

An Empirical Study on the Usage of

Conventions and Rules for SQL programming

in FoSS

A Thesis

submitted to the designated

by the General Assembly of Special Composition

of the Department of Computer Science and Engineering

Examination Committee

by

Papamichail Aggelos

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

WITH SPECIALIZATION

IN SOFTWARE

University of Ioannina

June 2018

i

Examining Committee:

 Zarras Apostolos, Associate Professor, Dept. of Computer Science &

Engineering, University of Ioannina (Supervisor)

 Vassiliadis Panagiotis, Associate Professor, Dept. of Computer Science

& Engineering, University of Ioannina

 Mamoulis Nikos, Associate Professor, Dept. of Computer Science &

Engineering, University of Ioannina

ii

DEDICATION

To my parents Aristeidis and Augoula, for all the years they assisted in my academic

pursuits.

To my sister Chrisanthi, her professionalism, work ethic and capacity will always be

inspiring, a true pioneer!

iii

ACKNOWLEDGMENTS

I would like to thank my thesis advisor Professor Apostolos Zarras of Department of

Computer Science and Engineering at the University of Ioannina. His guidance, insights

and remarks not only made this thesis possible but also formed the directions of my

career as software engineer.

Furthermore I would like to thank Professor Panos Vassiliadis of Department of

Computer Science and Engineering at the University of Ioannina, for his assistance in

defining the concepts of this thesis.

iv

TABLE OF CONTENTS

Index of Tables ... vi

Index of Figures ..viii

Εκτεταμένη Περίληψη ... 10

Abstract .. 13

Introduction: Initiating SQL Style ... 14

Related Work ... 17

SQL Style: Defining Rules, Conventions and Methodology 23

3.1 Overview 23

3.2 SQLStyle Rules 25

3.3 SQL Style Checking, Approach And Datasets 36

3.4 Levels of Analysis 37

3.5 Examined Schemata 40

Experimental Study: Status Quo of Sql Style and a Dose of Idealism 44

4.1 Do People Care About SQLStyle Rules? 44

4.2 Does the Adherence to SQL Style Rules Evolve Over Time? 50

4.3 What are the Evolution Patterns of SQL Style Rules? 63

4.4 Table Rules Evolution 65

4.5 Column Rules Evolution 66

4.6 Which are the Adherence/Violation Patterns of SQL Style Rules? 68

4.7 Which SQL Style(s) Is(Are) Actually Followed in Practice? 71

4.8 Threats to Validity 77

Conclusions: Schemas and Elegance ... 79

5.1 An Interesting Future 82

Bibliography .. 83

v

Further Statistics .. 86

Tool Related Information ... 89

Short Vita ... 110

vi

INDEX OF TABLES

Table 1: Sql Style Rules Classification, Regarding Their Intent Also Origin And

Scope of Use. .. 27

Table 3: The Results of SLA For Sql Snippet 2. ... 38

Table 4: The Results of TLA For Sql Snippet 2. .. 40

Table 5: General Information About the Schemata. .. 41

Table 6: Average And Standard Deviation of the Last Known Versions of the

Schemata For Each One of the Table Rules Srad. ... 45

 Table 7: Average And Standard Deviation of the Last Known Versions of the

Schemata For Each One of the Column Rules Srad. ... 45

Table 8: Table’s Srad Ranges Through the Evolution of Each Schema, Rules With

Zero Range In All of the Schemata Are Missing; Srad Range Varies Greatly

Based On the Rule Or the Schema. ... 55

Table 9: Column’s Srad Ranges Through the Evolution of Each Schema, Rules With

Zero Range In All of the Schemata Are Missing; Srad Range Varies Greatly

Based On the Rule Or the Schema. ... 56

Table 10: Number of Rules That Change In Each Schema During the Evolution. 57

Table 11: Ensembl’s And Opencart’s Statistical Description of the Rules’ Srad

Distribution During Evolution For Tables. ... 61

Table 12: Wikimedia’s And Typo3’s Statistical Description of the Rules’ Srad

Distribution During Evolution For Columns. ... 62

Table 13: Probability of Fixed, Positive And Negative For Table Rules, Across the

Examined Schemas For Table Rules. Avg (Average) Change And Stdev

(Standard Deviation) Describe the Distribution of Srad In Schemata With The

Higher Propability In Between of Being Positive Or Negative. 64

Table 14: Probability of Fixed, Positive And Negative For Table Rules, Across The

Examined Schemas For Column Rules. Avg (Average) Change And Stdev

(Standard Deviation) Describe The Distribution of Srad In Schemata With The

Higher Propability In Between of Being Positive Or Negative. 64

Table 15: Probability of Strong/Weak Adherence/Violation For Table Rules 69

Table 16: Probability of Strong/Weak Adherence/Violation For Column Rules. 70

file:///C:/Users/angelo/Desktop/Final/MasterThesisPapamichailAggelos.docx%23_Toc518938848
file:///C:/Users/angelo/Desktop/Final/MasterThesisPapamichailAggelos.docx%23_Toc518938848

vii

Table 17: Weighted Sql Style - Table And Column Rules Ranked With Respect To

Rad. ... 72

Table 18: Euclidean Distance Between the Styles of the Examined Schemas And the

Weighted Style. ... 74

Table 19: Euclidean Distance Between the Styles of the Examined Schemas And the

Rule Based Style. .. 75

Table 20: Examples of Table Names Taken From Slashcode (I.E., the Schema Whose

Style Is Closer To the Weighted Style), Phpwiki (I.E., the Schema Whose Style Is

Closer To the Rule Based Style), And Joomla (I.E., the Schema Whose Style Is

Farther From Both the Weighted And the Rule Based Style). 76

Table 21: Examples of Column Names Taken From Ensembl (I.E., the Schema

Whose Style Is Closer To the Weighted Style), Opencart (I.E., the Schema Whose

Style Is Closer To the Rule Based Style), And Castor2 (I.E., the Schema Whose

Style Is Farther From Both the Weighted And the Rule Based Style) 76

viii

INDEX OF FIGURES

Figure 1: Activity Diagram and Architecture Of Dbsea. ... 25

Figure 2: Supported Special Characters and Information About The Characters Use In

Various Dbms. ... 29

Figure 3: Percentages Representing The Number Of Table Rules In Each Schema

That Have Srad > 0%, Srad = 0%, Srad = 100% and Srad < 100% Respectively.

 ... 48

Figure 4: Percentages Representing The Number Of Column Rules In Each Schema

That Have Srad > 0%, Srad = 0%, Srad = 100% and Srad < 100% Respectively.

 ... 49

Figure 5: Changes In Srad For Table Rules During The Evolution Of The Schemata.

 ... 58

Figure 6: Changes In Srad For Column Rules During The Evolution Of The

Schemata. .. 59

Figure 7: Utc Related Information The First Two Horizontal Figures Refer To The

Tables, The Second To Columns. ... 60

Figure 8: Number Of Schemata Having Weak, Medium and High Correlation, For

Each Rule. ... 60

Figure 9 : Dbsea In A Nutshell, The Main Three Functionalities. 90

Figure 10 Package Diagram For Schemata Style Extraction Tool 91

Figure 11 : Dbsea Contains The Main Static Class and Starts The User Interface. 92

Figure 12 : This Class Implements The Flow For Style Analysis. 93

Figure 13 : The Classes In Tablestylecheck Contain The Rules About A Table Entity.

 ... 94

Figure 14 : The Classes In Columnsstylecheck Contain The Rules About A Table

Entity. .. 95

Figure 15 : The Classes In Generalchecks Contain The Rules Shared By Tables and

Columns As Well As Some Helper Classes. ... 96

file:///C:/Users/angelo/Desktop/Final/MasterThesisPapamichailAggelos.docx%23_Toc519022876
file:///C:/Users/angelo/Desktop/Final/MasterThesisPapamichailAggelos.docx%23_Toc519022876
file:///C:/Users/angelo/Desktop/Final/MasterThesisPapamichailAggelos.docx%23_Toc519022876
file:///C:/Users/angelo/Desktop/Final/MasterThesisPapamichailAggelos.docx%23_Toc519022880
file:///C:/Users/angelo/Desktop/Final/MasterThesisPapamichailAggelos.docx%23_Toc519022880

ix

Figure 16 : The Classes From The Package Statistics, Responsible Of Keep Track Of

The Violated/Adhered Rules, Setting Up The Title Of Column, Table File and Of

Writing The Metrics. ... 99

Figure 17 : Implementation of Ui, Gui Package .. 101

Figure 18 : The Whole Class Diagram Of Sset.. 102

file:///C:/Users/angelo/Desktop/Final/MasterThesisPapamichailAggelos.docx%23_Toc519022890

10

ΕΚΤΕΤΑΜΕΝΗ ΠΕΡΙΛΗΨΗ

Παπαμιχαήλ Άγγελος, Μ.Δ.Ε. στην Πληροφορική, Τμήμα Μηχανικών Η/Υ και

Πληροφορικής, Πανεπιστήμιο Ιωαννίνων, Ιούνιος 2018.

Εμπειρική Μελέτη Σχετικά με τη Χρήση Συμβάσεων και Κανόνων SQL σε Ελεύθερο

και Ανοιχτό Λογισμικό.

Επιβλέπων: Ζάρρας Απόστολος, Αναπληρωτής Καθηγητής

Η εξέλιξη του λογισμικού είναι μία από τις σημαντικότερες πλευρές του software

engineering με τη συντήρη, να απαιτεί τους μισούς από τους συνολικά διαθέσιμους

πόρους. Η κοινότητα του software engineering έχει κάνει σημαντική πρόοδο ως προς

την ποιότητα κώδικα μέσω της δημιουργίας και αξιοποίησης τεχνικών που

βελτιστοποιούν την ανάπτυξη και συντήρησή του αλλά και της ανάπτυξης τεχνικών

διαχείρισης πόρων. Πιο συγκεκριμένα, για την πλειονότητα των γλωσσών

αντικειμενοστρεφούς προγραμματισμού υπάρχει ένα σύνολο κανόνων γραφής12 που

εξασφαλίζουν την ύπαρξη ομοιογένειας και αναγνωσιμότητας στο κώδικα. Παράλληλα

ορίστηκαν μοτίβα γραφής κώδικα που ενισχύουν άμεσα την επεκτασιμότητά 3 και

εξασφαλίζουν την χρήση αντικειμενοστρεφούς αρχών σχεδίασης4.

Είναι γνωστό, ειδικά σε μεγάλης κλίμακας προγράμματα, ότι η ύπαρξη λογισμικού

προϋποθέτει την ύπαρξη μιας ή περισσότερων βάσεων δεδομένων και το αντίστροφο,

ενώ ακόμη πολλές φορές το ίδιο το λογισμικό δημιουργείται και εξελίσεται γύρω από

μια βάση δεδομένων. Η πραγματικότητα λοιπόν ορίζει ως ίσα μέρη το λογισμικό και

τις βάσεις. Εύλογα θα περιμένε κανείς την ύπαρξη πλούσιας και σε βάθος βιβλιογραφία

για τις βάσεις αντίστοιχη αυτής του λογισμικού, όσον αφορά την δημιουργία και

ανάπτυξή τους. Δυστυχώς όμως η βιβλιογραφία είναι σαφώς πιο περιορισμένη και αυτό

1 https://www.oracle.com/technetwork/articles/javase/codeconvtoc-136057.html

2 https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/inside-a-program/coding-conventions

3 https://sourcemaking.com/design_patterns/factory_method

4 https://sourcemaking.com/design_patterns/builder

11

μας ώθησε στο να ερευνήσουμε και να συνεισφέρουμε στο τομέα της ποιότητας των

βάσεων δεδομένων.

Σε αυτή την εργασία επικεντρωνόμαστε στον προγραμματισμό SQL. Ο κύριος στόχος

μας είναι να διευρενήσουμε το βαθμό στον οποίο οι προγραμματιστές αξιοποιούν

συμβάσεις και στυλ γραφής κώδικα κατά τον ορισμό SQL σχημάτων. Για αυτό το λόγο,

εισάγουμε ένα ιδανικό SQL στυλ που αποτελείται από ένα σύνολο κανόνων που

προέρχονται από ό,τι καλύτερο υπάρχει στη σχετική βιβλιογραφία. Το ιδανικό στυλ

καλύπτει ποικίλες πλευρές όσον αφόρα τη ποιότητα ενός SQL σχήματος. Για να

ελέγξουμε την ποιότητα του σχήματος προτείνουμε ένα εργαλείο που επιτρέπει στους

προγραμματιστές να ελέγξουν την ικανοποίηση των κανόνων του ιδανικού στυλ. Το

εργαλείο αυτοματοποιεί πλήρως τον έλεγχο ικανοποίησης των κανόνων στην ιστορία

ενός σχήματος, όπου ως ιστορία ορίζονται οι διαφορετικές εκδόσεις ενός σχήματος από

την αρχή της ύπαρξής του ως την τελευταία γνωστή έκδοση σε εμάς. Παράλληλα με

το βαθμό ικανοποίησης των κανόνων για την κάθε έκδοση, εξάγει στατιστικά στοιχεία

που περιγράφουν το εύρος τιμών της ικανοποίησης (τυπική απόκλιση, μέσος όρος κ.α.)

καθώς και τη συσχέτιση μεταξύ του μεγέθους του σχήματος και του βαθμού

ικανοποίησης. Αξιοποιούμε τις δυνατότητες που μας παρέχει το εργαλείο διεξάγοντας

μια μεγάλης κλίμακας μελέτη αποτελούμενη από 21 γνώστα, ανοιχτού κώδικα,

προγράμματα (FoSS). Στη μελέτη ελέγχουμε αν τα SQL σχήματα των προγραμμάτων

που συμμετέχουν σε αυτήν ακολουθούν τους κανόνες. Ακόμα, εξετάζουμε την εξέλιξη

των στυλ που ακολουθούντε από το κάθε σχήμα. Παράλληλα, αναγνωρίζουμε μοτίβα

εξέλιξης που περιγράφουν την ικανοποίηση των κανόνων κατά τη διάρκεια ζωής των

σχημάτων. Συνεχίζοντας, διεξάγουμε μια λεπτομερή ανάλυση του κάθε κανόνα και

αναγνωρίζουμε τα αντίστοιχα μοτίβα ικανοποίησης ή παραβίασής τους. Βασιζόμενοι

στα παραπάνω μοτίβα, ορίζουμε ένα σταθμισμένο (weight) στυλ που αντικατοπτρίζει

το εύρος χρήσης των κανόνων από τους προγραμματιστές στην πράξη. Τέλος,

αξιολογούμε την απόσταση των ελεγθέντων σχήματων από το ιδεατό και σταθμισμένο

στυλ.

Συγκεκριμένα, αποδείξαμε ότι ικανοποιούνται αρκετοί κανόνες στυλ γραφής SQL ενώ

ο βαθμός ικανοποίησης επηρεάζεται από το σχήμα, την SQL οντότητα που ελέγχουμε

(πίνακας ή κολώνα) αλλά και από τον ίδιο το κανόνα. Μελετώντας την εξέλιξη των

σχημάτων, βρήκαμε ότι για τους πίνακες το πλήθος των κανόνων που αλλάζει

12

κυμαίνεται από 0 έως 7 και για τις κολώνες από 0 έως 8. Επίσης, οι αλλαγές μεγάλης

κλίμακας συμβαίνουν σε μικρά χρονικά διάστηματα ως προς τη συνολική διάρκεια

ζωής του σχήματος και ότι τα διαστήματα αυτά είναι συνεχή. Ο έλεγχος της διαφοράς

του βαθμού ικανοποιήσης των κανόνων μεταξύ πρώτης και τελευταίας έκδοσης έδειξε

την φύση των αλλαγών. Οι περισσότεροι κανόνες παραμένουν σταθεροί (13 για

πίνακες, 14 για κολώνες), ορισμένοι εξελίσσονται αρνητικά (2 κανόνες πινάκων, 1

κολώνων) και τέλος ελάχιστοι εξελίσσονται θετικά (2 για τις κολώνες). Διερευνόντας

τον βαθμό ικανοποίησης στην τελευταία γνωστή έκδοση βρήκαμε ότι οι κανόνες που

ικανοποιούνται σε μεγάλο βαθμό είναι 11 για τους πίνακες 14 για τις κολώνες. Οι

κανόνες που ικανοποιούνται σε μικρότερο βαθμό είναι 2 για τους πίνακες και 1 για τις

κολώνες. Οι κανόνες που παραβιάζονται σε μεγάλο βαθμό είναι 2 για τους πίνακες και

αυτοί που παραβιάζονται σε μικρότερο βαθμό είναι 2 και αφορούν τις κολώνες. Τέλος

μέσω της κατάταξης των κανόνων με βάση τη ικανοποίησή τους από τους

προγραμματιστές προσδιορίσαμε της αξία του κάθε κανόνα, όπως την αντιλαμβάνεται

ο ίδιος ο προγραμματιστής.

