
Hand Pose Estimation with Convolutional
Networks using RGB-D Data

A Thesis

submitted to the designated

by the General Assembly of Special Composition

of the Department of Computer Science and Engineering

Examination Committee

by

Evangelos Kazakos

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

WITH SPECIALIZATION

IN TECHNOLOGIES - APPLICATIONS

University of Ioannina

February 2017

Examining Committee:

• Christophoros Nikou, Assοciate Professor, Department of Computer Science and
Engineering, University of Ioannina (Supervisor)

• Aristidis Likas, Professor, Department of Computer Science and Engineering,
University of Ioannina

• Konstantinos D. Blekas, Associate Professor, Department of Computer Science
and Engineering, University of Ioannina

Dedication

Dedicated to my family.

Acknowledgements

Firstly, I would like to thank my thesis advisor Prof. Christophoros Nikou, for his
invaluable advices during the writing of this report. He supported my ideas and
helped me significantly to improve them. Our discussions were really stimulating
and he was always available for any questions. Besides being an admirable advisor
he is also my mentor and I want here to express my deep respect to him.
Thanks are also due to Prof. Aristidis Likas and Prof. Konstantinos Blekas.

Through attending their courses of Data Mining and Machine Learning I gained
significant knowledge that guided my scientific way of thinking and aided me in
writing this paper.
I wish to express my sincere thanks to Prof. Ioannis A. Kakadiaris for offering me

the opportunity to have a summer internship at his group at University of Houston.
I worked in a multinational simulating environment with advanced research level.
During my summer internship I obtained invaluable experience and knowledge since
I worked in a challenging research project, which helped me significantly in the writ-
ing of this thesis. I also want to thank him for providing me access to the computing
resources of University of Houston, which were essential for the implementation of
this work.
I acknowledge the use of Opuntia Cluster and the advanced support from the

Center of Advanced Computing and Data Systems at the University of Houston to
carry out the research presented here.
At this point, I would like to express my great gratitude and love to my parents

Sotiris and Maria, and my sister Katerina for their generous support all these years
of my studies. They believe in me and support me, which gives me great strength.
Their financial and mental aid were the main components thanks to which I came
up to this point of my life and therefore being able to write this thesis and finish my
master studies.

Last but not least, I am indebted to my friends for being there in difficult as well
as delightful moments of my life. We share great discussions and lots of fun which
give meaning in my life and will to move forward.

Table of Contents

List of Figures iii

List of Tables x

List of Algorithms xii

Abstract xiii

Εκτεταμένη Περίληψη xv

1 Introduction 1

2 Feedforward neural networks and deep learning 5
2.1 Introduction . 5
2.2 Definition of a feedforward neural network 7
2.3 Activation functions . 9
2.4 Loss functions . 14
2.5 Empirical risk minimization . 15
2.6 Back-propagation algorithm . 16
2.7 Optimization . 24

2.7.1 Optimization methods . 24
2.7.2 Learning rate schedules . 32
2.7.3 Parameter initialization . 33

2.8 Regularization . 36
2.8.1 Parameter norm penalties . 39
2.8.2 Dropout . 42

3 Convolutional Networks 45
3.1 Introduction . 45

i

3.2 Convolution . 46
3.3 Local connectivity . 48
3.4 Parameter sharing . 51
3.5 Basic structure of a Convolutional Network 53

3.5.1 Convolutional layer . 53
3.5.2 Pooling layers . 55
3.5.3 Forward propagation in a convolutional network 57
3.5.4 Design patterns . 60

3.6 Gradients of convolutional and pooling layers 63
3.7 Popular convolutional network models 68
3.8 Dataset augmentation . 74
3.9 Pretrained models . 76

4 Hand pose estimation with convolutional networks using RGB-D data 78
4.1 Introduction . 78
4.2 Related work . 82
4.3 Our approach . 89

4.3.1 Problem formulation and data preprocessing 90
4.3.2 Designing convolutional networks for hand pose estimation . . . 93
4.3.3 RGB and depth fusion techniques with convolutional networks . 99

4.4 Evaluation . 106
4.4.1 Benchmark dataset . 107
4.4.2 Evaluation metrics . 107
4.4.3 Experimental setup and training 108
4.4.4 Implementation details . 110
4.4.5 Self-comparison of ConvNet configurations 111
4.4.6 Is fusion beneficial to the accuracy of the convolutional networks?113
4.4.7 Comparison with the state of the art 118
4.4.8 Qualitative results . 120

5 Conclusion 124

Bibliography 127

ii

List of Figures

2.1 A typical feedforward neural network. x is the input vector, h(k)(x)

are the activations of the k-th layer, W (k) is the weight matrix of the
k-th layer, b(k) are the biases of the layer, and f(x) is the output of the
neural network. In the specific example the network has two hidden
layers. 8

2.2 Activation functions of neurons. 11
2.3 Computational graph of a feedforward neural network with one hidden

layer. 22
2.4 Computational graph for performing back-propagation with additional

nodes that represent the gradients. Left: The computational graph for
the forward propagation. Right: The computational graph with addi-
tional nodes for performing back-propagation. The nodes have a bprop
operation where they compute the gradients using the chain rule. Fig-
ure reproduced from [1]. 23

2.5 Left: Standard SGD. It is clear that SGD oscillates highly across the
ravines. Right: SGD with momentum. The oscillations across the steep
direction are dampened and momentum moves faster towards the rel-
evant direction. Figure reproduced from [2] 29

2.6 The difference between a standard momentum step and a Nesterov
momentum step. As you can see the blue vectors correspond to a step
of standard momentum method and the others correspond to a step
of Nesterov momentum. Nesterov momentum takes bigger steps, and
hence it moves faster towards the local minimum. Figure reproduced
from [3] . 31

iii

2.7 Bias and variance. The rings represent the space of all possible func-
tions. The red circle is the true solution in a given task. The blue circles
represent the set of functions that our model is able to select. The hor-
izontal axis represent the bias while the vertical axis represent the bias.
We can see intuitively what happens in several different situations.
Figure reproduced from [4]. 38

3.1 The idea of local connectivity in convolutional networks. Gray squares
are the image patches that hidden units are connected with, or the re-
ceptive fields of hidden units. The circles on top of the image represent
the hidden units and the arrows show which hidden unit is connected
with which patch of the image. In this example, it is clear that hidden
units have local connections and that different hidden units are used
for different local neighborhoods, where we use three different hidden
units to show the latter. 49

3.2 The difference between a fully-connected neural network and a con-
volutional network. The fully-connected net is shown at the bottom
while a 1D ConvNet is shown at the top. The colors denote the hidden
units from the layer below that a hidden unit is connected with. Each
hidden unit in the fully-connected net is connected with each unit from
the layer below. The ConvNet has a receptive field of size three; hence,
each hidden unit is connected only to three neighboring units from the
layer below. Figure reproduced from [1]. 50

3.3 Local connectivity and parameter sharing in convolutional networks.
Different colors correspond to different feature maps. You can see that
within each feature map, hidden units are connected only to a subset of
their input (local connectivity) and all the hidden units within a feature
map share the same kernel (parameter sharing). Different feature maps
have different kernels. 52

iv

3.4 A typical convolutional layer. This convolutional layer takes three input
channels (red, green and blue) and produces a single feature map (the
purple one). Each position in the resulting feature map is the result
of performing convolutions over all possible input channels and then
summing the results. The resulting position in the feature map is the
small gray element while the areas that are to be convolved and then
subsequently summed are the bigger gray squares in the input chan-
nels. We show the kernel that is used on top of each convolved area
to emphasize that a different kernel is used for each input channel.
Finally, nonlinearities are applied to compute the feature map activa-
tions. The bias is shared across the hidden units of the feature map
(parameter sharing). 55

3.5 The max pooling operation. Left: The feature map before pooling
and subsampling. Right: The pooled and subsampled feature map.
In the unpooled feature map, different colors denote the different non-
overlapping neighborhoods while the same colors to the right show the
correspondence between the neighborhoods and their pooled values. . 56

3.6 The typical structure of ConvNets. A convolutional network consists of
two parts, the feature extraction part and the classification part. The
red part of the network is the feature extraction part where the model
learns image representations while the blue part is a fully-connected
neural net which learns to classify images. Figure reproduced from [5]. 58

3.7 A typical forward propagation in convolutional networks. The network
takes as input an image and produces in the output layer class pre-
dictions for 101 classes. It takes as input an 83 × 83 image. It consists
of two convolutional layers each one followed by a pooling layer. The
first convolutional layer has 64 kernels of size 9 × 9 and produces 64

feature maps of size 75×75. Then, the pooling layer reduces the size of
the feature maps and a similar procedure is applied to the subsequent
convolutional and pooling layer. The output of the last pooling layer
is connected to the output layer that classifies images in 101 categories
(Caltech 101 dataset [6]). Figure reproduced from [7]. 59

3.8 Hierarchical feature representations learned by a ConvNet. Here the
model is applied to face recognition. Figure reproduced from [8] 60

v

3.9 Stacking convolutional layers with small receptive fields results in the
hidden units of the deeper layers to have large receptive fields. Each
convolutional layer in the scheme has a receptive field of three w.r.t.
the layer below. The hidden units of the first convolutional layer has a
receptive field of 3 w.r.t. the input layer. The hidden units of the second
convolutional layer has a receptive field of 3 w.r.t. the first convolutional
layer but a receptive field of 5 w.r.t. the input layer. Figure reproduced
from [1]. 62

3.10 The pioneering convolutional architecture LeNet-5 [9] for handwritten
digit recognition. Figure reproduced from [10]. 69

3.11 AlexNet architecture. The network is splitted in two parts, where each
part contains half of the feature maps of each layer. In this way the
network is parallelized in two GPUs. Note that all convolutional layers
are connected only with the part of the network that is in the same
GPU while the third convolutional layer is connected with both parts
of the second convolutional layer. Figure reproduced from [11]. 71

3.12 Inception module. (a) The naive form of inception module. (b) The
inception module with dimensionality reductions in the form of 1 × 1

convolutions. Figures reproduced from [12]. 73
3.13 GoogleNet architecture. Figure reproduced from [12]. 73
3.14 VGG-Net architecture. Different colors are used to discriminate between

the input layer, convolutional layers, max-pooling layers and fully-
connected layers. The architecture consists of 13 convolutional layers,
4 max-pooling layers and 3 fully-connected layers from which the last
is the output layer. Convolutional layers are stacked on top of each
other before a max-pooling layer. Stacks of convolutional layers are
called convoutional groups. The number of feature maps in successive
convolutional groups is doubled, where the first convolutional group
has 64 feature maps and the last convolutional group has 512 feature
maps. The hidden fully-connected layers have 4096 hidden units while
the output layer has 1000 output units. 74

vi

4.1 Annotated depth images of hand pose. (a) Raw depth image with the
annotated pose. (b) The image in (a) after hand segmentation and
depth normalization. The image is from the NYU dataset [13]. 93

4.2 Depth segmented and normalized image and its corresponding seg-
mented and normalized RGB image. In this figure it is clear that while
depth images are noisy, RGB images have a well-defined structure with
several details that are absent from depth images. In the depth image
you can see that the pointer, the middle and the ring fingers appear to
be joined together while in the RGB image they are clearly separated.
Furthermore, in the RGB image joint positions are visible while in the
RGB image they are not. 94

4.3 Depth-Net: Our best performing convolutional network. It is the deep-
est network among all different configurations we evaluated. In con-
volutional layers, the number before @ refers to the number of filters
while the size of the filters is indicated in parentheses. The stride is
denoted by s while zero-padding by p. In pooling layers, the size of
the receptive field is indicated in parentheses and s refers to the stride.
Different colors are used to discriminate between convolutional, max-
pooling and fc layers. 99

4.4 RGBD-Net: It takes fused RGB-D images at the input layer and infers
the 3D hand pose at the output layer. The first convolutional layer
learns weighted combinations of both RGB and depth images and ex-
ploits useful information from both domains towards more accurate
3D hand pose estimation. 102

4.5 Score level fusion with RGB-Net and Depth-Net. Both networks are
identical with the difference that they are trained on different domains,
the RGB-Net with RGB images while the Depth-Net with depth images.
After the predictions of both networks are obtained, the final 3D hand
pose is estimated as a weighted sum of the predictions of both nets.
The weights w1 and w2 are determined in advance. 103

vii

4.6 FuseNet: Our architecture for double-stream architecture fusing. Two
streams are trained in parallel, the depth stream and the RGB stream
with depth and RGB images respectively, and at any intermediate layer
the feature maps may be fused. Depth and RGB streams have identical
structure with Depth-Net and RGB-Net respectively with the difference
that after the fusion the remaining part of each respective net is trun-
cated. Here, for simplicity we demonstrate the fusion only in the last
layer but it can be inserted anywhere in the network. After the fusion,
the architecture continues as a single ConvNet. 106

4.7 Comparison of fusing approaches with Depth-Net. (a) In the success-
rate graph, the horizontal axis represents the distance threshold (mm)
and the vertical axis represents the fraction of frames (%) where the
maximum joint error is below the distance threshold. (b) In the mean
joint error graph, the horizontal axis represents the various joints and
the vertical axis indicates the the mean error per joint (%). For the
double-stream architecture fusion, the performance of the convolutional
fusion function is shown since it outperforms all the other fusion func-
tions (Fig. 4.8). Abbreviations: pinky (P), ring (R), middle (M), index
(I), thumb (T), wrist (W), palm center (C). For all fingers, the indices
1 and 2 refer to the fingertip joints, for the thumb, the index 3 refers
to th lower joint, and for the wrist, the indices 1 and 2 refer to the left
and right wrist position respectively. 114

4.8 Comparison of different fusing functions used in the double-stream
architecture. (a) Success-rate and (b) the mean joint error. While all the
fusion functions perform comparably, convolutional fusion performs
best among them. 115

4.9 Comparison of our proposed deep architecture Depth-Net and the double-
stream architecture fusion with the state-of-the-art methods of Tomp-
son et al. [13], Oberweger et al. [14], Oberweger et al. [15] and Zhou
et al. [16]. (a) Success rate, and (b) mean joint error. 119

viii

4.10 We show some qualitative results by plotting both the groundtruth pose
and the estimated pose of Depth-Net along with the corresponding
hand image for both the 2D and 3D case. Left: 2D depth images with
the 2D poses. Right: 3D point clouds with the 3D poses. In each case,
the groundtruth poses are colored with blue while the estimated poses
with red. Here, we show the results for the first subject of the test set.
The training set contains images only from this subject. Since the model
is trained on this subject, the predictions are very accurate. 122

4.11 Here we show some qualitative results for the second subject of the
test set who is not contained in the training set. The predictions are
less accurate for this subject which suggests that the model is subject to
some level of overfitting. Nevertheless, the predictions are still satisfying
for this subject. Left: 2D depth images with the 2D poses. Right: 3D
point clouds with the 3D poses. In each case, the groundtruth poses
are colored with blue while the estimated poses with red. 123

ix

List of Tables

4.1 This table contains the first case of convolutional networks we consid-
ered. In this case all convolutional networks have the same number of
pooling layers that is 3. We denote convolutional layers with ”convi”
which denotes the i-th convolutional layer. We denote pooling layers
with ”max-pooling”. In convolutional layers, in parentheses we indi-
cate the number of filters with the first number and the size of filters
with the rest two numbers. Fully-connected layers are denoted with
”fc-4096” where 4096 is the number of hidden units. After the fc lay-
ers the output layer follows, that is 3J units, where J is the number of
joints. Finally follows the loss layer. 96

4.2 This table contains the second case of convolutional networks we con-
sidered. In this case we consider more pooling layers than in the first
case. Specifically, Net7 and Net9 have 4 pooling layers while Net8 has
5 pooling layers. We use green color in the lines that refer to the pool-
ing layers to discriminate which networks are affected by the pooling
operation. Specifically, all networks are affected by the first 4 pooling
layers while only Net8 is affected by the 5-th pooling layer and that is
why it is colored with green. 97

x

4.3 Self-comparison of our ConvNet architectures which are trained with
depth images and are described in table 4.1 and table 4.2. Each row
represents a different architecture. In the first column is the name of
each net. In the second and third row, we state the training and valida-
tion error respectively which are measured with the mean square error
(MSE) between the nets’ predictions and the ground truth across the
training and validation set respectively. We choose the best performing
architecture based on its validation error. The winning ConvNet is Net6
which is our deepest architecture. 111

xi

List of Algorithms

2.1 Back-propagation algorithm . 21

xii

Abstract

Evangelos Kazakos, M.Sc. in Computer Science, Department of Computer Science and
Engineering, University of Ioannina, Greece, February 2017.
Hand Pose Estimation with Convolutional Networks using RGB-D Data.
Advisor: Christophoros Nikou, Assοciate Professor.

In this work, we study the problem of 3D articulated hand pose estimation from
RGB-D images, which consists of estimating all the kinematic parameters of a hand
expressed in joint angles or joint positions. Hand pose estimation is a very chal-
lenging problem due to the articulated nature of the human hand, which exhibits
self-occlusions and large viewpoint variations. The popularization of RGB-D sensors
has motivated the interest of the computer vision community in pose estimation as
depth images have significantly improved the performance of the related methods.
Moreover, the advance of deep learning has spurred this interest and most recent ap-
proaches propose convolutional network based methods. The architecture of a convo-
lutional network, its depth as well as its training play a crucial role in its performance.
In the first part of our work, we design and evaluate several different convolutional
network architectures. Our experiments show that the depth of the network plays a
crucial role in the performance, as our deepest convolutional network outperforms
the state-of-the-art.
Most methods use single depth images for 3D hand pose estimation. Depth im-

ages are noisy with quantization errors that result in missing parts around the hand
boundaries. We conjecture that the combination of RGB images, which provide a
more accurate description of the hand surface with color and texture information,
with depth images, can further improve the performance of a convolutional network.
Based on these observations, in the second part of our work we propose fusion meth-
ods of RGB and depth information using convolutional networks. We propose three
different approaches, input fusion, score level fusion and double-stream architecture

xiii

fusion. Input level fusion aggregates RGB-D data and trains a convolutional network
with images that contain both RGB and depth channels, while score level fusion
trains two different convolutional networks with RGB and depth images respectively
and fuses their predictions. Finally, double-stream architecture fusion, is based on
training two separate convolutional networks in parallel and at any arbitrary layer
of the network fusing their feature maps. We employ fusion functions proposed in
state-of-the-art activity recognition methods. The performance of input fusion and
score level fusion is limited, as they are applied in a very early and a very late stage of
the network respectively. We employed double-stream fusion to mitigate this problem
since the fusion takes place inside the network and lets subsequent learning stages
to define correspondences between RGB and depth features. Indeed, double-stream
fusion outperforms input fusion and score level fusion. Double-stream fusion has
comparable performance with the state-of-the-art, nevertheless our deep convolu-
tional network trained only with depth images, outperforms double-stream fusion
providing us state-of-the-art performance. From our experiments we conclude that
RGB-D fusion does not leverage further useful information towards more accurate
3D hand pose estimation.

xiv

Ε Π

Ευάγγελος Καζάκος, Μ.Δ.Ε. στην Πληροφορική, Τμήμα Μηχανικών Η/Υ και Πληρο-
φορικής, Πανεπιστήμιο Ιωαννίνων, Φεβρουάριος 2017.
Εκτίμηση του προσανατολισμού του χεριού με Συνελικτικά Δίκτυα χρησιμοποιώ-
ντας RGB-D δεδομένα.
Επιβλέπων: Χριστόφορος Νίκου, Αναπληρωτής Καθηγητής.

