 0% | 100% 100% 100% | 100%
AUV -0,38 60% 2% 61% 59% 61% | 56%
All -1,49 100% | 0% | 100% | 100% | 100% | 99%
ACN 0 100% | 0% | 100% | 100% | 100% | 100%
NBP 0 100% 0% | 100% 100% 100% | 100%

Table 11: Wikimedia’s and Typo3’s statistical description of the rules’ SRAD

distribution during evolution for columns.

62

4.3 What are the Evolution Patterns of Sgl Style Rules?

According to the schema-level SQL style evolution pattern that we identified in our
second research question, the adherence of a schema to SQL style rules does evolve
overtime. Typically, this happens only for a few SQL style rules, the number of which
ranges from zero to eight. In this section, we investigate the SQL style evolution in
more detail. In particular, the issue is whether the adherence of a schema to SQL style

rules, increase, decrease or remains stable overtime.

To address the aforementioned issue for a particular rule we rely on the following

methodology:

e We introduce the Schema Rule Adherence Evolution Degree (SRAED) that
measures the respective difference between the SRAD in the LKV of the
schema and the SRAD in first known version (FKV) of the schema as follows:
SRAED = SRAD, xy — SRADpxy .

e Then, we consider the following characterizations:

o The schema adherence to the rule is fixed if 0% < SRAED < 1%.
o The schema adherence to the rule is positive if SRAED > 1%.

o The schema adherence to the rule is negative if SRAED < 0%.

Table 12 gives the probability of fixed, positive and negative for table rules, across
the examined schemas. Similarly,

Table 13 gives the probability of fixed, positive and negative for column rules, across
the examined schemas.

63

-ng?éz Positive Fixed Negative AVG Change STDev
uTC 0,00% 95,24% 4,76% -14% 0%
UPL 0,00% 85,71% 14,29% -11% 14%
SWL 0,00% 100,00% 0,00% 0% 0%
EWL 0,00% 100,00% 0,00% 0% 0%
UMW 33,33% 23,81% 42,86% -10% 9%
TIP 9,52% 61,90% 28,57% -16% 17%
SWC 4,76% 95,24% 0,00% 8% 9%
ACC 0,00% 100,00% 0,00% 0% 0%
ARW 0,00% 100,00% 0,00% 0% 0%
ACU 0,00% 100,00% 0,00% 0% 0%
AUS 0,00% 100,00% 0,00% 0% 0%
ASC 0,00% 100,00% 0,00% 0% 0%
AUD 0,00% 100,00% 0,00% 0% 0%
AUV 0,00% 100,00% 0,00% 0% 0%
ACN 23,81% 23,81% 52,38% -10% 8%

Table 12: Probability of fixed, positive and negative for table rules, across the
examined schemas for table rules. AVG (average) Change and STDev (standard

deviation) describe the distribution of SRAD in schemata with the higher propability
in between of being positive or negative.

gg:g;nn Positive Fixed Negative AVG Change STDev
UTC 14,29% 85,71% 0,00% 3% 3%
UPL 0,00% 100,00% 0,00% 0% 0%
SWL 0,00% 100,00% 0,00% 0% 0%
EWL 0,00% 100,00% 0,00% -3% 2%
UMW 23,81% 52,38% 23,81% 12% 8%
USP 47,62% 38,10% 14,29% 7% 10%
CIS 38,10% 28,57% 33,33% 2% 7%
ACC 9,52% 80,95% 9,52% 2% 2%
ARW 0,00% 100,00% 0,00% 0% 0%
ACU 0,00% 100,00% 0,00% 0% 0%
AUS 0,00% 100,00% 0,00% 0% 0%
ASC 0,00% 100,00% 0,00% 0% 0%
AUD 0,00% 100,00% 0,00% 0% 0%
AUV 14,29% 42,86% 42,86% -5% 7%
All 19,05% 76,19% 4,76% 7% 5%
DNC 0,00% 100,00% 0,00% 0% 0%
NBP 23,81% 71,43% 9,52% 11% 10%

Table 13: Probability of fixed, positive and negative for table rules, across the

examined schemas for column rules. AVG (average) Change and STDev (standard
deviation) describe the distribution of SRAD in schemata with the higher propability
in between of being positive or negative.

64

Based on the results, for both table and column rules we consider the following rule-

level adherence evolution patterns:

e Fixed adherence evolution pattern: A rule follows this pattern if most likely
SRAED will be fixed (vs being positive or negative), throughout a schema
evolution history.

e Positive adherence evolution pattern: A rule follows this pattern if most likely
SRAED will be positive, throughout a schema evolution history.

e Negative adherence evolution (anti-)pattern: A rule follows this anti-pattern if

most likely SRAED will be negative, throughout a schema evolution history.

Following, we discuss in more detail the case of each rule.

4.4 Table Rules Evolution

Instances of the fixed adherence evolution pattern. ARW, ACU, AUS, ASC, AUD,
AUV, ACC, SWL, and EWL are all strong instances of the fixed adherence evolution
pattern, their SRAED is zero and there are no fluctuations of SRAD during the schema

evolution history.

SWC follows the fixed adherence evolution pattern. In particular, SRAED for SWC is
fixed in all schemas except ATLAS, where its value is positive.

In UTC we observe only a minor tendency to negative adherence evolution, as in 20
schemas SRAED is fixed and in one schema it has a negative value with a decrease of
14%. This indicates that people are aware of the way they name their tables in a schema
and they agree on the type of case they use. Interestingly enough as shown in RQ2 in
Table 7, there are four schemata where UTC changes and only ATLAS, in the last
version has changes from the first version. This indicates that developers try to correct

the type of case with SQL specific refactorings [31].

In UPL, SRAED is negative in three of the examined schemas with an average SRAD
reduction of 11% and a STD of 14%. Adherence to UPL seems to get worse as the
evolution of the schema continues. A possible answer for this anti-pattern could be the

co-occurrence with the ACN violation, since when table names are created through

65

concatenating the names of multiple tables, the name tends to lengthy. Another reason
could be inexperienced developers who not follow the schema specific SQL style or

just the use of plain bad names.

Regarding TIP, SRAED is positive in only two datasets, fixed in thirteen and negative
in six. In the latter six schemas the average SRAD is 16%. Overall, TIP changes in
thirteen datasets, but only eight have different SRAD between FKV and LKV. TIP has
the highest reduction of SRAD, compared to the other table rules and is one of the less

respected rules with an average SRAD of 17% of average SRAD across the datasets.

Instances of the positive adherence evolution pattern: Unfortunately, there is no table

rule that follows the positive adherence evolution pattern.

Instances of the negative adherence evolution anti-pattern: UMW and ACN are
instances of the negative adherence evolution anti-pattern.

In UMW we observe seven schemas with positive SRAED, five fixed and nine schemas
with negative SRAED. The average SRAD reduction is about 10% with an STD of 9%.
UMW is not only an instance of the negative adherence evolution anti-pattern, but also

a common sin among developers since the average SRAD in the LKV is only 56%.

The most definite instance of the negative evolution anti-pattern is ACN, with negative
SRAED in eleven schemas, positive SRAED in five schemas and fixed SRAED in five
schemas. Concerning the negative SRAED the average reduction in SRAD is 10%.
ACN changes in seventeen datasets, from those there is one returning to its initial
SRAD, DekiWiki having max range in SRAD during its evolution 4%.

4.5 Column Rules Evolution

Instances of the fixed adherence evolution pattern: UPL, SWL, EWL, ARW, ACU,
AUS, ASC, AUD and DNC are all strong instances of the fixed adherence evolution
pattern. It should be noted that there are some insignificant SRAD changes in their

evolution and limited in a few number of datasets (<2).

66

Concerning UTC, SRAED is expected to be fixed, meaning the developers just keep on
following the original type of case convention; with less probability it may be positive
with small improvement (3% is the average), as we observe in three schemas where
SRAD increases. UTC has SRAD fluctuations during the evolution of the schema in
eight schemas, the average SRAD is high at 94% and the standard deviation is 14%. It
is interesting to note that in five of those schemas the value of SRAD in LKV is equal
to the value of SRAD in FKV.

For ACC, SRAED is fixed in most schemas. There are two exceptions with positive
SRAED and two exceptions with negative SRAED. The value of SRAD fluctuates in
eight schemas and camelCase is used as main type of case in SRM2 and was widely
used in CASTOR?Z2; as a reminder both of those schemata belong to the same project.
All SRAED is positive in six schemas, negative in one schema and fixed in sixteen
schemas. Adherence improves by an average of 7%, indicating that developers tend to
favor meaningful primary keys over the “id”. It should be noted that the schemata in
our case study followed to great extent the All rule, the average SRAD in the LKV
across the datasets is 98%. This might not be the case for schemata in general since the
violation of this rule, not only from our experience®*, is a common practice for some

developers.

For columns, UMW follows the fixed adherence evolution pattern, as the value of

SRAED for this rule is fixed in eleven schemas.

NBP had changes during the evolution in ten datasets. Managed to improve from FKV
to LKV by an average of 7% and became negative in one, the other five returned to
their initial SRAD. Generally NBP was a widely adhered rule with an average of 93%
in LKV and standard deviation of 16%.

Instances of the positive adherence evolution pattern: USP and CIS follow the positive
adherence evolution pattern. Specifically, for USP the average SRAD improvement is
7% with a standard deviation of 10%. CIS is a borderline instance of the pattern, as

34 https://softwareengineering.stackexchange.com/questions/114728/why-is-naming-a-tables-primary-key-
column-id-considered-bad-practice

67

SRAED is positive in eight schemas, fixed in six schemas and negative in seven

schemas and on top of that average SRAD improvement is 2%.