13

ABSTRACT

Papamichail Aggelos, M.Sc. in Computer Science, Department of Computer Science

and Engineering, University of Ioannina, Greece, June 2018.

An Empirical Study on the Usage of Conventions and Rules for SQL programming in

FoSS.

Supervisor: Zarras Apostolos, Associate Professor

Software evolution is one of the most important aspects of software engineering with

maintenance requiring about half of a project’s resources. The software engineering

community has made massive improvements in coding quality with the adoption of

good practices, coding conventions and styles that optimize software development and

maintenance. In this Thesis we focus on SQL programming. Our main objective is to

investigate the extent to which developers employ coding conventions and styles in the

definition of an SQL schema. To this end, we introduce a SQL style that consists of a

set of style rules found in the state of the art. This style covers various aspects of the

SQL schema quality. To assess schema quality we propose a style checking tool that

allows developers to check the adherence to the rules of the defined style. We conduct

a large scale case study consisting of 21 well-known FoSS projects. In our case study

we check whether the SQL schemas of the examined projects adhere to the rules.

Moreover, we investigate the evolution of the style that is followed by each schema.

Taking a step further, we identify evolution patterns that describe the adherence to the

rules over the lifetime of the examined schemas. Then, we perform a detailed analysis

of the individual rules and we identify respective rule adherence and violation patterns.

Based on the aforementioned patterns, we identify a weighted SQL style that reflects

the extent to which the examined rules are employed in practice. Finally, we evaluate

the distance of the examined schemas from the style we defined and the weighted style.

14

CHAPTER 1

INTRODUCTION: INITIATING SQL STYLE

Software evolution is one of the most important aspects of software engineering. It is

well known that maintenance, which is part of software evolution will may require over

half of a project’s resources [1] [2], thus the existence of practices in managing

resources and the creation of maintainable and extensible code is compulsory. So far,

the software engineering community has done greatly in both resource management

and code quality. In the last decades, several ways of managing projects have been

proposed, from the more recent, the agile 5 model and DevOps 6 to older, like the

waterfall. Moreover, there has been a massive improvement in coding quality practices

with the adoption of refactoring and restructuring techniques and the creation of tools

enabling developers to recognize and apply them as they code. Also, more refined and

specific concepts were created to further improve the quality, like the code smells. Code

smells are a well-known metaphor to describe symptoms of code decay or other issues

with code quality which can lead to a variety of maintenance problems. They usually

are diminished through globally accepted conventions and practices.

of course, one cannot think of large scale projects without the existence of one or more

databases, co-evolving with the software of the project or even being its precursor, since

many systems are built around databases. Since in a large scale project databases are of

equal, or even greater importance, with software, there ought to be at least comparable

bibliography on the subject of database’s schema evolution (i.e. the ability of a database

system to respond to changes in the real world by allowing the schema to evolve) or

restructuring and refactoring techniques. Moreover, there ought to be styles,

conventions, and good practices for SQL programming. Unfortunately, this is not the

5 https://en.wikipedia.org/wiki/Agile_software_development#The_Agile_Manifesto

6 https://en.wikipedia.org/wiki/DevOps

15

case; in the database community the state of the art in these research issues is far less

rich both in depth and variety than in the software engineering community. Actually,

when it comes to SQL programming there is no answer in the bibliography, to the

following simple yet important question:

Do people care about SQL rules?

The aim of this thesis is to address the previous question, via a study that involves 21

database schemas found in respective open source projects. To this end, we define a

SQL style [3.2] that consists of a set of rules and conventions, which have been

proposed in the literature towards improving the readability and maintainability of a

schema. These rules are style conventions and cover various styling quality aspects

(writing style, methodological, lexicographical, SQL specific) of the SQL schema.

Along with the proposed rules, we developed a fully automated SQL style checking

tool that allows the developers to check the adherence of SQL schemas to the rules.

Based on the proposed rules, we begin with a coarse-grained analysis to assess the

adherence of the examined schemas to the rules. We focus on the last know version

(LKV) of the schemas. Our results reveal that developers take into account several

rules. However, the extent to which they employ the rules varies, depending on the

schema.

Next, we investigate the evolution of the schemas from their first known version (FKV)

to the last known version available to us, to see if the adherence to the rules changes

through time. We further investigate how this is done via respective evolution patterns

and anti-patterns. Moreover, we evaluate the correlation between the evolution of the

schemas' adherence to the rules and the size of the schemas. Our results reveal the

following basic patterns: most rules (13 for tables rules, 13 for columns), follow the

fixed adherence evolution pattern, i.e., the adherence of a schema to the rule does not

evolve overtime; only few rules follow the positive evolution pattern (2 for columns

rules), i.e., the adherence of a schema to the rule slightly improves overtime; few rules

16

follow the negative evolution pattern (2 for rules, 1 for colums), i.e., the adherence of

a schema to the rule gets slightly worst overtime.

Taking a step further, we perform a fine-grained analysis that concerns each individual

rule. Specifically, for each rule we identify adherence patterns, and/or violation anti-

patterns: most rules follow the strong adherence pattern, i.e., more than 75% of the

schema elements adhere to the rule; some rules follow the weak adherence pattern, i.e.

the percentage of schema elements that follow the rule varies in [50%, 75%); few rules

follow the strong violation pattern, i.e. less than 25% of the schema elements adhere to

the rule; few some rules follow the weak violation pattern, i.e., the percentage of

schema elements that follow the rule varies in [25%, 50%).

We introduce weights for the rules that reflect the extent to which they are followed in

the examined schemas and propose a weighted SQL style, consisting of our initial list

of rules, ranked according to their weights. Along with the rule based style we also

consider the weight style based on the developers SQL rule preferences and adherence.

In particular, we evaluate the distance between each of the examined schemas and the

aforementioned styles, and we provide concrete examples that relate this distance with

specific readability issues.

Roadmap. The structure of this thesis is as follows. In Chapter 2, we discuss related

work on good practices, rules, conventions and techniques for the development of clean

software. Moreover, we discuss related work on database schema evolution patterns,

smells and refactorings. In Chapter 3 we present our methodology, the tool that we

developed and the setup of our empirical study. In Chapter 4 we present our results.

Finally, in Chapter 5 we conclude with a summary of our contribution and the future

perspectives of this work.

17

CHAPTER 2

RELATED WORK

Primarily, the present study concerns two aspects of software engineering:

• The first aspect is focused on the database domain and is about schema

evolution, see e.g. [3], SQL conventions and smells.

• The second is the existence of coding smells in general and practices to avoid

them, mainly from the software domain.

The research of Sjøberg [3] on schema evolution and its consequences on related

applications has been a breakthrough. Modification of database schemata, for example,

is one kind of change which may significantly influence database applications. So, this

paper presents a method and an appropriate tool [3] for measuring modifications to

database schemata and their consequences. The resulting measurements serve as input

to the design of change management tools. The temporal aspect of the grammatical

database model of Laine and co-authors [4] is extended to the schema and thus the

model possesses a schema capable of modification over time. The work of Roddick [5]

presents an extension to SQL to handle some of the functionality provided by schema

evolution in relational databases. Other early approaches consist the publication of

Nguyen and Rieu [6] and the one of Barenjee and co-authors [7] that focus on object-

oriented databases.

In the late ‘00's, partly due to accessibility to free open software, schema evolution in

open source environments has been quite investigated, i.e. Curino et al. [8]. Those

studies, however, focus on the statistical properties of the evolution and do not provide

details on the mechanism that governs the evolution of data base schemata.

18

The results of Meir Lehman and co-authors [9] [10] include a set of rules on the

mechanics of Software evolution [10], also known as the Laws on Software Evolution.

More precisely, Lehman's Laws as stated in a more abstract form:

• Law of Continuing Change: An E-Type software system must be continually

adapted or else it becomes progressively less satisfactory in use.

• Law of Increasing Complexity: As an E-type system is changed, its complexity

increases and becomes more difficult to evolve unless work is done to maintain

or reduce the complexity.

• Law of Self-regulation: Global E-type system evolution is feedback regulated.

• Law of Conservation of Organizational Stability: The work rate of an

organization evolving an E-type software system tends to be constant over the

operational lifetime of that system or phases of that lifetime.

• Law of Conservation of Familiarity: In general, the incremental growth (growth

ratio trend) of E-type systems is constrained by the need to maintain familiarity.

• Law of Continuing Growth: The functional capability of E-type systems must

be continually enhanced to maintain user satisfaction over system lifetime.

• Law of Declining Quality: Unless rigorously adapted and evolved to take into

account changes in the operational environment, the quality of an E-type system

will appear to be declining.

• Law of Feedback System: E-type evolution processes are multi-level, multi-

loop, multi-agent feedback systems.

The breakthrough of Lehman's work has motivated Skoulis and his colleagues [11] to

adapt the Laws of software evolution into schemata evolution. Subsequently, their

research work identified patterns and regularities of schema evolution towards a better

understanding of the underlying mechanism that governs it. By studying the evolution

of the logical schema of eight databases, collecting and cleansing the available versions

of the database schemata for the eight case studies and extracting the changes that have

been performed in these versions, finally, their research came up with usable datasets

subsequently analyzed. The main tool for this analysis came from the area of software

engineering.

19

The research axis of Vassiliadis and Zarras [11] [12] [13]is the survival of a table in the

context of schema evolution in open-source software. The authors found out that the

probability of a table with a wide schema (i.e., a large number of attributes) being

removed is systematically lower than average, as well as, that activity and duration are

related to survival too. They proposed the electrolysis pattern, due to its diagrammatic

representation, stating that dead and survivor tables live quite different lives: tables

typically die shortly after birth, with short durations and mostly no updates, whereas

survivors mostly live quiet lives with few updates, except for a small group of tables

with high update ratios that are characterized by high durations and survival. In

addition, they studied the phenomenon of gravitation to rigidity, stating that despite

some valiant efforts, relational schemata suffer from the tendency of developers to

minimize evolution as much as possible in order to minimize the resulting impact to the

surrounding code.

What is also special about this research, is that it zoomed into the lives of tables in

contrast with previous works that mostly focused on the macroscopic study of the entire

database schema. Vassiliadis his colleagues identified four major patterns [11] on the

relationship of such properties:

• The Gamma pattern studies the interrelationship of the schema size of a table

at its birth with its overall duration and indicates that tables with large schemata

tend to have long durations and avoid removal.

• The Comet pattern studies the interrelationship of the schema size of a table at

its birth with its total amount of updates. This pattern indicates that the tables

with most updates are frequently the ones with medium schema size.

• The Inverse Gamma pattern studies the interrelationship of the amount of

updates in the life of a table with its duration and indicates that tables with

medium or small durations produce amounts of updates lower than expected,

whereas tables with long duration expose all sorts of update behavior.

• The Empty Triangle pattern studies the interrelationship of a table's version of

birth with its overall duration. It indicates a significant absence of tables of

medium or long durations that were removed.

Curino and his co-workers [8] created a tool, the so-called PRISM, containing recent

theoretical advances in schema and query rewriting mapping [14] [15] [16]. This tool

20

addresses two main challenges of schema evolution, as considered by the authors,

predictability and independence of the evolution process. PRISM solves the

predictability challenge through describing the revisions of a schema with Schema

Modification Operators (SMOs) and then through a static analysis upon the SMOs

manages to give the database administrator knowledge about information preserving

properties of the new schema and redundancy generation. The second challenge,

independence, is tackled through the automation of the rewriting queries process.

Sharma and his co-workers [17] used the concept of code smells in the field of

databases. They defined thirteen smells which were evaluated by developers through

an online survey and conducted a large scale study in 357 industrial and 2568 open

source projects. For each smell defined, developers had to characterize them based on

their opinion as database smells, as a recommended practice or as neither smell nor

recommended practice. They could also state that the context of use defined the practice

as recommended or as a smell. They found that db smell detection is affected by the

developers’ subjectivity and acknowledged the importance of using a sophisticated tool

in the form of a plug-in to automate the smell detection process on the go. The most

frequent smell was index abuse (i.e. misused primary or foreign keys and even absence

of a key) and interestingly the use of ORM frameworks did not affect the number of

smells found in the project. The existence of certain smells in the schemata or queries

increased the occurrence of other smells and that open source projects are prone to

different smells than industrial ones.

Celko [18], created a comprehensive textbook on database smells and how to avoid

them. Those smells are found in a wide field of SQL use; in names, in the scales for

attributes, formatting, in the data declaration language and other. In this study we were

particularly interested in the practices referred to naming conventions and use of

punctuations and spacing which were combined with Holywell’s7 point of view on

SQL style conventions. To our delight we found that Tushra’s db smells contain some

of Celko’s smells, like the index abuse, for example.

7https://www.sqlstyle.guide/

21

Robert Martin wrote Clean Code, [19], a masterpiece describing in hideous detail how

to write elegant and efficient code. In the world of a developer where deadlines may

exist in a daily basis, developers tend to write messy code in an effort of accomplishing

the tasks on time. Unfortunately, as the mess builds the productivity decreases to the

point where a project is unmaintainable and developers rebel against the managers

asking for a system redesign. Martin describes thoroughly the importance of

meaningful names, good functions, proper formatting etc. and overall manages to create

a roadmap for someone who cares about writing elegant and efficient code. Clean Code

and SQL Programming Style are in a sense like Plutarch’s parallel lives. Clean Code

assesses readability, maintainability and ultimately, extensibility from an object

oriented coding point of view while the second from the standard’s SQL. Both

influenced greatly our thesis, especially the reasoning behind each SQL style rule.

Lastly, in the domain of static analysis for SQL there has been conducted research for

measuring the complexity of embedded queries or even the creation of tools able to

reconstruct them, see [20] [21] [22].

The present study lies in the area of empirical studies that assess adherence to coding

conventions and best practices. Let us refer to important contributions to this research

area.

Smit et al [23] investigated code convention adherence in evolving software and got to

the conclusion that the violations may increase or decrease depending on the particular

project. Butler et al. [24] evaluated the quality of identifier names in 8 established open

source Java applications libraries, using a set of 12 identifier naming guidelines and

found statistically significant associations between flawed identifiers and code quality

issues by a static analysis tool. Focused on naming conventions, Butler et al. [25] found

that developers follow naming conventions to a certain degree, but adherence to specific

conventions varies widely, depending on the project.

The work of Buse et. al [26] showed positive correlations between readability,

comments and blank lines but negative correlations between readability, identifiers and

line length. The empirical study of Lawrie et al. [27] was about the impact of names in

source code comprehension. Further, the empirical studies of Binkley et al. investigated

22

the impact of identifier style to source code comprehension [22] and the impact of

vocabulary normalization on software engineering activities [21].

The paper of Capiluppi et al. [28] reports on the empirical analysis of two major forges

where OSS projects are hosted. Results from this analysis form a complex picture;

visually, all the selected metrics show a clear divide between the two forges, the first

forge that provides a set of guidelines and coding standards in the form of a coding style

for the developers and the second studied forge, SourceForge, which imposes no formal

coding standards on developers. From the statistical standpoint, however, clear

distinctions cannot be drawn amongst these quality related measures in the two forge

samples.

23

CHAPTER 3

SQL STYLE: DEFINING RULES, CONVENTIONS AND

METHODOLOGY

3.1 Overview

3.2 SQL Style Rules

3.3 SQL Style Checking, Approach and Datasets

3.4 Levels of Analysis

3.5 Examined Schemata

To cover the need for an adequate SQL style checking tool, in this thesis we created

Dbsea. In this chapter we discuss the modus operandi of the proposed tool and the

fundamental concepts of this thesis.

3.1 Overview

The proposed tool takes as input either a single version of a particular schema, or the

entire evolution history of the schema, which consists of a set of schema versions, from

the birth of the schema to its last known version. It is also possible to conduct style

analysis in the evolution history of multiple schemata, in this case Dbsea will parse the

schemata in depth first fashion. The SQL style checking analysis is based on a set of

rules introduced in two well-known sources of good coding practices, namely J. Celko's

SQL programming style [18], and R. Martin's book on clean code [19]. Moreover, we

consider rules derived from our own experience as developers.

Concerning their scope we can divide the rules that we consider in two categories, table

rules and column rules. Overall, we have 15 rules for tables and 17 rules for column,

with some rules being common in both cases.

24

Regarding the intent/nature of the rules' we can divide them in four categories as

follows:

 Style of writing: This category concerns the formatting of the SQL schema

specification. Hence, this category includes rules that have a visual impact on

the SQL schema specification, like the use of Pascal Case for table/column

names. Also includes practices like the use of spaces, the capitalization of the

first letter and other that affect the readability of the SQL schema specification

(e.g., Universal Type of Case, Ends with Letter or Number).

 Methodological: This category contains rules concerning the systematic use of

particular naming patterns. An example is naming “id” every primary key in a

schema.