Η παρούσα εργασία πραγματεύεται το πρόβλημα της 3Δ εκτίμησης του προ-
σανατολισμού των αρθρώσεων ενός ανθρώπινου χεριού (3D articulated hand pose
estimation), από RGB-D εικόνες, διαδικασία η οποία συνίσταται της εκτίμησης όλων
των κινηματικών παραμέτρων του χεριού, εκφραζόμενες είτε σε γωνίες που σχημα-
τίζουν οι αρθρώσεις, είτε στις θέσεις των αρθρώσεων στον 3Δ χώρο. Η εκτίμηση
του προσανατολισμού του χεριού είναι πρόβλημα με πολλές προκλήσεις εξαιτίας
της αρθρωτής δομής του ανθρώπινου χεριού η οποία προκαλεί αποκρύψεις και επι-
καλύψεις μεταξύ διαφορετικών αρθρώσεων και παρουσιάζει μεγάλη διακύμανση
ως προς το σύνολο όλων των δυνατών προσανατολισμών των αρθρώσεων. Η εμπο-
ρική εμφάνιση χαμηλού κόστους RGB-D αισθητήρων και η διαθεσιμότητα τους στο
ευρύ κοινό, έστρεψε το ενδιαφέρον της κοινότητας της Υπολογιστικής Όρασης στο
πρόβλημα της εκτίμησης του προσανατολισμού του χεριού, καθώς οι εικόνες βά-
θους συνέβαλαν σημαντικά στην βελτίωση της απόδοσης των σχετικών μεθόδων.
Επιπλέον, η πρόοδος στο πεδίο της Βαθειάς Μηχανικής Μάθησης (Deep Learning)
ώθησε αυτό το ενδιαφέρον και οι πιο πρόσφατες προσεγγίσεις προτείνουν μεθόδους
βασιζόμενες σε συνελικτικά δίκτυα (Convolutional Networks). Η αρχιτεκτονική ενός
συνελικτικού δικτύου, το βάθος του καθώς και η εκπαίδευση του παίζουν πολύ
σημαντικό ρόλο στην δυνατότητα του να παρέχει ακριβείς εκτιμήσεις. Στο πρώτο
μέρος αυτής της εργασίας σχεδιάζουμε και αξιολογούμε πειραματικά διαφορετικές
αρχιτεκτονικές συνελικτικών δικτύων μεταβάλλοντας το βάθος καθώς και άλλες πα-
ραμέτρους των δικτύων. Οι πειραματικές μετρήσεις μας, δείχνουν ότι το βάθος του

xv

δικτύου παίζει καθοριστικό ρόλο στην απόδοση του, όπου το πιο βαθύ συνελικτικό
μας δίκτυο σημειώνει καλύτερη επίδοση από την τρέχουσα πρόοδο της τεχνολογίας.
Οι περισσότερες σκαταμέθοδοι χρησιμοποιούν μόνο εικόνες βάθους για την 3Δ

εκτίμηση του προσανατολισμού του χεριού. Οι εικόνες βάθους είναι θορυβώδεις
και περιέχουν σφάλματα κβαντοποίησης τα οποία οδηγούν σε ασυνέχειες βάθους.
Ως αποτέλεσμα, σε κάποια εικονοστοιχεία απουσιάζουν οι τιμές βάθους. Αυτές οι
ασυνέχειες συμβαίνουν σε περιοχές γύρω από τα όρια του χεριού και οδηγούν στην
απουσία τμημάτων τις εικόνας σε περιοχές γύρω από τα όρια του χεριού. Υποθέ-
τουμε ότι ο συνδυασμός RGB εικόνων, οι οποίες παρέχουν πιο ακριβή περιγραφή
της επιφάνειας του χεριού με πληροφορία χρώματος και υφής, με εικόνες βάθους,
μπορεί να βελτιώσει περαιτέρω την απόδοση ενός συνελικτικού δικτύου.
Βασιζόμενοι σε αυτές τις παρατηρήσεις, στο δεύτερο κομμάτι της παρούσας

εργασίας προτείνουμε μεθόδους συγχώνευσης πληροφορίας RGB και πληροφορίας
βάθους με τη χρήση συνελικτικών δικτύων. Προτείνουμε τρεις διαφορετικές προ-
σεγγίσεις, την συγχώνευση των εισόδων, την συγχώνευση των εκτιμήσεων και τη
συγχώνευση διπλής αρχιτεκτονικής. Η μέθοδος της συγχώνευσης των εισόδων συσ-
σωματώνει RGB-D εικόνες και εκπαιδεύει ένα συνελικτικό δίκτυο με εικόνες που
περιέχουν κανάλια τόσο RGB όσο και βάθους. Η μέθοδος της συγχώνευσης των
εκτιμήσεων εκπαιδεύει δύο διαφορετικά νευρωνικά δίκτυα με εικόνες RGB και βά-
θους αντίστοιχα και συγχωνεύει τις προβλέψεις τους. Τέλος η συγχώνευση διπλής
αρχιτεκτονικής βασίζετε στην εκπαίδευση δύο διαφορετικών συνελικτικών δικτύων
παράλληλα και σε οποιοδήποτε αυθαίρετο επίπεδο του δικτύου να συγχωνεύει τους
χάρτες χαρακτηριστικών τους, με δοθείσες συναρτήσεις συγχώνευσης χαρτών χαρα-
κτηριστικών. Χρησιμοποιούμε συναρτήσεις συγχώνευσης οι οποίες έχουν προταθεί
σε μεθόδους αναγνώρισης ανθρώπινης δραστηριότητας οι οποίες είναι τελευταία
πρόοδος της τεχνολογίας. Η επίδοση των μεθόδων της συγχώνευσης στο επίπεδο
της εισόδου και της συγχώνευσης των εκτιμήσεων είναι περιορισμένη, καθώς η συγ-
χώνευση εφαρμόζεται σε ένα πολύ αρχικό και σε ένα πολύ τελικό επίπεδο του
δικτύου αντίστοιχα. Προτείναμε την συγχώνευση διπλής αρχιτεκτονικής ώστε να
αντιμετωπίσει αυτό το πρόβλημα καθώς σε αυτήν την περίπτωση η συγχώνευση
λαμβάνει μέρος στο εσωτερικό του δικτύου και επιτρέπει στα επακόλουθα στάδια
μάθησης, να ορίσουν αντιστοιχίες μεταξύ RGB χαρακτηριστικών και χαρακτηριστι-
κών βάθους. Πράγματι, η συγχώνευση διπλής αρχιτεκτονικής ξεπερνάει σε ακρίβεια
τη μέθοδο συγχώνευσης των εισόδων και τη μέθοδο συγχώνευσης των εκτιμήσεων.

xvi

Η μέθοδος συγχώνευσης διπλής αρχιτεκτονικής έχει συγκρίσιμες επιδόσεις με την
τρέχουσα πρόοδο της τεχνολογίας, παρόλα αυτά το βαθύ συνελικτικό δίκτυο που
προτείνουμε το οποίο εκπαιδεύτηκε μόνο με εικόνες βάθους, ξεπερνάει τις επιδό-
σεις των μεθόδων συγχώνευσης, παρέχοντας μας αποτελέσματα τελευταίας προόδου
της τεχνολογίας. Από τα πειράματα μας συμπεραίνουμε ότι η συγχώνευση RGB-D
δεδομένων δεν εκμεταλλεύεται επιπλέον χρήσιμη πληροφορία για πιο ακριβής 3Δ
εκτίμηση του προσανατολισμού του χεριού.

xvii

Chapter 1

Introduction

In this work, we study the problem of 3D articulated hand pose estimation from
RGB-D images, which consists of estimating all the kinematic parameters of a hand
expressed in joint angles or joint positions. Hand pose estimation has several useful
applications, such as in human computer interaction (HCI), augmented reality, ges-
ture recognition, gaming, as well as robots learning by demonstration. It is a very
challenging problem, since hand articulation has high degrees of freedom, there are
self-occlusions between joints which can make the estimation of the position very
difficult and the projected image of a human hand is very small which results in low
resolution images. The popularization of RGB-D sensors has motivated the interest
of the computer vision community in pose estimation as depth images have signifi-
cantly improved the performance of the related methods. Depth images are very good
features for 3D pose estimation since they provide 3D information which is directly
correlated with the estimation of 3D joint positions.
The release of large annotated datasets of depth images with human bodies, made

discriminative, classification based methods arise and give outstanding performance
in the problem of human pose estimation. These methods were based on random
decision forests (RDF) trained with depth images, where at the first step an RDF
classifies pixels in body parts and subsequently a further step estimates the position
of the body joints in each part. These methods were also applied in hand pose esti-
mation with less success. The reasons are that the human hand has higher degrees of
freedom, it exhibits much wider pose variation, viewpoint change and self-occlusions

1

which can significantly influence the performance of the classifier, and hence the
subsequent estimation of the position of the joints. Regression based methods were
applied with greater success than classification based methods for hand pose estima-
tion. Regression based methods do not rely on a subsequent estimation step, they learn
a direct mapping from a depth image to a 3D hand pose; hence, they can mitigate
the problem of self-occlusion and recover the hand pose from occluded joints since
they can learn meaningful mappings from occluded joints to the ground truth pose.
Random regression forests and several proposed variants have shown state-of-the-art
performance in the problem of hand pose estimation with depth images.
The advance of deep learning has influenced significantly computer vision were

convolutional networks gave impressive results in several tasks such as image recog-
nition and detection. As a result, most recent hand pose estimation methods turned
their attention towards convolutional networks, where they outperform previous re-
gression forest based methods. In this work, we study the problem of 3D hand pose
estimation with convolutional networks using RGB-D data. In the first part of the
work, we make a thorough analysis of basic concepts related with feedforward neu-
ral networks and convolutional networks. We analyze their main properties and we
discuss several widely used practices. Since training neural networks can be a very
difficult task we pay special attention to methodologies used for training neural net-
works. Subsequently, we introduce the problem of hand pose estimation and we
discuss several difficulties of the problem that make it quite challenging. We present,
thoroughly previous related work in hand pose estimation and we analyze more
extensively the methods based on convolutional networks.
In the second part of our work, we introduce our main methodology for 3D hand

pose estimation with convolutional networks. The depth of a convolutional network
as well as its general structure, such as the size of the convolutional kernels and their
number, are of great importance concerning its performance. To this end, in the first
part of our proposed methodology, we design and evaluate several different convolu-
tional network architectures by alternating the depth of the network as well as other
parameters that change the structure of the network. Our experimental results show
that the depth of a network plays a crucial role in its performance as our deepest
convolutional network outperforms the state-of-the-art. This convolutional network
is our proposed architecture that we use in the rest of our experiments. Apart from
the depth we find that the amount of pooling layers is of great importance and an

2

excessive number can lead to information loss and downgraded performance. More-
over, we found that dropout serves as a very good regularizer for regression convolu-
tional networks, which prevents very effectively our deep architecture from overfitting
with very small inclusion probabilities. Nevertheless, we observed that dropout has a
very strong regularization effect on regression convolutional networks and very small
dropout probabilities should be used, otherwise the training of the network can very
easily face an underfitting scenario. Finally, we found that several hyperparameters
related to the network training and regularization, such as the learning rate and
dropout probabilities respectively, are too sensitive and slightly different values can
easily lead to underfitting or overfitting. To this end, we performed hyperparame-
ter optimization with cross-validation in order to find good settings for some of the
network hyperparameters.
Most methods use single depth images for 3D hand pose estimation. Depth im-

ages are noisy with quantization errors that result in missing parts around the hand
boundaries. We conjecture that the combination of RGB and depth images can im-
prove the performance of convolutional networks, since the benefits of one domain
are complementary with the drawbacks of the other. RGB images provide an accurate
description of objects with color and texture information, yet they do not contain 3D
information. Depth images are noisy with an imprecise description of the objects, but
with 3D information that proved very useful in hand pose estimation. Based on these
observations, in the second part of our methodology we propose fusion methods of
RGB and depth information using convolutional networks. We propose three different
approaches: input fusion, score level fusion and double-stream architecture fusion.
Input level fusion aggregates RGB-D data and trains a convolutional network with
images that contain both RGB and depth channels, while score level fusion trains two
different convolutional networks with RGB and depth images respectively and fuses
their predictions. Finally, double-stream fusion architecture, is based on training two
separate convolutional networks in parallel whose feature maps are fused at an in-
termediate layer of the network using a fusion function. We employ fusion functions
proposed in state-of-the-art activity recognition methods.
The performance of input fusion and score level fusion is limited, as they are ap-

plied in a very early and a very late stage of the network respectively. We believe that
double-stream fusion can mitigate this problem since the fusion takes place inside
the network and lets subsequent learning stages to define correspondences between

3

RGB and depth features. Our experiments confirm that double-stream architecture
fusion outperforms both input fusion and score level fusion. Double-stream architec-
ture fusion performs quite comparably with the state-of-the-art, but still our proposed
convolutional network which is trained only with depth images outperforms double-
stream architecture fusion and provide us state-of-the-art performance. From our
experiments we conclude that fusion of RGB and depth information do not leverage
further useful information towards more accurate 3D hand pose estimation. Neverthe-
less, our knowledge of the problem is limited since we did not perform experiments
for fusing double-stream architectures in multiple different layers of the network and
we did not consider every possible fusion function. More investigation towards that
direction may reveal better correspondences between RGB and depth features and
provide improved performance comparing to training a network only with depth
images.

4

Chapter 2

Feedforward neural networks and deep
learning

2.1 Introduction

2.2 Definition of a feedforward neural network

2.3 Activation functions

2.4 Loss functions

2.5 Empirical risk minimization

2.6 Back-propagation algorithm

2.7 Optimization

2.8 Regularization

2.1 Introduction

Deep learning is a machine learning field that researches the construction of gradient-
based learning models for supervised and unsupervised learning. Here, we investigate
supervised learning where given a dataset X = {x(i), y(i)}Ni=1, where N is the num-
ber of samples, x(i) is the input vector and y(i) is the target (y ∈ R for regression,
y ∈ Z for classification) for the i-th example, the goal is to approximate a function
f ∗ where y = f ∗(x). Deep feedforward networks, also often called feedforward neural net-
works or multilayer perceptrons (MLPs), are the quientessential deep learning models.

5

A feedforward network defines a mapping y = f(x;θ) and learns the value of the pa-
rameters θ such that θ∗ = argmin

θ

J(θ), where J(θ) is a cost function over the dataset.

The name deep learning arises from the fact that unlikely classical neural networks,
deep networks are composed of several hidden layers, thus they are deeper, leading
to the approximation of more complex functions that can solve more complex tasks.
The idea behind this is that we allow computers to understand the world in terms of
a hierarchy of concepts, with each concept defined in terms of its relation to simpler
concepts. In terms of neural networks, we learn hierarchical feature representations,
through each layer by composing more complex features from simpler ones. This has
the big advantage that we don’t have to manually obtain traditional hand-crafted
features for a task but the model learn these features from our data. This framework
is called representation learning or feature learning.
Providing sufficient large models, deep networks can solve very complex prob-

lems, as they can approximate more complex functions. Nevertheless, very complex
models are prone to overfitting. Thus, very good regularization methods are needed
in order deep models to perform well. As we know large datasets can reduce the
overfitting of a machine learning model and improve its generalization performance.
Recent publications of big annotated datasets gave the opportunity to deep learning
to arise and give outstanding performance in several tasks such as speech recognition
and image recognition and detection. However, even with the use of sufficiently big
amount of data, overfitting remains a major problem in deep models. Thus, there
is extensive research on regularization methods in deep learning literature. Another
major problem in training deep neural networks is that optimization is harder, which
can lead to underfitting, thus better optimization methods are needed in order to
obtain deep models with good performance.
In this chapter, we will analyze the basic principles of training feedforward neural

networks. Furthermore, we will describe some techiniques that are developed in
deep learning research in order to tackle the aforementioned problems. We will not
go thoroughly through many deep learning methodologies, such as unsupervised
pre-training, restricted Boltzman machines, autoencoders etc, but we will limit our
discussion to methods that are involved in training convolutional networks which is
the basic model we are studying in this work.

6

2.2 Definition of a feedforward neural network

A feedforward neural network is a network composed of computational units which
are called neurons. Neurons are organized in layers, where there are no connections
between neurons of the same layer and full connections between neurons of succesive
layers (each neuron in a layer is connected with all the neurons in the previous layer).
They are called feedforward neural networks, because all the computations follow the
same direction, from the input to the output and there are no feedback connections of
the output of a neuron to other neurons; hence they can be interpreted by a directed
acyclic graph . They are composed from the input layer, one or more hidden layers
and the ouput layer.
Given an input vector x ∈ Rd, the input layer takes this vector and passes it to

the next layer of the network, where the hidden layers perform computations and
finally the output layer computes an output f(x) based on x. Assume that we have L
hidden layers. At a given layer k > 0, each hidden unit first computes its preactivation
(or input activation), that is:

a(k)(x)i = b
(k)
i +

∑
j

W
(k)
(i,j)h

(k−1)(x)j , (2.1)

where a(k)(x)i is the preactivation of the i-th neuron in layer k and h(k−1)(x)j is the
output of the j-th hidden unit in the layer below. W is referred to as the connection
matrix which contains the weights of the connections between neurons, where W

(k)
(i,j)

is the weight that connects the i-th hidden unit with its j-th input, and b is the bias
vector where b

(k)
i is the bias of the i-th hidden unit in layer k. The computation in

equation (2.1) is the inner product of the weights with the input plus the bias term.
Alternatively, equation (2.1) can be written in vector form as:

a(k)(x) = b(k) +W (k)h(k−1)(x), (2.2)

where a(k)(x) is the vector that contains the preactivations of all neurons in layer k.
For the input layer, h(0)(x) = x.
Given the preactivations, hidden units compute their activations that in vector

form is:
h(k)(x) = g(a(k)(x)), (2.3)

where k = 1, ..., L, g(·) is a nonlinear function that transforms the preactivation of a
hidden unit, known as the nonlinearity of the hidden unit. Later in this chapter, we

7

Figure 2.1: A typical feedforward neural network. x is the input vector, h(k)(x) are
the activations of the k-th layer, W (k) is the weight matrix of the k-th layer, b(k) are
the biases of the layer, and f(x) is the output of the neural network. In the specific
example the network has two hidden layers.

will see some popular choices of activation functions. The output of the network is
computed as:

h(L+1) = o(a(L+1)(x)) = f(x), (2.4)

where o is a nonlinear function of the output preactivations, i.e. the activation of the
output units, and we say that f(x) is the output of the neural network. Additionally
o ∈ Rp, where p is the number of outputs of the network. We use the symbol f for
the output of the neural network, as in the general case it can have multiple outputs;
hence, f is the vector with the outputs of the neural network. In the next section,
we will see some reasonable choices for output activations depending on different
kind of problems. For a graphical illustration of a neural network see figure 2.1. The
computation of f(x) given an input vector x is called forward propagation.
Neural networks were invented based on perceptron [17], hence their alterna-

tive name multilayer perceptrons. A perceptron is actually a single neuron which
computes a linear combination of an input vector with some weights and then pass
it through a nonlinearity to make decisions. The limitation of perceptron is that it
can compute only linear decision surfaces. Hence it can solve only linearly separable
problems. Neural networks overcome this problem by combining multiple neurons

8

organized in layers in order to obtain more complex functions constructed by simpler
ones, i.e. by multiple linear functions followed by nonlinearities. For example, if we
have a neural network with three layers including the output layer and each layer
can be represented as a function f i which take as input the previous layer, we result
in f 3(f 2(f 1(x))). Thus, they create nonlinear decision surfaces which are suitable
for solving nonlinearly separable problems. Actually, the hidden layers transform the
input space by computing feature representations of the input that attempt to make
the problem linearly separable. These feature representations are then fed to the out-
put layer which is essentially a linear classifier which solves the problem using linear
decision surfaces in the new space. Therefore, these feature representations make
the problem easier so that the linear classifier at the output layer pay less effort to
solve the problem. It arises that the hidden layers compute powerful representations
with high discrimination level. The activation functions in the hidden units make the
neural network able to construct functions with higher degree of nonlinearity; thus,
the decision surfaces are even more complex which makes the network able to solve
more challenging problems.
Neural networks define a mapping xd → f(x)p. This mapping is learned from the

dataset we provide to the training algorithm. Training is the procedure of learning
the parameters of the model which in neural networks are:

θ ≡ {W (1), b(1),W (2), b(2), ...,W (L+1), b(L+1)}.