Instances of the negative adherence evolution anti-pattern: AUV is the only instance of
the negative adherence evolution anti-pattern. AUV’s majority consists of nine datasets
with an average SRAD reduction of 5% and standard deviation of 7%. The number of
datasets having SRAD fluctuation is nineteen from those seven manage to return to the
initial SRAD.

4.6 Which are the Adherence/Violation Patterns of SQL Style Rules?

So far, our study revealed that the developers do care about rules and conventions in
SQL programming. Moreover, our studied showed that typically the adherence to the
rules does not evolve dramatically throughout the schema evolution history.

The evolution patterns that we discovered show that schemas for the most part, are
bound to the style they were created with. Consequently, without loss of generality in
the remainder of our study we focus on the LKV of the examined schemas. Our goal
hereafter is to investigate the extent to which schemas adhere to SQL rules and
conventions in the end of the known evolution. Is the reason behind the rigidity
phenomenon adequate quality? Are the schemas clean enough to make changes in style,

infrequent?

To address the aforementioned issues we characterize the adherence of a schema to a

particular rule with respect to the following characterizations:

e Strong adherence: the adherence of the schema to the rule is strong if
SRAD = 75%.

e Weak adherence: the adherence of the schema to the rule is weak if 50% <
SRAD < 75%.

Similarly, we characterize the violation of a rule by a particular schema as follows:

e Strong violation: the rule is strongly violated by the schema if SRAD <
25%.

68

e Strong violation: the rule is weakly violated by the schema if 25% <
SRAD < 50% .

Based on the examined schemas, for each rule we calculate the probability of the
aforementioned characterizations. The results for table rules and column rules are given
in Table 14 and Table 15 accordingly.

Strong Adherence Weak Adherence P(50% < | Strong Violation P(SRAD p\ggi/t ;/i;}l&igl

Table rules P(SRAD > 75%) SRAD < 75%) < 25%) 50%)

uTC 100,00% 0,00% 0,00% 0,00%
UPL 95,24% 4,76% 0,00% 0,00%
SWL 95,24% 0,00% 4,76% 0,00%
EWL 100,00% 0,00% 0,00% 0,00%
uMw 23,81% 42,86% 9,52% 23,81%
TIP 0,00% 4,76% 66,67% 28,57%
SWC 14,29% 0,00% 85,71% 0,00%
ACC 100,00% 0,00% 0,00% 0,00%
ARW 100,00% 0,00% 0,00% 0,00%
ACU 95,24% 0,00% 4,76% 0,00%
AUS 100,00% 0,00% 0,00% 0,00%
ASC 100,00% 0,00% 0,00% 0,00%
AUD 100,00% 0,00% 0,00% 0,00%
AUV 100,00% 0,00% 0,00% 0,00%
ACN 38,10% 47,62% 4,76% 9,52%

Table 14: Probability of strong/weak adherence/violation for table rules

According to the rule adherence/violation probabilities, we further introduce the

following rule-level adherence/violation patterns:

e Strong adherence pattern: a rule follows this pattern if most likely the
adherence of a schema to the rule will be strong.

e Weak adherence pattern: a rule follows this pattern if most likely the
adherence of a schema to the rule will be weak.

e Strong violation (anti-)pattern: a rule follows this anti-pattern if most likely

a schema strongly violates the rule.

69

e Weak violation (anti-)pattern: a rule follows this anti-pattern if most likely

a schema weakly violates the rule.

Column Strong Adherence P(SRAD Weak Adherence P(50% < Strong Violation P(SRAD | Weak Violation P(25%
rules > 75%) SRAD < 75%) < 25%) < SRAD < 50%)
UTC 85,71% 14,29% 0,00% 0,00%
UPL 100,00% 0,00% 0,00% 0,00%
SWL 100,00% 0,00% 0,00% 0,00%
EWL 100,00% 0,00% 0,00% 0,00%
uMw 28,57% 38,10% 9,52% 23,81%
USP 0,00% 4,76% 38,10% 57,14%
CIS 47,62% 19,05% 4,76% 28,57%
ACC 85,71% 4,76% 0,00% 9,52%
ARW 100,00% 0,00% 0,00% 0,00%
ACU 100,00% 0,00% 0,00% 0,00%
AUS 100,00% 0,00% 0,00% 0,00%
ASC 100,00% 0,00% 0,00% 0,00%
AUD 100,00% 0,00% 0,00% 0,00%
AUV 9,52% 33,33% 0,00% 57,14%

All 100,00% 0,00% 0,00% 0,00%
ACN 100,00% 0,00% 0,00% 0,00%
NBP 95,24% 0,00% 0,00% 4,76%

Table 15: Probability of strong/weak adherence/violation for column rules.

The characterization of table and column rules with respect to the (anti-)patterns that

they follow is also given in Table 15 and Table 16, respectively.

In Table 14, we observe that eleven table rules follow the strong adherence pattern, with

the respective adherence probabilities varying from 95.24% to 100%. Two tables rules,

namely UMW and ACN, adhere to the weak adherence pattern,

with adherence

probabilities 42.86% and 47.62%, respectively. Finally, two table rules, namely TIP

and SWC, conform with the strong violation anti-pattern, with violation probabilities

66.67% and 85.71%, respectively. Table 15 we observe fourteen column rules that

follow the strong adherence pattern, with the respective adherence probabilities ranging

70

from 47.62% to 100%. Taking a closer look, CIS is the Achilles' heel in this set of rule
since there is an important minority of six schemas that weakly violate the rule it to a
certain degree (SRAD < 50%), and one schema that strongly violates the rule (SRAD
< 25%)

UMW is the only rule that follows the weak adherence pattern with probability 38.10%.
If we view UMW together with CIS then we have a worrying result both rules are very
important in creating meaningful names. Finally, two column rules, namely USP and
SUV, conform with the weak violation anti-pattern, with an equal violation
probabilities (57.14%).

4.7 Which SQL Style(s) is(are) Actually Followed in Practice?

Getting back to the starting point of our study, we introduced a list of SQL style rules
which can be considered as a SQL style that should be followed. However, in practice
we see that the SQL style rules are not followed to the same extent by the developers.
Taking a step further, our next goal is to introduce the style that is actually followed by
the developers, which we call the weighted SQL style, and evaluate the examined
schemas, with respect to the weighted style and the ideal style.

To begin, we introduce a weighted formula that we call the Rule Adherence Degree
(RAD), which allows us to rank the rules of the rule based style based on the extent to
which they are followed in practice. In particular, the value of RAD for a rule is
calculated with respect to the probabilities of strong/weak adherence/violation to/of the

rule as follows:

/ wétherence « P(SRAD = 75%) + \
RAD — | Wivéas '« P(50% < SRAD < 75%) —
= W;Jtigg%ion * P(SRAD < 25%) —
wrlolation o p(2504 < SRAD < 50%)

As a generalization of our ranking approach, in the above formula we weight the

strong/weak adherence/violation probabilities with respective weights, which can vary

71

from 0 to 1. However, by default in our study we consider the following default values:

adherence _ adherence — ()5 violation
N

violation __
Wstrong - 1' Wweak = 0.5.

strong 1, Wyeak

Table rule | RAD | COMUMN RAD
rule
uTC 1 [upL 1
UPL 1 [swL 1
EWL ER 1
ACC 1 [ArRW 1
ARW 1 [Acu 1
AUS 1 [Aus 1
ASC 1 [Asc 1
AUD 1 [Aup 1
AUV 1 [An 1
SWL 09 | AcN 1
ACU 09 | NBP 1
ACN 07 |uTtc 0,9
UMW 03 | Acc 0,9
swc 07 |cis 0,4
TIP 09 | umw 0,2
AUV 0,1
uUsP 04

Table 16: Weighted SQL style - table and column rules ranked with respect to RAD.

Table 16 provides the weighted SQL style, i.e., the list of the SQL style rules, ranked
with respect to RAD. The ranking of table rules is given on the left part of the table,
while the ranking of the column rules is provided in the left part of the table.

The ranking for the rules is in alignment with the adherence patterns and the violation
anti-patterns that we defined. Rules that follow the strong adherence/violation patterns
have weights equal to 1, while rules that conform to the weak adherence/violation
patterns have smaller weights. Rules that follow the strong/weak adherence patterns
have positive weights, while rules that conform to the strong/weak violation patterns

have negative weights.

72

To move on, we assess the examined schemas with respect to their distance from the
weighted and the rule based style. The distance reveals if schemas are have common
styles, in the case the inbetween distance is small. The distance also shows how far or
close the schemas are to the rule based style and how these distances compare to the

respective distances of the weighted style.

To this end, for the each style we consider:

e A vector that consists of the values of RAD for table rules.

e A vector that comprises the values of RAD for column rules.

For the weighted style the values of the vectors are given in Table 16, while for the
ideal style all values are equal to 1. Similarly, we calculate respective vectors for each
one of the examined schema and measure the Euclidean distance between the schema
vectors and the style vectors. The resulted distances, ranked in an increasing order, for
the weighted and the rule based style are given in

Table 17 and Table 18, respectively.

A basic observation in the results is that the distance between the examined schemas
and the weighted style is relatively small. Concerning the tables rules the distance
ranges from 0.01 to 1.83, while for column rules it is even smaller varying from 0.01
to0 0.80. On the contrary, the distance between the examined schemas and the rule based
style is quite larger. Regarding the tables rules the distance ranges from 3.52 to 5.85,

while for column rules it is even smaller varying from 3.89 to 4.80.