 Language Specifics: This category includes rules derived from SQL limitations

or other specific constraints, like the length of a name being less than thirty

characters. (e.g., Proper Length, Reserved Word).

 Lexicological: This category contains rules that concern part of speech issues

for the terms used for the specification of the different schema elements (e.g.,

Contains Verb, Contains Only Singular).

The style checking analysis is done in following two levels:

Schema Level Analysis (SLA): At this level we examine a given schema as a whole,

measuring the number of elements (i.e., tables or columns, depending on the scope of

the rule), that follow each one of the rules that we consider.

Table Level Analysis (TLA): At this level, we focus on each schema element (i.e., tables

or columns, depending on the scope of the rule), checking its adherence to each one of

the rules that we consider.

While checking a schema, for each level of analysis the tool produces as output

respective CSV files that contain information about tables and columns based on the

adherence of the rules. For each of those CSV files the tool produces another file

containing statistics about the nature of the dataset.

The overall flow of the analysis is show in the activity diagram of Figure 1.

25

Figure 1: Activity diagram and architecture of Dbsea.

3.2 SQL Style Rules

Introduction and Lineage

Differently from typical programming languages like C, C++, C#, or Java, for SQL

there is no widely accepted programming style. Nevertheless, there exist certain general

guidelines and rules found in different sources [18] [29] [19] that can be considered in

our investigation.

26

Based on these sources and our personal experience as developers, we define a catalog

of rules for SQL scripting. In detail, Celko relies on the ISO-111798 metadata standards

and his experience to define rules regarding the readability of SQL code. This is, to our

knowledge, the first attempt towards a unified SQL Style. On the other hand, Robert C.

Martin provides general coding conventions regarding the style of writing, for example

the code length, the readiness of code like the use of pronounciable names, avoidance

of hungarian notation, the use of nouns for class names and more, and so on. This work

inspired us to create some additional rules that will assist us to a better assesment of

the meaningfulness and readability of the names used in an SQL specification

Overall, we consider fifteen rules for tables and seventeen rules for columns. In the

following sub-sections we discuss in detail the rational of the examined rules.

Moreover, in Table 1, we provide the classification of the rules with respect to their

intent, origin, and scope.

SQL Style Rules Description and Rationale

Use universal type of case, (UTC) Origin : Authors

In general, coding conventions should not vary throughout a project. As developers, we

prefer the code to be predictable and homogeneous. In our context, a schema should

follow the same type of case for every element name.

8 https://www.iso.org/standard/60341.html

27

Table 1: SQL style rules classification, regarding their intent also origin and scope of

use.

This rule tends to be violated by new developers who don’t adhere to the coding

conventions of the organization of corporation they work for. The violation could lead

to frustration when a developer who writes scripts suddenly finds out the half of the

columns are in lower case with underscores and the other half is camelCase.

To check for adherence to this rule in the tool we consider six different cases that are

commonly used in practice, namely, upper case, lower case, upper case with

underscore, lower case with underscore, PascalCase, and camelCase. For a given

schema (respectively table), we identify the type of case that is followed by each table

(respectively column). Then, we find the maximum number of tables (columns) that

Rule Type Lineage Tables Columns Acronym

Use universal type of case Style of writing Authors UTC

Always start with letter Style of writing Celko SWL

Always end with letter or number Style of writing Celko EWL

Avoid camelCase Style of writing Celko ACC

Avoid consecutive underscores Style of writing Celko ACU

Avoid using spaces Style of writing Celko AUS

Avoid special characters Style of writing Celko ASC

Avoid using delimiters Style of writing Celko AUD

Start with capital Style of writing Celko SWC

Avoid concatenation of table names Methodological Celko ACN

Use standardized postfix Methodological Celko USP

Avoid “id” as identifier Methodological Celko AII

Avoid defining name by place Methodological Celko NBP

Use different name for columns Methodological Celko DNC

Use proper length SQL Celko UPL

Avoid reserved words SQL Celko ARW

Use more words Lexicological Authors UMW

Columns in singular Lexicological Celko CIS

Tables in plural Lexicological Celko TIP

Avoid using verbs Lexicological R. Martin AUV

28

follow the same type of case. Ideally, this number should be equal to the total number

of tables (columns) that constitute the given schema (respectively tables).

Always start with a letter (SWL), Origin : Celko

The name of an SQL element should begin with a letter, this is the norm in real life why

this should not be the case the code?

Always end with letter or number (EWL), Origin : Celko

The name of an SQL element should end with a letter of a number. Using other

characters can create confusion, for example if we use underscore we could think that

something is missing, especially if the universal type of case contains underscores. If

we use something other than an underscore, one could easily think of it as typing error

inserted from the developer by mistake.

Avoid camelCase (ACC), Origin : Celko

Celko recommends avoiding camelCase, both in table and column names. camelCase

tends to disrupt the flow or reading by forcing the eye to focus on case changes, instead

of focusing on whole words. Moreover as ACC conflicts with another rule (SWC) that

demands table names should start with capital letters.

Avoid consecutive underscores (ACU), Origin : Celko

Consecutive underscores have little to no use in naming and even less appealingness to

the eye. Celko gives a real world problem with them; if a developer was to review a

printed version of a schema he would face the difficulty of reading names with

consecutive underscores because underscores are hard to be counted in a printed

version.

29

Avoid special characters (ASC), Origin : Celko

Several DBMSs do not allow special characters like $, #, or @. This means that the use

of special characters in SQL element names can potentially lead to compatibility errors.

Standard

SQL
IBM Oracle Microsoft

First

Character
Letter

Letter,

$#@
Letter

Letter,

#@

Later

Characters

Letter,

Digit, _

Letter,

Digit,

$#@_

Letter,

Digit, $#)

Letter,

Digit,

#@_

Case

Sensitive?
No No

Nonquoted

identifier
Optional

Term

Ordinary

identifier

Nonquoted

identifier

Regular

identifier

Figure 2: Supported special characters and information about the characters use in

various DBMS.

Avoid using spaces (AUS), Origin : Celko

Developers are not used to read names with spaces, so why use them? Also spaces will

make scripts more prone to SQL syntax errors, like in the example below, taken from

Celko’s book where the first statement is correct and the second generated by ADO

[30] is wrong.

 INSERT INTO Table ([field with space]) VALUES (value);

 INSERT INTO Table (field with space) VALUES (value);

So we could have compatibility errors like with special characters.

Avoid using delimiters (AUD), Origin : Celko

The use of delimiters in SQL elements names should be avoided. The main reason for

using delimiters in SQL is case sensitivity and compatibility. Case sensitivity rules vary

30

from product to product. As stated in the Oracle Database SQL Language Reference9

non quoted identifiers are not case sensitive. Oracle interprets them as uppercase.

Quoted identifiers are case sensitive. This means that by enclosing strings inside

delimiters we can create different names for example:

"employees"

"Employees"

"EMPLOYEES"

Every one of the above words is a different name in Oracle’s SQL. In the contrary, the

names below are the same:

employees

EMPLOYEES

"EMPLOYEES"

According to MSSQL10, delimiters should be used for two reasons:

i. When reserved words are used for object names or parts of object names.

ii. When you are using characters that are not listed as qualified identifiers.

IBM11 also limits the use of delimiters in the use of reserved words or when character

does not qualify as an ordinary identifier.

Concluding, the usage and meaning of identifiers varies with the underlying system

such variance impairs migration capabilities, thus identifiers should be avoided.

9 https://docs.oracle.com/cd/A97630_01/server.920/a96540/sql_elements9a.htm

10 https://docs.microsoft.com/en-us/sql/?view=sql-server-2017.

11 https://www.ibm.com/support/knowledgecenter/en/ssw_ibm_i_72/db2/rbafzintro.htm

31

Start with capital (SWC), Origin : Celko

The names of composite schema elements like tables, views and procedures should be

capitalized. Capitalization is used to start a sentence in most of the languages So its

already a globally used practice to separate different contexts. Reading scripts is in a

way the same as reading sentences, we search for different contexts, we might as well

use a practice to help us separate them. Celko outlines an exception, when a name

naturally begins with lowercase.

Avoid concatenation of table names (ACN), Origin : Celko

Concatenation is typically used when a developer wants to show a relationship between

tables. Since databases tend to have many relationships this practice could create a lot

of tables having a part of their name common. From our own experience, names would

also be getting longer thus one should either create name with length bigger that thirty

characters or induce acronyms. Acronyms would make the database harder to read and

would increase the learning curve of the database for a new developer on the project.

As a last note, a relationship based name between two tables is always suggested, but

in the case where we need to invent one, for example by using acronyms, we better use

name concatenation.

Use standardized postfix (USP), Origin : Celko

Many corporations or organisms use standardized postfixes. For instance, a postfix

could be “_id” referring to a key of a table or “_cat” where cat stands for category. In

the aforementioned example the meaning of “_cat” is not obvious. However, this is not

really a problem, as long as the used postfix has conceptual relationship inside the

database. Generally. the purpose behind the using uniform postfixes is mapping entities

of the outside world with objects inside the database.

To check the adherence to this rule in Dbsea we employ a list of standard, widely used

postfixes. Then, we check whether these postfixes are used as parts of the names that

are used in a given schema.

32

Avoid “id” as identifier (AII), Origin : Celko

This rule is a well-known, popular sin among developers. Usually it is found in

databases where the primary key is an auto-increment integer. Using “id” as the primary

key makes this rule conceptual as defined in the Overview, everyone can easily

understand that a column with this name concerns a primary key. Unfortunately using

id in such manner conveys two problems.

The first problem is the vagueness. “id” is a means of identification, and that’s exactly

the limitation, there is no context at all, using only “a means” lacks context.

The second problem is that if “id” is used in a conceptual revealing manner, this means

setting all, or the at least the majority of primary keys in the database as “id”, we would

end up having a great number of queries with statements like the one below :

Transactions.ID = TransactionId. When primary keys are named as ID and foreign keys

are created through the concatenation of the table’ name, where the primary key exists,

and the word “id” as Celko humorously pointed “it quickly becomes a game of looking

for the period”.

Avoid defining name by place (NBP), Origin : Celko

Imagine changing your car’s plate while travelling from town to town. This would

change your car’s identity and thus is forbidden by law. An SQL element doesn’t really

differ from the car and plate paradigm. Its name should be based on its identity, not the

place where it is found, otherwise one may end up having different names for the same

element even if this element is a structural component of a database. The validity of this

rule is easy to be seen in the following simple example where in the first query the rule

is violated. There is a vehicle plate in both TRAFFIC_LAW_INFRINGEMENTS and

CARS tables, but in the first one the plate is named as

TRAFFIC_LAW_INFRINGEMENTS_PLATE and in the second as CARS_PLATE they

should both be named as PLATE:

33

It is quite common for this violation to occur when COBOL naming logic is used. The

COBOL naming logic dictates that the name of the fields should have the name of the

file in which they exist as a prefix in their name, so when a migration takes place with

minimum effort, old entities are mapped in the new system in the exact way they were

in old system.

Another reason is that developers have habits [19] they tend to use throughout their

carrier.

To assess the adherence to this rule in the tool we check if the name of a particular table

is used as prefix in the names of the table's column names.

Use different name for columns (DNC), Origin : Celko

Although in it is possible to create column names that are same as the table names, this

is not considered a good practice.

Firstly, this practice violates other rules discussed in the following like

SELECT TRAFFIC_LAW_INFRINGEMENTS.OWNER

FROM TRAFFIC_LAW_INFRINGEMENTS

INNER JOIN CARS ON

TRAFFIC_LAW_INFRINGEMENTS.TRAFFIC_LAW_INFRINGEMENTS_PLATE =

CARS.CARS_PLATE

SELECT TRAFFIC_LAW_INFRINGEMENTS.OWNER

FROM TRAFFIC_LAW_INFRINGEMENTS

INNER JOIN CARS ON TRAFFIC_LAW_INFRINGEMENTS.PLATE = CARS.PLATE

SQL Snippet 1: In the first select statement we do not use the Name defined

by place rule, the second select much easier to read.

34

Columns should be in singular (CIS), Origin : Celko. Secondly by doing so we ought

to think if a table represents a collection or if a column represents a single characteristic.

Use proper length (UPL), Origin : Celko

The SQL-92 standards define a maximum identifier length of 18 characters. More

modern DBMSs allow for more than 30. The problem lies in complexity; Celko states

that “if you cannot say it in 18 characters, then you have a problem”. The statement

might be an exaggeration but it still holds value. It’s to our best interest to not exhaust

or abuse the features new technologies have to offer, and keep the identifiers simple

[19].

We consider a violation of this rule occurring when the length of a name is greater than

30 characters.

Avoid reserved words (ARW), Origin : Celko

Reserved words are a list of terms that have some special meaning in SQL. If used in

the context of the DBMS, they tend to convey their meaning in a straightforward

manner. On the contrary, if they are found in a table definition as column names

chances are that these names would be vague and vagueness should be avoided

For example if we were to use LANGUAGE (reserved word) as a column name inside

two different tables, where in the first one we would refer to the user language and in

the second to the program’s language wouldn’t we create confusion?

Usually confusion leads to errors. The use of reserved words as names should be

avoided.

Use more words (UMW), Origin : Authors

often, in our everyday life we use acronyms for well-known entities like a big

corporation or inside our close social circle for easiness of communication. Likely, in

the case of an SQL schema, used in the context of a real-world project this is not always

35

the case; developers may come and go and the well-known entities usually have, or at

least should, distinct names. We believe that by using distinct, simple names, we can

avoid inducing acronyms to our SQL schema. Acronyms need translation, words don’t.

To assess the adherence to this rule, we divide a name into parts, based on the type of

case it assumes. Then, we check whether these parts correspond to actual words

(specifically, nouns, adverbs and adjectives) based on WordNet 12 , a large lexical

database. Nouns, adjectives and adverbs are grouped into sets of cognitive synonyms

(synsets), each expressing a distinct concept. Synsets are interlinked by means of

conceptual-semantic and lexical relations. The resulting network of meaningfully

related words and concepts can be navigated like a graph. WordNet enables us to

determine if a string is an actual English word; this is not an out of the box feature, to

induce such functionality we used two widely known libraries

[https://nlp.stanford.edu/software/[edu.smu.tspell.wordnet].

Columns should be in singular (CIS), Origin : Celko

Celko in his description of ISO-11179-4 for scalar elements states that their name

should be in singular. Tables, by nature are collections, while columns specify

properties that are common, to all members of the collection. Thus it is better to define

a property with a singular noun and not using any word in plural at all.

To check for this rule, we employ respective functionalities of the WordNet libraries

that allow us to determine if a particular word is in singular.

12 https://wordnet.princeton.edu/

36

Tables should be in plural (TIP), Origin : Celko

Just like the columns should be in singular, ISO-11179-4 states that tables should be in

plural and plural only. Celko states that for this rule there is an exception, tables

consisting of only one record.

Evaluating this rule involves corresponding functionalities of the WordNet libraries that

allow us to determine if a particular word is in plural.

Avoid using verbs (AUV), Origin : R. Martin

Both Celko and Martin suggest the use of verbs in method names because verbs are

intention revealing. A scalar element or a table should not be able to act; we have

procedures, functions and queries in general for this exact reason so why would end up

with names containing words describing an action?

The evaluation of this rule is based on the same part-of speech identification

functionalities of the WordNet libraries that we employed in the case of UMW.

3.3 SQL Style Checking, Approach and Datasets

In the Levels of Analysis we explain our approach on researching the SQL style

subject, the two levels of analyses, as mentioned above. In the next subsection,

Examined Schemata, we present the schemata used to conduct our research. There are

three main type of projects in which the schemata belong, the first is scientific, the

second is medical and the third one is content management systems.

37

3.4 Levels of Analysis

Schema Level Analysis

In Schema Level Analysis (SLA) we conduct a gross-grained SQL style analysis in the

examined schemas, without drilling into the individual tables or columns of the

different schema versions and their evolution. So, in this level we see the

tables/columns of a schema as a whole and we count the ones that follow each rule.

Moreover, we focus on high-level statistical measures like the mean, median, standard

deviation of the number of tables or columns that follow each rule divided by the

respected total sum of tables/columns in a schema. We further consider possible

correlations between the number of objects that follow the rules with the size of the

schema.

To characterize the extent of use of the rules in a given schema, we introduce the SRAD

metric which stands for Schema Rule Adherence Degree.

SRAD for each rule concerning the table names in a schema is:

𝑆𝑅𝐴𝐷 =
#table names of the schema that follow a rule

#table names in the schema

For the table names of a schema when used in a figure, or chart, SRAD might also be

referred as Tables_SRAD.

SRAD for each rule concerning the column names is:

𝑆𝑅𝐴𝐷 =
#column names of the schema that follow a rule

#column names in the schema

SRAD for the table names of a schema when used in a figure, or chart might also be

referred as Columns_SRAD.