In the rest of this chapter, we will discuss about several aspects of training neural
networks including some modern practices applied on deep learning.

2.3 Activation functions

Here, we will discuss several available options of activation functions for hidden units
as well as output units. Output units are selected based on the task we assign to the
neural network, which affects the output of the model, e.g. classification requires inte-
ger outputs while regression requires continuous outputs. The choice of the activation
function for the hidden units on the other hand is not straightforward as we do not
know in advance the optimal values for the hidden units. The design of hidden units
is an extremely active area of research and does not yet have many definitive guiding
theoretical principles. It can be difficult to determine when to use which kind. It is

9

usually impossible to predict in advance which will work best. The design process
consists of trial and error, intuiting that a kind of hidden unit may work well, and
then training a network with that kind of hidden unit and evaluating its performance
on a validation set.
We will first give the definitions of some famous activations functions and then

we will describe the cases where each one is suitable.
The first and simplest activation function that can be used is the linear activation

function, that is:
g(a) = a, (2.5)

which takes the input and reproduces it. A graphical illustration of a linear activation
function can be seen in figure 2.2a. Another interesting choice of activation function
is the sigmoid activation function which is:

g(a) = σ(a) =
1

1 + exp(−a)
. (2.6)

Sigmoids squash the neuron’s preactivation in the range [0, 1]. Sigmoid’s graph is
depicted in figure 2.2d. Hyperbolic tangent or tanh activation function is very similar
to sigmoid. Their difference is that a tanh activation function squashes a neuron’s
range in [−1, 1]. Its type is given by:

g(a) = tanh(a) = exp(a)− exp(−a)

exp(a) + exp(−a)
, (2.7)

and for its graph you can have a look at figure 2.2c. Finally a very popular choice for
activation functions especially in the context of deep learning is the Rectified Linear
Unit activation function or ReLU which is given by:

g(a) = ReLU(a) = max(0, a), (2.8)

which is linear for a > 0 and zero for a < 0. Its plot is illustrated in figure 2.2d. This
particular choice of activation function behaves differently from the aforementioned
activation functions. It tends to give neurons with sparse activities, which means that
neurons are often exactly zero and that is because there is a very big area in its domain
where the activation is zero. That doesn’t happen with the other hidden units, e.g.
in sigmoid a neuron is zero when its preactivation is −∞ which practically will not
happen and in tanh only when it takes the particular value of zero. We will see that
this is an appealing property and ReLU works quite well in practice.

10

(a) Linear (b) Sigmoid

(c) Tanh (d) Rectified Linear Unit (ReLU)

Figure 2.2: Activation functions of neurons.

Most modern neural networks are trained using maximum likelihood. That is, our
neural network defines a conditional distribution p(y|x;θ) of predicting y given the
input x and the parameters of our model θ. The cost function that we are minimiz-
ing is the negative log-likelihood of our data over p(y|x;θ). The maximum likelihood
approach is to define the correct distribution based on the type of y. Below, we de-
scribe the proper selection of the output units based on the selection of the probability
distributions under a maximum likelihood framework.
In a regression problem, it is typical to model the conditional distribution with a

Gaussian distribution where the mean of the Gaussian is our model’s predictions so
that:

p(y|x) = N (y;f(x), I), (2.9)

where I is a unit covariance matrix. Minimizing the negative log-likelihood is then
equivalent to minimizing the mean squared error. A reasonable choice is to use a

11

linear activation function for modeling the mean of the distribution, i.e f(x). As we
want the model to be able to predict any real value it wouldn’t be wise to use, say
a sigmoid or a tanh which would suppress the outputs in a specific range. On the
other hand, if we know that in our dataset, y takes values between say 0 and 1, a
sigmoid would be a convenient choice. Thus, depending on the range of the targets
different activation functions can be used but normally the default for regression is a
linear one.
In the case of binary classification, our targets can take values y ∈ {0, 1}. In that

case, the maximum-likelihood approach is to define a Bernoulli distribution over y
conditioned on x . Therefore, it is sufficient to predict only p(y = 1|x) as p(y = 0|x) =
1 − p(y = 1|x). Sigmoid units can be used in this case, because they produce values
bounded in [0, 1] which is the range for valid probabilities. Thus, we can have a single
sigmoid unit as output that predicts p(y = 1|x), and if p(y = 1|x) > 0.5, x is estimated
as belonging to the first class else to the second one.
In multi-class classification, we need a probability distribution over a discrete

variable with n possible values, which correspond to n different classes. We now need
our network to produce a vector of estimates f(x) with f(x)c = p(y = c|x). We require
not only that each element of f(x)c be between 0 and 1 , but also that the entire vector
sums to 1 so that it represents a valid probability distribution. The same approach
that worked for the Bernoulli distribution generalizes to the categorical distribution.
We model the categorical distribution with a softmax activation function:

o(ai) = softmax(ai) =
exp ai∑
j exp ac

. (2.10)

Probability distributions based on exponentiation and normalization are common
throughout the statistical modeling literature, where we normalize over unnormalized
probability distributions. Here, the unnormalized probability distribution is ai, that is
the preactivation of the output neurons. A similar procedure of exponentiating and
normalizing is followed to model sigmoids as Bernoulli distribution in the case of
binary classification.
Now, we will continue our discussion for the hidden units of a neural network. A

typical problem in optimizing deep neural networks is the vanishing gradients problem.
The vanishing gradient problem is that as we back-propagate the gradients to our
network (we talk about back-propagation and how is related to the vanishing gradient
problem in Section 2.6), the gradients take very small values, and as we reach to the

12

shallower layers of the network the gradients become nearly zero. This has the effect
that the information vanishes and the network does not learn anything useful. Part
of this problem is due to the activation functions of the hidden units.
Rectified linear units are an excellent default choice for hidden units. ReLUs are

easy to optimize because they are similar to linear units. The only difference between
a linear unit and a rectified linear unit is that a rectified linear unit outputs zero across
half of domain. This has the effect that whenever the preactivation is positive, ReLU
outputs a strong signal and also results in large gradients. ReLus were designed to
overcome the vanishing gradient problem which as will see below, sigmoidal units
were suffering from vanishing gradients. As long as the preactivation is positive ReLUs
gradients are large and back-propagate normally through the network. For hidden
units that suffer from the vanishing gradient problem, we also say that these hidden
units saturate, that is, at big part of their domain their gradients become zero. ReLU is
a non-saturating hidden unit and for this reason is preferred in modern deep model
architectures.
Several generalizations of rectified linear units exist. Most of these generalizations

perform comparably to rectified linear units and occasionally perform better. One
drawback of rectified linear units is that they cannot learn via gradient-based methods
on examples for which their preactivations are negative. A variety of generalizations
of rectified linear units guarantee that they receive gradients everywhere.
Three generalizations of rectified linear units are based on using a non-zero slope

β when a < 0 : g(a, β) = max(0, a) + βmin(0, a). Absolute value rectification fixes
β = −1 to obtain g(a) = |a| . It is used for object recognition from images [18], where
it makes sense to seek features that are invariant under a polarity reversal of the
input illumination. Other generalizations of rectified linear units are more broadly
applicable. A leaky ReLU [19] fixes β to a small value like 0.01 while a parametric
ReLU or PReLU treats β as a learnable parameter [20].
Prior to the introduction of rectified linear units, most neural networks used the lo-

gistic sigmoid activation function or the hyperbolic tangent activation function. These
activation functions are closely related because tanh(a) = 2σ(2a)−1. We have already
seen sigmoid units as output units, used to predict the probability that a binary vari-
able is 1 . Unlike piecewise linear units, sigmoidal units saturate across most of their
domain-they saturate to a high value when a has a high positive value, saturate to
a low value when a has a high negative value, and are only strongly sensitive to

13

their input when a is near 0. The widespread saturation of sigmoidal units can make
gradient-based learning very difficult. For this reason, their use as hidden units in
feedforward networks is now discouraged.

2.4 Loss functions

In section 2.3 we mentioned that we can model the output of a neural network as a
conditional distribution p(y|x;θ) and train it with maximum likelihood. Consider a
set of m examples X =

{
(x(1), y(1)), ..., (x(m), y(m))

}
. Given p(y|x;θ), the conditional

maximum likelihood is:

θML = argmax
θ

m∑
i=1

log p(y(i)|x(i);θ). (2.11)

We convert it into a minimization problem by changing the sign in the last equation.
Hence, we are minimizing the negative log-likelihood of our data which results in the
cost function:

J(θ) = −
m∑
i=1

log p(y(i)|x(i);θ). (2.12)

We can express J(θ) as an expectation over the datasetX by dividing the last equation
with m which results in:

J(θ) = −EX log p(y|x;θ). (2.13)

In regression, where we set p(y|x) = N (y;f(x), I), our objective function takes
the form:

J(θ) =
1

2
EX∥y − f(x;θ)∥2, (2.14)

where we omitted the constant term that arises from the normalization factor of the
Gaussian distribution. Hence, the per-example loss function is:

L(f(x),y) =
1

2
∥y − f(x;θ)∥2. (2.15)

In classification, the output units model directly the conditional probability distri-
butions, that is p(y|x) = f(x). Substituting in equation (2.13) the loss function now

14

becomes:
L(f(x), y) = −

∑
c

1(y=c) log f(x)c = − logf(x)y, (2.16)

that is the negative log-likelihood of our model for the true class y of x, or it can
be seen as the cross entropy between the distribution 1(y=c) (identity function) which
gives 1 for the true class of x and 0 elsewhere, and our model distribution f(x).
We saw previously that sigmoidal units saturate, and hence their use as hidden

units is discouraged. Nevertheless, they can be used as output units when an appro-
priate cost function can undo the saturation of the sigmoid or tanh in the output layer.
This is why modern deep network training is modeled under a maximum likelihood
estimation framework. The logarithm in the cost function cancels the exponential in
sigmoidal units or the softmax, thus with large values these output units will not
saturate and the gradients will not vanish.

2.5 Empirical risk minimization

The goal of a machine learning algorithm is to reduce the expected generalization
error that is:

J∗(θ) = Ep(x,y)L(f(x), y) =

∫
L(f(x), y)p(x, y), (2.17)

where p(x, y) is the true underlying data distribution. This quantity is known as the
risk. Ideally, we would like to minimize the risk, but the true underlying distribution
of our data is not known. To this end, we minimize the empirical risk:

Ep̂(x,y)[L(f(x), y))] =
1

m

m∑
i=1

L(f(x(i)), y(i))), (2.18)

where p̂(x, y) is the empirical distribution defined by our training set and m is the
number of training examples.
Ideally, we would like to optimize the classification error, which is a very hard

function to optimize as it has discontinuity at zero and everywhere else its gradient
is zero which means that a gradient-based optimization algorithm is not feasible.
As a result we minimize a surrogate loss function which in our case is the negative
log-likelihood.

15

2.6 Back-propagation algorithm

As explained in Section 2.2, forward propagation consists of providing an input
vector x to the input layer, which propagates it to the subsequent layers, where
the hidden units compute their preactivations and activations until the output layer
computes f(x), i.e. the prediction of the network for x. Forward propagation can
continue onward until it produces a scalar cost J(θ). Given J(θ), back-propagation
algorithm allows the information to flow backwards, from the output to the input of
the network, in order to compute the gradients of the network parameters w.r.t. J(θ).
Of course, it would be possible to compute analytical expressions for the gradient,
but the evaluation of these expressions would be very expensive. Back-propagation
algorithm performs these computations in a very computationally efficient way.
Many times the back-propagation algorithm is misunderstood as being the full

training procedure for neural networks. In fact, back-propagation is just the proce-
dure for computing the gradients of the neural network, which will be used by an
optimization procedure to minimize our cost function.
Making the full derivation of the parameter gradients of the neural network is a

complicated procedure; hence, we will break it in multiple steps. Finally, we will give
the back-propagation algorithm which is composed from all these single steps.
We start by deriving the gradient of the loss w.r.t. the output of the neural network.

In this example, we make the derivation for the classification loss. It is fairly simple
to derive it for regression loss as well. It is:

∂

∂f(x)c
[− log f(x)y] = −

1(y=c)

f(x)y
, (2.19)

where 1(y=c) is the indicator function, c a given class and y the true class of x. The
numerator is multiplied by the indicator function because if y ̸= c, then − log f(x)y
is constant w.r.t. f(x)c. Hence its gradient is given by:

∇f(x) [− log f(x)y] =
−e(y)

f(x)y
, (2.20)

where e(y) is the one-hot vector of y which is everywhere 0 except the position where
y = c.
Now, we will derive the gradient of the loss w.r.t. the preactivations of the output

layer. Its expression is given by:

16

∂

∂a(L+1)(x)c
[− log f(x)y] = −(1(y=c) − f(x)c), (2.21)

which is simple and elegant, although it is derived after several intermediate steps
which we illustrate next:

∂

∂a(L+1)(x)c
[− log f(x)y] =

−1

f(x)y

∂

∂a(L+1)(x)c
f(x)y

=
−1

f(x)y

∂

∂a(L+1)(x)c
softmax(a(L+1)(x))y =

−1

f(x)y

∂

∂a(L+1)(x)c

exp(a(L+1)(x)y)∑
c′ exp(a(L+1)(x)c′)

=
−1

f(x)y

(
∂

∂a(L+1)(x)c
exp(a(L+1)(x)y)∑

c′ exp(a(L+1)(x)c′)

−
exp(a(L+1)(x)y)

(
∂

∂a(L+1)(x)c

∑
c′ exp(a(L+1)(x)c′)

)
(
∑

c′ exp(a(L+1)(x)c′))
2

=

−1

f(x)y

(
1(y=c) exp(a(L+1)(x)y)∑

c′ exp(a(L+1)(x)c′)
− exp(a(L+1)(x)y)∑

c′ exp(a(L+1)(x)c′)

exp(a(L+1)(x)c)∑
c′ exp(a(L+1)(x)c′)

)
=

−1

f(x)y

(
1(y=c)softmax(a(L+1))y − softmax(a(L+1))ysoftmax(a(L+1))c

)
=

−1

f(x)y

(
1(y=c)f(x)y − f(x)yf(x)c

)
= −

(
1(y=c) − f(x)c

)
.

Equivalently, the gradient is:

∇a(L+1)(x) [− log f(x)y] = −(e(y)− f(x)). (2.22)

We continue with the derivation of the partial derivative of the hidden units. We
could follow the same procedure as before and obtain an analytic expression for each
neuron of each hidden layer. In that case, things are getting complicated as we have
to derive multiple expressions for each neuron and as we are moving to the lower
layers of the network the expressions are getting more complicated. Thus, we need a
more general formulation. The chain rule of calculus is used for this reason, which
obtains the gradients of each layer in a highly efficient way.
Let a be a real number, and let p, q: R → R. Suppose that b = q(a) and c =

p(q(a)) = p(b). Then the chain rule states that:

dc

da
=

dc

db

db

da
. (2.23)

We can generalize this beyond the scalar case. Suppose that a ∈ Rm, b ∈ Rn, q: Rm →
Rn and p: Rn → R. If b = q(a) and c = p(b), then:

17

∂c

∂aj
=
∑
i

∂c

∂bi

∂bi
∂aj

. (2.24)

In our setting, let aj to be a hidden unit, bi the preactivation in the layer above
and c our loss function. Then the partial derivative of j-th hidden unit in layer k

w.r.t. the loss is derived as:

∂

∂h(k)(x)j
[− log f(x)y] =

∑
i

∂[− log f(x)y]
∂a(k+1)(x)i

∂a(k+1)(x)i
∂h(k)(x)j

=
∑
i

∂[− log f(x)y]
∂a(k+1)(x)i

W
(k+1)
i,j (2.25)

=
(
W⊤

.,j

) (
∇a(k+1)(x)i [− log f(x)y]

)
, (2.26)

where W .,j is the j-th column of W . Equation (2.25) follows from ak(x)i = b
(k)
i +∑

j W
(k)
i,j h

(k−1)(x)j.
The gradient is given by:

∇h(k)(x) [− log f(x)y] = W (k+1)⊤(∇a(k+1)(x) [− log f(x)y]). (2.27)

In equation (2.27), we’ve seen how to acquire the partial derivative of the loss
w.r.t. the hidden units of a given layer, where we used the chain-rule of calculus by
summing over all hidden units in the layer above. Now, we will use the chain-rule
to obtain the partial derivatives of the loss w.r.t. a hidden unit’s preactivation. The
difference is that now we will not sum over several different units, as the preactivation
of a hidden unit depends only on its activation. The steps to obtain it are the following:

∂

∂a(k)(x)j
[− log f(x)y] =

∂[− log f(x)y]
∂h(k)(x)j

∂h(k)(x)j
∂a(k)(x)j

=
∂[− log f(x)y]

∂h(k)(x)j
g′(a(k)(x)j), (2.28)

where the last equality is true because h(k)(x)j = g(a(k)(x)j). Similarly, the gradient
is:

∇a(k)(x) [− log f(x)y]

= ∇h(k)(x) [− log f(x)y]⊙ [..., g′(a(k)(x)j), ...] (2.29)