Table 19 gives indicative examples of table names taken from SlashCode (i.e., the
schema whose style is closer to the weighted style), phpwiki (i.e., the schema whose
style is closer to the rule based style), and Joomla (i.e., the schema whose style is farther
from both the weighted and the rule based style). We can easily observe that the table
names in phpwiki are almost perfect. On the other hand, the table names in SlashCode
are poor due to the use of several acronyms (violation of UMW), and the concatenation
of table names (violation of ACN). The table names in Joomla are also poor with several
issues, as they start with special characters (violation of SWL), the different terms are
not separated in some way (violation of UMW), and so on.

73

Moreover, Table 20 gives indicative examples of column names taken from Ensembl

(i.e., the schema whose style is closer to the weighted style), OpenCart (i.e., the schema

whose style is closer to the rule based style), and Castor2 (i.e., the schema whose style

is farther from both the weighted and the rule based style). Again we observe that the

column names in OpenCart are quite simple and easy to read. On the other hand, the

column names in Ensemble are not so clear, as they include several acronyms (violation

of UMW). Finally, the column names in Castor are also poor with several problems like

not being in singular, using acronyms, CamelCase, and so on.

Distance Distance

between bett\;\]/sen

Schema th?utligle Schema column
vectors rules

vectors
SlashCode 0.01 Ensembl 0.01
ATLAS 0.04 wikimedia 0.02
Medbiosql 0.05 Coppermine 0.03
Tikiwiki 0.05 EGEE 0.06
OpenCart 0.06 Joomla 1.5 0.07
XOOPS 0.10 phpBB 0.07
Typo3 0.11 Medbiosql 0.07
phpBB 0.11 DekiWiki 0.09
Ensembl 0.13 SlashCode 0.11
DekiWiki 0.14 OpenCart 0.11
DQ2MySQL 0.17 éarggl';‘ 0.14
Zabbixc 0.24 Atlas 0.15
wikimedia 0.27 Typo3 0.17
SRM2 0.28 XOOPS 0.21
el07 0.28 NucleusCMS 0.25
NucleusCMS 0.37 phpwiki 0.27
CASTOR?2 0.41 DQ2MySQL 0.36
EGEEMySQL 0.43 TikiWiki 0.41
phpwiki 0.50 el07 0.61
Coppermine 0.65 SRM2 0.75
Joomla 1.5 1.83 CASTOR2 0.80

Table 17: Euclidean distance between the styles of the examined schemas and the

weighted style.

74

Distance Distance
between
between the
the table Schema
les column
Schema ru rules
vectors
vectors
phpwiki 3.52 OpenCart 3.89
EGEEMySQL 3.59 phpBB 3.93
NucleusCMS 3.66 EGEEMySQL 3.94
el07 3.75 Coppermine 3.97
wikimedia 3.76 Ensembl 4.01
DQ2MySQL 3.86 wikimedia 4.02
DekiWiki 3.89 Joomla 1.5 4.07
Ensembl 3.90 Medbiosql 4.07
Typo3 3.92 DekiWiki 4.09
XOOPS 3.92 SlashCode 4.11
OpenCart 3.97 Zabbix Oracle 4.14
TikiWiki 3.97 Atlas 4.15
Medbiosql 3.98 Typo3 4.17
ATLAS 3.99 XOO0PS 4.21
SlashCode 4,01 NucleusCMS 4.25
phpBB 4.13 phpwiki 4.27
Zabbix Oracle 4.26 DQ2MySQL 4.36
SRM2 4.30 TikiwWiki 441
CASTOR2 4.43 el107 4.61
Coppermine 4.68 SRM2 4.75
Joomla 1.5 5.85 CASTOR2 4.80

Table 18: Euclidean distance between the styles of the examined schemas and the rule
based style.

75

SlashCode Phpwiki Joomla 1.5
accesslog_admin link # __banner
accesslog_artcom nonempty # _bannerclient

al2_log link # _bannertrack
al2_log_comments session # categories
al2_types recent #__components

Table 19: Examples of table names taken from SlashCode (i.e., the schema whose
style is closer to the weighted style), phpwiki (i.e., the schema whose style is closer to
the rule based style), and Joomla (i.e., the schema whose style is farther from both the

weighted and the rule based

style).
Ensembl OpenCart CASTOR2
asm_seq_region_id address_id Flags
seq_region_id customer_id userName
seq_region_start firstname Euid
seq_region_end email Egid
exc_seq_region_id telephone Mask
exc_seq_region_start password Pid
exc_seq_region_end salt Machine
attrib_type_id website creationTime

Table 20: Examples of column names taken from Ensembl (i.e., the schema whose
style is closer to the weighted style), OpenCart (i.e., the schema whose style is closer
to the rule based style), and Castor?2 (i.e., the schema whose style is farther from both

the weighted and the rule based style)

76

4.8 Threats to Validity

Construct Validity

Construct validity concerns the appropriateness of observations made on the basis of
measurements, taken during the case study. Concerning our SQL style checking tool,
we used unit tests for all the SQL style rules to rule out deficiencies in the
implementation. Additionally, we manually tested the correctness of our tool via an
artificial evolution assessment scenarios. In particular, we took samples of few
schemata and created a history. Then we checked manually the validity of the results
provided by DBsea. The most complicated rules, i.e., the ones belonging in the
lexicological category, are based on WordNet, a state of art thesaurus and they were
implemented with the use of libraries developed by well-respected institutions.
Statistical measurements where made with Apache Commons Math the biggest open-
source library of mathematical functions and utilities for Java. To process the DML
files we use a well-known parser ANTLR, widely used in both academia and industry>®

that ensures us for the correctness of DBsea’s input.

Internal Validity

Internal validity is the extent to which a causal conclusion based on a study is warranted,
which is determined by the degree to which a study minimizes systematic error, a
tendency of supporting particular outcomes. The results of our thesis are based on
observations made in the majorities of the schemata. The schemata per se did not have
significant changes, from one revision to a next revision. Major changes could indicate
the existence of an abnormal event in the history of a schema, like a total restructuring
of the database or any other event, that could lead us to wrong assumptions. Throughout
this thesis the only questionable results concern the weak/medium correlations of style
changes with the size of a schema and the possibility of misinterpretation for some

3 http://www.antlr.org/testimonials.html

77

rules’ SRAD values or fluctuations by the reader, countermeasures were taken in both

cases in the form of clearly stated comments upon the results.

External validity

Our study has been conducted in a well-defined context, FOSS databases. We used a
respected number of databases with variance in the respective fields of use. Those
databases had also variety concerning the size of their schema and the extent of their
history. The number of revisions for the databases ranges from 4 to 528 while the
number of tables from 9 to 215. Thus, we believe that those schemata are representative
for the case of open source projects. In the case of industry related databases we would
generalize the conclusions of this thesis with precaution since usually (and hopefully)
industry projects have stricter demands in quality. We would also advise against the
generalization of our results to the SQL style of queries, as they were not in the scope

of our study.

78

CHAPTERS

CONCLUSIONS: SCHEMAS AND ELEGANCE

5.1 An Interesting Future

In this chapter, we discuss fundamental observations, conjectures and patterns that have
been detected in our study. As a reminder, the context of our study (i.e FOSS projects)
sets some limitations to the generalization of our results to closed projects. Having said
that we firmly believe that our conclusions hold strong in the described context and to
make our thesis more precise and clear we distinguish between (a) the most important

results and, (b) further results. We firstly provide the reader, a recap.

We introduced an rule based style consisting of rules and conventions based on a
literature review and created a tool that enables developers to evaluate their schemata
against the afformentioned style. We performed a large scale empirical study involving
21 well-known schemata from open source projects that vary in their respective fields
of use. We checked the adherence of those schemata to the rule based style and assessed
the evolution of the schemas with respect to their adherence to the rules. Through this
assessment we found certain evolution patterns, discussed in the remainder. We
performed a detailed analysis of each rule and identified respective adherence and
violation patterns. We continued by ranking the rules based on the extent to which they
are adopted by the schemata of the study. We used the rankings to derive a weighted
style that reflects the developers’ perception on the applicability of the rules in practice.
Finally we compared the distance of the examined schemas' distance from the rule

based and the weighted style.

Most important results

We identified several interesting patterns summarized below:

79

Schema-level adherence pattern

Tables

The percentage of rules that hold at least for some tables is high, ranging from 80% to
100% while rules that are not followed by some tables is medium, varying from 13%
to 40%.The percentage of rules that hold at least for some tables is always higher than
the percentage of rules that are not followed by some tables. The percentage of rules
that hold for all tables is medium, high, varying from 60% to 87%, while the percentage
of rules that do not hold for any table is low, ranging from 0% to 20%. Lastly, the
percentage of rules that hold for all tables is always higher than the percentage of rules

that do not hold for any table.

Columns

All rules hold at least for some columns in all of the schemata. The percentage of rules
that hold for all columns is medium high, varying from 59% to 76%. Finally, the
percentage of rules that do not hold for some columns is low medium, ranging from
24% to 41%.

Schema-level adherence evolution pattern

Table and column rules do evolve during the life of a schema, however, only a few rules
change. The number of rules that change in the examined schemas varies from zero to
seven for tables and zero to eight for columns.

Typically, the rules that change the most are lexicological, methodological, or writing
style rules. The magnitude of SRAD fluctuations depends on the schema, the rules, and

the schema elements involved.

If a rule changes significantly (>10%), the biggest portion of rule’s SRAD fluctuation

will occur in a minor fraction of the schema’s history.

Rule-level adherence evolution patterns

80

We found that most rules follow the fixed adherence evolution pattern, i.e., the schemas'
adherence to the rules does not increase or decrease overtime; in other words, for the
most part a schema’s style will be as good as it was in the birth of the schema. Few
other rules follow the positive (resp. negative) evolution pattern, i.e., .e., the schemas'

adherence to the rules increases (resp. decreases) overtime.