38

To facilitate SLA, Dbsea creates a csv file where in the vertical dimension we have the

revisions and in the horizontal dimension we give the percentage of use for each rule.

Next, we present a simple example. The script that is given in SQL Snippet 2, the script

is from a particular version of one of the Examined Schemata .The script is only a

fraction of the schema.

We focus on three rules for table names, (UTC, SWC, TIP), the format of results for

these rules, as generated in the csv file, is depicted in Table 3.

In this example we see 2 tables. All of them follow the Universal type of case rule, so

the value of the respective column is 100%. There is no table starting with a capital

letter and none of the tables contains nouns in plural. Hence, the values of the respective

columns are 0%.

Table 2: The results of SLA for SQL Snippet 2.

Total tables UTC SWC TIP

2 100% 0% 0%

CREATE TABLE l1_trigger_type (

 l1tty_id NUMBER(10)NOT NULL,

 …

 CONSTRAINT l1tty_nmver UNIQUE (l1tty_name, l1tty_version)

);

CREATE TABLE l1_muctpi_info (

 l1mi_id NUMBER(10) NOT NULL,

 …

 l1mi_used CHAR NOT NULL,

 CONSTRAINT muctpi_pk PRIMARY KEY (l1mi_id),

 CONSTRAINT muctpi_nmver UNIQUE (l1mi_name, l1mi_version)

);

SQL Snippet 2: A snapshot taken from the Atlas case study.

39

Table Level Analysis

In Table Level of Analysis (TLA) we perform a fine-grained SQL style analysis in the

examined schemas. In each version, we check each table on its own. Specifically, we

examine each schema element (i.e., tables or columns, depending on the scope of the

rule), checking its adherence to each one of the rules that we consider. In the case of

tables we assess whether a table rule is followed or not in a zero or one fashion. In the

case of columns we measure the number of table columns that follow a rule and divide

this number with the total number of columns of this table. To facilitate TLA, Dbsea

creates a CSV file where in the vertical dimension for each version we have its tables

(or the sum of the columns of a table) and in the horizontal the value that measures the

satisfaction level of rule.

To characterize the extent of use of the rules we introduce the TRAD metric which

stands for Table Rule Adherence Degree.

TRAD describes the adherence of a rule for a table name or for the column names of a

table. More precisely:

TRAD for a table name:

𝑇𝑅𝐴𝐷 = {
1, 𝑟𝑢𝑙𝑒 𝑖𝑠 𝑎𝑑ℎ𝑒𝑟𝑒𝑑
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

For the column names of a table:

𝑇𝑅𝐴𝐷 =
#column names of the table that follow the rule

#column names in table

Getting back to the example of Atlas, in TLA lets check if the schema tables follow the

following rules: Always begin with letter, Avoid concatenation of table names and Use

proper length. Table 3 gives the results, as generated in the csv file. In the first column

we see the tables. Both columns start with letter, none of them has the name of the table

they exist concatenated and both have proper length. In the next columns we see that

40

both tables begin with a letter. Their names are not concatenations of other table names.

Finally, the length of the table names is appropriate.

Columns SWL ACN UPL

l1_trigger_type 1 0 1

l1_muctpi_info 1 0 1

Table 3: The results of TLA for SQL Snippet 2.

3.5 Examined Schemata

In this section we give a brief description for every dataset used in our study. The

collection of the datasets that we consider in the study was done by Athanasios

Pappas13.

In the collection there are three types of projects; scientific, medical and Content

Management Systems. In detail, we have five scientific projects from CERN, two

medical projects and eleven CMS projects. For more information about the datasets

please refer to thebibliography.

In Table 4 we provide basic information about the schemata of our case study.

Scientific projects:

1. ATLAS14: is a particle physics experiment at the Large Hadron Collider at

CERN.

13 https://github.com/DAINTINESS-Group/EvolutionDatasets

14 https://atlas.cern/

41

2. CASTOR15: is a hierarchical storage management system which was developed

at CERN for archiving physics data.

3. SRM2: a client system for CASTOR.

4. DQ216: a data management system for atlas.

Table 4: General information about the schemata.

5. EGEE17: is a series of efforts to provide access to high-throughput computing

resources across Europe using grid computing techniques.

Medical projects:

15 http://castor.web.cern.ch

16 https://www-zeuthen.desy.de/technisches_seminar/texte/dq2.pdf

17 http://information-technology.web.cern.ch/about/projects/eu/egee-iii

Schema #Revisions #Tables at birth #Tables at LKV #Columns at birth #Columns at LKV

Atlas 84 73 56 709 857

SRM2 58 11 11 54 84

CASTOR2 192 62 74 632 838

DQ2MySQL 54 10 26 116 184

EGEEMySQL 16 6 9 34 63

Coppermine 117 8 22 85 169

e107 17 33 34 261 274

Joomla 1,5 45 35 36 307 321

NucleusCMS 4 20 20 110 112

phpBB 133 61 65 613 565

phpwiki 21 10 10 33 49

SlashCode 398 42 87 259 610

TikiWiki 153 207 215 1528 1628

Typo3 98 10 23 122 421

DekiWiki 16 28 40 204 315

wikimedia 322 17 50 100 318

Zabbix Oracle 27 47 48 312 313

OpenCart 165 48 114 74 230

XOOPS 7 31 32 297 129

Medbiosql 47 21 28 227 731

Ensembl 528 19 75 82 486

42

1. Ensembl18: is a project that produces genome databases for vertebrates and other

eukaryotic species.

2. BioSQL19: is a joint effort between the OBF projects (BioPerl, BioJava etc), to

support a shared database schema for storing sequence data.

Content Management Systems:

1. Typo320: is an enterprise CMS for managing any kind of digital content.

2. PhpBB21: is an Internet forum package written in PHP.

3. PhpWiki 22 : is a WikiWeb clone in PHP that supports multiple storage

backends, dynamic hyperlinking, and more.

4. Slashcode23: is the site for All Things Slash.

5. ZABBIX24: is an enterprise-class open source distributed monitoring solution

that provides information about numerous parameters of a network and the

health and integrity of a server.

6. e10725: is a website system written in PHP and MySQL for the creation of

dynamic sites providing a flexible admin area.

7. Coppermine26: is a photo gallery with a MySQL database, some of its features

are user management, private galleries and automatic thumbnail creation.

8. DekiWiki27: is a popular commercially supported wiki platform for creating

content and mashups using a wiki interface.

9. Nucleus28: is a simple CMS based on PHP and JavaScript.

18 https://www.ensembl.org/index.html]

19 http://biosql.org

20 https://typo3.com

21 https://www.phpbb.com

22 https://sourceforge.net/projects/phpwiki

23 http://www.slashcode.com/www.slashcode.com/about.shtml

24 https://www.zabbix.com

25 https://github.com/e107inc/e107

26 http://coppermine-gallery.net

27 https://www.osalt.com/mindtouch

28 https://sourceforge.net/projects/nucleuscms

43

10. OpenCart29: is an ecommerce platform for online merchants.

11. TikiWiki30: is a powerful Content Management System (CMS).

12. XOOPS31: is a web application platform in PHP and MySQL for developing

small or large community websites.

13. MediaWiki32: is a wiki software package written in PHP that serves as the

platform for Wikipedia and the other Wikimedia projects.

14. Joomla! 1.533: is a content management system (CMS) for publishing web

content.

29 https://github.com/opencart/opencart

30 https://tiki.org/tiki-index.php

31 https://xoops.org

32 https://github.com/wikimedia/mediawiki

33 https://github.com/joomla/joomla-cms

44

CHAPTER 4

EXPERIMENTAL STUDY: STATUS QUO OF SQL STYLE

AND A DOSE OF IDEALISM

4.1 Do People Care About SQL Style Rules?

4.2 Does The Adherence To Sql Style Rules Evolve Over Time?

4.3 What are the Evolution Patterns of Sql Style Rules?

4.6 Which are the Adherence/Violation Patterns of SQL Style Rules?

4.7 Which SQL Style(s) is(are) Actually Followed in Practice?

4.8 Threats to Validity

4.1 Do People Care About SQL Style Rules?

Coding conventions are important in the case of conventional software, as evidenced in

the related research and practice. Developers typically follow specific coding styles and

standard coding conventions, at least those who care. The issue is what happens in the

case of SQL, where the lack of related research and empirical studies is profound. To

answer the initial question of this thesis, we checked if the rules that we defined in

section SQL Style Rules, are followed by the schemata that we consider in our study.

To come up with a quick answer to the question we calculate the average values and

the standard deviation of the rules SRAD for tables and columns, based on all the

datasets of our case study. The respective results are given in.

45

So, in Table 5 we observe for most of the table rules high average SRAD values that

range from 95% to 100%, with medium-low standard deviations, ranging from 0% to

22%. Only four rules (i.e., SWC, TIP, UMW, ACN) have lower average SRAD values

that range from 15% to 70%. In Table 7, we observe a similar situation for the column

rules. Most of the column rules come with high average SRAD values that range from

93% to 100%, with medium-low standard deviations, ranging from 0% to 13%. Only

four rules (i.e., USP, AUV, UMW, CIS) have lower average SRAD values that range

from 28% to 65%.

Table 6: Average and

standard deviation of the

last known versions of the

schemata for each one of

the column rules SRAD.

Overall, we have a first sign that people do care about SQL style rules to a certain

extent. To get a more detailed view of what happens in our case studies we further

calculate for each schema the percentage of rules followed by all of the schema elements

(tables/columns) and the percentage of rules that are not followed by any element.

Average

SRAD

STD of

SRAD

UTC 94% 14%

UPL 100% 0%

SWL 100% 0%

EWL 100% 0%

UMW 59% 21%

USP 28% 14%

CIS 65% 23%

ACC 93% 18%

ARW 100% 0%

ACU 100% 0%

AUS 100% 0%

ASC 100% 0%

AUD 100% 0%

AUV 51% 18%

AII 98% 4%

ACN 100% 0%

NBP 93% 16%

Average

SRAD

STD of

SRAD

UTC 99% 3%

UPL 98% 6%

SWL 95% 22%

EWL 100% 0%

UMW 56% 24%

TIP 17% 19%

SWC 15% 36%

ACC 100% 0%

ARW 100% 0%

ACU 95% 22%

AUS 100% 0%

ASC 100% 0%

AUD 100% 0%

AUV 100% 0%

ACN 70% 21%

Table 5: Average and standard

deviation of the last known

versions of the schemata for each

one of the table rules SRAD.

46

Moreover, we look at the percentage of rules followed by at least some of the schema

elements and the percentage of rules that are not followed by some elements. In detail,

we focus on the LKV of each schema. For the table rules we provide a bar chart that

gives:

 the percentage of rules followed by all tables (i.e. SRAD = 100%),

 the percentage of rules not followed by any tables (i.e. the percentage of rules

for which SRAD = 0%),

 the percentage of rules followed by some tables (i.e. the percentage of rules for

which SRAD > 0%),

 the percentage of rules not followed by some tables (i.e. the percentage of rules

for which SRAD < 100%).

Similarly, for the column rules we provide a bar chart that gives:

 the percentage of rules followed by all columns (i.e. the percentage of rules for

which SRAD = 100%),

 the percentage of rules not followed by any column (i.e. the percentage of rules

for which SRAD = 0%),

 the percentage of rules followed by some columns (i.e. the percentage of rules

for which SRAD > 0%),

 the percentage of rules not followed by some columns (i.e. the percentage of

rules for which SRAD < 100%).

To dive into further details, for each schema we also provide bar charts that show what

happens with each table. In particular, for the table rules we provide a bar chart that

gives for each table the percentage of rules that are followed by the table (i.e. the

percentage of rules for which TRAD = 1) and the percentage of rules that are not

followed by the table (i.e. the percentage of rules for which TRAD = 0). Similarly for

the column rules we provide a bar chart that gives for each table the percentage of rules

followed by all columns (i.e. the percentage of rules for which TRAD = 100%), the

percentage of rules not followed by any column (i.e. the percentage of rules for which

TRAD = 0%), the percentage of rules followed by some columns (i.e. the percentage

of rules for which TRAD > 0%), the percentage of rules not followed by some columns

(i.e. the percentage of rules for which TRAD < 100%).

47

The respective results for SRAD are given in Figure 3 and Figure 4. The figures group

the results of the different cases studies alphabetically. Similarly, the results for

TRAD are illustrated in pages 86 and 88 in

Appendix A

Concerning the detailed results, in all schemas we observe the following schema-level

adherence pattern:

Tables:

 The percentage of rules that hold at least for some tables is high, ranging from

80% to 100%.

 The percentage of rules that are violated by some tables is medium, varying

from 13% to 40%.

 The percentage of rules that hold at least for some tables is always higher than

the percentage of rules that are not followed by some tables.

 The percentage of rules that hold for all tables is medium high, varying from

60% to 87%.

 The percentage of rules that do not hold for any table is low, ranging from 0%

to 20%.

 The percentage of rules that hold for all tables is always higher than the

percentage of rules that do not hold for any table.

Columns:

 All rules hold at least for some columns is 100% in all the schemata.

 The percentage of rules that hold for all columns is medium high, varying from

59% to 76%.

 The percentage of rules that do not hold for some columns is low medium,

ranging from 24% to 41%.

Jointly:

 The percentage of rules that do not hold for any table is always higher than

the respective percentage for columns in a schema.

 The percentage of rules adhered by all the tables is usually lower than the

respective percentage for columns.

48

Figure 3: Percentages representing the number of table rules in each schema that have

SRAD > 0%, SRAD = 0%, SRAD = 100% and SRAD < 100% respectively.

Figure 4: Percentages representing the number of column rules in each schema that

have SRAD > 0%, SRAD = 0%, SRAD = 100% and SRAD < 100% respectively.

49

50

4.2 Does The Adherence To Sql Style Rules Evolve Over Time?

In RQ1 we used the LKV of each schema to assess whether the examined schemata

adhere to SQL style rules. In our second research question we start from the birth of a

schema and move towards the LKV; we analyze the history of the schema to find out

which rules evolve. To this end, we use typical statistic measures (i.e., average, median,

mode, standard deviation, min, max and skewness) to describe the distribution of

SRAD for each rule in the history of the schema.

For each schema we further provide a line chart. Specifically, each line in the chart

corresponds to a rule whose SRAD changes over the history of the schema versions;

the x-axis of the chart depicts the history of the schema versions in terms of version

IDs, while the y-axis depicts the value of SRAD for the particular rule. The line charts

are depicted in Figure 5 and Figure 6. Lastly we use the Kendall correlations provided

between the rules’ SRAD and the size of a schema, provided by DBsea. We find and

identify the significance of correlation between the rules’ SRAD fluctuation across the

history of a schema and it’s changes in size (i.e. number of tables or columns in a given

revision). For each type of SQL element we divide the values of correlations in two

categories the positive and negative, each category is further divided in three based on

the range of the correlation values. The three buckets refer to:

1. low correlation

a. positive: (0%, 30%]

b. negative: [-30%, 0%]

2. medium correlation

a. positive: (30%, 60%]

b. negative: [-60%, -30%)

3. high correlation

a. positive: (60%, 100%]

b. negative: [-100%, -60%]

The results are shown in Figure 8.

As a summary of our results, in Table 7 and

51

Table 8 we provide for each rule the maximum evolution range of SRAD (i.e., the

difference between the maximum and the minimum SRAD as an absolute value) across

the examined schemas.

Overall, the typical schema-level adherence evolution pattern that we observe in all

schemas and across the different levels of detailed results is summarized below:

 Table and column rules do evolve during the life of a schema (see Figure 5 and

Figure 6) .

 However, only some rules change (see Table 9) with the number of rules that

change in the examined schemas varying from zero to seven for tables and zero

to eight for columns.

Typically the rules that change the most are lexicological and methodological,

followed by the writing style rules. The range of the changes of SRAD may vary

a lot depending on the schemas, the rules, and the schema elements involved. In

the case of table rules for instance the maximum range of SRAD varies from an

astonishing 91% for ACN to a minor 3% for SWL (Table 3 left). Moreover, in

the case of columns the maximum range of SRAD varies from 41% for USP a

minor 1% (Table 3 right).

 If a rule changes significantly (>10%), the biggest portion of rule’s SRAD

fluctuation will occur in a minor fraction of the schema’s history.

The most interesting line charts for tables are from the schemata Coppermine, SRM2,

Typo3, DQ2 and Ensembl. Coppermine managed in less than ten consecutive revisions

to increase TIP’s SRAD by 40%. SRM2 in less than five revisions increased ACN’s

SRAD by 70%. OpenCart decreased in only one revision its UMW’s SRAD by 35%

and kept it this way with minor fluctuations until the LKV. Typo3 in got ACN’s SRAD

decreased by 20% in less than ten revisions and in the next ten it decreased by 20%.