=
(
∇h(k)(x) [− log f(x)y]

)⊤
∇a(k)(x)h

(k)(x), (2.30)

18

where ⊙ is the element-wise product. Equations (2.29) and (2.30) are equivalent
since ∇a(k)(x)x

(k)(x) in equation (2.30) is the Jacobian matrix of the activations with
respect to the preactivations which is a diagonal matrix.
The only missing element in equation (2.28) is the definition of the activation

functions’ gradients. Below you can see the gradients of the activation functions we
defined in Section 2.3.
Activation functions gradients

• Linear: g′(a) = 1

• Tanh: g′(a) = 1− g2(a)

• Sigmoid: g′(a) = g(a)(1− g(a))

• ReLU: g′(a) =

0 x < 0,

1 x > 0

In equation (2.29), we can see that we have an element-wise multiplication with
the derivative of the activation function. If we observe the derivative of the sigmoid
and tanh activation functions, we can see that if their preactivations have very large
positive or negative values, the values of the gradients are pushed towards zero. Thus,
the whole expression of the gradient of the loss function w.r.t. the preactivations in
equation (2.30) have values near zero. As we will see below, this gradient is involved
in the gradient of the loss function w.r.t. the weights. This will result in driving the
weight gradients toward zero. Thus, when we will perform updates to learn the value
of the parameters, the values of the weights will not change, which means that we
do not learn any useful information. This is actually the vanishing gradient problem
and this is why sigmoidal units are saturating units.
Finally, we will obtain expressions for the gradient of the loss w.r.t. the model

weights and biases at each layer, which we will use for performing updates with an
optimization algorithm in order to learn the set of our parameters. We start with the
partial derivative of the loss w.r.t. the weights that is:

∂

∂W
(k)
i,j

[− log f(x)y] =
∂[− log f(x)y]

∂a(k)(x)i

∂a(k)(x)i

∂W
(k)
i,j

=
∂[− log f(x)y]

∂a(k)(x)i
h(k−1)(x)j. (2.31)

19

The last part of the expression is true as ak(x)i = b
(k)
i +

∑
j W

(k)
i,j h

(k−1)(x)j. The gradient
is:

∇W (k) [− log f(x)y] =
(
∇a(k)(x) [− log f(x)y]

)
h(k−1)(x)⊤, (2.32)

which is a matrix of size (#hidden units in k-th layer)× (#inputs in (k− 1)-th layer).
Finally, lets derive the partial derivative of the loss w.r.t. the biases of a hidden

layer, that is:

∂

∂b
(k)
i

[− log f(x)y] =
∂[− log f(x)y]

∂a(k)(x)i

∂a(k)(x)i

∂b
(k)
i

=
∂[− log f(x)y]

∂a(k)(x)i
. (2.33)

Thus, the gradient is:

∇b(k) [− log f(x)y] = ∇a(k)(x) [− log f(x)y] . (2.34)

Now, we have all the necessary gradients in order to describe the back-propagation
algorithm. You may noticed in the expressions for the gradients in the hidden layers
that the left part of each expression depends on the gradients of another part of the
neural network. Specifically, in equation (2.27) the gradient of the activation depends
on the gradient of the preactivation of the layer above, similarly the gradient of a
layer’s weights and biases depends on the the gradient of the layer’s preactivation, and
the gradient of a layer’s preactivation depends on the gradient of the layer’s activation.
This suggests that putting these expressions in specific order we can compute these
gradients using at each step precomputed gradients of previous steps that we don’t
need to evaluate again. This is actually the main idea of back-propagation algorithm
which is described in algorithm 2.1. In a different problem (e.g. regression), the only
part that changes is the computation of the gradient of the output preactivation.
The computations for performing forward propagation and back-propagation can

be described using the notion of a computational graph. A computational graph is an
acyclic graph. Each node in the graph indicates a variable, where the variable may
be a scalar, vector, matrix, tensor, or even a variable of another type. To formalize
our graphs, we also need to introduce the idea of an operation. An operation is a
simple function of one or more variables. Our graph is accompanied by a set of
allowable operations. Functions more complicated than the operations in this set may
be described by composing many operations together. If a variable y is computed by
applying an operation to a variable x, then we draw a directed edge from x to y.
A computational graph for the case of a simple feedforward neural net with one

hidden layer is depicted in figure 2.3. As you can see, the computational graph is

20

Algorithm 2.1 Back-propagation algorithm

Require: A forward propagation, to obtain f(x), h(k)(x), ∀k ∈ {1, ..., L+ 1}
1: ▷ Compute the gradient of the output preactivation
2: ∇a(L+1)(x) [− log f(x)y] ⇐= −(e(y)− f(x))

3: for k from L+ 1 to 1 do
4: ▷ Compute the gradients of hidden layer parameters (weights and biases)
5: ∇W (k) [− log f(x)y] ⇐=

(
∇a(k)(x) [− log f(x)y]

)
h(k−1)(x)⊤

6: ∇b(k) [− log f(x)y] ⇐= ∇a(k)(x) [− log f(x)y]
7: ▷ Compute the gradients of the hidden layer below
8: ∇h(k−1)(x) [− log f(x)y] ⇐= W (k)⊤(∇a(k)(x) [− log f(x)y)]
9: ▷ Compute the gradients of preactivation of the hidden layer below
10: ∇a(k−1)(x) [− log f(x)y] ⇐=

(
∇h(k−1)(x) [− log f(x)y]

)⊤
∇a(k−1)(x)h

(k−1)(x)

11: end for

composed of different variables/nodes. We have the input nodes x and y, which pro-
vide the input data and the labels to the network, respectively. Next, we have the
preactivation nodes a(k)(x), where given its children, namely the weight nodes and
biases nodesW (k) and b(k), respectively, as well as the node below it performs the op-
eration of inner product. The activation nodes h(k)(x) perform a nonlinear operation,
i.e. they compute the layer’s nonlinearity given the practivation nodes ak(x). The out-
put node f(x) computes the network’s prediction and finally the loss node L(f(x), y)
computes the loss given the nodes f(x) and y. The nodes x, y, W (k), and b(k) are
not accompanied with any operations, they just store numerical values for the input
variables.
Of course, more complicated computational graphs can be constructed by adding

more elements to the network. If for example, we add regularization terms there will
be extra nodes that represent these terms as well as edges connecting these nodes
with other parts of the network that the regularization term affects. We avoid the
illustration of such graphs for simplicity.
Computational graphs similarly to symbolic mathematical expressions, operate on

symbols, namely variables that do not have a specific value. These represenatations are
called symbolic representations and they compute symbolic expressions. Each node
of the graph is a symbol, which does not have a numerical value. Symbols together
with operations of each node, define the symbolic expression that a graph represents.

21

Figure 2.3: Computational graph of a feedforward neural network with one hidden
layer.

Providing an input with numerical values to the graph, the symbols are evaluated
through the operations in the nodes and we obtain numerical values for the variables
of the graph.
Forward propagation is simply the evaluation of all the symbols in the computa-

tional graph that defines our neural network. We traverse the graph from the input
to the loss node and at each step we compute the operation that a node performs
given its children, denoted as fprop operation.
Back-propagation can also be computed using a computational graph. This can

be accomplished by adding nodes to the graph, that provide symbolic description of
the desired derivatives. For simplicity of illustration, we show an example of a simple
computational graph for performing back-propagation in figure 2.4. We avoid show-
ing the graph for the gradients of a neural network as it gets very complicated, and
hence it would be tedious for someone to read. At the left part of the figure, you can
see the graph that corresponds to the forward propagation. The computational graph
for the back-propagation is at the right part. Each node computes its derivative given
its parent. Then, multiple derivative nodes are combined together through a prod-
uct operation and form the chain-rule of calculus. The back-propagation algorithm
applies the chain-rule multiple times to obtain expressions for the derivatives given
pre-computed derivatives. This graph formulates exactly this procedure. Any subset
of the graph may then be evaluated using specific numerical values at a later time.

22

Figure 2.4: Computational graph for performing back-propagation with additional
nodes that represent the gradients. Left: The computational graph for the forward
propagation. Right: The computational graph with additional nodes for perform-
ing back-propagation. The nodes have a bprop operation where they compute the
gradients using the chain rule. Figure reproduced from [1].

This allows us to avoid specifying exactly when each operation should be computed.
Instead, a generic graph evaluation engine can evaluate every node as soon as its
parents’ values are available.
Now, each node has also a bprop operation. We traverse the computational graph

in reverse order starting from the node z. At each step, we can compute the gradient
of node z w.r.t. each parent of the loss node by recursively applying the chain-
rule. We continue this procedure for each node until we reach the input node x.
Thus, the bprop operation related with each node is responsible for computing the
gradient-jacobian product which defines the chain-rule for the gradient of each node.
This is how the back-propagation algorithm is able to achieve great generality. Each
operation is responsible for knowing how to back-propagate through the edges in
the graph that it participates in. This is called automatic differentiation.
Above, we constrained the description of computational graphs and the back-

propagation algorithm for feedforward neural networks. Modern deep learning li-
braries implement a general form of back-propagation algorithm, that is based on the
idea of constructing a computational graph for both forward propagation and back-
propagation. This general form of back-propagation, makes it suitable for training
several different types of networks, such as convolutional networks or recurrent neu-

23

ral networks. Here, we wanted only to give the general idea of how back-propagation
works by building a computational graph for constructing symbolic representations
of its derivatives, but we will not go in further implementation details as is out of the
scope of this work.

2.7 Optimization

In Section 2.5, we saw how learning is casted as an optimization problem. The cost
function that is used for optimization is the empirical risk (2.18). Now, the goal is to
search for the best set of parameters that minimize our cost function J(θ), such that:

θ∗ = argmin
θ

J(θ). (2.35)

Our cost function, or objective function may be decomposed as a sum over the
training examples. As we will see, we can leverage this special form of objective
function and design optimization algorithms scalable to large datasets.

2.7.1 Optimization methods

Gradient descent

Gradient descent algorithm is the basic algorithm in which several algorithms for
training neural networks are based on. Gradient descent presents the main idea of
how to perform parameter updates as an iterative optimization procedure. Typically,
numerical optimization methods are iterative, where at each iteration they move the
parameter vector in a descent direction, i.e. a direction where the objective function
decreases. Gradient descent proposes to move in the direction in which our objective
function decreases faster. To explain which is this direction, we first need to explain
the notion of a directional derivative.
The directional derivative in direction u (a unit vector) is the slope of a function

f in direction u. In other words, the directional derivative is the derivative of the
function f(x+ αu) w.r.t. α, evaluated at α = 0. Using the chain-rule, we can see that
∂
∂α
f(x+ αu) evaluates to u⊤∇xf(x) when α = 0.
Hence, the direction in which f decreases the fastest is given by:

24

min
u,u⊤u=1

u⊤∇xf(x) = min
u,u⊤u=1

∥u∥2∥∇xf(x)∥2 cos θ, (2.36)

where θ is the angle between u and the gradient. Substituting in ∥u∥2 = 1 and ignoring
factors that do not depend on u, this simplifies to minu cos θ. This is minimized when
θ = 180◦, that is when u points in the opposite direction to the gradient. This suggests
that we can decrease f by moving in the direction of the negative gradient. This is
known as the method of steepest descent or gradient descent.
Gradient descent proposes a new point:

x′ = x− α∇xf(x), (2.37)

where α is the step size or learning rate in the machine learning literature and it is a
positive scalar. The learning rate can be defined as a small constant or it can change
in each iteration using several strategies such as line search methods. Gradient descent
converges when the gradient of our objective function is zero.
The gradient descent algorithm is known in the machine learning literature as

batch gradient descent. In the case of training a neural network, where the gradient of
the empirical risk is given by:

∇θEp̂(x,y)[L(f(x;θ), y)] =
1

m

m∑
i=1

∇θL(f(x
(i);θ), y(i)), (2.38)

batch gradient descent perform updates using the following formula:

θ(t+1) = θ(t) − α∇θEp̂(x,y)[L(f(x;θ), y)] (2.39)

= θ(t) − α
1

m

m∑
i=1

∇θL(f(x
(i);θ), y(i)), (2.40)

where t denotes the iteration. Batch gradient descend converges towards a local
minimum provided sufficiently small learning rates α.
Each iteration of batch gradient descent requires the computation of ∇θEp̂(x,y)[L(f(

x;θ), y)], which is an average over the gradients of the entire training set. The com-
putational cost of this computation is O(m), where m is the size of our training set.
For large training sets, the time to take a single gradient step becomes prohibitively
long. Besides that, batch gradient descent becomes intractable for training sets that
do not fit in memory.

25

Stochastic gradient descent

Stochastic gradient descent (SGD) is a drastic simplification of batch gradient descent.
In (2.38), ∇θEp̂(x,y)[L(f(x;θ), y)] is an expectation of gradients over the entire training
dataset. Instead of computing this expectation, each iteration of stochastic gradient
descent approximates ∇θEp̂(x,y)[L(f(x;θ), y)] by choosing an example (x(t), y(t)) at
random, and updating the parameters θ(t) by using the following formula:

θ(t+1) = θ(t) − α∇θL(f(x
(t);θ), y(t)). (2.41)

Thus, it performs an update by estimating the average gradient of the loss over the
entire training set with the gradient of the loss of a single randomly chosen train-
ing example. Averaging the stochastic gradient descent update rule over all possible
choices of training examples (x(t), y(t)) results in the batch gradient descent algorithm.
The stochastic gradient descent simplification relies on the hope that the random noise
introduced by this procedure will not perturbate the average behavior of the algo-
rithm.
Stochastic gradient descent does not need to remember the examples that where

visited in previous iterations. Hence, it is capable of processing examples in an online
fashion, where examples are drawn from a stream of continuously created examples.
In such situation, stochastic gradient descent directly minimizes the expected risk, as
examples are drawn randomly from the true data generation distribution p(x, y).
For computing an unbiased estimate of the expected gradient, the examples should

be independent and subsequent examples should not be correlated with each other.
This suggests that at each iteration of SGD, examples should be sampled randomly.
In large training sets, it is impractical to sample examples uniformly at random
each time we perform an update. A practical solution to that is to shuffle the order
of the dataset on each epoch. An epoch is defined as a pass of each example in the
dataset once. Picking examples without shuffling the dataset might result in decreased
performance of SGD as examples might come in particular order or grouped by class.
Thus, shuffling is crucial for the performance of SGD.
Another motivation of using an estimation of the gradient instead of using the

average gradient over the entire training set is that the training set might contain re-
dundant information. This means that a big number of training examples might make
very similar contributions to the gradient, and hence batch gradient descent would

26

do unnecessary gradient computations. SGD eliminates this potential redundancy by
performing one update at a time.
The convergence of stochastic gradient descent has been studied extensively in

the stochastic approximation literature. Convergence results usually require learning
rates satisfying the conditions:

∑
t

αt → ∞, (2.42)

and ∑
t

α2
t < ∞. (2.43)

These conditions propose that learning rates should decrease over the iterations of
SGD. Thus, from now on we denote the learning rate on iteration t as αt instead of
using a constant learning rate α.
The convergence speed of stochastic gradient descent is in fact limited by the noisy

approximation of the true gradient. This noisy approximation introduces variance in
our parameter estimates θ(t). If the learning rate is decreased slowly, then the variance
decreases slowly while with a fast decrease of the learning rate the parameter estimates
need more time to reach a local optimum. Thus, careful decreasing strategies are
needed. We will examine some popular learning rate decreasing strategies later in
this section. Also, very important is the initial learning rate which is usually selected
with hyperparameter optimization.
Finally, a very important property of SGD is that the computational cost per update

does not increase with the sise of the training set. This makes feasible the application
of SGD in large datasets and allows convergence at a reasonable amount of time.

Mini-batch stochastic gradient descent

A very similar algorithm to stochastic gradient descent is the mini-batch stochastic
gradient descent algorithm, which performs updates using the formula:

θ(t+1) = θ(t) − α
1

b

b∑
i=1

∇θL(f(x
(i);θ), y(i)). (2.44)

Here, an estimation of the gradient is computed on average over b training examples
where b << m. As b grows, equation (2.44) approximates better the batch gradi-
ent descent update. At the same time, the variance of our parameters estimation is

27

reduced; hence, we can reach faster a local optimum. Moreover, when b increases
we can get more multiply-add operations per second by leveraging highly optimized
matrix-matrix multiplications which makes the computation of the gradient in batches
very efficient. Typical numbers for b range from 50 to several hundreds. Using mini-
batches of examples for optimization has became the default choice for training neural
networks as it has more stable convergence from SGD and at the same time retains
the nice scalability properties of SGD.

Momentum

The surface of several objective functions has the form of a ravine, i.e. areas which
are shallow and long in the direction towards the optimum and steep on the other
direction. Alternatively, you can see these areas as a ”quadratic bowl”. In such areas,
SGD will tend to oscillate across the steep direction as the negative gradient will point
to the steepest direction rather that the shallow direction across the optimum. Thus,
in such cases SGD oscillates across the ravine or performs a ”zig-zag” effect without
making much progress to the local optimum.
The objective functions of deep networks have this form near local optima, and

thus standard SGD can lead to very slow convergence. Momentum [21] is a method for
accelerating in the direction towards the minimum and dampen oscillations towards
the steep direction.
The intuition of momentum is derived from a physical interpretation. Imagine

that we have a ball on the surface of our objective function. The location of the ball
on the horizontal plane represents our parameter vector while the location of the
ball on the vertical plane is our objective function. The ball has initial velocity v = 0

and starts moving down the hill. The movement here represents the updates of our
parameters. Initially, the ball will follow the direction of steepest descent as it doesn’t
have initial velocity. As long as it will start gaining velocity, it will not keep following
the same direction with the gradient. That is because its momentum moves it towards
the previous direction. Furthermore, as we are moving towards the local minimum
we need to loose some energy so that our parameter vector converges. Thus, we
need to introduce some sort of viscosity, that is the velocity of our parameter vector
diminishes on each update.
Momentum algorithm accumulates an exponentially decaying moving average of

past gradients and continue by moving in their direction. Momentum algorithm is

28

Figure 2.5: Left: Standard SGD. It is clear that SGD oscillates highly across the ravines.
Right: SGD with momentum. The oscillations across the steep direction are dampened
and momentum moves faster towards the relevant direction. Figure reproduced from
[2]

combined with mini-batch stochastic gradient descent. We denote by ∇θJb(θ) the
gradient of the loss over a mini-batch of b training samples. An update of the mini-
batch stochastic gradient descent with momentum algorithm is given by the formula:

v(t) = γv(t−1) − α∇θJb(θ
(t)) (2.45)

θ(t+1) = θ(t) + v(t), (2.46)

where v(t) is the velocity of our parameter parameter vector at time t, α is as before
the learning rate and γ is the momentum term. Momentum is a misnomer as it refers
actually to viscosity. Momentum term regulates how fast we are moving towards the
optimum and is set γ < 1. It exponentially decays the velocity of our parameter vector
over updates as we are moving towards a local optimum.
Now we are not moving to the direction of the gradient but to the direction of our

velocity vector. The gradient increments the velocity of previous steps. The velocity
increases for dimensions whose gradients point in the same direction and decreases
for dimensions whose gradients change direction. Thus, it dampens oscillations in
directions of high curvature by canceling accumulated gradients with opposite signs
and it accelerates in directions with small but consistent gradients that are in the
shallow direction of the ravine and point toward the local optimum. Hence, the large
gradients across the ravine are cancel out while the small gradients along the ravine
accumulate velocity towards that direction as they are pointing on the same direction.
In figure 2.5, there is a graphical illustration of how SGD updates differ from SGD

with momentum updates. You can see that SGD with momentum reduces oscillations
comparing to standard SGD which leads in faster training.
If momentum algorithm always observes the same gradient ∇θJb(θ), it will follow

the direction of −∇θJb(θ) until it finally reaches its terminal velocity, that is the

29

velocity at ∞ which is given by:

v(∞) =
1

1− γ
(−α∇θJb(θ)) . (2.47)

The term 1
1−γ

suggests that if γ is close to 1 momentum becomes much faster than
SGD. For example setting γ = 0.99 corresponds to going 100 faster than standard
SGD. Common values for γ are 0.5, 0.9 and 0.99. Furthermore, γ can be adapted
through time. A typical momentum annealing procedure is to start with γ = 0.5 for a
few updates and then anneal it smoothly over 0.9 or 0.99 or so. Nevertheless, it turns
out that adapting the momentum term over time is less important than adapting the
learning rate, and thus constant momentum terms are very common in practice.