Rule-level adherence/violation patterns

Most rules follow the strong adherence pattern, i.e., more than 75% of the schema
elements adhere to the rule. Moreover, few rules follow the weak adherence pattern,
i.e. the percentage of schema elements that follow the rule varies in [50%, 75%). Also,
few rules follow the strong violation pattern, i.e. less than 25% of the schema elements
adhere to the rule. Finally, few some rules follow the weak violation pattern, i.e., the

percentage of schema elements that follow the rule varies in [25%, 50%).

Further outcomes

We looked at the Kendall correlation of a rule’s SRAD with the schema’s size (i.e.
number of tables or columns) across the schema’s evolution. For table rules, we did not
find any positive correlation. On the contrary, we found a strong negative correlation
for two table rules, namely TIP and ACN. For certain column rules we observed strong
positive correlations, especially for lexicological, methodological, and writing style

rules. CIS and AUV were found to have strong negative correlation.

We specifically focused on the UTC’s SRAD fluctuations during the evolution and
found that tables do not change their type of case as much as columns do. Interestingly
schemata having more than one type of case, in their birth or early life ,by the last

known version, typically the use of multiple type of cases was reduced.

81

5.1 An Interesting Future

Our work takes a first step towards assessing the importance of good practices in SQL
programming. Nevertheless, there is still room for further research to this direction. In
particular, Sharma et al. [17] gathered a large number of different schemata. We would
like to extract from their massive datasets the SQL code that refers to the definition of
schemata and repeat some key experiments of this work. One could also investigate
the possible existence of correlations between database smells [17] and SQL style rule
violations, to assess whether bad SQL schemas come with a bad style. If bad schemas
do come with bad style, then it would be interesting to enhance our tool to enable
schema quality assessment by taking into account both of these aspects. If both aspects
were taken into consideration and correlation between db smells and SQL style existed,;
if a large dataset of schemata was publically available with the information about the
date of birth, date of death, number of revisions in-between and the revisions per se,
one could create a tool able to predict a schema’s life expectancy. This tool would have
a classifier trained with the aforementioned dataset and would be able to decide, if given
as input a db smell assessment and SQL style assessment, the fate for the schema or

even the whole project, failure or continuous evolution.

Another open issue is to investigate if births and deaths of schema elements impact
style and vice versa. This objective could be accomplished by using Hecate and DBsea
jointly, and search for correlations between schema adherence to rules and table/column

insertions/deletions.

82

BIBLIOGRAPHY

[1] RD Banker, SM Datar, CF Kemerer, D Zweig, "Software Complexity and
Software Maintenance Costs,” ACM, pp. 81-94, 1993.

[2] M. J.-G. Juan Carlos Granja-Alvarez, "Method for Estimating MaintenanceCost
in a Software Project: A CaseStudy," Journal of software maintenance, p. 161—
175, 1998.

[3] D. Sjeberg, "Quantifying schema evolution," Information and Software
Technology, pp. 35-44, 1993.

[4] LA Belady, MM Lehman , "A model of large program development,” IBM
Syst.J.15, p. 225-252, 1976.

[5] J.F. Roddick, "SQL/SE - A Query Language Extension for Databases
Supporting Schema Evolution," SIGMOD Record, 1992.

[6] GT Nguyen, D Rieu, "Schema evolution in object-oriented datebase systems,"
Data and Knowledge Engineering, pp. 43-67, 19809.

[7] J Banerjee, W Kim, HJ Kim, HF Korth, "Semantics and Implementation of
Schema Evolution in Object-oriented Databases,” SIGMOD, pp. 311-322, 1987.

[8] CA Curino, HJ Moon, MW Ham, C Zaniolo , "The PRISM Workwench:
Database Schema Evolution without Tears,” IEEE, pp. 1523-1526, 2009.

[91 MM Lehman, JF Ramil , "Rules and Tools for Software Evolution Planning and
Management, Software Evolution and Feedback: Theory and Practice," Annals
of Software Engineering, pp. 15-44 , 2006.

[10] MM Lehman, JF Ramil, PD Wernick, DE Perry , "Metrics and laws of software
evolution - the nineties view," Proceedings of the 4th IEEE International
Software Metrics Symposium, pp. 20-34, 1997.

[11] P Vassiliadis, AV Zarras, | Skoulis , "Gravitating to Rigidity: Patterns of
Schema Evolution -and its Absence- in the Lives of Tables," Information
Systems, pp. 24-46, 2017.

[12] P Vassiliadis, AV Zarras, | Skoulis , "“Growing up with stability: How open-

source relational databases evolve”, Information Systems," Information Systems,
pp. 363-385, 2015.

83

[13] P Vassiliadis, AV Zarras, "Schema Evolution Survival Guide for Tables: Avoid
Rigid Childhood and You 're En Route to a Quiet Life," Journal of Data
Semantics (JODS), pp. 221-241, 2017.

[14] A Deutsch, V Tannen , "Mars: A system for publishing XML from mixed and
redundant storage," VLDB, pp. 201-212, 2003.

[15] R. Fagin, "Inverting schema mappings,” ACM Transactions on Database
Systems , p. Article 25, 2007.

[16] PA Bernstein, TJ Green, S Melnik, A Nash , "Implementing mapping
composition” VLDB, pp. 333-353, 2008.

[17] T Sharma, M Fragkoulis, S Rizou, M Bruntink, "Smelly Relations: Measuring
and Understanding Database,” ICSE, p. Article 4, 2018.

[18] J. Celko, SQL Programming Style.
[19] R. C. Martin, Clean Code: A Handbook of Agile Software Craftsmanship, 2008.

[20] C Gould, Z Su, P Devanbu , "JDBC Checker: A Static Analysis Tool for
SQL/JDBC Applications," ICSE, p. 697698, 2004.

[21] D. J. L. D. Binkley, "The Impact of Vocabulary Normalization," Journal of
Software: Evolution and Process, p. 255-273, 2015.

[22] D Binkley, M Davis, D Lawrie, JI Maletic, "The Impact of Identifier Style on
Effort and Comprehension,"” Empirical, p. 219-276, 2013.

[23] M Smit, B Gergel, HJ Hoover , "Code Convention Adherence in Evolving
Software," ICSME, p. 504-507, 2011.

[24] S Butler, M Wermelinger, Y Yu, H Sharp , "Relating Identifier Naming Flaws
and Code Quality: An Empirical Study,” Working Conference on Reverse
Engineering, 2009.

[25] S Butler, M Wermelinger, Y Yu, "Investigating Naming Convention,” ICSME,
p. 41-50, 2015.

[26] RPL Buse, WR Weimer , "Learning a Metric for Code Readability,” IEEE, p.
546-558, 2010.

[27] D Lawrie, C Morrell, H Feild, D Binkley , "What’s in a Name? A Study of
Identifiers,"” ICPC, p. 3-12, 2006.

[28] C. B. K. B. A. Capiluppi, "Quality Factors and Coding Standards - a
Comparison Between Open Source Forges," Electronic Notes in Theoretical
Computer Science, pp. 89-103, 2009.

84

[29] S. Holywell. [Online]. Available: http://www.sqlstyle.guide/.

[30] A. Microsoft, "https://docs.microsoft.com/en-us/sql/connect/ado-net/microsoft-
ado-net-for-sql-server?view=sql-server-2017," [Online]. Available:
https://docs.microsoft.com/en-us/sql/connect/ado-net/microsoft-ado-net-for-sql-
server?view=sql-server-2017.

[31] P. J. S. Scott J Ambler, "Refactoring Databases: Evolutionary Database
Design".

[32] N. P. M. Simon, "SQL Code Complexity Analysis," ICAI2010, pp. 353-359,
2010.

[33] X Fu, X Lu, B Peltsverger, S Chen, K Qian "A static analysis framework for
detecting SQL injection vulnerabilities," COMPSAC, pp. 87-96, 2007.

[34] H van den Brink, R van der Leek, J Visser, "Quality Assessment for Embedded
SQL”, 7th IEEE International Working Conference on Source Code Analysis
and Manipulation,” SCAM, pp. 163-170, 2007.

[35] A Nash, PA Bernstein, S Melnik, "Composition of mappings given by
embedded dependencies,” PODS, pp. 172-183, 2005.

[36] PA Bernstein, TJ Green, S Melnik, A Nash, "Implementing mapping
composition,” VLDB, p. 333-353, 2008.

[37] D. Sjeberg, "The Thesaurus - A Tool for Meta Data Management,” Technical
Report FIDE/91/6, p. Project Number 3070, 1991.

[38] JF Roddick, SIGMOD, "Grammatical database model," Information Systems,
pp. 257-267, 1979.

[39] A Yamashita, L Moonen, "Do developers care about code smells? An
exploratory survey," 20th Working Conference on Reverse Engineering, 2013.

[40] C Boogerd, L Moonen, "Assessing the Value of Coding Standards: An
Empirical Study,” ICSME, p. 277-286, 2008.

[41] D Binkley, D Lawrie, "The Impact of Vocabulary Normalization,” Journal of
Software: Evolution and Process, p. 255-273, 2015.

[42] I Skoulis, P Vassiliadis, A Zarras, "How is Life for a Table in an Evolving
Relational Schema? Birth, Death and Everything in Between," Conceptual
Modeling Lecture Notes in Computer Science, pp. 453-466, 2015.

[43] I Skoulis, P Vassiliadis, A Zarras, "Open-Source Databases: Within, Outside, or
Beyond Lehman’s Laws of Software Evolution?," CAISE, 2014.