The same phenomenon with Typo3 was found in DQ2 for ACN’s SRAD, but in even

smaller number of revisions, less than 3 revisions in decreased by 40% and in the next

three increased by 30%. The most lively schema, based on the number of rules having

their SRAD fluctuating and the multitude of SRAD is Ensembl which also is has the

longest history (>500 schemata). Ensembl has an interesting fluctuation of UTC’s

52

SRAD falling from a full adherence to about 80% and after fifty revisions returning

back to 100% SRAD.

The most interesting line charts for columns are from BioSQL, DQ2, EGEE, Phpwiki,

SRM2 and Wikimedia. In BioSQL the SRADs of UMW, USP and NBP change by 10%

in less than five consecutive revisions. In DQ2 in less than five revisions there are

significant changes for five rules, AUV decreases by 15% and then increases by about

15%, UMW and CIS increase by 20% and then decrease by approximately 15%. EGEE

in less than two revisions has its AUV’s SRAD increased by 10%, CIS’s, USP’s and

UMW’s SRAD decreased by approximately 8%. In the case of Phpwiki in less than

three revisions CIS’s and UMW's increase by 25% and AUV’s decreases by 20%.

SRM2 in less than five versions has the SRADs of AUV increased by 20%, CIS’s and

UTC’s by 10%, while its ACC’s decreased by 10%. Lastly wikimedia in less than two

revisions has the SRAD of AUV decreased by 15% and NBP’s increased by 10%.

We focus specifically on the UTC of each schema, because the SRAD of UTC is based

on the most popular type of case in a schema it hides changes in the actual type of case

used by the schema. Our argument is more clear through an extreme example; if we a

schema was using uppercase with underscores in all of its names UTC’s SRAD would

be 100%, if the type of case was to change in the next revision in all of the names to

PascalCase the SRAD would still be 100%. We explored the possibility of significant

changes in the primary type of case with four charts (see Figure 6), two describing the

change in the UTC for each schema (one for tables, one for columns for SLA) between

the last and the first version and two charts describing the change in the used type of

case for each schema respectively.

Interestingly, UTC changes through the variance type of cases usage. For example in

SRM2, columns use three different type of cases, the usage for two those decreased by

6% and 2% while for the third increased by 7% (see Figure 4) the UTC’s SRAD

increased by 8%. Tables on the other hand have a more stable UTC and the different

type of cases used in a schema are less.

53

Tables rules correlation with size

For tables the positive correlation is fairly low both in terms of number of schemata

having positive correlation and in correlation’s value. For UTC we there is a schema

with low and one with medium correlation from the twenty one of the case study. TIP

and SWC both have two schemata with low correlations. ACC has two low correlated

schemata and one with medium and lastly ACN has two medium correlations. Overall

it seems that table rules adherence is not correlated positively with the schema’s size.

On the contrary, we observe some degree of negative correlation for a few rules. More

specifically TIP and ACN are medium or highly correlated with the schema size. For

TIP’s SRAD there are four schemas highly and three medium correlated. For ACN the

are seven with medium and five with high. Concluding, from the eight rules found

having correlation with the table size of the schemata, six of them had insignificant

positive or negative correlation and two of them had medium to strong negative

correlation.

Columns rules correlation with size

Columns have greater correlation than tables and in more rules. The rules that had

significant positive correlation where UTC, UMW, USP, CIS, AII and NBP. More

specifically, for UTC the positive correlation has two weak, four medium and one high

when the number of schemata where changes exist are eight, UMW has four high, one

medium and five minor in the eighteen datasets where changes of SRAD occur. USP in

a total of eighteen datasets has eight minor, three medium and two strong while AII in

a total of eight datasets has four of them highly correlated and one medium correlated.

Lastly NBP from a total of ten datasets with SRAD changes, has four of them being

highly correlated, one medium and two low. The verdict is that column rules have, in

some cases, strong correlations especially for style of writing, lexicological and

methodological rules, leaving out the SQL specifics.

In the negative correlations there are two rules being strongly correlated with size, CIS

and AUV. For CIS there are four low, three medium and four highly correlated

54

schemata and in AUV there are three with low, five with medium and seven with high

correlation.

SRADs’ distribution description during evolution

In Table 11 and Table 12 we show two descriptions for each of the SQL elements. For

tables we used Ensembl and OpenCart, for columns Wikimedia and Typo3. It should

be noted that these table are representative for all the schemata. We observe for all the

rules the lack of skewness when we have standard deviation or some skewness when

there is not important standard deviations (e.g. UPL in Wikimedia). Standard deviation

is below 10% and usually the average, median and mode have very similar values.

Interestingly we observe in the case where minimum and maximum values of SRAD

for a given rule have a significant difference, mode is usually closer to the maximum

value.

55

U U S U T S A A

T P W M I W C C

C L L W P C C N

ATLAS 14% 0% 0% 14% 5% 14% 0% 12%

CASTOR2 10% 0% 0% 21% 8% 10% 10% 38%

SRM2 0% 0% 0% 27% 0% 0% 0% 91%

DQ2MySQL 0% 0% 0% 7% 0% 0% 0% 61%

EGEEMySQL 0% 0% 0% 11% 0% 0% 0% 25%

Coppermine 0% 0% 0% 10% 43% 0% 0% 0%

Zabbix 0% 0% 0% 1% 2% 0% 0% 3%

DekiWiki 0% 0% 0% 11% 6% 0% 0% 4%

e107 0% 0% 0% 1% 0% 0% 0% 0%

Nucleus 0% 0% 0% 0% 0% 0% 0% 0%

OpenCart 0% 6% 0% 36% 0% 0% 0% 21%

phpBB 0% 0% 0% 5% 2% 0% 0% 8%

phpwiki 0% 0% 0% 10% 0% 0% 0% 0%

SlashCode 0% 0% 0% 18% 16% 0% 0% 13%

TikiWiki 0% 0% 0% 1% 1% 0% 0% 3%

wikimedia 3% 3% 3% 17% 9% 0% 0% 22%

Typo3 0% 6% 0% 27% 28% 0% 0% 30%

XOOPS 0% 0% 0% 2% 0% 0% 0% 2%

Joomla 1,5 0% 0% 0% 0% 1% 0% 0% 3%

biosql 0% 0% 0% 17% 5% 0% 0% 35%

Ensembl 19% 3% 0% 26% 5% 3% 15% 35%

Maximum

range
19% 6% 3% 36% 43% 14% 15% 91%

Table 7: Table’s SRAD ranges through the evolution of each schema, rules with zero

range in all of the schemata are missing; SRAD range varies greatly based on the rule

or the schema.

56

U U E U U C A A A D N

T P W M S I C U I N B

C L L W P S C V I C P

ATLAS 0% 0% 0% 4% 6% 6% 0% 6% 0% 0% 0%

CASTOR2 23% 0% 0% 13% 10% 24% 39% 23% 9% 0% 0%

SRM2 12% 0% 0% 10% 4% 10% 12% 20% 8% 0% 4%

DQ2 0% 0% 0% 19% 16% 19% 0% 11% 8% 0% 0%

EGEE 0% 0% 0% 11% 14% 12% 0% 13% 0% 0% 0%

Coppermine 3% 0% 0% 9% 5% 8% 2% 9% 0% 0% 0%

Zabbix 0% 0% 1% 2% 1% 2% 0% 1% 0% 0% 1%

DekiWiki 0% 0% 0% 7% 7% 8% 0% 8% 0% 0% 2%

e107 0% 0% 0% 2% 1% 1% 0% 1% 0% 0% 1%

Nucleus 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

OpenCart 0% 0% 0% 3% 6% 3% 0% 4% 0% 0% 14%

phpBB 0% 0% 0% 4% 6% 1% 0% 1% 0% 0% 0%

phpwiki 0% 0% 0% 13% 7% 19% 0% 18% 4% 1% 11%

SlashCode 2% 0% 0% 7% 9% 8% 2% 9% 2% 0% 0%

TikiWiki 1% 0% 0% 1% 0% 1% 1% 0% 1% 0% 0%

wikimedia 0% 1% 0% 13% 3% 9% 0% 21% 0% 1% 30%

Typo3 6% 0% 0% 8% 7% 13% 4% 5% 1% 0% 0%

XOOPS 0% 0% 0% 0% 1% 0% 0% 1% 0% 0% 1%

Joomla 1.5 0% 0% 0% 1% 1% 2% 0% 2% 0% 0% 0%

Biosql 2% 0% 0% 15% 7% 4% 1% 8% 0% 0% 17%

Ensembl 5% 0% 0% 29% 41% 28% 5% 18% 15% 0% 17%

Maximum

range
23% 1% 1% 29% 41% 28% 39% 23% 15% 1% 30%

Table 8: Column’s SRAD ranges through the evolution of each schema, rules with

zero range in all of the schemata are missing; SRAD range varies greatly based on the

rule or the schema.

57

 #table rules that change
#column rules that

change

ATLAS 5 4

CASTOR2 6 7

SRM2 2 8

DQ2 3 5

EGEE 2 4

Coppermine 2 6

Zabbix 3 6

DekiWiki 3 5

e107 1 5

Nucleus 0 0

OpenCart 3 5

phpBB 3 4

phpwiki 1 7

SlashCode 3 7

TikiWiki 3 5

wikimedia 6 7

Typo3 4 7

XOOPS 2 3

Joomla 1,5 2 4

Biosql 3 7

Ensembl 7 8

Table 9: Number of rules that change in each schema during the evolution.

58

Figure 5: Changes in SRAD for table rules during the evolution of the schemata.

59

Figure 6: Changes in SRAD for column rules during the evolution of the schemata.

60

Figure 7: UTC related information the first two horizontal figures refer to the tables,

the second to columns.

Figure 8: Number of schemata having weak, medium and high correlation, for each rule.

61

Ensembl Skewness Median STD Mode Average Max Min

UTC -2,86 100% 5% 100% 98% 100% 81%

UPL -2 100% 1% 100% 100% 100% 97%

SWL 0 100% 0% 100% 100% 100% 100%

EWL 0 100% 0% 100% 100% 100% 100%

UMW 1,34 63% 5% 63% 64% 83% 57%

TIP 2,72 0% 1% 0% 0% 5% 0%

SWC 2,78 0% 1% 0% 0% 3% 0%

ACC -2,91 100% 3% 100% 99% 100% 85%

ARW 0 100% 0% 100% 100% 100% 100%

ACU 0 100% 0% 100% 100% 100% 100%

AUS 0 100% 0% 100% 100% 100% 100%

ASC 0 100% 0% 100% 100% 100% 100%

AUD 0 100% 0% 100% 100% 100% 100%

AUV 0 100% 0% 100% 100% 100% 100%

ACN 0,29 49% 7% 49% 48% 66% 31%

OpenCart Skewness Median STD Mode Average Max Min

UTC 0 100% 0% 100% 100% 100% 100%

UPL -0,53 98% 1% 99% 98% 100% 94%

SWL 0 100% 0% 100% 100% 100% 100%

EWL 0 100% 0% 100% 100% 100% 100%

UMW 1,62 61% 8% 59% 63% 87% 51%

TIP 0 0% 0% 0% 0% 0% 0%

SWC 0 0% 0% 0% 0% 0% 0%

ACC 0 100% 0% 100% 100% 100% 100%

ARW 0 100% 0% 100% 100% 100% 100%

ACU 0 100% 0% 100% 100% 100% 100%

AUS 0 100% 0% 100% 100% 100% 100%

ASC 0 100% 0% 100% 100% 100% 100%

AUD 0 100% 0% 100% 100% 100% 100%

AUV 0 100% 0% 100% 100% 100% 100%

ACN 1,7 26% 5% 25% 28% 44% 23%

Table 10: Ensembl’s and OpenCart’s statistical description of the rules’ SRAD

distribution during evolution for tables.

62

Typo3 Skewness Median STD Mode Average Max Min

UTC -0,89 95% 1% 95% 94% 96% 90%

UPL 0 100% 0% 100% 100% 100% 100%

SWL 0 100% 0% 100% 100% 100% 100%

EWL 0 100% 0% 100% 100% 100% 100%

UMW 0,14 38% 2% 41% 38% 43% 35%

USP 0,26 30% 2% 30% 30% 34% 27%

CIS 0,96 37% 4% 36% 38% 47% 34%

ACC -0,41 97% 1% 97% 96% 98% 94%

ARW 0 100% 0% 100% 100% 100% 100%

ACU 0 100% 0% 100% 100% 100% 100%

AUS 0 100% 0% 100% 100% 100% 100%

ASC 0 100% 0% 100% 100% 100% 100%

AUD 0 100% 0% 100% 100% 100% 100%

AUV -0,38 60% 2% 61% 59% 61% 56%

AII -1,49 100% 0% 100% 100% 100% 99%

ACN 0 100% 0% 100% 100% 100% 100%

NBP 0 100% 0% 100% 100% 100% 100%

Table 11: Wikimedia’s and Typo3’s statistical description of the rules’ SRAD

distribution during evolution for columns.

wikimedia Skewness Median STD Mode Average Max Min

UTC 0 100% 0% 100% 100% 100% 100%

UPL -4,5 100% 0% 100% 100% 100% 99%

SWL 0 100% 0% 100% 100% 100% 100%

EWL 0 100% 0% 100% 100% 100% 100%

UMW -0,95 51% 3% 53% 51% 55% 42%

USP -0,12 15% 1% 16% 15% 17% 14%

CIS 0,33 78% 2% 78% 78% 83% 74%

ACC 0 100% 0% 100% 100% 100% 100%

ARW 0 100% 0% 100% 100% 100% 100%

ACU 0 100% 0% 100% 100% 100% 100%

AUS 0 100% 0% 100% 100% 100% 100%

ASC 0 100% 0% 100% 100% 100% 100%

AUD 0 100% 0% 100% 100% 100% 100%

AUV 1,77 47% 5% 48% 48% 64% 43%

AII 0 100% 0% 100% 100% 100% 100%

ACN -7,15 100% 0% 100% 100% 100% 99%

NBP -1,57 85% 7% 86% 83% 91% 61%

63

4.3 What are the Evolution Patterns of Sql Style Rules?

According to the schema-level SQL style evolution pattern that we identified in our

second research question, the adherence of a schema to SQL style rules does evolve

overtime. Typically, this happens only for a few SQL style rules, the number of which

ranges from zero to eight. In this section, we investigate the SQL style evolution in

more detail. In particular, the issue is whether the adherence of a schema to SQL style

rules, increase, decrease or remains stable overtime.

To address the aforementioned issue for a particular rule we rely on the following

methodology:

 We introduce the Schema Rule Adherence Evolution Degree (SRAED) that

measures the respective difference between the SRAD in the LKV of the

schema and the SRAD in first known version (FKV) of the schema as follows:

𝑆𝑅𝐴𝐸𝐷 = 𝑆𝑅𝐴𝐷𝐿𝐾𝑉 − 𝑆𝑅𝐴𝐷𝐹𝐾𝑉.

 Then, we consider the following characterizations:

o The schema adherence to the rule is fixed if 0% ≤ 𝑆𝑅𝐴𝐸𝐷 ≤ 1%.

o The schema adherence to the rule is positive if 𝑆𝑅𝐴𝐸𝐷 > 1%.

o The schema adherence to the rule is negative if 𝑆𝑅𝐴𝐸𝐷 < 0%.

Table 12 gives the probability of fixed, positive and negative for table rules, across

the examined schemas. Similarly,

Table 13 gives the probability of fixed, positive and negative for column rules, across

the examined schemas.

64

Table

Rules
Positive Fixed Negative AVG Change STDev

UTC 0,00% 95,24% 4,76% -14% 0%

UPL 0,00% 85,71% 14,29% -11% 14%

SWL 0,00% 100,00% 0,00% 0% 0%

EWL 0,00% 100,00% 0,00% 0% 0%

UMW 33,33% 23,81% 42,86% -10% 9%

TIP 9,52% 61,90% 28,57% -16% 17%

SWC 4,76% 95,24% 0,00% 8% 9%

ACC 0,00% 100,00% 0,00% 0% 0%

ARW 0,00% 100,00% 0,00% 0% 0%

ACU 0,00% 100,00% 0,00% 0% 0%

AUS 0,00% 100,00% 0,00% 0% 0%

ASC 0,00% 100,00% 0,00% 0% 0%

AUD 0,00% 100,00% 0,00% 0% 0%

AUV 0,00% 100,00% 0,00% 0% 0%

ACN 23,81% 23,81% 52,38% -10% 8%

Table 12: Probability of fixed, positive and negative for table rules, across the

examined schemas for table rules. AVG (average) Change and STDev (standard

deviation) describe the distribution of SRAD in schemata with the higher propability

in between of being positive or negative.