Nesterov momentum

The standard momentum method first computes the gradient at the current location
and then performs a big jump in the direction of the updated accumulated gradient.
In [22], a variant of the momentum algorithm that was inspired by Nesterov’s

accelerated gradient method [23,24] was introduced. The formula of the updates of
Nesterov momentum is very similar to momentum method and is given by:

v(t) = γv(t−1) − α∇θJb(θ
(t) − γv(t−1)) (2.48)

θ(t+1) = θ(t) + v(t). (2.49)

The difference with standard momentum method is that now we do not compute the
gradient at position θ of our parameter vector, but we first move our parameter vector
to the position θ(t)− γv(t−1) and then compute the gradient. Therefore, we first make
a big jump in the direction of previously accumulated gradients and in that position
we measure the gradient and make a correction. In the standard momentum method
the current gradient is added to the previously accumulated gradients and then the
parameter vector moves to the direction of previsously accumulated gradients. In
Nesterov momentum, the previously accumulated gradients are used to perform first
a jump to that direction, measure the gradient and perform a correction based on
that position.
The quantity θ(t) − γv(t−1) can be seen as an approximation of the position of our

parameters in the direction of the updated accumulated velocity. Therefore, we first
make an initial estimate of where our parameter vector is going to be and then we

30

Figure 2.6: The difference between a standard momentum step and a Nesterov mo-
mentum step. As you can see the blue vectors correspond to a step of standard
momentum method and the others correspond to a step of Nesterov momentum.
Nesterov momentum takes bigger steps, and hence it moves faster towards the local
minimum. Figure reproduced from [3]

compute the gradient there, where we combine this gradient with our initial estimate
and perform a jump to that direction.
In figure 2.6, the difference between standard momentum and Nesterov momen-

tum is clearly depicted. The blue vectors correspond to a jump of the standard mo-
mentum method, where the small vector is the direction of the current gradient and
the big vector is the jump of our parameter vector in the direction of updated ac-
cumulated gradients. In Nesterov momentum on the other hand, first we perform a
jump in the direction of previously accumulated gradients which is the brown vec-
tor, then we measure the gradient in that position which direction is denoted by the
red vector, and then we compute the updated accumulated gradients, by adding the
gradient in that position to the previously accumulated gradients, which results in
the green vector and finally we perform the final step of Nesterov momentum in the
direction of the updated accumulated gradients which result in the new green vector.
Nesterov momentum with mini-batch stochastic gradient descent has become a

default option for training deep neural nets.
There are also other very famous optimization methods in the deep learning

literature, namely Adagrad [25], Adadelta [26], RMSprop (unpublished) and Adam
[27] which automatically adapt the learning rate on each update and they use a
separate learning rate for each parameter dimension. They have shown very good
performance in training deep networks and they converge faster than momentum or
nesterov momentum in general. We will not perform an analysis of these algorithms
in this work. Lastly, we do not study second-order methods as they require the

31

computation of the inverse of the Hessian matrix which becomes intractable for large
models with large vectors of parameters.

2.7.2 Learning rate schedules

As we described before, it is required that equations (2.42) and (2.43) are satisfied
such that SGD converges. Hence, learning rate schedules are necessary for decreasing
the learning rate over training. The most straightforward option is to keep a constant
learning rate which generally works well in several cases. Thus, even without satisfied
convergence conditions, our model might be able to learn a task well as the goal of a
machine learning algorithm is not to optimize perfectly the error in the training set
but to be able to perform well on new data. Nevertheless, a lot of times decreasing the
learning rate results in increased performance because the oscillations are reduced
towards approaching the local optimum. Below, we present several different heuristics
on decaying the learning rate over training epochs.
Two similar learning rate schedules are the following:

αt =
α0

1 + δt
, (2.50)

and
αt =

α0

tδ
, (2.51)

where α0 is the initial learning rate, t is the current iteration, and δ is a decay constant
that controls how rapidly the learning rate decays. They belong to the family of
O(1/t) learning rate schedules. A typical setting for O(1/t) learning rate schedules
is to maintain the learning rate constant for the first few updates and then start
decreasing it using a given schedule. The intuition is that we allow the optimizer
to perform big steps at the first iterations such that it reaches faster near the local
optimum, and then we are decreasing the learning rate so that our updates perform
small steps in order to converge to the local optimum. A heuristic for adaptively
setting the iteration at which we start decreasing the learning rate can be, to monitor
the training error over consecutive training epochs and start decreasing the learning
rate when the error stops improving significantly.
One popular option of learning rate schedules, that works fairly well in practice

is step decay, that is to decrease the learning rate every a fixed number of epochs
by a constant, e.g. to decrease the learning rate by a factor of 0.5 every 20 epochs.

32

The advantage of this approach is that its hyperparameters, i.e. the fraction of decay
and the time steps in unit of epochs are more naturally interpretable than δ in equa-
tions (2.50), (2.51), that might be the case that we may have a better notion of how
to tune them and which values might work well for a given problem.
The schedules described above have the disadvantage that they introduce new

hyperparameters that need to be tuned. Methods that are hyperparameter-free are
preferable as tuning the hyperparameters of a model might be a tedious task espe-
cially when the number of hyperparameters is getting bigger. One hyperparameter-
free learning rate schedule, that is actually my favorite choice, is to decrease the
learning rate when validation error ceases. Thus, in that case we hold a validation
set and measure its performance after each epoch. When the error function stops im-
proving we decay our learning rate by a constant which is usually set to 0.5. We can
perform this process several times by going back on the last best performing epoch
and successively decrease the learning rate until the validation error starts improving.
In that case, a maximum allowed number of times must be set of going back and
refining the learning rate. Moreover, this is a natural option of learning rate schedule
as we wish our model to perform well on the validation set and not on the training
set; thus, it is natural to decay the learning rate based on the performance on the
validation set.

2.7.3 Parameter initialization

Deep learning training algorithms have strong dependence on the initial values of the
parameters of the model. The initialization of the parameters can determine whether
our learning algorithm will converge. If convergence is ensured, the initialization
might affect seriously the convergence speed of the algorithm. Furthermore, the initial
point can determine whether we converge in an area with high or low cost, or even
in case of the same cost, the initial point can even affect generalization performance.
Modern initialization strategies are simple and heuristic. The design of advanced

initialization strategies is a very difficult task, as neural network optimization is not
yet fully understood. Another difficulty arises from the fact that an initial point might
be beneficial from an optimization point of view, but might be disadvantageous for
the generalization performance. Our knowledge of how the initial point affects gen-
eralization is few to none, and thus we have no insight of how to choose our initial

33

parameters concerning generalization.
A fairly well known property is that the initial parameters need to break the

symmetry between hidden units of the same layer. Symmetry means that when the
hidden units of a layer share the same input and output parameter vectors, a deter-
ministic algorithm with a deterministic model and a deterministic cost will compute
the same outputs in these hidden units and it will update all of them constantly in
the same way. In other words, all the hidden units across the layer will compute
the same activation functions and will receive the same gradients, and thus it will
perform the same updates and will remain identical. It is preferable that each hidden
unit computes a different function. By computing each hidden unit a different func-
tion, the layer learns more powerful representation that do not contain redundant
information. Thus, the forward propagation and back-propagation ”signals” are en-
hanced. Hence, the need for the hidden units to compute different functions suggests
random parameter initialization.
Usually, the biases are set to heuristically chosen constants and we initialize ran-

domly the weights. The weights are almost always sampled from a normal or a
uniform distribution. The choice between normal or uniform does not seem to have
significant effect on the performance of the algorithm. Nevertheless, the initial scale of
the distribution plays a crucial role in the optimization as well as the generalization
performance of our model.
Large initial weights will result in a strong symmetry breaking effect, i.e. the hid-

den units will compute much different activations. This will ensure that the forward
propagation and the gradient signals are strong, and thus the information is flow-
ing in the network. On the other hand, strong symmetry breaking might result in
overfitting, as the model becomes highly non-linear. Furthermore, a strong symmetry
breaking effect results in exploding values in the network, hence exploding gradi-
ents. Finally, too large weights may cause several hidden units to saturate especially
the sigmoidals, which will block the flow of the forward information as well as the
gradients through several hidden units.
Another consideration is the trade-off between initializing our parameters towards

better optimization against initializing our parameters towards better regularization.
Optimization suggests larger weights so that the gradient flows normally through the
network, while regularization prefers smaller weights.
We do not know in prior the true distribution of our parameters. If we perform

34

proper data normalization, we can assume that our parameters are drawn from a
Gaussian distribution N (0, σ) with zero mean and standard deviation σ. Similarly,
we can assume that the distribution of our parameters is a zero centered uniform
distribution U [−r, r]. The range of the distributions is crucial.
A typical setting is to sample in a very small range around zero e.g., to assume a

uniform distribution U [−0.01, 0.01]. This option breaks the symmetry between hidden
units of the same layer and at the same time has a beneficial effect on regularization;
our model is initialized with a set of very small weights close to zero, thus our initial
model is not highly-nonlinear due to large weights. Another intuition towards small
ranges around zero is that the main activity of our hidden units is around zero.
In sigmoid and hyperbolic tangents, the main activity of the neuron is around zero
and as moving away the neuron saturates. Thus, it is a fairly reasonable choice to
choose ranges around zero in the non-saturating part of the neuron which is also
the most informative, as most of the nonlinearity of a neuron resides there. Similarly,
for a ReLU hidden unit it is again reasonable to set a range around zero, as in the
negative part saturates and in the positive part, even though with a strong signal, it
is linear. Thus, a zero center distribution is convenient so that the ReLU initializes to
its nonlinear part which will result in diverse hidden units with different behaviors.
One problem with the above suggestion is that the distribution of the outputs

from a randomly initialized neuron has a variance that grows with the number of
inputs. It turns out that we can normalize the variance of each neuron’s output to 1

by scaling its weight vector by the square root of its fan-in, i.e. its number of inputs.
The formula of this commonly used heuristic for initializing our weights is given by:

Wi,j ∼ U

[
− 1√

n
,

1√
n

]
, (2.52)

where n is the size of the previous layer. This ensures that all neurons in the network
initially have approximately the same output distribution and empirically improves
the rate of convergence.
In [28], it is suggested to use the normalized initialization:

Wi,j ∼ U

[
−
√

6

n+m
,

√
6

n+m

]
, (2.53)

where n,m are the layer’s fan-in and fan-out respectively. This latter heuristic is
designed to compromise between the goal of initializing all layers to have the same

35

activation variance and the goal of initializing all layers to have the same gradient
variance.
It is sufficient to use biases of zero since our weight initialization breaks the sym-

metry in the hidden units. Nevertheless, sometimes is desirable to ensure that the bias
will not saturate the neuron on its initialization, and thus the bias should be moved
away from zero towards a non-saturation point. In a ReLU for example, a heuristic
that sometimes people use is to initialize the biases to small values e.g. 0.1 such that
we ensure that the neuron is active and does not block the gradients from passing
through.
One main drawback of equations (2.52) and (2.53) is that the weights become

extremely small when the layers become large. This can result in a weak gradient
signal which diminishes as it flows through the network. In [29], an alternative
initialization scheme is introduced which is called sparse initialization. It proposes
that each hidden unit is initialized to have k non zero weights which are initialized
using (2.52). The motivation is to keep a constant amount of inputs to each neuron
which does not depend on the size of the previous layer n, without making the
magnitude of individual weights diminish depending on n. This can also be seen as
a symmetry breaking rule.

2.8 Regularization

The goal of a machine learning algorithm is to be able to perform well on previously
unseen examples, i.e. on examples that the algorithm didn’t observe during training.
This is also called the generalization performance of the algorithm. The generalization
of a model is measured by the generalization error which is the expected risk we in-
troduced in equation (2.17). As we do not know the true underlying data distribution
we cannot measure the true generalization error. To this end, we use two separate
sets, the training set and the test set. In the training set, we compute the training
error which we minimize to train our model. We then, estimate the generalization
error of our model in the test set where we compute the test error. As we train our
model in the training set, it is natural that the training error is smaller than the test
error. Nevertheless, we wish our model to have low test error as well, in order to be
able to perform well on new examples.

36

Thus, the goal of a machine learning algorithm is twofold. Firstly, the algorithm
should be able to minimize the training error of a given model sufficiently. Secondly,
the gap between the training error and test error should be small.
More formally, the generalization error decomposes as a sum of two terms, the bias

term and the variance term. The bias term measures how far is the expected model
from the true function that maps inputs to targets. The expectation is taken across all
possible datasets we can sample from the underlying data distribution. Variance is
the deviation from the expected model of all possible models that can be constructed
by sampling different datasets from the underlying data distribution. In other words,
variance is to what extent do we get very different models with small perturbations
in the dataset.
The capacity or complexity of a model measures the model’s ability to fit a wide

set of functions. High capacity means that our model can fit a bigger set of functions
while low capacity means that our model can fit a smaller set of functions.
When the model has high bias we are in an underfitting situation, where the

capacity of our model is not enough, so that our model can learn the distribution
that generates the data. In that case the set of all the possible functions that our model
can select is quite small and far from the true solution. Underfitting also occurs when
the optimization algorithm is not efficient enough. In both cases, we result in high
training error. Thus, underfitting in general is when we are in a situation that we
cannot obtain a sufficiently small training error. On the other hand, when the model
has high variance we are in an overfitting situation, where the capacity of our model
is high. In that case, the set of all possible functions that our model can select is
quite large. This makes the model being able to learn the distribution that generates
the data. However, because the model is too complex it also memorizes very specific
properties of the dataset, such as the distribution that generates the noise. Thus, with
different datasets we obtain quite different models which makes the model not being
able to generalize well on new examples. In this case, the training error is quite small
as the model learned ”very well” properties of the training set, but the the test error
is high as our model does not have good generalization performance.
In figure 2.7, we can see examples of several different situations w.r.t. the bias

and the variance of a model. The rings represent the sets of all possible functions.
The red circle represents the true function that maps inputs to targets while the blue
circles represent all the possible functions that our model can select. The vertical

37

Figure 2.7: Bias and variance. The rings represent the space of all possible functions.
The red circle is the true solution in a given task. The blue circles represent the set of
functions that our model is able to select. The horizontal axis represent the bias while
the vertical axis represent the bias. We can see intuitively what happens in several
different situations. Figure reproduced from [4].

axis is the variance while the horizontal axis is the variance. Most interesting and
common cases are high bias/low variance and high variance/low bias. In the first
case, you can see that our model has low capacity, and thus the range of functions
that can approximate is small and quite far from the true solution. We may not get
very different solutions as we vary the dataset but the solutions we get are far from
the true, thus the error is high. In the second case, the capacity of our model is high;
hence, the range of functions that our model is able to select is big. As you can see,
among several solutions we can select the true solution because it is in the range of
the functions that our model can select but at the same time with small perturbations
on the dataset we may obtain very different solutions.
Very complex tasks need models with high capacity. Nevertheless, as we said

higher capacity overfits our model. As you can see, there is a trade-off between
variance and bias. Thus, we should find ways to control the capacity of a given
model, so that there is a good balance of bias and variance and we do not end up in
extreme situations.
We can control the capacity of a model by choosing its hypothesis space, that

38

is the family of functions that our model is able to select. For example, the linear
regression algorithm has the set of all linear functions of its input as its hypothesis
space. We can generalize linear regression to include polynomials rather than just
linear functions in its hypothesis space. Doing so, the model’s capacity is increased.
Another example is that we can control the capacity of a neural network by adding
layers or bigger number of hidden units to the neural network. Doing so, we allow
our network to be able to fit a much broader set of functions.
Certain functions in a given family may result in high error. Thus, choosing only

the hypothesis space is not sufficient. We need to find a way to express preference
to certain type of functions from its hypothesis space, while penalizing functions
that result in high variance, and hence overfit our model. This process is called
regularization. Regularization is intended to enforce constraints on a model so that the
model does not memorize the dataset.
There has been extensive research on developing regularization techniques for

deep learning algorithms, as deep learning models are high capacity models which
are very prone to overfitting. Here, we will describe the most common regularization
techniques for deep models, which are parameter norm penalties and dropout. Several
other methods that have been incorporated for regularization will not be described
here, but the interested reader can look for regularization with ensembles, multi-task
learning and semi-supervised learning among others. Lastly, one more technique for
regularizing deep models is called data augmentation and will be described in Chapter 3.

2.8.1 Parameter norm penalties

Parameter norm penalties approaches limit the capacity of a model by adding penalty
terms Ω(θ) in the cost function related with the parameter norms of the model. The
new cost function is given by:

Jreg(θ) = J(θ) + λregΩ(θ), (2.54)

where λreg is a positive scalar that controls the amount of regularization. Ω(θ) controls
the magnitude or the number of our model parameters. Different choices for Ω(θ)

prefer different solutions.
We regularize only the weights of our model as the biases need less data to fit well.