85

Appendix A

FURTHER STATISTICS

55 2
iioE

Percentage of rules

i

0,00%

Percentage of rules
g 8 2 B
§ 8 8 8§

:

0,00%

5
E

£
§

g
H

:

0,

Percentage of rules
8
H

100,00%

80,00%

rules

B enoow

20,00%

0,00%

g

Piit

0,00%

Percentage of rules
E 2 g 8 8
§ 8§ § §

g
&

1

OpenCart, Tables_TRAD

x a m s o
Table names of the schema

Nucleus, Tables_TRAD

I

0,00% ”
16 m

Table names of the schema

Joomla 1.5, Tables_TRAD

% 2w n
Table names of the schema

SRM2, Tables_TRAD

£

[

Table names of the schema

phpwiki, Tables_TRAD

[

Table names of the schema

Zabbix Oracle, Tables_TRAD

6 11 16 21 26 31 3% 41 46
Table names of the schema

DQ2MysQL, Tables_TRAD

Il

6 1 16 n
Table names of the schema

l

2

wikimedia, Tables_TRAD
100,00%
80,00% |
60,00%
®TRAD=1
= TRAD=0

®TRAD=1
= TRAD=0

a000% |

Percentage of rules

2000% |
0,00%
1 6 11 16 21 26 31 36 41 46
Table names of the schema

Coppermine, Tables_TRAD

100,00%

= Il =

Table names of the schema

]

Percentage of rules
H

§

phpBB, Tables_TRAD
100,00%
80,00%
60,00%
HTRAD=1
uTRAD=0

#TRAD=1
= TRAD =0

a0,00%

20,00%

Percentage of rules

0,00%
16 1116 21 26 31 36 41 46 51 56 61

Table names of the schema

SlashCode, Tables_TRAD
100,00%
80,00%:
60,00% |
®TRAD =1
®TRAD=0

0004 HTRAD =1

0,00%
1

o2 M 4 51 6L 7181
Table names of the schema

Percentage of rules

Tikiwiki, Tables_TRAD
100,00%

80,00%

BTRAD=1
®TRAD =0

®TRAD=1
®TRAD =0

a0,00%

Percentage of rules

2000%

121 41 61 B1 101 171141 161 181 201
Table names of the schema

EGEEMyS5QL, Tables_TRAD

100,00%

SETe

Table names of the schema

Percentage of rules

Typo3, Tables_TRAD

= I =

Table names of the schema

PEiE

Percentage of rules

£
H

IR

0.00%

g 8 E
i3 3

§

Percentage of rules
&
H

0,00%

g g &
5 8 8

;

;

Percentage of rules

0,00%

Percentage of rules
SEREE

Figure 9: Schemata tables TRAD.

ATLAS, Tables_TRAD

1 6 1116 2126 31 36 41 46 51 56 61 66 71
Table names of the schema

DekiWiki, Tables_TRAD

Ll

6 11 18 21 28 31 36
Table names of the schema

€107, Tables_TRAD

I

106 1 16 1 % 3
Table names of the schema

XOOPS, Tables_TRAD

A

6 11 16 A % A
Table names of the schema

Medbiosql, Tables_TRAD

UL

6 1 18 1 26
Table names of the schema

MedEnsembl, Tables_TRAD

1 6 1116 2126 31 36 41 46 51 56 61 66 71
Table names of the schema

CASTOR2, Tables_TRAD

1 6 1116 21 26 31 36 41 46 51 56 61
Table names of the schema

®TRAD=1
= TRAD=0

= TRAD=1
=TRAD =0

®TRAD=1
®TRAD =0

®TRAD=1
®TRAD=0

BTRAD=1
®TRAD=0

®mTRAD =1
wTRAD=0

W TRAD =1
= TRAD =0

87

Dekiwiki, Columns_TRAD

107, Columns_TRAD

SRM2, Columns_TRAD

100,00% 100,00% 100,00%
B snoo & soom B snoo
= H 2
T snom =TRAD>0 | B 600 | wTRAD>0 | B coos =TRAD>0
E - #TRAD=0 é 000% | = TRAD=0 E - #TRAD=0
8 =TRAD=1 | § wTRAD=1 = § =TRAD=1
& iTRADe1 | £ 7 cmap<r | & “TRAD<1
0,00% 0,00% 0,00%
1 6 11 16 21 26 31 36 1 6 11 16 21 26 31 1 3 1
Columns names of each table in the schema Columns names of each table in the schema Columns names of each table in the schema
EGEEMySQL, Columns_TRAD XOOPS, Columns_TRAD Tikiwiki, Columns_TRAD
100,00% 100,00% 1
B soom - & sooos PN
2 2 2
B oo =TRAD>0 B snook =TRAD>0 | Bos = TRAD >0
é‘ 000% | =TRAD =0 g 0008 =TRAD =0 !’M = TRAD =0
g WTRAD=1 WTRAD=1 8 #TRAD =1
& e cmap<r €7 wtRap<1 | &7 “TRAD <1
0,00% 0,00% o
1 & 16 omow o:m o o®m oM 121 41 61 Bl 101121 141 161 181 201
Columns names of each table in the schema Columns names of each table in the schema Columns names of each table in the schema
Typo3, Columns_TRAD ATLAS, Columns_TRAD phpBB, Columns_TRAD
100,00% -, 100,00% 1 100,00%
£ o0 8 so00% & o
2 2 2
B sooon ®TRAD>0 T soook =TRAD>0 | B soom " TRAD >0
H - = TRAD =0 g - R - = TRAD=0
E WTRAD=1 #TRAD=1 E " TRAD=1
& oo " l l amaper &0 straper | & 7 “TRAD <1
0,00% 0,00% 0,00%
1 [11 16 21 1 11 2 31 ar 51 61 7 1 6 11 16 21 26 31 36 41 46 51 56 61
Columns names of each table in the schema Columns names of each table in the schema Columns names of each table in the schema
wikimedia, Columns_TRAD Nucleus, Columns_TRAD SlashCode, Columns_TRAD
100,00% 100,00% 100,00%
ﬂ 80,00% ﬂ 80,008 -‘ B0,00%
2 2 2
T 000 wTRAD>0 | B coom ®TRAD>0 | B cooow #TRAD>0
¥ 0008 =TRAD =0 ¥ 000% emap-0 | B s000% =TRAD =0
E WTRAD=1 E =TRAD=1 E =TRAD=1
& e stRapey | & 7 “TRap<1 & “TRAD <1
0,00% 0,00% " " " " 0,00%
1 1 n 31 a1 6 11 16 1 11 21 31 41 51 61 71 81
Columns names of each table in the schema Columns names of each table in the schema Columns names of each table in the schema
Coppermine, Columns_TRAD Joomla 1.5, Columns_TRAD phpwiki, Columns_TRAD
100,00% 100,00% 100,00%
E 80,00% -# B0,00% -ﬂ 80,0086
2 2 2
B so00% =TRAD >0 B saom HTRAD >0 T soom = TRAD >0
¥ an00% amap-o 1000% =TRAD=0 ¥ 000% =TRAD=0
E #TRAD =1 § #TRAD=1 E = TRAD=1
& o ctrap<1 | &7 ctaap<t || & 7 “TRAD<1
0,00% " 0,00% 0,00% T ™ T ™ T 4
1 6 11 16 1 1% 21 26 El 36 1 6
Columns names of each table in the schema Columns names of each table in the schema ‘Columns names of each table in the schema
OpenCart, Columns_TRAD Medbiosql, Columns_TRAD CASTOR2, Columns_TRAD
100,00% 100,00% 100,00%
£ sooon 3 aooom 2 sooox
2 2 Z
B novs wTRAD>0 | B snook amAD>0 | B oo =TRAD >0
| - =TRAD=0 | B 00 smao=o | E =TRAD=0
8 WTRAD=1 8 uTRAD=1 8 =wTRAD=1
£ 2000% | g 200 B o200
“TRAD <1 “TRAD<1 “TRAD<1
1 T LA o e
1 11 21 31 41 51 61 71 81 91 101111 1 & 1 16 2 26 1 6 111621 26 31 36 41 46 51 56 61 66 71
Columns names of each table in the schema Columns names of each table in the schema Columns names of each table in the schema
Zabbix Oracle, Columns_TRAD Ensembl, Columns_TRAD DQ2MysQL, Columns_TRAD
100,00% 100,00% 100,005
3 sooox 2 soom 2 soom
Z 2 2
T nom =TRAD>0 | B sooos =TRAD>0 | B soom =TRAD>0
3’ - =TRAD=0 : - =TRAD=0 g - uTRAD=0
a =TRAD=1 ﬂ WTRAD=1 ! wTRAD =1
g oo l aTRAD<1 | & O “TRAD<1 2’ “TRAD <1
0,00% 0,00% 0,008

106
Columns names of each table in the schema

1016 21 26 3 36 41 46

11 o34 s e
Columns names of each table in the schema

Columns names of each table in the schema

Figure 10: Schemata column TRAD.

88

APPENDIX B

TOOL RELATED INFORMATION

Dbsea in a Nutshell

DBSEA is based upon three main functionalities.

First of all the SQL parsing. Borrowed by HECATE the parser takes as input Data
Definition Language (DDL) files. Data Definition Language has similar syntax to a
computer programming language and is used for defining data structures, such as
database schemata. Most common Data Definition statements in SQL are the CREATE
TABLE, ALTER and DROP. As the statements are identified they are classified in the
corresponding objects, the same objects HECATE use. For more information how
HECATE saves the information into the memory please refer to the Diploma thesis of

loannis Skoulis.

Second main functionality is the checking for rule adherence for columns and tables.
The rule adherence is measured in two dimensions. The first dimension is the schema
dimension, which means that for every schema we measure for each rule its use in
percentage based on the objects we are assessing, tables or columns. The second
dimension does a more fine grained analysis, checks the adherence of every rule for
each table of a schema. The are two outcomes from this mode, the rule compliance for
every table in a schema a version and the columns compliance with rules for each table
inside the schema. The last main functionality is the exportation of the mined

information.