Column

Rules
Positive Fixed Negative AVG Change STDev

UTC 14,29% 85,71% 0,00% 3% 3%

UPL 0,00% 100,00% 0,00% 0% 0%

SWL 0,00% 100,00% 0,00% 0% 0%

EWL 0,00% 100,00% 0,00% -3% 2%

UMW 23,81% 52,38% 23,81% 12% 8%

USP 47,62% 38,10% 14,29% 7% 10%

CIS 38,10% 28,57% 33,33% 2% 7%

ACC 9,52% 80,95% 9,52% 2% 2%

ARW 0,00% 100,00% 0,00% 0% 0%

ACU 0,00% 100,00% 0,00% 0% 0%

AUS 0,00% 100,00% 0,00% 0% 0%

ASC 0,00% 100,00% 0,00% 0% 0%

AUD 0,00% 100,00% 0,00% 0% 0%

AUV 14,29% 42,86% 42,86% -5% 7%

AII 19,05% 76,19% 4,76% 7% 5%

DNC 0,00% 100,00% 0,00% 0% 0%

NBP 23,81% 71,43% 9,52% 11% 10%

Table 13: Probability of fixed, positive and negative for table rules, across the

examined schemas for column rules. AVG (average) Change and STDev (standard

deviation) describe the distribution of SRAD in schemata with the higher propability

in between of being positive or negative.

65

Based on the results, for both table and column rules we consider the following rule-

level adherence evolution patterns:

 Fixed adherence evolution pattern: A rule follows this pattern if most likely

SRAED will be fixed (vs being positive or negative), throughout a schema

evolution history.

 Positive adherence evolution pattern: A rule follows this pattern if most likely

SRAED will be positive, throughout a schema evolution history.

 Negative adherence evolution (anti-)pattern: A rule follows this anti-pattern if

most likely SRAED will be negative, throughout a schema evolution history.

Following, we discuss in more detail the case of each rule.

4.4 Table Rules Evolution

Instances of the fixed adherence evolution pattern: ARW, ACU, AUS, ASC, AUD,

AUV, ACC, SWL, and EWL are all strong instances of the fixed adherence evolution

pattern, their SRAED is zero and there are no fluctuations of SRAD during the schema

evolution history.

SWC follows the fixed adherence evolution pattern. In particular, SRAED for SWC is

fixed in all schemas except ATLAS, where its value is positive.

In UTC we observe only a minor tendency to negative adherence evolution, as in 20

schemas SRAED is fixed and in one schema it has a negative value with a decrease of

14%. This indicates that people are aware of the way they name their tables in a schema

and they agree on the type of case they use. Interestingly enough as shown in RQ2 in

Table 7, there are four schemata where UTC changes and only ATLAS, in the last

version has changes from the first version. This indicates that developers try to correct

the type of case with SQL specific refactorings [31].

In UPL, SRAED is negative in three of the examined schemas with an average SRAD

reduction of 11% and a STD of 14%. Adherence to UPL seems to get worse as the

evolution of the schema continues. A possible answer for this anti-pattern could be the

co-occurrence with the ACN violation, since when table names are created through

66

concatenating the names of multiple tables, the name tends to lengthy. Another reason

could be inexperienced developers who not follow the schema specific SQL style or

just the use of plain bad names.

Regarding TIP, SRAED is positive in only two datasets, fixed in thirteen and negative

in six. In the latter six schemas the average SRAD is 16%. Overall, TIP changes in

thirteen datasets, but only eight have different SRAD between FKV and LKV. TIP has

the highest reduction of SRAD, compared to the other table rules and is one of the less

respected rules with an average SRAD of 17% of average SRAD across the datasets.

Instances of the positive adherence evolution pattern: Unfortunately, there is no table

rule that follows the positive adherence evolution pattern.

Instances of the negative adherence evolution anti-pattern: UMW and ACN are

instances of the negative adherence evolution anti-pattern.

In UMW we observe seven schemas with positive SRAED, five fixed and nine schemas

with negative SRAED. The average SRAD reduction is about 10% with an STD of 9%.

UMW is not only an instance of the negative adherence evolution anti-pattern, but also

a common sin among developers since the average SRAD in the LKV is only 56%.

The most definite instance of the negative evolution anti-pattern is ACN, with negative

SRAED in eleven schemas, positive SRAED in five schemas and fixed SRAED in five

schemas. Concerning the negative SRAED the average reduction in SRAD is 10%.

ACN changes in seventeen datasets, from those there is one returning to its initial

SRAD, DekiWiki having max range in SRAD during its evolution 4%.

4.5 Column Rules Evolution

Instances of the fixed adherence evolution pattern: UPL, SWL, EWL, ARW, ACU,

AUS, ASC, AUD and DNC are all strong instances of the fixed adherence evolution

pattern. It should be noted that there are some insignificant SRAD changes in their

evolution and limited in a few number of datasets (≤2).

67

Concerning UTC, SRAED is expected to be fixed, meaning the developers just keep on

following the original type of case convention; with less probability it may be positive

with small improvement (3% is the average), as we observe in three schemas where

SRAD increases. UTC has SRAD fluctuations during the evolution of the schema in

eight schemas, the average SRAD is high at 94% and the standard deviation is 14%. It

is interesting to note that in five of those schemas the value of SRAD in LKV is equal

to the value of SRAD in FKV.

For ACC, SRAED is fixed in most schemas. There are two exceptions with positive

SRAED and two exceptions with negative SRAED. The value of SRAD fluctuates in

eight schemas and camelCase is used as main type of case in SRM2 and was widely

used in CASTOR2; as a reminder both of those schemata belong to the same project.

AII SRAED is positive in six schemas, negative in one schema and fixed in sixteen

schemas. Adherence improves by an average of 7%, indicating that developers tend to

favor meaningful primary keys over the “id”. It should be noted that the schemata in

our case study followed to great extent the AII rule, the average SRAD in the LKV

across the datasets is 98%. This might not be the case for schemata in general since the

violation of this rule, not only from our experience34, is a common practice for some

developers.

For columns, UMW follows the fixed adherence evolution pattern, as the value of

SRAED for this rule is fixed in eleven schemas.

NBP had changes during the evolution in ten datasets. Managed to improve from FKV

to LKV by an average of 7% and became negative in one, the other five returned to

their initial SRAD. Generally NBP was a widely adhered rule with an average of 93%

in LKV and standard deviation of 16%.

Instances of the positive adherence evolution pattern: USP and CIS follow the positive

adherence evolution pattern. Specifically, for USP the average SRAD improvement is

7% with a standard deviation of 10%. CIS is a borderline instance of the pattern, as

34 https://softwareengineering.stackexchange.com/questions/114728/why-is-naming-a-tables-primary-key-

column-id-considered-bad-practice

68

SRAED is positive in eight schemas, fixed in six schemas and negative in seven

schemas and on top of that average SRAD improvement is 2%.

Instances of the negative adherence evolution anti-pattern: AUV is the only instance of

the negative adherence evolution anti-pattern. AUV’s majority consists of nine datasets

with an average SRAD reduction of 5% and standard deviation of 7%. The number of

datasets having SRAD fluctuation is nineteen from those seven manage to return to the

initial SRAD.

4.6 Which are the Adherence/Violation Patterns of SQL Style Rules?

So far, our study revealed that the developers do care about rules and conventions in

SQL programming. Moreover, our studied showed that typically the adherence to the

rules does not evolve dramatically throughout the schema evolution history.

The evolution patterns that we discovered show that schemas for the most part, are

bound to the style they were created with. Consequently, without loss of generality in

the remainder of our study we focus on the LKV of the examined schemas. Our goal

hereafter is to investigate the extent to which schemas adhere to SQL rules and

conventions in the end of the known evolution. Is the reason behind the rigidity

phenomenon adequate quality? Are the schemas clean enough to make changes in style,

infrequent?

To address the aforementioned issues we characterize the adherence of a schema to a

particular rule with respect to the following characterizations:

 Strong adherence: the adherence of the schema to the rule is strong if

𝑆𝑅𝐴𝐷 ≥ 75%.

 Weak adherence: the adherence of the schema to the rule is weak if 50% ≤

𝑆𝑅𝐴𝐷 < 75%.

Similarly, we characterize the violation of a rule by a particular schema as follows:

 Strong violation: the rule is strongly violated by the schema if 𝑆𝑅𝐴𝐷 <

25%.

69

 Strong violation: the rule is weakly violated by the schema if 25% ≤

𝑆𝑅𝐴𝐷 < 50% .

Based on the examined schemas, for each rule we calculate the probability of the

aforementioned characterizations. The results for table rules and column rules are given

in Table 14 and Table 15 accordingly.

Table rules

Strong Adherence

P(SRAD ≥ 75%)

Weak Adherence P(50% ≤

SRAD < 75%)

Strong Violation P(SRAD

< 25%)

Weak Violation

P(25% ≤ SRAD <

50%)

UTC 100,00% 0,00% 0,00% 0,00%

UPL 95,24% 4,76% 0,00% 0,00%

SWL 95,24% 0,00% 4,76% 0,00%

EWL 100,00% 0,00% 0,00% 0,00%

UMW 23,81% 42,86% 9,52% 23,81%

TIP 0,00% 4,76% 66,67% 28,57%

SWC 14,29% 0,00% 85,71% 0,00%

ACC 100,00% 0,00% 0,00% 0,00%

ARW 100,00% 0,00% 0,00% 0,00%

ACU 95,24% 0,00% 4,76% 0,00%

AUS 100,00% 0,00% 0,00% 0,00%

ASC 100,00% 0,00% 0,00% 0,00%

AUD 100,00% 0,00% 0,00% 0,00%

AUV 100,00% 0,00% 0,00% 0,00%

ACN 38,10% 47,62% 4,76% 9,52%

Table 14: Probability of strong/weak adherence/violation for table rules

According to the rule adherence/violation probabilities, we further introduce the

following rule-level adherence/violation patterns:

 Strong adherence pattern: a rule follows this pattern if most likely the

adherence of a schema to the rule will be strong.

 Weak adherence pattern: a rule follows this pattern if most likely the

adherence of a schema to the rule will be weak.

 Strong violation (anti-)pattern: a rule follows this anti-pattern if most likely

a schema strongly violates the rule.

70

 Weak violation (anti-)pattern: a rule follows this anti-pattern if most likely

a schema weakly violates the rule.

Table 15: Probability of strong/weak adherence/violation for column rules.

The characterization of table and column rules with respect to the (anti-)patterns that

they follow is also given in Table 15 and Table 16, respectively.

In Table 14, we observe that eleven table rules follow the strong adherence pattern, with

the respective adherence probabilities varying from 95.24% to 100%. Two tables rules,

namely UMW and ACN, adhere to the weak adherence pattern, with adherence

probabilities 42.86% and 47.62%, respectively. Finally, two table rules, namely TIP

and SWC, conform with the strong violation anti-pattern, with violation probabilities

66.67% and 85.71%, respectively. Table 15 we observe fourteen column rules that

follow the strong adherence pattern, with the respective adherence probabilities ranging

Column

rules

Strong Adherence P(SRAD

≥ 75%)

Weak Adherence P(50% ≤

SRAD < 75%)

Strong Violation P(SRAD

< 25%)

Weak Violation P(25%

≤ SRAD < 50%)

UTC 85,71% 14,29% 0,00% 0,00%

UPL 100,00% 0,00% 0,00% 0,00%

SWL 100,00% 0,00% 0,00% 0,00%

EWL 100,00% 0,00% 0,00% 0,00%

UMW 28,57% 38,10% 9,52% 23,81%

USP 0,00% 4,76% 38,10% 57,14%

CIS 47,62% 19,05% 4,76% 28,57%

ACC 85,71% 4,76% 0,00% 9,52%

ARW 100,00% 0,00% 0,00% 0,00%

ACU 100,00% 0,00% 0,00% 0,00%

AUS 100,00% 0,00% 0,00% 0,00%

ASC 100,00% 0,00% 0,00% 0,00%

AUD 100,00% 0,00% 0,00% 0,00%

AUV 9,52% 33,33% 0,00% 57,14%

AII 100,00% 0,00% 0,00% 0,00%

ACN 100,00% 0,00% 0,00% 0,00%

NBP 95,24% 0,00% 0,00% 4,76%

71

from 47.62% to 100%. Taking a closer look, CIS is the Achilles' heel in this set of rule

since there is an important minority of six schemas that weakly violate the rule it to a

certain degree (SRAD < 50%), and one schema that strongly violates the rule (SRAD

< 25%)

UMW is the only rule that follows the weak adherence pattern with probability 38.10%.

If we view UMW together with CIS then we have a worrying result both rules are very

important in creating meaningful names. Finally, two column rules, namely USP and

SUV, conform with the weak violation anti-pattern, with an equal violation

probabilities (57.14%).

4.7 Which SQL Style(s) is(are) Actually Followed in Practice?

Getting back to the starting point of our study, we introduced a list of SQL style rules

which can be considered as a SQL style that should be followed. However, in practice

we see that the SQL style rules are not followed to the same extent by the developers.

Taking a step further, our next goal is to introduce the style that is actually followed by

the developers, which we call the weighted SQL style, and evaluate the examined

schemas, with respect to the weighted style and the ideal style.

To begin, we introduce a weighted formula that we call the Rule Adherence Degree

(RAD), which allows us to rank the rules of the rule based style based on the extent to

which they are followed in practice. In particular, the value of RAD for a rule is

calculated with respect to the probabilities of strong/weak adherence/violation to/of the

rule as follows:

𝑅𝐴𝐷 =

(

𝑤𝑠𝑡𝑟𝑜𝑛𝑔
𝑎𝑑ℎ𝑒𝑟𝑒𝑛𝑐𝑒 ∗ 𝑃(SRAD ≥ 75%) +

𝑤𝑤𝑒𝑎𝑘
𝑎𝑑ℎ𝑒𝑟𝑒𝑛𝑐𝑒 ∗ 𝑃(50% ≤ SRAD < 75%) −

𝑤𝑠𝑡𝑟𝑜𝑛𝑔
𝑣𝑖𝑜𝑙𝑎𝑡𝑖𝑜𝑛 ∗ 𝑃(SRAD < 25%) −

𝑤𝑤𝑒𝑎𝑘
𝑣𝑖𝑜𝑙𝑎𝑡𝑖𝑜𝑛 ∗ 𝑃(25% ≤ SRAD < 50%))

As a generalization of our ranking approach, in the above formula we weight the

strong/weak adherence/violation probabilities with respective weights, which can vary

72

from 0 to 1. However, by default in our study we consider the following default values:

𝑤𝑠𝑡𝑟𝑜𝑛𝑔
𝑎𝑑ℎ𝑒𝑟𝑒𝑛𝑐𝑒 = 1, 𝑤𝑤𝑒𝑎𝑘

𝑎𝑑ℎ𝑒𝑟𝑒𝑛𝑐𝑒 = 0.5, 𝑤𝑠𝑡𝑟𝑜𝑛𝑔
𝑣𝑖𝑜𝑙𝑎𝑡𝑖𝑜𝑛 = 1, 𝑤𝑤𝑒𝑎𝑘

𝑣𝑖𝑜𝑙𝑎𝑡𝑖𝑜𝑛 = 0.5.

Table rule RAD
Column

rule
RAD

UTC 1 UPL 1

UPL 1 SWL 1

EWL 1 EWL 1

ACC 1 ARW 1

ARW 1 ACU 1

AUS 1 AUS 1

ASC 1 ASC 1

AUD 1 AUD 1

AUV 1 AII 1

SWL 0,9 ACN 1

ACU 0,9 NBP 1

ACN 0,7 UTC 0,9

UMW 0,3 ACC 0,9

SWC -0,7 CIS 0,4

TIP -0,9 UMW 0,2

 AUV 0,1

 USP -0,4

Table 16: Weighted SQL style - table and column rules ranked with respect to RAD.

Table 16 provides the weighted SQL style, i.e., the list of the SQL style rules, ranked

with respect to RAD. The ranking of table rules is given on the left part of the table,

while the ranking of the column rules is provided in the left part of the table.

The ranking for the rules is in alignment with the adherence patterns and the violation

anti-patterns that we defined. Rules that follow the strong adherence/violation patterns

have weights equal to 1, while rules that conform to the weak adherence/violation

patterns have smaller weights. Rules that follow the strong/weak adherence patterns

have positive weights, while rules that conform to the strong/weak violation patterns

have negative weights.

73

To move on, we assess the examined schemas with respect to their distance from the

weighted and the rule based style. The distance reveals if schemas are have common

styles, in the case the inbetween distance is small. The distance also shows how far or

close the schemas are to the rule based style and how these distances compare to the

respective distances of the weighted style.

To this end, for the each style we consider:

 A vector that consists of the values of RAD for table rules.

 A vector that comprises the values of RAD for column rules.

For the weighted style the values of the vectors are given in Table 16, while for the

ideal style all values are equal to 1. Similarly, we calculate respective vectors for each

one of the examined schema and measure the Euclidean distance between the schema

vectors and the style vectors. The resulted distances, ranked in an increasing order, for

the weighted and the rule based style are given in

Table 17 and Table 18, respectively.