That is because the weights define interactions between two variables; hence to fit the

39

weights the algorithm need to observe these two variables under several different
circumstances of interactions, while biases control a single variable, and thus less
observations are needed to fit well.
The first regularization technique in this family, that is widely used for neural

networks, is called L2 parameter norm penalty. It adds a term Ω(θ) = 1
2
∥w∥22 in the

cost function which now becomes:

Jreg(θ) = J(θ) + λreg
1

2
∥w∥22. (2.55)

The above is for the case of a parameter vector. In the case of a neural network,
for enforcing constraints in a layer this becomes Ω(θ) = 1

2
∥W (k)∥2F where ∥∥F is the

Frobenius norm of a matrix and W (k) is the weight matrix of layer k. L2 penalties
drive the weights toward zero and it can be seen as MAP Bayesian inference with
a Gaussian prior with zero mean. We could regularize towards a different value
than zero, but since we do not know if the weights should be positive or negative,
regularization towards zero is a fair choice.
If we make a quadratic approximation to the regularized objective function and

an eigen-decomposition to its Hessian matrix, it turns out that the i-th component of
the weight vector w is rescaled by the factor λi

λi+λreg
, where λi is the i-th eigenvalue

of the Hessian matrix. Eigenvalues with λi ≫ λreg will have no regularization effect,
while eigenvalues with λi ≪ λreg will shrink wi to have nearly zero magnitude. A
small eigenvalue conveys that a movement in that direction will not significantly
increase the gradient. These unimportant directions are decayed. Only directions that
contribute significantly to the weight updates remain.
The above analysis is for a general quadratic function. To study the effect of L2

regularization in machine learning we can study the problem of linear regression
where its cost function is truly quadratic. The closed form solution for the weights
in a linear regression problem Xw = y is w =

(
X⊤X

)−1
X⊤y, where X is the

dataset matrix and y is the targets vector. With L2 regularization the solution becomes
w =

(
X⊤X + λregI

)−1
X⊤y. Diagonal entries of matrix

(
X⊤X

)
are the variances of

the inputs. Thus, L2 regularization for the problem of linear regression makes the
data having higher variance which result in shrinking the weights for data whose
covariance with y is lower than their variance.
Another technique of parameter norm penalties is the L1 regularization. It takes

40

the form Ω(θ) = ∥w∥1 =
∑

i |wi|. The regularized cost function now becomes:

Jreg(θ) = J(θ) + λreg∥w∥1. (2.56)

Again, we will study the effect of L1 regularization on the linear regression problem.
Like before, λreg is the regularization strength. The sub-gradient of the regularized
objective function (because absolute value is not a differentiable function) is:

∇wJreg = λsign(w) +∇wJ , (2.57)

where

sign(x) =

+1 x > 0,

−1 x < 0
.

L1 has a much different effect on the weights than L2 regularization. Now, the reg-
ularization contribution to the gradient does not scale linearly with each wi. Instead,
it is a constant and its sign is given by sign(wi). A consequence of that is that we
cannot have clean algebraic expressions to the quadratic approximation as before.
By making some assumptions for the Hessian matrix of the objective function,

we can derive a quadratic approximation which will have the following closed form
solution:

wi = sign(w∗
i)max{|wi| −

λreg

Hi,i

, 0}, (2.58)

where w∗
i is the point at which we evaluate the quadratic approximation and Hi,i is the

i-th diagonal element of the Hessian matrix. It is clear that L1 regularization provides
sparse solutions, i.e. weight vectors where several elements are zero. The behavior of
L1 regularization is much different than L2 regularization. While the first selects the
most important components of the weight vector resulting in a sparse weight vector
with zeros in all the unimportant components, the second rescales all the components
relatively to their importance resulting in diffuse weight vectors with small magnitude.
In L1 regularization, λreg controls the sparsity of the weight vector. L1 regularization
has been used extensively as a feature selection mechanism. L1 regularization can be
seen as MAP Bayesian inference with an isotropic Laplace prior.

41

2.8.2 Dropout

Dropout [30] is a computationally efficient and powerful method for regularizing deep
neural networks. As it is well known, bagging can be used for the regularization of
models, as averaging several models reduces the variance in the predictions; hence,
it reduces the overfitting effect. Bagging trains several models and evaluate the test
examples on each model, and then computes the average over all models. Each
model is trained with a dataset sampled from the training set with replacement. This
is impractical for deep neural networks, as the training of a deep neural network is
a very computationally expensive procedure and to train a big number of models
requires a lot of computational resources.
Dropout is a computationally inexpensive approximation of training and evaluat-

ing a bagged ensemble of exponentially many neural networks. Dropout trains the
ensemble of all possible sub-networks that can be formed by removing hidden units
from a single neural network. Instead of removing hidden units dropout multiply
the units that are about to be removed with zero.
Each time we sample a mini-batch to perform parameter updates, we sample a

different random binary mask m(k) for the k-th layer and the size of a mask is the
same as the number of hidden units in layer k. As we said, instead of dropping hidden
units, hidden units are multiplied with the binary mask m(k). Now, equation (2.3)
which computes the activations of hidden units of layer k becomes:

h(k)(x) = g(a(k)(x))⊙m(k). (2.59)

As the activation of hidden units are involved in some of the back-propagation algo-
rithm steps, some gradients are also affected. Specifically:

∇a(k−1)(x) [− log f(x)y] ⇐=
(
∇h(k−1)(x) [− log f(x)y]

)⊤
∇a(k−1)(x)h

(k−1)(x),

now becomes

∇a(k−1)(x) [− log f(x)y] ⇐=
(
∇h(k−1)(x) [− log f(x)y]

)⊤
∇a(k−1)(x)h

(k−1)(x)⊙m(k−1),

and
∇W (k) [− log f(x)y] ⇐=

(
∇a(k)(x) [− log f(x)y]

)
h(k−1)(x)⊤,

contains h(k−1) which is multiplied with the binary mask. Thus, on each forward
propagation and back-propagation the dropped out hidden units are zero as well as

42

their gradients. This is the same as removing this hidden units and train at each step
the sub-network that is formed by removing these hidden units. The mask of each
hidden unit is sampled independently. The probability of sampling a mask of 1, or in
other words the probability of leaving a hidden unit ”turned on” is a hyperparameter
that should be tuned. Nevertheless, a standard default is 0.5 which means that at each
pass half of the hidden units are removed.
In bagging, all of the models are trained and consequently all of them participate

in inference. In dropout, all the possible models are 2d where d is the number of
hidden units that may be dropped from the network. This becomes intractable for
deep networks. Hence, only a tiny fraction of the possible subnetworks are trained,
each one for a single step of the learning procedure. Also, all these sub-networks
share the same parameters. Parameter sharing causes the subsequent subnetworks to
arrive at good settings of the parameters. Thus, the basic differences of bagging and
dropout is that in dropout we do not train all the possible models of our ensemble
and the models share the same parameters while in bagging each model has its own
parameters and trained independently from the others. One more difference is that in
bagging the models are trained till convergence while in dropout each model is trained
for a single step of a minibatch-based algorithm such as mini-batch SGD. Apart from
that, dropout follows bagging. For example, the training set that is encountered by
each subnetwork is a subset of the original dataset sampled with replacement.
In bagging, all models of the ensemble are voting so that the ensemble makes a

prediction. If each of the models produces a probability distribution p(i)(y|x) and the
ensemble consists of n models, the prediction of the ensemble is given by:

pensemble(y|x) =
1

n

n∑
1

p(i)(y|x). (2.60)

The predictions of the ensemble in dropout that is produced by sampling random
masks m is given by:

pensemble(y|x) =
∑
m

p(m)p(y|x,m). (2.61)

In the case of deep neural networks, this sum contains and exponential number of
terms, thus is intractable to compute. There is an effective approach that approximates
the predictions of the entire ensemble in a single forward propagation pass. This
approach incorporates the geometric mean instead of the arithmetic mean of the

43

predictions of the ensemble’s members and it can be shown that the geometric mean
performs comparably to the arithmetic mean. The geometric mean of the ensemble’s
members predictions is given by:

pensemble(y|x) = 2d

√∏
m

p(y|x,m). (2.62)

It turns out that pensemble(y|x) can be approximated with a single model: the neural
network where all hidden units participate and the binary masks are replaced with
their expectation. For example, if we use an inclusion probability of 0.5 the expectation
of sampling a binary mask will be 0.5; thus, we replace all the entries in the binary
mask vector with 0.5. The motivation is to make sure that the expected total input
to a unit at test time is roughly the same as the expected total input to that unit
at train time. Therefore, at the end of training we replace the binary masks with
their expectations and we perform inference from that model, approximating the
geometric average over the whole ensemble. There is no theoretical justification for
the accuracy of this approximate inference but in practice it works very well. For
networks that do not have nonlinearities this approximation is exact. For networks
that have nonlinearities it is only an approximation, but works well.
Dropout trains an ensemble of models that share hidden units. This means that

each hidden unit must perform well regardless of the other hidden units. This stands
because in each model of the ensemble different set of units are present; hence,
training pushes hidden units towards being able to perform well in the absence of
other hidden units. Hidden units cannot co-adapt to each other as they don’t rely to
each other. This provides better generalization as hidden units learn more generally
useful features and not very complex ones that fit perfectly the training set. Hidden
units cannot develop very complicated co-adaptation patterns because they are not
combined all together.

44

Chapter 3

Convolutional Networks

3.1 Introduction

3.2 Convolution

3.3 Local connectivity

3.4 Parameter sharing

3.5 Basic structure of a Convolutional Network

3.6 Gradients of convolutional and pooling layers

3.7 Popular convolutional network models

3.8 Dataset augmentation

3.9 Pretrained models

3.1 Introduction

Convolutional networks (ConvNets) [31], also known as convolutional neural networks
(CNNs), are very successful deep learning models. ConvNets are a specialized kind
of neural network for processing data that has a known, grid-like topology. Exam-
ples include time-series data, which can be thought of as a 1D grid taking samples
at regular time intervals, and image data, which can be thought of as a 2D grid of
pixels. In this work, we study the application of ConvNets to images as it is described
in Chapter 1. The name is derived from the fact that the network deploys the math-
ematical operation of convolution in one or more of its layers instead of classical

45

matrix multiplications of the input with the layer’s weights for reasons which will
be further described. In short, convolutional networks are designed in a way, such
that they can handle very high-dimesnional inputs (an image might have thousands
or millions of pixels). The idea is that while an image is usually high-dimensional,
we can detect small, meaningful features such as edges with kernels that occupy
only tens or hundreds of pixels. This means that we need to store fewer parameters,
which both reduces the memory requirements of the model and improves its statistical
efficiency. It also means that computing the output (prediction) requires fewer opera-
tions. Moreover, convolutional networks provide invariance in certain variations such
as translation. ConvNets leverages the aforementioned ideas by using three principles
that are well-known in the deep learning community as local connectivity, parameter
sharing and equivariant represantations.

3.2 Convolution

Since convolution is the fundamental operation of convolutional networks, it will be
described here as well as some of its practical aspects. It is defined as the integral of
the product of the two functions after one is reversed and shifted:

(x ∗ w)(t) =
∫

x(τ)w(t− τ)dτ . (3.1)

While the symbol t is used above, it need not represent the time domain. But in
that context, the convolution formula can be described as a weighted average of the
function x(τ) at the moment t where the weighting is given by w(−τ) simply shifted
by amount t. As t changes, the weighting function emphasizes different parts of the
input function. In other words it expresses the amount of overlap of w as it is shifted
over x. It therefore ”blends” the two functions.
There is also discrete convolution, which is used when x and w are defined on the

set Z of integers. Computers cannot represent real-valued intervals, thus we sample
values at regular intervals, i.e the intervals are discretized. Examples are pixels of an
image or time points of a song. Thus, we use discrete convolution which is defined
as:

46

(x ∗ w)(t) =
∞∑

τ=−∞

x(τ)w(t− τ). (3.2)

In convolutional network terminology, the first argument (in this example, the func-
tion x) to the convolution is often referred to as the input and the second argument
(in this example, the function w) as the kernel. The output is sometimes referred to
as the feature map.
Convolution can be extended to more dimensions, thus we can have 2D convolu-

tion. As we know from computer vision applications, this is useful for images because
of their 2D structure. If we have a 2D image I as our input and a 2D kernel K , then
2D convolution of them is:

(I ∗K)(i, j) =
∑
m

∑
n

I(m,n)K(i−m, j − n). (3.3)

Convolution is commutative, meaning we can equivalently write:

(K ∗ I)(i, j) =
∑
m

∑
n

I(i−m, j − n)K(m,n). (3.4)

The expression (3.4) is more efficient for implementation, as kernels are in general
smaller than images, hence summing over all kernel elements require fewer operations
comparing to summing over all image pixels. Consequnetly, (3.4) is preferred for
implementation. It can also be written as:

(K ∗ I)(i, j) =
∑
m

∑
n

I(i+m, j + n)K(r −m, r − n), (3.5)

where r is the number of rows and columns of the kernel assuming that the kernel is
square. In (3.5), we flip the kernel and compute the inner-products at shifted locations
of the original image, which is equivalent to flipping the image and computing the
inner-products at shifted image locations using the original kernel, that is the case
for (3.4).
In convolutional networks, we want the original weight matrix to operate on the

inputs, and not a flipped version of it. To accomplish this, we use as kernel the weight
matrix with flipped rows and columns, and the convolution (for instance (3.5)) re-
flips the kernel; hence we obtain the original weight matrix. Alternatively we can

47

apply cross-correlation:

(K ⋆ I)(i, j) =
∑
m

∑
n

I(i+m, j + n)K(m,n), (3.6)

without flipping the weight matrix in prior. Machine learning libraries are using either
(3.5) or (3.6) for the implementation of convolution. Since in (3.5) the weight matrix
is actually flipped in prior, it is also cross-correlation in essence. Therefore, convo-
lutional networks actually apply cross-correlation, but they are called convolutional,
because they can be implemented using convolutions.
As it is well-known from computer vision, applying convolution to an image can

be used for the extraction of image features such as edges, using the proper kernel.
Convolution measures the amount of overlap of two functions, say an image and
a filter, and wherever there is maximum overlap the image feature in question is
detected, given that we use a proper kernel. Alternatively, as convolution applies
inner products at multiple image locations (image patches), we can think the image
patches and the kernel as vectors, where we get a maximum value when their inner
product is maximum, i.e the angle between the two vectors is zero, and thus the
image and the kernel overlap perfectly.
As we will see later, the difference between classical computer vision and convolu-

tional networks is that in classical computer vision we use predefined kernels that are
able to detect specific image features, whereas in convolutional networks, kernels are
multidimensional arrays of parameters that are adapted by the learning algorithm.

3.3 Local connectivity

Given an image as input (this generalizes to other types of high-dimensional data),
a classical fully-connected neural net would require an unmanageable number of
parameters, since each hidden unit in the first layer would be connected to each
image pixel. To deal with this, convolutional networks introduce the idea of local
connectivity. Hidden units in a convolutional network are not connected to each unit
of the layer below but just to a local neighborhood of the input.
Typically, a square patch is used as the local neighborhood of the layer below. The

patch of the image that a hidden unit is connected with, is called receptive field of the
hidden unit. A graphical illustration of local connectivity in ConvNets can be seen

48

Figure 3.1: The idea of local connectivity in convolutional networks. Gray squares
are the image patches that hidden units are connected with, or the receptive fields
of hidden units. The circles on top of the image represent the hidden units and the
arrows show which hidden unit is connected with which patch of the image. In this
example, it is clear that hidden units have local connections and that different hidden
units are used for different local neighborhoods, where we use three different hidden
units to show the latter.

in figure 3.1. Gray squares represent the receptive fields of different hidden units.
Hidden units are represented with the circles above the image and the arrows denote
which hidden unit is connected with which image patch. In this example, it is clear
that hidden units have local connections and that different hidden units are used for
different local neighborhoods.
Moreover, in ConvNets a hidden unit is connected to all input channels, e.g in RGB

images a hidden unit has connections with three different channels (R, G, B channels)
while in gray-scale images it has connections with a single channel. Different hidden
units are connected to different patches of the input image, such that the image is
covered with the receptive fields of all hidden units.
Local connectivity is accomplished by performing convolutions to an image using

a kernel smaller than the image. The correspondence of performing convolutions
to an image, with a neural network perspective is that the result of convolution at a

49

Figure 3.2: The difference between a fully-connected neural network and a convolu-
tional network. The fully-connected net is shown at the bottom while a 1D ConvNet
is shown at the top. The colors denote the hidden units from the layer below that a
hidden unit is connected with. Each hidden unit in the fully-connected net is con-
nected with each unit from the layer below. The ConvNet has a receptive field of size
three; hence, each hidden unit is connected only to three neighboring units from the
layer below. Figure reproduced from [1].

particular location is the preactivation of a hidden unit, while convolutions at multiple
shifted image locations correspond to different hidden units. The image patch where
the convolutional kernel overlaps is the receptive field of the respective hidden unit.
Using a kernel with a size equal to the image size, we result in a classical fully-
connected network. In figure (3.2), we see the difference between a fully-connected
neural net and a ConvNet for the 1D case. The fully-connected net is shown at
the bottom while the ConvNet is shown at the top. The colors denote the hidden
units from the layer below that a hidden unit is connected with. While the hidden
units of the fully-connected net are connected with each unit of the layer below, the
ConvNet uses a receptive field of size three and each hidden unit is connected only
to three neighboring units from below. Here, we want to emphasize that while a
ConvNet can be implemented by performing convolutions, it can also be represented
and implemented with a classical neural network representation but with sparse
connections. Thus, the correspondence between performing convolutions at shifted

50

image locations and a neural net with sparse connections is direct.
Local connectivity reduces significantly the number of parameters of the model,

since each hidden unit is connected with a small local subset of the input, hence
the weights are fewer comparing to a fully-connected net. This tackles two major
problems. Firstly, the memory requirements of the model are significantly reduced
since the parameters are fewer, and secondly fewer operations are required for com-
puting the pre-activation of a hidden unit since the connections are fewer; hence the
computation time is reduced.

3.4 Parameter sharing

A second idea that is added on top of local connectivity is called parameter sharing.
As we explained in Section 3.3, in a ConvNet a hidden unit is connected to a patch of
the image and different hidden units are connected to different patches of the image,
covering the whole image. The hidden units that cover the whole image are grouped
together in a, so called, feature map. Parameter sharing means that all hidden units
in a feature map share the same parameters, i.e. they use the same weight matrix to
compute their preactivations w.r.t. the local image patch they are connected.
In convolutional networks, parameter sharing is implemented by convolving the

image with the same kernel, over all possible image locations. The result of this
convolution is the layer’s feature map which again can be seen as an image as it
has a 2D structure and this is convenient in the context of ConvNets, since local
connectivity and parameter sharing can also be applied to subsequent layers, as they
take images as inputs (the 2D feature maps). We obtain several different feature
maps by using different kernels. Thus, we convolve the image with different kernels
to obtain different feature maps, where the hidden units within a feature map (feature
map spatial locations) share the same kernel, i.e. a single feature map is the result of
convolving the input with the same kernel over all spatial locations of the input. A
graphical illustration of both local connectivity and parameter sharing can be seen in
figure 3.3.
With parameter sharing, the number of parameters is reduced even more, as

in a feature map all hidden units share the same kernel. Another big benefit of
convolving the image with the same kernel over all spatial locations, is that we obtain

51

Figure 3.3: Local connectivity and parameter sharing in convolutional networks. Dif-
ferent colors correspond to different feature maps. You can see that within each
feature map, hidden units are connected only to a subset of their input (local connec-
tivity) and all the hidden units within a feature map share the same kernel (parameter
sharing). Different feature maps have different kernels.

a property called equivariance to translation. A function is equivariant means that
if the input changes, the output changes in the same way. Specifically, a function
f(x) is equivariant to a function g if f(g(x)) = g(f(x)). In the case of convolution, if
we let g be any function that translates the input, then the convolution function is
equivariant to g. For example, let I be an image. Let g be a function that translates
an image, such that I ′ = g(I) is the image with I ′(x, y) = I(x−1, y). This shifts
every pixel of I one unit to the right. If we apply this transformation to I , then apply
convolution, the result will be the same as if we applied convolution to I , then applied
the transformation g to the output. Convolution creates a feature map of the locations
of detected features in the image, where the feature is specified by the kernel that we
are using. Equivariance means that if we move an object in an image, its detected
features will be moved by the same amount at the feature map. This suggests that if
we have a kernel that detects, for example horizontal edges and convolve an image
with this kernel, in the output feature map, edges will be detected in all possible
positions. Thus, in each feature map specific features based on the kernel that is used
are detected, e.g. the first kernel detects horizontal edges, the second vertical edges,
the third diagonal edges and so forth.