For each dimension are created four files, two files containing statistical properties

about the rule adherence across the evolution for the sql elements and two containing

89

the rule adherence across the evolution of the sql elements per se. The files contain as

prefix of their name the schema’s name they refer to.

Information Extraction

SOL Style Analysis

SOL Parser

Figure 11 : DBsea in a nutshell, the main three functionalities.

Architecture

DBsea is consists of ten packages as seen in Figure 12. Below is given a brief

explanation for each package.

« The package dbsea. Here lies the main class of the program responsible for
starting up the GUI.

« The package dbsea.gui.swing contains all the classes that are responsible for
User Interface.

« The package dbsea.stylecore is responsible of combining the various modules
dbsea has, to execute the analysis flow. This package has the functionality to
traverse the folders to find schemata, check the style for the versions of a schema
and export the retrieved information.

« The package dbsea.parser. The SQL parser of the Tool.

« The package dbsea.tablestylecheck. As the name implies this package includes
all the style checks for tables.

. The package dbsea.columnsstylecheck similarly to the tablestylecheck imple-

ments the necessary checks for the columns of a table.

90

The package dbsea.sgl has the objects that will represent SQL entities in the
memory.

The package dbsea.generalchecks contains style checks common between
columns and tables. Both dbsea.columnsstylecheck and dbsea.tablestylecheck
depend on dbsea.generalchecks.

The package dbsea.wordnetchecks is where the natural language processing
functionality of dbsea lies.

The package dbsea.statistics, keeps track of the retrieved information. It also

has the functionality of exportation of statistics to csv files.

om—

<<Java Package=>

—l 1-l

1 gr.uoi.cs.dbsea

<<Java Package=>
{ gr.uo».cs.,.dbsea.gm ___________ —
2 <<Java Package>>
£ gr.uoi.cs.dbsea.stylecore

<<JavaPackage=> i)
4 gr.uoi.cs.dbsea.parser £ gruoiics.dbsea.tablestylecheck

E«Jéfv.a Package>=>

—h i e

<<Java Packages> $<Java Package>> <<Java Package>>
3 gr.uoi.cs.dbsea.sql t gruoi.cs.dbsea.generaicheck £ gr.uoi.cs.dbsea.wordnetchecks

i [<<Java Package=>
&}gr.upi._t;’s.dbsea.columnsstylecheck

<<Java Package=>
£ gr.uoi.cs.dbsea.statistics

Figure 12 Package Diagram for Schemata Style Extraction Tool

91

We break down the afformentioned packages to give more details about their class

and existing dependencies.

Package dbsea
Contains the main static class of dbsea and fires the user interface.

<<Java Class=>

(9 DBsea

gr.uoi.cs.dbses

od mainWindow: MainWindow

OCDBsea(j;

@° main(Strin g[l):void

Figure 13 : dbsea contains the main static class and starts the User Interface.

Package dbsea.stylecore

This package contains one class which implements two functionalities of great value.

The SchemaStyleAnalysis class is responsible for the implementation of the main flow,
the algorithm which dictates the way the crawling between folders is done, the

execution of checks and the extraction of the gathered information to csv files.

As stated above, the two dimensions of check analysis are the one of the Schema and
the one of the Table. The multiple dimensionality approach is implemented in the
methodscheckSchemaHistoryStyleByRuleAndExport and checkSchemaHistoryStyle-
ByTableAndExport. The schema flow is described in Algorithm 1 and the table’s flow

is implemented in a similar manner.

In the method traversePaths takes place the file crawler that searches for folders with
the name ““schemata”. traversePaths searches the folders starting from the parent folder,

the one selected in the GUI in a Depth First fashion.

92

<=Java Class=>
(9 SchemaStyleAnalysis

gr.uoil.cs.dbsea. stylecore

© path: String
© versions: int

OCSchemaStyleAnarysis(}

@ checkSchemaHistoryStyleByRuleAndExport(File}:void
@ checkSchemaHistoryStyleByTableAndExport(File).void
@ traversePaths(File}:void

@ getSchema(String):Schema

Figure 14 : This class implements the flow for style analysis.

Algorithm 1 Schema Dimension Algorithm

Input Versions of a Schema (as Schemata)
Output CSV files for tables, columns

1: procedure CHECKSCHEMAHISTORYSTYLEBYRULEANDEXPORT
2 Set up for style analysis

3 for each schema version i in Schemata do

4: for each table j in schema do

5 for each colun £ in table do

6 Run column checks

7 Run table checks

8 Run Table check for name Concatenation
0- Write current statistics to file
10: Clear statistics

Algorithm 1 : Style Extraction Algorithm from a schema’s point of view.

Package dbsea.tablestylecheck

This package contains TableCheck the class implementing the rules about the tables of

a Schema.
TableCheck contains 6 rules in total.

1. Name contains plural

93

Name starts with capital

Contains Verb

Name contains Only singular

© g k~ w D

TableCheck is also responsible of updating the respective metrics for the above rules.
This class is also responsible for the manipulation of the files where the statistics will
be held. This is accomplished through aggregation with TableStastistics in
dbsea.statistics package. TableCheck implements the method runchecks which is

where the table checks are executed, it is a single point of maintenance if more checks

Name is concatenated in another table's name

Name contains Prefix (not used in the analysis)

are realized and are meant to be used for the style extraction analysis.

<<Java Class=>

(9 TablePrefixes

gr.uoi.cs.dbsea tablestylecheck

o tbl: String
osprefixes: ArrayList=<String>

GrcTablePrefb(es()
& SetUpListWithSuffixes(): void

Figure 15 : The classes in tablestylecheck contain the rules about a table entity.

Package dbsea.columnsstylecheck

In Figure 16 are represented the classes in the package which implements the column

<<Java Class=>
(3 TableCheck

gr.uol.cs.dbses tablestylechec

o tableCheckStatistics: TableCheckStatistics

@ TableCheck()

@ TotalTables().double

@ clearStatistics():veid

@ setStatisticsFile(String, String):void

@ writeStatistics(String):void

@ IncreaseRevisionindex(String):void
@ SetFileTitle(String):void

@ nameCencatenation(ArrayList<String=):veoid
@ containsPrefix(String):boolean

@ containsOnlySingular(String}:boclean
@ containsSingular(String).boclean

@ containsPlural(String):boclean

@ startWithCapital(String):boclean

@ containsVerb(String):boolean

@ runChecks(String):void

specific rules. Those rules are enlisted below.

1. Name contains uniform postfix

Name contains only Singular

Name contains only Singular and not Plural
Contains Verb

Name equals "id"

© g k~ w D

Column Name is the same as the table

ColumnCheck is responsible of updating the respective metrics tables of the above rules
as well as preparing the file both functions being done through aggregation with
ColumnStastistics in dbsea.statistics package. This class implements the method
runchecks, similar to the one used in TableCheck and executes the columns checks.

ColumnCheck is using ColumnCheckStatistics to clear the metrics, set the title of the
file, the rules for columns generic and column specific and to write to the files.

UniformSuffixes is where the suffixes proposes in Celko’s book are held.

<<Java Class=>

(3 ColumnCheck <<Java Class>>
gr.uoi.cs.dbsea. columnsstylecheck G Uniform Suffixes
o columnCheckStatistics: ColumnCheckStatistics gr.uoi.cs.dbsea.columnsstylecheck
o filePath: String o id: String
o fw: FileWriter o status: String

o total: String

o num: String

of name: String

oFseq: String

o date: String

Ftally: String

o size: String

o addr: String

oPsuffixes: ArrayList=String>

@ ColumnCheck()

@ TotalColumns(}):double

@ clearStatistics(}:void

@ setStatisticsFile(String, String):void

@ writeStatistics(String):void

@ IncreaseRevisionindex(String):void

© setFileTitle(String):void

@ isldPrimaryldentifier(String):boolean

@ containsSingularAndNotPlural(String):boolean
@ containsSingular(String):boolean chniformSufﬁxes(}

@ containsPlural(String):boolean GSSetUpListW'rthSuffmes(}:void
@ containsUniformSuffix(String):boolean

@ isLowerCase(String):boolean

@ columnNameSameAsTheTable(String, String):boolean

® columnNameContainsTheTableName(String,String):booclean

@ runChecks(String, String):void

Figure 16 : The classes in columnsstylecheck contain the rules about a table entity.

Package dbsea.generalchecks

The classes of generalchecks are found in Figure 17.