A basic observation in the results is that the distance between the examined schemas

and the weighted style is relatively small. Concerning the tables rules the distance

ranges from 0.01 to 1.83, while for column rules it is even smaller varying from 0.01

to 0.80. On the contrary, the distance between the examined schemas and the rule based

style is quite larger. Regarding the tables rules the distance ranges from 3.52 to 5.85,

while for column rules it is even smaller varying from 3.89 to 4.80.

Table 19 gives indicative examples of table names taken from SlashCode (i.e., the

schema whose style is closer to the weighted style), phpwiki (i.e., the schema whose

style is closer to the rule based style), and Joomla (i.e., the schema whose style is farther

from both the weighted and the rule based style). We can easily observe that the table

names in phpwiki are almost perfect. On the other hand, the table names in SlashCode

are poor due to the use of several acronyms (violation of UMW), and the concatenation

of table names (violation of ACN). The table names in Joomla are also poor with several

issues, as they start with special characters (violation of SWL), the different terms are

not separated in some way (violation of UMW), and so on.

74

Moreover, Table 20 gives indicative examples of column names taken from Ensembl

(i.e., the schema whose style is closer to the weighted style), OpenCart (i.e., the schema

whose style is closer to the rule based style), and Castor2 (i.e., the schema whose style

is farther from both the weighted and the rule based style). Again we observe that the

column names in OpenCart are quite simple and easy to read. On the other hand, the

column names in Ensemble are not so clear, as they include several acronyms (violation

of UMW). Finally, the column names in Castor are also poor with several problems like

not being in singular, using acronyms, CamelCase, and so on.

Schema

Distance

between

the table

rules

vectors

Schema

Distance

between

the

column

rules

vectors

SlashCode 0.01 Ensembl 0.01

ATLAS 0.04 wikimedia 0.02

Medbiosql 0.05 Coppermine 0.03

TikiWiki 0.05 EGEE 0.06

OpenCart 0.06 Joomla 1.5 0.07

XOOPS 0.10 phpBB 0.07

Typo3 0.11 Medbiosql 0.07

phpBB 0.11 DekiWiki 0.09

Ensembl 0.13 SlashCode 0.11

DekiWiki 0.14 OpenCart 0.11

DQ2MySQL 0.17
Zabbix

Oracle
0.14

Zabbixc 0.24 Atlas 0.15

wikimedia 0.27 Typo3 0.17

SRM2 0.28 XOOPS 0.21

e107 0.28 NucleusCMS 0.25

NucleusCMS 0.37 phpwiki 0.27

CASTOR2 0.41 DQ2MySQL 0.36

EGEEMySQL 0.43 TikiWiki 0.41

phpwiki 0.50 e107 0.61

Coppermine 0.65 SRM2 0.75

Joomla 1.5 1.83 CASTOR2 0.80

Table 17: Euclidean distance between the styles of the examined schemas and the

weighted style.

75

Schema

Distance

between

the table

rules

vectors

Schema

Distance

between

the

column

rules

vectors

phpwiki 3.52 OpenCart 3.89

EGEEMySQL 3.59 phpBB 3.93

NucleusCMS 3.66 EGEEMySQL 3.94

e107 3.75 Coppermine 3.97

wikimedia 3.76 Ensembl 4.01

DQ2MySQL 3.86 wikimedia 4.02

DekiWiki 3.89 Joomla 1.5 4.07

Ensembl 3.90 Medbiosql 4.07

Typo3 3.92 DekiWiki 4.09

XOOPS 3.92 SlashCode 4.11

OpenCart 3.97 Zabbix Oracle 4.14

TikiWiki 3.97 Atlas 4.15

Medbiosql 3.98 Typo3 4.17

ATLAS 3.99 XOOPS 4.21

SlashCode 4.01 NucleusCMS 4.25

phpBB 4.13 phpwiki 4.27

Zabbix Oracle 4.26 DQ2MySQL 4.36

SRM2 4.30 TikiWiki 4.41

CASTOR2 4.43 e107 4.61

Coppermine 4.68 SRM2 4.75

Joomla 1.5 5.85 CASTOR2 4.80

Table 18: Euclidean distance between the styles of the examined schemas and the rule

based style.

76

SlashCode Phpwiki Joomla 1.5

accesslog_admin link #__banner

accesslog_artcom nonempty #__bannerclient

al2_log link #__bannertrack

al2_log_comments session #__categories

al2_types recent #__components

Table 19: Examples of table names taken from SlashCode (i.e., the schema whose

style is closer to the weighted style), phpwiki (i.e., the schema whose style is closer to

the rule based style), and Joomla (i.e., the schema whose style is farther from both the

weighted and the rule based

style).

Ensembl OpenCart CASTOR2

asm_seq_region_id address_id Flags

seq_region_id customer_id userName

seq_region_start firstname Euid

seq_region_end email Egid

exc_seq_region_id telephone Mask

exc_seq_region_start password Pid

exc_seq_region_end salt Machine

attrib_type_id website creationTime

Table 20: Examples of column names taken from Ensembl (i.e., the schema whose

style is closer to the weighted style), OpenCart (i.e., the schema whose style is closer

to the rule based style), and Castor2 (i.e., the schema whose style is farther from both

the weighted and the rule based style)

77

4.8 Threats to Validity

Construct Validity

Construct validity concerns the appropriateness of observations made on the basis of

measurements, taken during the case study. Concerning our SQL style checking tool,

we used unit tests for all the SQL style rules to rule out deficiencies in the

implementation. Additionally, we manually tested the correctness of our tool via an

artificial evolution assessment scenarios. In particular, we took samples of few

schemata and created a history. Then we checked manually the validity of the results

provided by DBsea. The most complicated rules, i.e., the ones belonging in the

lexicological category, are based on WordNet, a state of art thesaurus and they were

implemented with the use of libraries developed by well-respected institutions.

Statistical measurements where made with Apache Commons Math the biggest open-

source library of mathematical functions and utilities for Java. To process the DML

files we use a well-known parser ANTLR, widely used in both academia and industry35

that ensures us for the correctness of DBsea’s input.

Internal Validity

Internal validity is the extent to which a causal conclusion based on a study is warranted,

which is determined by the degree to which a study minimizes systematic error, a

tendency of supporting particular outcomes. The results of our thesis are based on

observations made in the majorities of the schemata. The schemata per se did not have

significant changes, from one revision to a next revision. Major changes could indicate

the existence of an abnormal event in the history of a schema, like a total restructuring

of the database or any other event, that could lead us to wrong assumptions. Throughout

this thesis the only questionable results concern the weak/medium correlations of style

changes with the size of a schema and the possibility of misinterpretation for some

35 http://www.antlr.org/testimonials.html

78

rules’ SRAD values or fluctuations by the reader, countermeasures were taken in both

cases in the form of clearly stated comments upon the results.

External validity

Our study has been conducted in a well-defined context, FoSS databases. We used a

respected number of databases with variance in the respective fields of use. Those

databases had also variety concerning the size of their schema and the extent of their

history. The number of revisions for the databases ranges from 4 to 528 while the

number of tables from 9 to 215. Thus, we believe that those schemata are representative

for the case of open source projects. In the case of industry related databases we would

generalize the conclusions of this thesis with precaution since usually (and hopefully)

industry projects have stricter demands in quality. We would also advise against the

generalization of our results to the SQL style of queries, as they were not in the scope

of our study.

79

CHAPTER 5

CONCLUSIONS: SCHEMAS AND ELEGANCE

5.1 An Interesting Future

In this chapter, we discuss fundamental observations, conjectures and patterns that have

been detected in our study. As a reminder, the context of our study (i.e FoSS projects)

sets some limitations to the generalization of our results to closed projects. Having said

that we firmly believe that our conclusions hold strong in the described context and to

make our thesis more precise and clear we distinguish between (a) the most important

results and, (b) further results. We firstly provide the reader, a recap.

We introduced an rule based style consisting of rules and conventions based on a

literature review and created a tool that enables developers to evaluate their schemata

against the afformentioned style. We performed a large scale empirical study involving

21 well-known schemata from open source projects that vary in their respective fields

of use. We checked the adherence of those schemata to the rule based style and assessed

the evolution of the schemas with respect to their adherence to the rules. Through this

assessment we found certain evolution patterns, discussed in the remainder. We

performed a detailed analysis of each rule and identified respective adherence and

violation patterns. We continued by ranking the rules based on the extent to which they

are adopted by the schemata of the study. We used the rankings to derive a weighted

style that reflects the developers’ perception on the applicability of the rules in practice.

Finally we compared the distance of the examined schemas' distance from the rule

based and the weighted style.

Most important results

We identified several interesting patterns summarized below:

80

Schema-level adherence pattern

Tables

The percentage of rules that hold at least for some tables is high, ranging from 80% to

100% while rules that are not followed by some tables is medium, varying from 13%

to 40%.The percentage of rules that hold at least for some tables is always higher than

the percentage of rules that are not followed by some tables. The percentage of rules

that hold for all tables is medium, high, varying from 60% to 87%, while the percentage

of rules that do not hold for any table is low, ranging from 0% to 20%. Lastly, the

percentage of rules that hold for all tables is always higher than the percentage of rules

that do not hold for any table.

Columns

All rules hold at least for some columns in all of the schemata. The percentage of rules

that hold for all columns is medium high, varying from 59% to 76%. Finally, the

percentage of rules that do not hold for some columns is low medium, ranging from

24% to 41%.

Schema-level adherence evolution pattern

Table and column rules do evolve during the life of a schema, however, only a few rules

change. The number of rules that change in the examined schemas varies from zero to

seven for tables and zero to eight for columns.

Typically, the rules that change the most are lexicological, methodological, or writing

style rules. The magnitude of SRAD fluctuations depends on the schema, the rules, and

the schema elements involved.

If a rule changes significantly (>10%), the biggest portion of rule’s SRAD fluctuation

will occur in a minor fraction of the schema’s history.

Rule-level adherence evolution patterns

81

We found that most rules follow the fixed adherence evolution pattern, i.e., the schemas'

adherence to the rules does not increase or decrease overtime; in other words, for the

most part a schema’s style will be as good as it was in the birth of the schema. Few

other rules follow the positive (resp. negative) evolution pattern, i.e., .e., the schemas'

adherence to the rules increases (resp. decreases) overtime.

Rule-level adherence/violation patterns

Most rules follow the strong adherence pattern, i.e., more than 75% of the schema

elements adhere to the rule. Moreover, few rules follow the weak adherence pattern,

i.e. the percentage of schema elements that follow the rule varies in [50%, 75%). Also,

few rules follow the strong violation pattern, i.e. less than 25% of the schema elements

adhere to the rule. Finally, few some rules follow the weak violation pattern, i.e., the

percentage of schema elements that follow the rule varies in [25%, 50%).

Further outcomes

We looked at the Kendall correlation of a rule’s SRAD with the schema’s size (i.e.

number of tables or columns) across the schema’s evolution. For table rules, we did not

find any positive correlation. On the contrary, we found a strong negative correlation

for two table rules, namely TIP and ACN. For certain column rules we observed strong

positive correlations, especially for lexicological, methodological, and writing style

rules. CIS and AUV were found to have strong negative correlation.

We specifically focused on the UTC’s SRAD fluctuations during the evolution and

found that tables do not change their type of case as much as columns do. Interestingly

schemata having more than one type of case, in their birth or early life ,by the last

known version, typically the use of multiple type of cases was reduced.

82

5.1 An Interesting Future

Our work takes a first step towards assessing the importance of good practices in SQL

programming. Nevertheless, there is still room for further research to this direction. In

particular, Sharma et al. [17] gathered a large number of different schemata. We would

like to extract from their massive datasets the SQL code that refers to the definition of

schemata and repeat some key experiments of this work. One could also investigate

the possible existence of correlations between database smells [17] and SQL style rule

violations, to assess whether bad SQL schemas come with a bad style. If bad schemas

do come with bad style, then it would be interesting to enhance our tool to enable

schema quality assessment by taking into account both of these aspects. If both aspects

were taken into consideration and correlation between db smells and SQL style existed;

if a large dataset of schemata was publically available with the information about the

date of birth, date of death, number of revisions in-between and the revisions per se,

one could create a tool able to predict a schema’s life expectancy. This tool would have

a classifier trained with the aforementioned dataset and would be able to decide, if given

as input a db smell assessment and SQL style assessment, the fate for the schema or

even the whole project, failure or continuous evolution.

Another open issue is to investigate if births and deaths of schema elements impact

style and vice versa. This objective could be accomplished by using Hecate and DBsea

jointly, and search for correlations between schema adherence to rules and table/column

insertions/deletions.

83

BIBLIOGRAPHY

[1] RD Banker, SM Datar, CF Kemerer, D Zweig, "Software Complexity and

Software Maintenance Costs," ACM, pp. 81-94, 1993.

[2] M. J.-G. Juan Carlos Granja-Alvarez, "Method for Estimating MaintenanceCost

in a Software Project: A CaseStudy," Journal of software maintenance, p. 161–

175, 1998.

[3] D. Sjøberg, "Quantifying schema evolution," Information and Software

Technology, pp. 35-44, 1993.

[4] LA Belady, MM Lehman , "A model of large program development," IBM

Syst.J.15, p. 225–252, 1976.

[5] J. F. Roddick, "SQL/SE - A Query Language Extension for Databases

Supporting Schema Evolution," SIGMOD Record, 1992.

[6] GT Nguyen, D Rieu, "Schema evolution in object-oriented datebase systems,"

Data and Knowledge Engineering, pp. 43-67, 1989.

[7] J Banerjee, W Kim, HJ Kim, HF Korth, "Semantics and Implementation of

Schema Evolution in Object-oriented Databases," SIGMOD, pp. 311-322, 1987.

[8] CA Curino, HJ Moon, MW Ham, C Zaniolo , "The PRISM Workwench:

Database Schema Evolution without Tears," IEEE, pp. 1523-1526, 2009.

[9] MM Lehman, JF Ramil , "Rules and Tools for Software Evolution Planning and

Management, Software Evolution and Feedback: Theory and Practice," Annals

of Software Engineering, pp. 15-44 , 2006.

[10] MM Lehman, JF Ramil, PD Wernick, DE Perry , "Metrics and laws of software

evolution - the nineties view," Proceedings of the 4th IEEE International

Software Metrics Symposium, pp. 20-34, 1997.

[11] P Vassiliadis, AV Zarras, I Skoulis , "Gravitating to Rigidity: Patterns of

Schema Evolution -and its Absence- in the Lives of Tables," Information

Systems, pp. 24-46, 2017.

[12] P Vassiliadis, AV Zarras, I Skoulis , "“Growing up with stability: How open-

source relational databases evolve”, Information Systems," Information Systems,

pp. 363-385, 2015.

84

[13] P Vassiliadis, AV Zarras, "Schema Evolution Survival Guide for Tables: Avoid

Rigid Childhood and You 're En Route to a Quiet Life," Journal of Data

Semantics (JODS), pp. 221-241, 2017.

[14] A Deutsch, V Tannen , "Mars: A system for publishing XML from mixed and

redundant storage," VLDB, pp. 201-212, 2003.

[15] R. Fagin, "Inverting schema mappings," ACM Transactions on Database

Systems , p. Article 25, 2007.

[16] PA Bernstein, TJ Green, S Melnik, A Nash , "Implementing mapping

composition" VLDB, pp. 333-353, 2008.

[17] T Sharma, M Fragkoulis, S Rizou, M Bruntink, "Smelly Relations: Measuring

and Understanding Database," ICSE, p. Article 4, 2018.

[18] J. Celko, SQL Programming Style.

[19] R. C. Martin, Clean Code: A Handbook of Agile Software Craftsmanship, 2008.

[20] C Gould, Z Su, P Devanbu , "JDBC Checker: A Static Analysis Tool for

SQL/JDBC Applications," ICSE, p. 697–698, 2004.

[21] D. J. L. D. Binkley, "The Impact of Vocabulary Normalization," Journal of

Software: Evolution and Process, p. 255–273, 2015.

[22] D Binkley, M Davis, D Lawrie, JI Maletic, "The Impact of Identifier Style on

Effort and Comprehension," Empirical, p. 219–276, 2013.

[23] M Smit, B Gergel, HJ Hoover , "Code Convention Adherence in Evolving

Software," ICSME, p. 504–507, 2011.

[24] S Butler, M Wermelinger, Y Yu, H Sharp , "Relating Identifier Naming Flaws

and Code Quality: An Empirical Study," Working Conference on Reverse

Engineering, 2009.

[25] S Butler, M Wermelinger, Y Yu , "Investigating Naming Convention," ICSME,

p. 41–50, 2015.

[26] RPL Buse, WR Weimer , "Learning a Metric for Code Readability," IEEE, p.

546–558, 2010.

[27] D Lawrie, C Morrell, H Feild, D Binkley , "What’s in a Name? A Study of

Identifiers," ICPC, p. 3–12, 2006.