52

3.5 Basic structure of a Convolutional Network

In this section, we will put together all the principles that we analyzed previously in
this chapter, and we will describe all the building blocks for constructing a convolu-
tional network. Α ConvNet is composed of different types of layers. Typically, two are
the main type of layers that exist almost always in a ConvNet, convolutional layers
and pooling layers. The last layer is the output layer where we obtain the predictions
of the model. Between the input layer, where we feed images to the model, and the
output layer, there are several convolution and pooling layers. Usually a pooling layer
follows a convolutional layer. Each component of such an archtecture is described
below in details. Finally, we describe some famous ConvNet architectures which gave
impressive results in given classification tasks.

3.5.1 Convolutional layer

A convolutional layer takes a set of input channels and produces as output a set
of feature maps. The number of feature maps to be produced is arbitrarily defined
by the user. Similarly to fully-connected layers, a convolutional layer first computes
its preactivations which are subsequently given to a non-linear function to produce
the layer’s activations. While the activations are computed identically as in a fully-
connected layer, the way the preactivations are computed changes, since now the
operation of convolution is employed. Therefore, a convolutional layer’s computations
are performed in two steps as:

a(n)(x)ij = h(n−1)(x)i ∗ k(n)
ij (3.7)

h(n)(x)j = g(
∑
i

a(n)(x)ij + b
(n)
j), (3.8)

where x is the input image, n is the current convolutional layer, h(n−1)(x)i is the i-th
input channel, k(n)

ij is the kernel of the current convolutional layer that connects the
i-th input channel of the (n− 1)-th layer with the j-th feature map of the n-th layer,
b
(n)
j is the bias of the j-th feature map and g(·) is an activation function. Finally,
a(n)(x)ij are the preactivations of the current convolutional layer which result from
the i-th input channel and participate in the j-th feature map, while h(n)(x)j is the
j-th feature map of the current convolutional layer.

53

To produce a single feature map h(n)(x)j , the convolutional layer computes the
preactivations a(n)(x)ij for each input channel h(n−1)(x)i, independently. In (3.7), the
preactivation a(n)(x)ij is computed by convolving the i-th input channel with k

(n)
ij .

Firstly, the preactivations are computed using (3.7), for each input channel inde-
pendently, and subsequently the activations for the j-th feature map are computed
using (3.8), by summing the preactivations from each input channel plus a bias b(n)j

for the j-th feature map and giving the result as input to an activation function. The
summation is performed element-wisely, i.e. each spatial location (i, j) in the summed
preactivation map is the result of summing the preactivation from each input channel
at spatial location (i, j). It can be seen as computing a weighted combination of the
input channels, where the weighted combination for each spatial location is not com-
puted w.r.t. a single element from each input channel, but w.r.t. a local neighborhood
around that element. In other words, instead of multiplying each input channel with
a single element and summing the results which would be the classical definition
of weighted combination, we convolve each input channel with a kernel and then
sum the results which is a weighted combination that takes into consideration the
neighboring values at each spatial location.
The above process is performed as many times as the number of feature maps

that the layer produces, using different set of kernels kij for each feature map. The
total number of kernels that a convolutional network utilizes is (# input channels ×
feature maps), while for a single feature map (# input channels) feature maps are
used. Lastly, because of parameter sharing, a single bias is used for each feature map
instead of using different biases for each hidden unit of the feature map.
A graphical demonstration of performing the computations of a convolutional

layer by applying equations (3.7) and (3.8) can be seen in figure 3.4. In this example,
the convolutional layer takes three input channels (red, green and blue) and produces
a single feature map (the purple one). With this graphical example, we want to
emphasize that each spatial location of the resulting feature map is the result of
convolving each input channel with a different kernel at the corresponding spatial
locations and subsequently summing the results. This is demonstrated in this example
with the small gray element in the resulting feature map which is connected with the
corresponding convolved gray areas in the input channels. Note that on top of the
gray areas in the input channels, we show the corresponding kernel to emphasize
that a different kernel is used for each input channel. A nonlinearity and a bias follow

54

Figure 3.4: A typical convolutional layer. This convolutional layer takes three input
channels (red, green and blue) and produces a single feature map (the purple one).
Each position in the resulting feature map is the result of performing convolutions
over all possible input channels and then summing the results. The resulting position
in the feature map is the small gray element while the areas that are to be convolved
and then subsequently summed are the bigger gray squares in the input channels.
We show the kernel that is used on top of each convolved area to emphasize that a
different kernel is used for each input channel. Finally, nonlinearities are applied to
compute the feature map activations. The bias is shared across the hidden units of
the feature map (parameter sharing).

the summation of the convolutions.
Note, that the feature maps that are produced at the current layer are used as

input channels for the subsequent layer. Also at the first convolutional layer, the
input channels from the previous layer are the input image channels, i.e. h(0)(x)i = xi

where xi is the i-th channel of the input image. An RGB image has three channels,
and thus for each feature map three kernels are needed, while for a gray-scale image
only one is needed.

3.5.2 Pooling layers

On top of convolutional layers, we usually add another operation that is called pooling
and subsampling. A pooling function aggregates activations of feature maps in a local
neighborhood by replacing the activations on that neighborhood with a summary of

55

Figure 3.5: The max pooling operation. Left: The feature map before pooling and
subsampling. Right: The pooled and subsampled feature map. In the unpooled fea-
ture map, different colors denote the different non-overlapping neighborhoods while
the same colors to the right show the correspondence between the neighborhoods
and their pooled values.

their statistics. Two main pooling operations are used in convolutional networks, max
pooling and average pooling. Both are implemented as layers of the ConvNet.
In max pooling, we define small local neighborhoods of feature maps, i.e. square

patches of the feature map, and we compute the maximum of the activations on
each patch. The new, pooled feature map of the max pooling layer is constructed by
replacing the neighborhoods with their respective maximum (i.e. the pooled value).
The max pooling operation is defined as:

h
(n)
ijk(x) = max

p,q
h
(n−1)
i,j+p,k+q(x), (3.9)

where p and q are indexes of a patch of the feature map h
(n−1)
i of the previous

layer, which is a convolutional layer and h
(n)
ijk(x) is the corresponding pooled value

for the i-th resulting feature map at position (j, k) of the current max pooling layer.
Additionally, in general, max pooling is performed in non overlapping regions. This
means that if we pool l×l regions, neighboring regions are l pixels apart which results
in feature maps with reduced size. It is called pooling, because we pool the max value
over local neighborhoods and subsampling because the size of the feature map is
reduced by replacing the whole neighborhood with the max value. In figure 3.5, you
can see a graphical depiction of max pooling. The feature map before max-pooling is

56

shown at the left and the pooled and subsampled feature map is shown at the right.
In the unpooled feature map, different colors denote the different non-overlapping
neighborhoods while the same colors to the right show the correspondence between
the neighborhoods and their pooled values.
Similar to max pooling, another pooling operation is called average pooling. The

idea is the same as before with the only difference that now we are computing the
average of the local neighborhood:

h
(n)
ijk(x) =

1

m2

∑
p,q

h
(n−1)
i,j+p,k+q(x), (3.10)

where m is the size of the neighborhood.
There are two main advantages of performing pooling and subsampling. The

first is that it reduces the size of a feature map. This improves the computational
efficiency of the network because the next layer has fewer inputs to process. The
second advantage of pooling (mainly of max-pooling) is that it helps to make the
representation invariant to small translations of the input. This can be explained as,
if we perform small translations to the input and the position of the max remains
in the same pooling neighborhood, max pooling will result to the same value as if
we wouldn’t translate the input, as the maximum of that neighborhood is still the
same. This introduces invariance as a pooling and subsampling layer detects the same
features on both an input and a translated version of it, given that the translation is
relatively small.

3.5.3 Forward propagation in a convolutional network

As the fundamental elements of a convolutional network were presented, we will
describe a typical forward propagation of information in a ConvNet.
A convolutional network consists mainly of convolutional, pooling and fully con-

nected layers. The model is composed of two main parts, the feature extraction part
and the classification part, in respective order. The feature extraction part consists
mainly of convolutional and pooling layers. Typically, a pooling layer follows a con-
volutional layer, but it is not necessary to place a pooling layer after each convolutional
layer. Generally, the layout of the network is arbitrary and we will discuss later in
this chapter about design patterns and famous ConvNet layouts. In this part, we
learn data-driven representations of our dataset, which provide discrimination across

57

Figure 3.6: The typical structure of ConvNets. A convolutional network consists of
two parts, the feature extraction part and the classification part. The red part of the
network is the feature extraction part where the model learns image representations
while the blue part is a fully-connected neural net which learns to classify images.
Figure reproduced from [5].

different classes. The representations are learned through learning the convolutional
kernels with back-propagation. Data-driven represantations means that the learned
features are tied with the objects represented in our dataset, e.g. if a dataset contains
cats and dogs the ConvNet will learn features that discriminate well between these
two categories. In the classification part of the model, we use the learned features
from the previous part to classify our data. This part of the model is in general a
fully-connected neural net. In other words, we connect a fully-connected neural net
with the last convolutional or pooling layer of the feature extraction part by vectoriz-
ing the feature maps of the last layer of the feature extraction part and use this vector
as input for the classification part of the model.
This idea is clearly visible in figure 3.6. The red part is the feature extraction part

which consists of two convolutional layers, each one followed by a pooling layer. The
blue part is the classification part where in the specific example consists of a hidden
layer and the output layer, both fully-connected. As you can see, the feature maps
from the last pooling layer are connected to the hidden layer of the classification part.
In this example, the model is trained on images that contain digits; hence, the output
layer has ten output units.
A forward propagation in a ConvNet consists of providing an image as input to the

convolutional network, and traversing such a structure described above, in order to
finally compute class predictions at the output layer of the network. While traversing
the convolutional network, convolutional and pooling layers compute the learned
feature maps corresponding to the input, while the fully-connected layers compute

58

Figure 3.7: A typical forward propagation in convolutional networks. The network
takes as input an image and produces in the output layer class predictions for 101

classes. It takes as input an 83×83 image. It consists of two convolutional layers each
one followed by a pooling layer. The first convolutional layer has 64 kernels of size
9× 9 and produces 64 feature maps of size 75× 75. Then, the pooling layer reduces
the size of the feature maps and a similar procedure is applied to the subsequent
convolutional and pooling layer. The output of the last pooling layer is connected
to the output layer that classifies images in 101 categories (Caltech 101 dataset [6]).
Figure reproduced from [7].

the hidden and output units activations. An example of a typical forward propagation
in a ConvNet is illustrated in figure 3.7. We can see that the first convolutional layer
produces 64 feature maps by applying 64 convolution kernels to the input image.
Since the input image has a single channel, a single kernel is used for each feature
map. After the convolution, the size of the feature maps is reduced to 75 × 75 from
83 × 83. The first pooling layer, or Layer 2 at the specific example, reduces the size
of each feature map to 14× 14. The reduction in the size of the feature maps that is
caused by convolutional and pooling layers depends on specific design choices which
will be described in Section 3.5.4. The second convolutional layer (Layer 3), consists
of 4096 convolution kernels, in total. That’s because it is connected with 64 input
channels from the previous layer; thus, we need 64 kernels to produce a single feature
map, plus we want to obtain 256 feature maps, which means 256× 64 = 4096 kernels
in total. After the last pooling layer (Layer 4), we result in 256 feature maps of size
1× 1 which we vectorize, and connect it with a fully-connected layer, to obtain class
predictions.
As it is the case generally for deep learning, ConvNets learn hierarchical feature

representations, which means that more complicated concepts are build from simpler

59

Figure 3.8: Hierarchical feature representations learned by a ConvNet. Here the model
is applied to face recognition. Figure reproduced from [8]

ones. In ConvNets where the inputs are images, these concepts correspond to image
features. Thus, the first convolutional layer learns simple features such as edges, the
second layer combines these edges to construct more complicated features such as
parts of an object and as we go on, we add more levels of abstraction, and eventually
in the last convolutional layer we obtain highly abstract features, i.e. representations
of the object in question. For example, in figure 3.8 where we classify faces, in the
first layer the model learns edges that correspond to edges in the face, the second
learns parts of the face such as eyes, mouths, noses, and the last one learns abstract
representations of the face. This happens because a convolutional layer computes
each feature map as a weighted combination of the input channels. Hence, the con-
volutional kernels are learned in a way, such that the weighted combination of the
input channels can provide meaningful higher level representations. For example,
the weighted combination of edges can form a part of an object. In digit recognition,
a weighted combination of edges can form a digit. The reason that these weighted
combinations provide meaningful representations, is that the problem is supervised;
hence, we know what is represented in each image and we are able to learn the
weights taking into consideration class attributes.

3.5.4 Design patterns

In this section, we will describe design patterns that affect the size of the feature maps
at the layers of a convolutional network. To do so, first we will explain the notion of
zero-padding and stride.
Convolution can be implemented in two different ways. The first way is that, we

convolve the image at all positions where the kernel fits into the image, i.e there is
no part of the kernel lying outside the image borders. This reduces the size of the
feature map, as if for example we use a 3×3 kernel, we cannot convolve it at the image

60

borders because part of the kernel falls outside the image. The second way, is to add
the required number of columns and rows of zeros around the image (zero-padding),
so that the kernel can fit in the whole original image. For example using a 3×3 kernel
we need to zero-pad the image with padding = 1 element around the borders.

Stride refers to the amount of translation of our filters in order to perform con-
volutions at different image positions. If the stride size is s, we move our filters s

pixels apart from the current position to perform the subsequent convolution. This
can again affect the feature map size, as if s > 1 less convolutions are performed,
and thus the activations in the feature map are fewer. As in pooling we pool and
subsample in non overlapping neighborhoods, s is as big as the neighborhood size,
e.g. if we pool and subsample over 2× 2 neighborhood, then s = 2.
Given that, we have a feature map of size w1 × h1, kernel size f , zero-padding

p and stride s, the size of the new feature map after a convolutional layer, can be
computed as:

w2 =
w1 − f + 2p

s
+ 1

h2 =
h1 − f + 2p

s
+ 1,

(3.11)

and after a pooling layer:

w2 =
w1 − f

s
+ 1

h2 =
h1 − f

s
+ 1,

(3.12)

since we don’t use padding in pooling layers.
Lastly in this section, we will give some practical advices on designing layer sizing

patterns which are described in [32].
First of all it is preferable to use a stack of convolutional layers with small filters

to one convolutional layer with large receptive field. Suppose that we stack three
convolutional layers with kernel size 3× 3 on top of each other. In this arrangement,
hidden units in the first convolutional layer have a receptive field of size 3 × 3 w.r.t
the input image. Hidden units in the second convolutional layer have a receptive
field of size 3× 3 w.r.t. the first convolutional layer and by extension a receptive field
of size 5 × 5 w.r.t. the input. Hidden units in the third convolutional layer have a
receptive field of size 3 × 3 w.r.t. the second hidden layer; thus a receptive field of
size 7× 7 w.r.t. the input. An illustration of that can be seen at Figure 3.9. Suppose

61

Figure 3.9: Stacking convolutional layers with small receptive fields results in the
hidden units of the deeper layers to have large receptive fields. Each convolutional
layer in the scheme has a receptive field of three w.r.t. the layer below. The hidden
units of the first convolutional layer has a receptive field of 3 w.r.t. the input layer.
The hidden units of the second convolutional layer has a receptive field of 3 w.r.t.
the first convolutional layer but a receptive field of 5 w.r.t. the input layer. Figure
reproduced from [1].

that instead of these three layers of 3 × 3 convolutions, we only wanted to use a
single convolutional layer with 7 × 7 receptive fields. These neurons would have a
receptive field size of the input that is identical in spatial extent (7 × 7), but with
several disadvantages. First, the neurons would be computing a linear function over
the input, while the three stacks of convolutional layers contain non-linearities that
make their features more expressive. Second, if we suppose that all convolutional
layers have C channels, then it can be seen that the single 7 × 7 convolutional layer
would contain C× (7× 7×C) = 49C2 parameters, while the three 3× 3 convolutional
layers would only contain 3×(C×(3×3×C)) = 27C2 parameters. Intuitively, stacking
convolutional layers with tiny filters as opposed to having one convolutional layer
with big filters allows us to express more powerful features of the input, and with
fewer parameters.
As arises from above, convolutional layers should have small kernels such as 3×3

or 5 × 5. Some architectures are incorporating 7 × 7 kernels but this only common
to see in the first convolutional layers. One possible justification is that the design
philosophy of the latter architectures is to allow the hidden units of deeper layers to
indirectly have very large receptive fields on the input, which may arise in increased

62

accuracy. Nevertheless, stacking several convolutional layers of 3 × 3 kernels works
very well in practice as you will see in some popular ConvNet architectures that we
will describe in the next section. Moreover, it is crucial to use a stride of s = 1 and
zero-pad the inputs accordingly such that convolutional layers does not alter the
feature maps size. For a kernel of size f = 3, p = 1 retains the feature maps spatial
extent while for f = 5, p = 2. For a general f , it can be seen that p = f−1

2
preserves the

input size. The pooling layers are in charge of downsampling the spatial dimensions
of the input. The most common setting is to use max-pooling with 2 × 2 receptive
fields, and with a stride of 2 which results in non-overlapping neighborhoods.
The scheme presented above is pleasing because all the convolution layers pre-

serve the size of their input, while the pooling layers alone are responsible for for
subsampling the inputs. By using s = 1 convolutional layers perform ”dense” convo-
lutions which is more informative than performing convolutions at ”sparse” locations.
Zero-padding preserves the information at the image borders. If we use convolutional
layers without zero-padding, the size of the feature maps is reduced after each con-
volutional layer and the information at the image borders is trimmed and cannot be
exploited. Thus, in the above setting the role of convolutional layers is to transform
their inputs and output all the possible information and the role of pooling layers is
to downsample their inputs.
Finally, as we usually subsample the input by a factor of 2 at pooling layers

(convolutional layers preserve the spatial size), it is convenient for the input layer
(that contains the image), to be divisible by 2 several times. Common numbers include
32 (e.g. CIFAR-10 [33]), 64, 96 (e.g. STL-10 dataset [34]), or 224 (e.g. common
ImageNet [35] ConvNets), 384, and 512.