95

<=Java Class>>
(9 CaseCheck

gr.uoi.cs.dbsea.generalchecks

<<Java Class>>
(3 GenericCheck

gr.uoi.cs.dbsea generaichecks

<<Java Class=>
(@ ReservedWords
gr.uoi.cs.dbsea.generalchecks

@ CaseCheck()

@’isLowerCase(String):boolean
esisUpperCase(String):bonlean
GSisCameICase(String):boolean
@sisPascalCase(String):boolean

@SisUnderscu reCaseWithLowerCase(String):boclean

< genericCh : GenericChec

nFProperNameLength: int
© dataSetName: String

oSoracleReservedWords: ArrayList<String>
oSmicrosoftReservedords: ArrayList<String>

Asclasspath: String

&’isOtherCaseWithUnderscore(String):boolean
esisUnderscoreCasethUpperCase(String):boolean
GsReturnCaseType(String):TypeOfCases

QcGenencCheck()

@ getCaseType():TypeOfCases

@ setCaseType(String):void

@ hasProperLength(String):boolean

@ beginsWithLetter(String):boolean

@ endsWithLetterOrNumber(String):boolean

@ containsOnlyLettersNumbersUnderscores(String):boolean
@ coentainConsecutiveUnderscores(String):boolean
@ isReservedAsKeyword(String).boolean

@ containsSpace(String):boclean

@ countWordsinName(String):int

@ countStringsinName(String):int

@ containsDelimeters(String):boolean

@ containsSpecialCharacter(String):boolean

@ containsVerb(String):boolean

@ containsNoun(String):boolean

@ containsAdjective(String):boclean

@ runChecks(String):void

ecReservedWords()

@SSetReservedh‘»lords():void

@S setReservedWords():void
@°setOracieReservedords():void
Ossetl.iu:rosoftReserved‘:‘\fords(}:void
@Scontainsl.!icrosoﬂReserved‘/«/ord(String):boolean
@scontainsOracleReserved‘/v‘ord(string‘,:boolean

#caseType (0.1

<<Java Enumeration>>
(3 TypeOfCases

gr.uoi.cs.dbsea.generalchecks

%F LowerCase: TypeOfCases

%FUpperCase: TypeOfCases

%f PascalCase: TypeOfCases

F CamelCase: TypeOfCases

F LowerCaseWithUnderscore: TypeOfCases
SoFUpperCase‘h/‘rthUnderst:ore: TypeOfCases

%F OtherCaseWithUnderscore: TypeOfCases

%f OtherCasewithRandomCharacter: TypeOfCases

ocTypEOfCases()

Figure 17 : The classes in generalchecks contain the rules shared by tables and

columns as well as some helper classes.

The main class of this package is GenericCheck since inside her reside the checks for

conducted for both tables and columns. The generic checks are:

1. Lower Case
Upper Case
Pascal Case

Proper length

© N o o B~ DN

. Begins with letter

Underscore Case with Lower Case
Underscore Case With Upper Case

Underscore Case with some other Case

96

9. Ends with letter or number

10. Words more than strings in name
11. Camel Case

12. Is reserved Keyword

13. Contains consecutive underscores
14. Contains space

15. Contains special character

16. Contains delimiters

As show in Figure 20, ColumnCheck and TableCheck have inheritance relationship

with GenericChecks.

GenericChecks has a runChecks method too and is called inside the runChecks of the
two aforementioned classes, having the same obligation, to run all the checks

implemented inside GenericCheck.

The enum TypeofCases defines the type of cases that can be found in names. Those

are :

Lowercase
Uppercase
Pascal case
Camel case
Lowercase with underscores

Uppercase with underscore

N o gk~ w D RE

Other case with underscore

All the types are self-explanatory except the OtherCaseWithUnderscore. This one is
defined as the type of case which is NOT one of the others. An example of this type of
case is the table “CPG_albums” from Coppermine, this table’s name consists of

uppercase characters, an underscore and lowercase characters.

The class CaseCheck, as the name reveals is responsible of deciding for a given string,

its type of case.

97

The class ReservedWords is responsible for loading all the reserved words MsSQL and
MySQL that have been defined in a resource’s file and of answering about the adherene
of Is reserved Keyword rule. The reserved words are those of the date of creation of the
class 15/12/17.

Package dbsea.statistics

In Figure 18 are found the classes responsible for information extraction.

Each check has a corresponding class. GenericCheckStatistics, TableCheckStatistics
and ColumnCheckStatistics are used via aggregation inside the tablestylecheck and the

columnstylecheck package.

Package dbsea.wordnetchecks

Inside this package is found the pinnacle of the SQL style rules the class
WordnetCheck.

WordnetCheck has the ability to determine if a name contains

e Noun
e Verb
e Adjective (not used in the style analysis)

Or if a name is

e Plural

e Singular
Also measures the strings and the actual words inside a name. An actual word isa string
which is recognized by WorldNet as word. This package uses the libraries
edu.smu.tspell and edu.stanford.nlp. Those two are combined in an ad hoc solution to

give as the ability to measure meaningfulness inside a name.

98

<<Java Class=>
@ GenericCheck Statistics

gr.v0i.05.dbsea statistios

<<Java Class=>
@ ColumnC i

9r.uoi.cs. dbsea statistios

setCaseType: int
hasProperLength: int
beginsWithLetter int
endsWithLetterOrNumber: int
cont
containConsecutiveUnderscores: int
isReservedAsKeyword: int
containsSpace: int
containsSpecialCharacter: int
containsVerb: int

containsSingular: int

containsPlural: int

stringsinNames: int

wordsinNames: int

isLowerCase: int

isUpperCase: int

isCamelCase: int

isPascalCase: int
isUnderscoreCaseWithLowerCase: int
isUnderscoreCaseWithUpperCase: int
UnderscoreCaseWithOtherCase: int
cont
containsAdjective: int

containsNoun: int
containsPluralandNotSingular: int
fileGenericPath: String

fw: FileWriter
IsReservedAsKeywordAndUppercase: int
© wordsToString: int

sOnlyLettersNumbersUnderscores: int

sDelimeters: int

0000 000000000000 00000G0GOGCD

o o

o

= totaiColumns: double
idAsidentifier: int
sameNameAsTable: int
containsOnlySingular: int
containsUniformSuffix: int
isLowerCase: int
columnNameSameAsTheTable: int
columnNameContainsTheTable: int
containsPlural: int
containsSingular: int

filePath: String

filePathTables:
fw: FileWriter

tring

soo0oooooooaoa

<<lava Class>>
(© TableCheck Statistics
or.usi.cs.dbsea statistics

filePath: String
filePathTables: String
fw: FileWriter
totaTables: double
sameNameAsTable: int
commonSuffic: int
containsPrefix: int
containsVerb: int
nameConcatenation: int
sPlural: int

conts
startwithCapital: int
i int

@ SetGenericFile(String):void
& GenericCheckStatistics()

© ClearStatistics():void

© closeStream():void

© SetGenericFieTitleBad(Strin
© SetGenericFileTileGood(String):void

© SetFile(String):void
© ClearStatistics():void

© SefFieTitleGood(String):void
© SetFileTitleBad(String):void
i

=
© WriteStatisticsToFleBad(String, String):void
& ColumnCheckStatistics()

© getTotalColumns ():double

© addTotalColumns ():void

© getidasidentifier():int

© addidAsidentifier():void

© getSameNameAsTable():int

© addSameNameAsTable():void

© getContainsSingularAndNotPlural():int

© addContainsSingularAndNotPlural():void

@ addContainsSingular():void

© addContainsPlural():void

© getContainsSingular(y:int

© getContainsPlural():int

© getContainsUniformSuffoc():int

© addContainsUniformSuffix():void

© getisLowerCase():int

° double, © addisLowerCase():void
e ing,double, ® TheTable():int
Cl

= GetUniversalypeOfCase(double):double
@ getContainsPluralAndNotSingular():int

@ addContainsOnlySingular():void

@ getContainsDelimeters():int

© addContainsDelimeters():void

© getisLowerCase():int

© addisLowerCase():void

@ getisUpperCase(Jint

© addisUpperCase():void

© getisCameiCase()int

© addisCamelCase():void

@ getisPascalCase():int

© addisPascalCase():void

@ getisUnderscoreCaseWithLowerCase():int
© addisUnderscoreCaseWithLowerCase():void
@ getisUnderscoreCaseWithUpperCase():int

© addisUnderscoreCaseWithUpperCase():void
© addisUnderscoreCaseWithOtherCase():void
© getisUnderscoreCaseWithOtherCase():int

@ getSetCaseType()int

© addSetCaseType():void

@ getHasProperLength()int

© addHasProperLength():void

@ getBeginsWithLetter(yint

© addBeginsWithLetter():void

© getEndsWithL etterOrNumber():int

© addEndsWithLetterOrNumber():void

@ getContainsOnlyL yint
° OniyL y:void
° tainC yint
© addContainConsecutiveUnderscores():void
© getisReservedAsKeyword(yint

© addisReservedAsKeyword():void

°):void
© getContainsSpace()int

@ addContainsSpace():void

© getContainsSpecialCharacter(yint

© addContainsSpecialCharacter():void

© getContainsVerb():int

@ addContainsVerb():void

© getContainsNoun():int

© addContainsNoun():void

© getContainAdjective(yint

@ addContainsAdjective():void

© addContainsSingular():void

© addContainsPlural():void

© getContainsSingular():int

@ getContainsPlural():int

© getStringsinNames():int

© addStringsinNames(int): void

© addStringsinNames():void

@ getwordsinNames()int

© addWordsinNames(int):void

© addWordsinNames():void

© writeNextLine(String):void

@ getColumnNameContainsTheTableName():int
© addColumnNameSameAsTheTable():void

© addColumnNameContainsTheTableName():void
@ writeNextLine(String):void

containsOnlySingular: int
datasetName: String

©ooooooooooooo

© SetFile(String):void
@ ClearStatistics():void

© SefFileTitleGood(String):void

© SefFileTitleBad(String):void

© ViriteStatistics ToFleGood(String, String):void
© WriteStatisticsToFileBad(String, String):void
=

© getContainsPluralandNotSingular():int
© addContainsOnlySingular():void
@ getContainsSingular():int

© addContainsSingular():void

© getContainsPlural():int

© addContainsPlural():void

@ gethameConcatenation(yint

© addNameConcatenation():void
© getTotalTables():double

© addTotalables():void

© getSameNameAsTable():int

© addSameNameAsTable():void
© getCommonSuffix(yint

© addCommonSuffix():void

© getContainsPrefix(yint

© addContainsPrefix():void

© getContainsVerb():int

@ addContainsVerb():void

© getStartWithCapital(yint

° ital():void

metrics.