[28] C. B. K. B. A. Capiluppi, "Quality Factors and Coding Standards - a

Comparison Between Open Source Forges," Electronic Notes in Theoretical

Computer Science, pp. 89-103, 2009.

85

[29] S. Holywell. [Online]. Available: http://www.sqlstyle.guide/.

[30] A. Microsoft, "https://docs.microsoft.com/en-us/sql/connect/ado-net/microsoft-

ado-net-for-sql-server?view=sql-server-2017," [Online]. Available:

https://docs.microsoft.com/en-us/sql/connect/ado-net/microsoft-ado-net-for-sql-

server?view=sql-server-2017.

[31] P. J. S. Scott J Ambler, "Refactoring Databases: Evolutionary Database

Design".

[32] N. P. M. Simon, "SQL Code Complexity Analysis," ICAI2010, pp. 353-359,

2010.

[33] X Fu, X Lu, B Peltsverger, S Chen, K Qian "A static analysis framework for

detecting SQL injection vulnerabilities," COMPSAC, pp. 87-96, 2007.

[34] H van den Brink, R van der Leek, J Visser, "Quality Assessment for Embedded

SQL”, 7th IEEE International Working Conference on Source Code Analysis

and Manipulation," SCAM, pp. 163-170, 2007.

[35] A Nash, PA Bernstein, S Melnik, "Composition of mappings given by

embedded dependencies," PODS, pp. 172-183, 2005.

[36] PA Bernstein, TJ Green, S Melnik, A Nash, "Implementing mapping

composition," VLDB, p. 333–353, 2008.

[37] D. Sjøberg, "The Thesaurus - A Tool for Meta Data Management," Technical

Report FIDE/91/6, p. Project Number 3070, 1991.

[38] JF Roddick, SIGMOD, "Grammatical database model," Information Systems,

pp. 257-267, 1979.

[39] A Yamashita, L Moonen, "Do developers care about code smells? An

exploratory survey," 20th Working Conference on Reverse Engineering, 2013.

[40] C Boogerd, L Moonen, "Assessing the Value of Coding Standards: An

Empirical Study," ICSME, p. 277–286, 2008.

[41] D Binkley, D Lawrie, "The Impact of Vocabulary Normalization," Journal of

Software: Evolution and Process, p. 255–273, 2015.

[42] I Skoulis, P Vassiliadis, A Zarras, "How is Life for a Table in an Evolving

Relational Schema? Birth, Death and Everything in Between," Conceptual

Modeling Lecture Notes in Computer Science, pp. 453-466, 2015.

[43] I Skoulis, P Vassiliadis, A Zarras, "Open-Source Databases: Within, Outside, or

Beyond Lehman’s Laws of Software Evolution?," CAiSE, 2014.

Appendix A

FURTHER STATISTICS

87

Figure 9: Schemata tables TRAD.

88

Figure 10: Schemata column TRAD.

89

APPENDIX B

TOOL RELATED INFORMATION

Dbsea in a Nutshell

DBSEA is based upon three main functionalities.

First of all the SQL parsing. Borrowed by HECATE the parser takes as input Data

Definition Language (DDL) files. Data Definition Language has similar syntax to a

computer programming language and is used for defining data structures, such as

database schemata. Most common Data Definition statements in SQL are the CREATE

TABLE, ALTER and DROP. As the statements are identified they are classified in the

corresponding objects, the same objects HECATE use. For more information how

HECATE saves the information into the memory please refer to the Diploma thesis of

Ioannis Skoulis.

Second main functionality is the checking for rule adherence for columns and tables.

The rule adherence is measured in two dimensions. The first dimension is the schema

dimension, which means that for every schema we measure for each rule its use in

percentage based on the objects we are assessing, tables or columns. The second

dimension does a more fine grained analysis, checks the adherence of every rule for

each table of a schema. The are two outcomes from this mode, the rule compliance for

every table in a schema a version and the columns compliance with rules for each table

inside the schema. The last main functionality is the exportation of the mined

information.

For each dimension are created four files, two files containing statistical properties

about the rule adherence across the evolution for the sql elements and two containing

90

the rule adherence across the evolution of the sql elements per se. The files contain as

prefix of their name the schema’s name they refer to.

Figure 11 : DBsea in a nutshell, the main three functionalities.

Architecture

DBsea is consists of ten packages as seen in Figure 12. Below is given a brief

explanation for each package.

 The package dbsea. Here lies the main class of the program responsible for

starting up the GUI.

 The package dbsea.gui.swing contains all the classes that are responsible for

User Interface.

 The package dbsea.stylecore is responsible of combining the various modules

dbsea has, to execute the analysis flow. This package has the functionality to

traverse the folders to find schemata, check the style for the versions of a schema

and export the retrieved information.

 The package dbsea.parser. The SQL parser of the Tool.

 The package dbsea.tablestylecheck. As the name implies this package includes

all the style checks for tables.

 The package dbsea.columnsstylecheck similarly to the tablestylecheck imple-

ments the necessary checks for the columns of a table.

91

 The package dbsea.sql has the objects that will represent SQL entities in the

memory.

 The package dbsea.generalchecks contains style checks common between

columns and tables. Both dbsea.columnsstylecheck and dbsea.tablestylecheck

depend on dbsea.generalchecks.

 The package dbsea.wordnetchecks is where the natural language processing

functionality of dbsea lies.

 The package dbsea.statistics, keeps track of the retrieved information. It also

has the functionality of exportation of statistics to csv files.

Figure 12 Package Diagram for Schemata Style Extraction Tool

92

We break down the afformentioned packages to give more details about their class

and existing dependencies.

Package dbsea

Contains the main static class of dbsea and fires the user interface.

Figure 13 : dbsea contains the main static class and starts the User Interface.

Package dbsea.stylecore

This package contains one class which implements two functionalities of great value.

The SchemaStyleAnalysis class is responsible for the implementation of the main flow,

the algorithm which dictates the way the crawling between folders is done, the

execution of checks and the extraction of the gathered information to csv files.

As stated above, the two dimensions of check analysis are the one of the Schema and

the one of the Table. The multiple dimensionality approach is implemented in the

methodscheckSchemaHistoryStyleByRuleAndExport and checkSchemaHistoryStyle-

ByTableAndExport. The schema flow is described in Algorithm 1 and the table’s flow

is implemented in a similar manner.

In the method traversePaths takes place the file crawler that searches for folders with

the name “schemata”. traversePaths searches the folders starting from the parent folder,

the one selected in the GUI in a Depth First fashion.

93

Figure 14 : This class implements the flow for style analysis.

Algorithm 1 : Style Extraction Algorithm from a schema’s point of view.

Package dbsea.tablestylecheck

This package contains TableCheck the class implementing the rules about the tables of

a Schema.

TableCheck contains 6 rules in total.

1. Name contains plural

94

2. Name starts with capital

3. Contains Verb

4. Name is concatenated in another table's name

5. Name contains Only singular

6. Name contains Prefix (not used in the analysis)

TableCheck is also responsible of updating the respective metrics for the above rules.

This class is also responsible for the manipulation of the files where the statistics will

be held. This is accomplished through aggregation with TableStastistics in

dbsea.statistics package. TableCheck implements the method runchecks which is

where the table checks are executed, it is a single point of maintenance if more checks

are realized and are meant to be used for the style extraction analysis.

Figure 15 : The classes in tablestylecheck contain the rules about a table entity.

Package dbsea.columnsstylecheck

In Figure 16 are represented the classes in the package which implements the column

specific rules. Those rules are enlisted below.

1. Name contains uniform postfix

95

2. Name contains only Singular

3. Name contains only Singular and not Plural

4. Contains Verb

5. Name equals "id"

6. Column Name is the same as the table

ColumnCheck is responsible of updating the respective metrics tables of the above rules

as well as preparing the file both functions being done through aggregation with

ColumnStastistics in dbsea.statistics package. This class implements the method

runchecks, similar to the one used in TableCheck and executes the columns checks.

ColumnCheck is using ColumnCheckStatistics to clear the metrics, set the title of the

file, the rules for columns generic and column specific and to write to the files.

UniformSuffixes is where the suffixes proposes in Celko’s book are held.

Figure 16 : The classes in columnsstylecheck contain the rules about a table entity.

Package dbsea.generalchecks

The classes of generalchecks are found in Figure 17.

96

Figure 17 : The classes in generalchecks contain the rules shared by tables and

columns as well as some helper classes.

The main class of this package is GenericCheck since inside her reside the checks for

conducted for both tables and columns. The generic checks are:

1. Lower Case

2. Upper Case

3. Pascal Case

4. Underscore Case with Lower Case

5. Underscore Case With Upper Case

6. Underscore Case with some other Case

7. Proper length

8. Begins with letter

97

9. Ends with letter or number

10. Words more than strings in name

11. Camel Case

12. Is reserved Keyword

13. Contains consecutive underscores

14. Contains space

15. Contains special character

16. Contains delimiters

As show in Figure 20, ColumnCheck and TableCheck have inheritance relationship

with GenericChecks.

GenericChecks has a runChecks method too and is called inside the runChecks of the

two aforementioned classes, having the same obligation, to run all the checks

implemented inside GenericCheck.

The enum TypeofCases defines the type of cases that can be found in names. Those

are :

1. Lowercase

2. Uppercase

3. Pascal case

4. Camel case

5. Lowercase with underscores

6. Uppercase with underscore

7. Other case with underscore

All the types are self-explanatory except the OtherCaseWithUnderscore. This one is

defined as the type of case which is NOT one of the others. An example of this type of

case is the table “CPG_albums” from Coppermine, this table’s name consists of

uppercase characters, an underscore and lowercase characters.

The class CaseCheck, as the name reveals is responsible of deciding for a given string,

its type of case.

98

The class ReservedWords is responsible for loading all the reserved words MsSQL and

MySQL that have been defined in a resource’s file and of answering about the adherene

of Is reserved Keyword rule. The reserved words are those of the date of creation of the

class 15/12/17.

Package dbsea.statistics

In Figure 18 are found the classes responsible for information extraction.

Each check has a corresponding class. GenericCheckStatistics, TableCheckStatistics

and ColumnCheckStatistics are used via aggregation inside the tablestylecheck and the

columnstylecheck package.

Package dbsea.wordnetchecks

Inside this package is found the pinnacle of the SQL style rules the class

WordnetCheck.

WordnetCheck has the ability to determine if a name contains

 Noun

 Verb

 Adjective (not used in the style analysis)

Or if a name is

 Plural

 Singular

Also measures the strings and the actual words inside a name. An actual word is a string

which is recognized by WorldNet as word. This package uses the libraries

edu.smu.tspell and edu.stanford.nlp. Those two are combined in an ad hoc solution to

give as the ability to measure meaningfulness inside a name.

99

Figure 18 : The classes from the package statistics, responsible of keep track of the

violated/adhered rules, setting up the title of column, table file and of writing the

metrics.

100

This solution is possible through the use of posTags (Part of Speech Tags) from

edu.stanford.nlp. For more information about WorldNet please refer to the official

site36.

Package Swing

The gui package contains the classes which give the user the ability to interact with

dbsea.

The MainWindow is the graphical environment the user confronts when DBsea is

started. It has two main options File and Help.

The File option enables the user to select a parent folder or close the program. By

choosing a parent folder the initiation of the SQL Style Analysis begins through the call

of the method traversePaths. This functionality resides inside OpenFolderDialog.

The Help option is is based upon the classes InstructionsDialog and AboutDialog. The

user gets access to a simple and straightforward tutorial on how to use DBsea as well

as to information about the author.

36 https://wordnet.princeton.edu/

101

Figure 19 : Implementation of UI, gui package

102

Figure 20 : The whole class diagram of SSet

103

Reserved Words

Oracle reserved words

ACCESS

ADD

ALL

ALTER

AND

ANY

AS

ASC

AUDIT

BETWEEN

BY

CHAR

CHECK

CLUSTER

COLUMN

COLUMN_VALUE (See Note 1 at the end of this list)

COMMENT

COMPRESS

CONNECT

CREATE

CURRENT

DATE

DECIMAL

DEFAULT

DELETE

DESC

DISTINCT

DROP

ELSE

EXCLUSIVE

EXISTS

FILE

FLOAT

FOR

FROM

GRANT

GROUP

HAVING

IDENTIFIED

IMMEDIATE

IN

INCREMENT

INDEX

INITIAL

INSERT

INTEGER

INTERSECT

INTO

104

IS

LEVEL

LIKE

LOCK

LONG

MAXEXTENTS

MINUS

MLSLABEL

MODE

MODIFY

NESTED_TABLE_ID

NOAUDIT

NOCOMPRESS

NOT

NOWAIT

NULL

NUMBER

OF

OFFLINE

ON

ONLINE

OPTION

OR

ORDER

PCTFREE

PRIOR

PUBLIC

RAW

RENAME

RESOURCE

REVOKE

ROW

ROWID

ROWNUM

ROWS

SELECT

SESSION

SET

SHARE

SIZE

SMALLINT

START

SUCCESSFUL

SYNONYM

SYSDATE

TABLE

THEN

TO

TRIGGER

UID

UNION

UNIQUE

UPDATE

USER

105

VALIDATE

VALUES

VARCHAR

VARCHAR2

VIEW

WHENEVER

WHERE

MsSQL reserved words

ADD

EXTERNAL

PROCEDURE

ALL

FETCH

PUBLIC

ALTER

FILE

RAISERROR

AND

FILLFACTOR

READ

ANY

FOR

READTEXT

AS

FOREIGN

RECONFIGURE

ASC

FREETEXT

REFERENCES

AUTHORIZATION

FREETEXTTABLE

REPLICATION

BACKUP

FROM

RESTORE

BEGIN

FULL

RESTRICT

BETWEEN

FUNCTION

RETURN

BREAK

GOTO

REVERT

BROWSE

GRANT

REVOKE

BULK

GROUP

RIGHT

106

BY

HAVING

ROLLBACK

CASCADE

HOLDLOCK

ROWCOUNT

CASE

IDENTITY

ROWGUIDCOL

CHECK

IDENTITY_INSERT

RULE

CHECKPOINT

IDENTITYCOL

SAVE

CLOSE

IF

SCHEMA

CLUSTERED

IN

SECURITYAUDIT

COALESCE

INDEX

SELECT

COLLATE

INNER

SEMANTICKEYPHRASETABLE

COLUMN

INSERT

SEMANTICSIMILARITYDETAILSTABLE

COMMIT

INTERSECT

SEMANTICSIMILARITYTABLE

COMPUTE

INTO

SESSION_USER

CONSTRAINT

IS

SET

CONTAINS

JOIN

SETUSER

CONTAINSTABLE

KEY

SHUTDOWN

CONTINUE

KILL

SOME

CONVERT

LEFT

STATISTICS

CREATE

LIKE

SYSTEM_USER

107

CROSS

LINENO

TABLE

CURRENT

LOAD

TABLESAMPLE

CURRENT_DATE

MERGE

TEXTSIZE

CURRENT_TIME

NATIONAL

THEN

CURRENT_TIMESTAMP

NOCHECK

TO

CURRENT_USER

NONCLUSTERED

TOP

CURSOR

NOT

TRAN

DATABASE

NULL

TRANSACTION

DBCC

NULLIF

TRIGGER

DEALLOCATE

OF

TRUNCATE

DECLARE

OFF

TRY_CONVERT

DEFAULT

OFFSETS

TSEQUAL

DELETE

ON

UNION

DENY

OPEN

UNIQUE

DESC

OPENDATASOURCE

UNPIVOT

DISK

OPENQUERY

UPDATE

DISTINCT

OPENROWSET

UPDATETEXT

DISTRIBUTED

OPENXML

USE

108

DOUBLE

OPTION

USER

DROP

OR

VALUES

DUMP

ORDER

VARYING

ELSE

OUTER

VIEW

END

OVER

WAITFOR

ERRLVL

PERCENT

WHEN

ESCAPE

PIVOT

WHERE

EXCEPT

PLAN

WHILE

EXEC

PRECISION

WITH

EXECUTE

PRIMARY

WITHIN GROUP

EXISTS

PRINT

WRITETEXT

EXIT

PROC

109

Uniform Suffixes

id: a unique identifier such as a column that is a primary key.

status: flag value or some other status of any type such as public finalation_status.

total: the total or sum of a collection of values.

num: denotes the field contains any kind of number.

name: signifies a name such as first_name.

seq: contains a contiguous sequence of values.

date: denotes a column that contains the date of something.

tally: a count.

size: the size of something such as a file size or clothing.

addr: an address for the record could be physical or intangible such as ip_addr.

110

SHORT VITA

Papamichail Aggelos was born in Ioannina in 1991. He received his BSc degree from

the Computer Science Department of University of Ioannina in July 2015. In January

2016 he became a MSc student in the same institution under the supervision of Zarras

Apostolos. In July of 2017 he started working as a software developer in the banking

department of Natech S.A.