& TableCheckstatistics()
@ writeNextLine(String):void

violated/adhered rules, setting up the title of column, table file and of writing the

Figure 18 : The classes from the package statistics, responsible of keep track of the

99

This solution is possible through the use of posTags (Part of Speech Tags) from
edu.stanford.nlp. For more information about WorldNet please refer to the official

sited,

Package Swing

The gui package contains the classes which give the user the ability to interact with

dbsea.

The MainWindow is the graphical environment the user confronts when DBsea is

started. It has two main options File and Help.

The File option enables the user to select a parent folder or close the program. By
choosing a parent folder the initiation of the SQL Style Analysis begins through the call

of the method traversePaths. This functionality resides inside OpenFolderDialog.

The Help option is is based upon the classes InstructionsDialog and AboutDialog. The
user gets access to a simple and straightforward tutorial on how to use DBsea as well

as to information about the author.

3 https://wordnet.princeton.edu/

100

<<Java Class>>

(9 InstructionsDialog
gr.uoi.cs.dbsea.gui

o close: JButton

<=Java Class>»
(S Worker
gr.uoi.cs.dbsea.gui

4 progr
4 folder: File

: Progr

& Worker(File)

< dolnBackground():SchemaStyleAnalysis
@ checkTheDifferencesinHistory(SchemaStyleAnalysis):void

~mainWindow |0..1

<<Java Class»»
(3 MainWindow
gr.uoi.cs.dbsea.gui

-instructionsDialog

o generalinformation: JLabel

& InstructionsDialog()
@ initialize():void
draw():void

<<Java Class=»
(9 OpenFolderDialog

gr.uoi.cs.dbsea.gui

o folderLabel: JLabel

o folderField: JTextField
o ok: JButton

o cancel: JButton

o openFolder: JButton
o fileopen: JFileChooser
o status: int

&5 OpenFolderDialog()

@ initialize():void

@ draw():void

@ getFolderPath(String):String
@ getStatus(yint

@ getFolder():String

Figure 19 : Implementation of Ul, gui package

0.1

o menuBar: JienuBar

o file: JMenu

o fileFOpen: JMenultem
o fileClose: JMenultem

o help: JMenu

o helpAbout: JMenultem
a Instructions: JMenuitem
o lcon: Image

<<Java Class»>
(& MainPanel

gr.uoi.cs.dbsea.gui

& MainPanel()

& MainWindow()

@ ShowFinishiMessage():void
@ initialize():void

@ createlenu():void
draw():void

-ppenFolderDialog

0.1

-aboutDialog | 0.1

<=Java Class>»
(® AboutDialog
gr.uoi.cs.dbsea.gui

o name: JLabel

o author: JLabel

o mail: JLabel

o close: JButton

o hecatelcon: Imagelcon

& AboutDialog()
@ initialize():void
@ draw():void

101

easqps2 00§ ¥o3y031f353(g=y eesqp 0 1on 38
saxiynsuLoyun &) saxyaidalqel &)

i 2 P <<SSB|) BAB[>>

sonsasisessgp saon g
sonsne)syIayIRIqeL &)
<<SSE|) BAB[>>

syosyoEssusbeasqpsoion b
sase)y0adiL €) "

<<UO[BI3WNUT BAB >>

JBUIMRIS M &
Buus (yjegouauagaly ¢
s20s0Els €350 5910046
S20SPLISHIBYDIUBUID &)
<<SSE|) BAB[>>

syozyoIEunion £25g0 50 100 6
%23UD1aupIof) &)
<<SSE|J BAB[>>

sagsues easqp saion b
SOSNRISHIIYIUWNIOD) &)
<<SSB[) BAB[>>

2403 e35qp's0'ion 8

}28yJuwnjo) &)
<<SSE|) BAB[>>

¥04o3f1s3(qe e25qp S0 10n 18 e=sqp

}23ydaiqel &) SPIOf\PaMIBSaY &)

100738

<<SSB|J BAB[>> <<SSB|) BAB[>>

)3YDILIBUAD) SINSI] yaygouauab &
sasen)0adAL :adfiases ¢

syosyoEssusb essgp soionE
}234D2UBUS9 &)
<<SSB|) BABM=>

20035 e2sqp s0on €

sisfjeuyajisewayss &)

Toa S0 6 Ibs easqpsaionib
<<abeyoed eARr=>

easga e

<<SSB|J BAB[>>

inb-easqp'soionub £}
<=3feyoBd BAR>>

<<SSE[) BAB[>>

syoayoeszual essqp soionE
}oayjased &)
<<SSE|) BAB[>>

f SSet

iagram o

The whole class d

Figure 20

102

Reserved Words

Oracle reserved words

ACCESS
ADD

ALL

ALTER

AND

ANY

AS

ASC

AUDIT
BETWEEN
BY

CHAR
CHECK
CLUSTER
COLUMN
COLUMN_VALUE (See Note 1 at the end of this list)
COMMENT
COMPRESS
CONNECT
CREATE
CURRENT
DATE
DECIMAL
DEFAULT
DELETE
DESC
DISTINCT
DROP

ELSE
EXCLUSIVE
EXISTS
FILE
FLOAT

FOR

FROM
GRANT
GROUP
HAVING
IDENTIFIED
IMMEDIATE
IN
INCREMENT
INDEX
INITIAL
INSERT
INTEGER
INTERSECT
INTO

103

IS

LEVEL
LIKE
LOCK
LONG
MAXEXTENTS
MINUS
MLSLABEL
MODE
MODIFY
NESTED_TABLE_ID
NOAUDIT
NOCOMPRESS
NOT
NOWAIT
NULL
NUMBER
OF
OFFLINE
ON
ONLINE
OPTION
OR

ORDER
PCTFREE
PRIOR
PUBLIC
RAW
RENAME
RESOURCE
REVOKE
ROW
ROWID
ROWNUM
ROWS
SELECT
SESSION
SET
SHARE
SIZE
SMALLINT
START
SUCCESSFUL
SYNONYM
SYSDATE
TABLE
THEN

TO
TRIGGER
UID
UNION
UNIQUE
UPDATE
USER

104

VALIDATE
VALUES
VARCHAR
VARCHAR2
VIEW
WHENEVER
WHERE

MsSQL reserved words

ADD
EXTERNAL
PROCEDURE
ALL

FETCH
PUBLIC
ALTER

FILE
RAISERROR
AND
FILLFACTOR
READ

ANY

FOR
READTEXT
AS

FOREIGN
RECONFIGURE
ASC
FREETEXT
REFERENCES
AUTHORIZATION
FREETEXTTABLE
REPLICATION
BACKUP
FROM
RESTORE
BEGIN

FULL
RESTRICT
BETWEEN
FUNCTION
RETURN
BREAK

GOTO
REVERT
BROWSE
GRANT
REVOKE
BULK

GROUP
RIGHT

105

BY

HAVING
ROLLBACK
CASCADE
HOLDLOCK
ROWCOUNT
CASE
IDENTITY
ROWGUIDCOL
CHECK
IDENTITY_INSERT
RULE
CHECKPOINT
IDENTITYCOL
SAVE

CLOSE

IF

SCHEMA
CLUSTERED
IN
SECURITYAUDIT
COALESCE
INDEX
SELECT
COLLATE
INNER

SEMANTICKEYPHRASETABLE

COLUMN
INSERT

SEMANTICSIMILARITYDETAILSTABLE

COMMIT
INTERSECT

SEMANTICSIMILARITYTABLE

COMPUTE
INTO
SESSION_USER
CONSTRAINT
IS

SET
CONTAINS
JOIN
SETUSER
CONTAINSTABLE
KEY
SHUTDOWN
CONTINUE
KILL

SOME
CONVERT
LEFT
STATISTICS
CREATE

LIKE
SYSTEM_USER

106

CROSS

LINENO

TABLE
CURRENT

LOAD
TABLESAMPLE
CURRENT_DATE
MERGE
TEXTSIZE
CURRENT_TIME
NATIONAL
THEN

CURRENT_TIMESTAMP

NOCHECK

TO
CURRENT_USER
NONCLUSTERED
TOP

CURSOR

NOT

TRAN
DATABASE
NULL
TRANSACTION
DBCC

NULLIF
TRIGGER
DEALLOCATE
OF

TRUNCATE
DECLARE

OFF
TRY_CONVERT
DEFAULT
OFFSETS
TSEQUAL
DELETE

ON

UNION

DENY

OPEN

UNIQUE

DESC
OPENDATASOURCE
UNPIVOT
DISK
OPENQUERY
UPDATE
DISTINCT
OPENROWSET
UPDATETEXT
DISTRIBUTED
OPENXML

USE

107

DOUBLE
OPTION
USER
DROP

OR
VALUES
DUMP
ORDER
VARYING
ELSE
OUTER
VIEW
END
OVER
WAITFOR
ERRLVL
PERCENT
WHEN
ESCAPE
PIVOT
WHERE
EXCEPT
PLAN
WHILE
EXEC
PRECISION
WITH
EXECUTE
PRIMARY
WITHIN GROUP
EXISTS
PRINT
WRITETEXT
EXIT
PROC

108

Uniform Suffixes

id: a unique identifier such as a column that is a primary key.

status: flag value or some other status of any type such as public finalation_status.
total: the total or sum of a collection of values.

num: denotes the field contains any kind of number.

name: signifies a name such as first_name.

seq: contains a contiguous sequence of values.

date: denotes a column that contains the date of something.

tally: a count.

size: the size of something such as a file size or clothing.

addr: an address for the record could be physical or intangible such as ip_addr.

109

SHORT VITA

Papamichail Aggelos was born in loannina in 1991. He received his BSc degree from
the Computer Science Department of University of loannina in July 2015. In January
2016 he became a MSc student in the same institution under the supervision of Zarras
Apostolos. In July of 2017 he started working as a software developer in the banking

department of Natech S.A.

110