3.6 Gradients of convolutional and pooling layers

In Section 2.6, we have seen how to apply backpropagation in order to compute the
gradient of the weights for fully-connected layers in feedforward neural networks. For
applying backpropagation in a ConvNet, the only missing parts are the computation
of the gradients of convolutional and pooling layers which we will derive in this
section. The backpropagation of gradients for fully-connected layers in convolutional
networks is identical with that of feedforward neural networks; hence they will not

63

be restated here.
For brevity, we denote the loss function by L. Furthermore, for the simplicity of

illustration we consider the case of using a stride of s = 1 and zero-padding p = 0

for the convolutional layers. Hence, the resulting feature maps from the convolutional
layers have size (w−f+1)×(h−f+1) according to (3.11), where w and h are the width
and height of the input respectively and f is the size of the kernel. Lastly, we derive
the gradients of convolutional layers for the simple case where the convolutional layer
takes as input a single channel and produces as output a single feature map. Hence,
we drop the i, j indices from the kernel kij which connects the i-th input channel
with the j-th feature map. kij now refers to a particular spatial location of kernel k,
that is its i-th row and the j-th column. Equations (3.7) and (3.8) now become:

a
(n)
ij = h

(n−1)
ij ∗ k(n)

ij =
∑
p

∑
q

h
(n−1)
i−p,j−qk

(n)
pq (3.13)

h(n) = g(a(n) + b(n)), (3.14)

where in (3.13) we employed the definition of convolution given in (3.4) and in (3.14)
the sum from (3.8) is dropped since we consider the case of a single input channel.
Moreover, we dropped the dependence on the input x which in (3.7) and in (3.8) is
denoted in parentheses, for the simplicity of illustration.
We start by deriving the derivative of the loss w.r.t. each weight k(n)

pq of kernel k(n).
We use the chain rule where according to (2.24) we must sum the contributions of
all expressions in which k

(n)
pq occurs. It is given by:

∂L

∂k
(n)
pq

=
∑
i

∑
j

∂L

∂a
(n)
ij

∂a
(n)
ij

∂k
(n)
pq

=
∑
i

∑
j

∂L

∂a
(n)
ij

h
(n−1)
i−p,j−q. (3.15)

In the above expression, we can easily derive that ∂a
(n)
ij

∂k
(n)
pq

= h
(n−1)
i−p,j−q by looking at (3.13).

Also an important observation is that while in (2.31) for the derivative of the weights
of a fully-connected layer we do not sum over different expressions in which the
weights participate, here we do. The reason is that in a fully-connected layer each
weight occurs exactly once and participates in the inner product for producing a
single hidden unit. In convolutional layers where we have the property of parameter
sharing, each weight participates in all convolutions for producing each hidden unit
of a feature map; hence, in the computation of the derivative of the weight we sum

64

over all hidden units’ preactivations for which the weight occurs. Equation (3.15) is
a convolution, where the rows and columns of h(n−1)

i,j are flipped. Hence, (3.15) can
be computed as:

∂L

∂k
(n)
pq

=
∑
i

∑
j

∂L

∂a
(n)
ij

h
(n−1)
i−p,j−q =

∂L

∂a
(n)
ij

∗ h(n−1)
−i,−j =

∂L

∂a
(n)
ij

∗ flip(h(n−1)
i,j), (3.16)

where flip(·) flips the rows and columns of a matrix. In gradient form it is written
as:

∇k(n)L = ∇a(n)L ∗ flip(h(n−1)), (3.17)

where the convolution is performed over all possible locations.
The partial derivative of the loss w.r.t. the feature map shared bias is computed

as:

∂L

∂b(n)
=
∑
i

∑
j

∂L

∂a
(n)
ij

∂a
(n)
ij

∂b(n)
=
∑
i

∑
j

∂L

∂a
(n)
ij

. (3.18)

For consistency of illustration, we show (3.18) in gradient form (even if it is the same
with the partial derivative since it is a single element), which is:

∇b(n)L =
∑
i

∑
j

∂L

∂a
(n)
ij

. (3.19)

Prior to the computation of (3.15) and (3.18), we need to compute the term ∂L

∂a
(n)
ij

,
i.e. the partial derivative of the loss w.r.t. the convolutional layer’s preactivation. We
also use the chain rule:

∂L

∂a
(n)
ij

=
∂L

∂h
(n)
ij

∂h
(n)
ij

∂a
(n)
ij

=
∂L

∂h
(n)
ij

∂g(a
(n)
ij)

∂a
(n)
ij

=
∂L

∂h
(n)
ij

g′(a
(n)
ij), (3.20)

where we have seen in Section 2.6, the gradients g′(·), of various activation functions.
Note that (3.20) is identical to (2.28) that is the partial derivative of the loss w.r.t.
a fully-connected layer’s preactivation. Hence, the gradient is identical to the corre-
sponding gradient of (2.28), which we derive in (2.29), with the only difference that
now the element-wise multiplication is between two matrices and not two vectors.
Finally, for a convolutional layer, we need the partial derivative of the loss w.r.t.

the layer’s activation:

65

∂L

∂h
(n)
ij

=
∑
p

∑
q

∂L

∂a
(n+1)
i+p,j+q

∂a
(n+1)
i+p,j+q

∂h
(n)
ij

=
∑
p

∑
q

∂L

∂a
(n+1)
i+p,j+q

k(n+1)
pq , (3.21)

where we can easily see from (3.13) that

a
(n+1)
i+p,j+q =

∑
p

∑
q

h
(n)
ij k(n+1)

pq + b(n+1),

and
∂a

(n+1)
i+p,j+q

∂h
(n)
ij

= k(n+1)
pq .

It is apparent that (3.21) is a cross-correlation. Again, we can compute it as a
convolution by flipping the rows and the columns of ∂L

∂a
(n+1)
i+p,j+q

. Alternatively, if we
use the equivalent definition for the convolution which is described in (3.5), we can
compute (3.21) as a convolution by flipping the kernel. Hence:

∂L

∂h
(n)
ij

=
∑
p

∑
q

∂L

∂a
(n+1)
i+p,j+q

k(n+1)
pq = flip

(
∂L

∂a
(n+1)
ij

)
∗ k(n+1)

ij

=
∂L

∂a
(n+1)
ij

∗ flip
(
k
(n+1)
ij

)
. (3.22)

Practically, the definition in (3.5) is used for the implementation of convolution; hence,
in (3.22) we flip the kernel instead of the gradient of the loss w.r.t. the preactivations
of the layer above. Since we use a zero-padding of p = 0 for the convolution, the
size of a(n+1) will be reduced comparing to h(n). Hence, ∇h(n)L will be bigger than
∇a(n+1)L. As a solution, we zero-pad ∇a(n+1)L accordingly. Using a kernel of size f ,
we zero-pad ∇a(n+1)L with 2(f − 1) zeros. Therefore, the gradient of the loss w.r.t. a
convolutional layer’s activation is given by:

∇h(n)L = ∇a(n+1)L⊛ flip(k(n+1)), (3.23)

where ⊛ denotes a zero-padded convolution.
We derived the necessary gradient formulas for backpropagating the gradients

through a convolutional layer, assuming that we use a stride of s = 1 and a zero-
padding of p = 0. While we will not enter into technical details on how to backprop-
agate the gradients in the general case of any zero-padding and stride, we mention
that proper zero-padding should be used for the backpropagation if we use a zero-
padding of p > 0 for performing convolutions during forward propagation, as well

66

as the gradient of the feature maps should be upsampled accordingly in the case of
a stride of s > 1 (by filling the intermediate positions in which convolutions did not
occur with zeros). For the case where the convolutional layers take as input multiple
channels and produce as output multiple feature maps, the above formulas can eas-
ily be generalized by taking into consideration in the chain rule the contributions of
multiple input channels and multiple produced feature maps wherever they occur.
Now, we will derive the gradients of pooling layers. No learning takes place in

pooling layers; therefore the gradient from the layer above just passes through and
gets propagated to the layer below and there is not update rule for pooling layers.
During forward propagation, m × m blocks are reduced to a single value (ac-

cording to the pooling function), that is the value of the ”winning unit”. During
backpropagation, this single value ”winning unit” acquires an error computed from
propagating back the error from the layer above. To keep track of the ”winning unit”
its index is noted during the forward pass and used for gradient routing during
back-propagation. Gradient routing is done in the following ways:

• For max pooling, the derivative for h
(n)
ijk is computed by using the chain rule

and simply propagating back the error as:

∂L

∂h
(n)
ijk

=
∂L

∂h
(n+1)
ijk

∂h
(n+1)
ijk

∂h
(n)
ijk

=
∂L

∂h
(n+1)
ijk

∂

∂h
(n)
ijk

max
p,q

h
(n)
i,j+p,k+q. (3.24)

We set h(n)
ijk = h

(n)
i,j+p′,k+q′ and (3.24) becomes:

∂L

∂h
(n)
i,j+p′,k+q′

=
∂L

∂h
(n+1)
ijk

∂

∂h
(n)
i,j+p′,k+q′

max
p,q

h
(n)
i,j+p,k+q. (3.25)

We can easily derive that:

∂

∂h
(n)
i,j+p′,k+q′

max
p,q

h
(n)
i,j+p,k+q =

1 if p′, q′ = argmax

p,q

h
(n)
i,j+p,k+q,

0 elsewhere
.

Thus:

∂L

∂h
(n)
i,j+p′,k+q′

=

∂L

∂h
(n+1)
ijk

if p′, q′ = argmax
p,q

h
(n)
i,j+p,k+q,

0 elsewhere
. (3.26)

Similarly, in gradient form:

∇
h
(n)

i,j+p′,k+q′
L =

∇

h
(n+1)
ijk

L if p′, q′ = argmax
p,q

h
(n)
i,j+p,k+q,

0 elsewhere
. (3.27)

67

In other words, the error is just assigned to where it comes from, i.e. the ”win-
ning unit”, because all the other units in the previous layer’s pooling blocks did
not contribute to the error; hence, they are assigned values of zero.

• For average pooling, the derivative for h(n)
ijk using the chain rule is:

∂L

∂h
(n)
ijk

=
∂L

∂h
(n+1)
ijk

∂h
(n+1)
ijk

∂h
(n)
ijk

=
∂L

∂h
(n+1)
ijk

∂

∂h
(n)
ijk

1

m2

∑
p,q

h
(n)
i,j+p,k+q =

∂L

∂h
(n+1)
ijk

1

m2
, (3.28)

where
∂

∂h
(n)
ijk

1

m2

∑
p,q

h
(n)
i,j+p,k+q =

1

m2
.

From (3.28) we obtain a single value, yet we want to fill the whole pooling
neighborhood with the gradient of the corresponding pooled unit. In max-
pooling, we filled the pooled neighborhood with zeros everywhere except the
”winning unit” since the other units do not contribute to the gradient. In average
pooling, each unit has the same contribution to the gradient; hence, each unit
should receive the same gradient error. Thus, we upsample the error gradient
by filling each pooling neighborhood with the gradient of the corresponding
pooled unit. The gradient of an average pooling layer is:

∇h(n)L =
1

m2
upsample(∇h(n+1)L), (3.29)

where upsample(·) inverts the subsampling operation by filling each m × m

neighborhood with the error of the corresponding pooled unit. As you can see,
the error is multiplied by 1

m2 and assigned to the whole pooling block which
means that all units in the pooling block get the same value.

3.7 Popular convolutional network models

Here, we will briefly describe some popular and successful convolutional network
architectures. Most of them won ILSVRC [35] which is a very challenging image
recognition and detection competition. ILSVRC provides a very big datataset, namely
ImageNet, with approximately 1 million images and 1000 image categories. ImageNet
played a crucial role in the history of ConvNets. Moreover, ILSRVC is a very good

68

Figure 3.10: The pioneering convolutional architecture LeNet-5 [9] for handwritten
digit recognition. Figure reproduced from [10].

benchmark for comparing classification and detection models, due to the difficulty
of the given tasks, the variabilty of the data in the dataset and the big number of
classes/examples. Thus, winning an ILRSVC contest indicates a powerful model.

LeNet-5 is a pioneering convolutional network architecture by Yann LeCun et
al. [9]. LeCun introduced the basic idea of convolutional networks previously in [31],
without calling them convolutional networks at that time. Later in [9], LeCun et al.
introduced the notion of convolutional networks and established well their principles
such as parameter sharing and local connectivity. Furthermore, they designed LeNet-
5, the first well-known convolutional layer architecture. It consists of 3 convolutional
layers, where only the first 2 are followed by pooling and subsampling, and then
follows a fully-connected layer which is connected with the output layer. A graphical
representation of LeNet-5 can be seen at Figure 3.10. The authors employed LeNet-5
on the task of handwritten character recognition, where they also created the MNIST
dataset, a dataset that is used until today as a benchmark on image classification.
In the experiments, they tested several different classifiers (Nearest Neighbors, SVMs,
etc) and they stated that LeNet-5 was superior in performance over all the other
classifiers. Moreover, they experimented with two more shallow ConvNets, where the
performance was downgraded comparing to LeNet-5, still comparable and most of
the times superior with the rest of the classifiers though. This findings suggested that
ConvNets are suitable models for image classification, and that deeper networks can
perform better.

AlexNet was the first work that popularized convolutional networks in computer
vision, developed by Alex Krizhevsky, Ilya Sutskever and Geoff Hinton [11]. The
AlexNet was submitted to the ImageNet ILSVRC challenge in 2012 and significantly
outperformed the second runner-up (top 5 error of 16% compared to the runner-up

69

whose error was 26%).
In their work, they proposed several novelties concerning design strategies and

the training of their architecture. First of all they proposed the use of ReLUs than
classical sigmoids or tanh, which helped the network to be trained several times
faster. Furthermore, they proposed a new type of layer which can been added after
one ore more convolutional layers. It is named local respone normalization layer, and it
normalizes the activation of a hidden unit at a given position (i, j) in a feature map
by taking into consideration the activations of hidden units at the same position (i, j)

at neighboring feature maps. Following their notation, if aix,y is the activation of the
i-th feature map at position (x, y), then the response-normalized activity bix,y is given
by the expression:

bix,y = aix,y/(k + α

min(N,i+n/2)∑
j=max(0,i−n/2)

(ajx,y)
2)β (3.30)

where the sum runs over n “adjacent” kernel maps at the same spatial position,
and N is the total number of kernels in the layer. The constants k, n, α, and β are
hyper-parameters whose values are determined using a validation set. A similar nor-
malization layer was proposed in [18]. Here a feature map activation is normalized
in two different ways, across adjacent elements of the same feature map or at the
same spatial location across different feature maps. The normalization takes the form
of subtracting and dividing with locally computed means and standard deviations
respectively. The idea of these normalization schemes is to enforce a sort of local
competition between adjacent features in a feature map, and between features at the
same spatial location in different feature maps. Nevertheless, these layers didn’t have
a drastical impact on performance, and thus they have been rejected in more recent
architectures.
In AlexNet, max-pooling with overlapping neighborhoods is used, opposite to

most architectures, and the authors report reduction in error rates. They employed a
parallelization scheme to spread the network across two GPUs for faster training, by
splitting the kernels of each layer across two diferrent GPUs. The model is depicted
in figure 3.11. The network consists of 5 convolutional layers, where the first two are
followed by max-pooling and the following three are stacked on top of each other with
max-pooling after the last one. This is the first work that stacks multiple convolutional
layers on top of each other, before it was common to place a max-pooling layer after
each convolutional layer. Lastly, they utilized some more techniques regarding the

70

Figure 3.11: AlexNet architecture. The network is splitted in two parts, where each
part contains half of the feature maps of each layer. In this way the network is
parallelized in two GPUs. Note that all convolutional layers are connected only with
the part of the network that is in the same GPU while the third convolutional layer
is connected with both parts of the second convolutional layer. Figure reproduced
from [11].

training of their architecture which we ’ll see in the next chapter where we talk about
training.
The ILSVRC 2014 winner was a convolutional network named GoogleNet from

Szegedy et al. [12] from Google.
The main contribution in this architecture is the inception module, which replaced

simple convolutional layers in the network, except the first layers where normal con-
volutional layers were placed. The motivation for the inception module is based on
the idea of finding an efficient way to approximate an optimal local sparse structure.
Optimal local sparse structure, refers to the optimal way of connecting the hidden
units in a feature map, locally with the inputs of the layer before. In other words, you
can see it as the optimal local connectivity of layers which we analyzed in section 3.3.
Convolution, proposes a local structure but might not be the optimal. The basic idea
of the inception module is to combine multiple convolutional layers to approximate
an optimal local structure. To this end, they firstly developed, a naive version of the
inception module which is depicted in Figure 3.12a. As it can be seen, they used three
convolutional layers in parallel, which are connected to the previous layer, where the
first performs 1 × 1 convolutions, the second 3 × 3 and the third 5 × 5. Moreover,
they added also a max-pooling layer for additional beneficial effect in performance.
Note, that after this operations, the outputs from each different building block are

71

merged in a single output vector to form the input for the next layer. They observed
though, that the aforementioned module, could be prohibitely computationally ex-
pensive when the number of filters in the previous layer is very large. This led to the
development of a sophisticated version of the inception module, where they applied
dimensionality reduction before convolutions and max-pooling, that is, they apply
1 × 1 convolutions which result in a smaller number of feature maps. The second
version of the inception module is illustrated in Figure 3.12b. The benefits of this
module are the following:

• It reduces the computational requirements of the model.

• The incorporation of 1 × 1 convolutions introduces multiple levels of non-
linearity which may result in more powerful feature representations.

• It processes the information at various scales and then aggregates it so that the
next stage can abstract features from different scales simultaneously, which may
result in superior performance.

Instead of fully-connected layers at the last part of the model, GoogleNet applies
average pooling, which firstly reduces further the number of parameters of the model
and secondly the authors state increased performance. The overall architcture is a
22 layer architecture, with the first layers to be classical convolutional layers, the
following layers are layers based on the inception module where some of them are
followed by max-pooling and finally follows average pooling with a fully-connected
layer as output. Finally, as this architecture is very deep, finding an efficient way
to propagate the gradients through the whole network is a major problem. To this
end, they added auxiliary classifiers to the architecture, which take the form of small
convolutional networks placed on top of the output of specific inception modules.
Their loss gets added to the total loss of the network with a discount weight and this
increases the gradient signal that gets propagated back. You can see a depiction of
GoogleNet architecture in figure 3.13.

To sum up, the hallmark of GoogleNet architecture is the improved use of com-
putational resources with the utilization of the inception module which allows for
increasing both the width of each layer as well as the number of layers without
getting into computational difficulties.

72

(a) (b)

Figure 3.12: Inception module. (a) The naive form of inception module. (b) The
inception module with dimensionality reductions in the form of 1 × 1 convolutions.
Figures reproduced from [12].

Figure 3.13: GoogleNet architecture. Figure reproduced from [12].

In ILSVRC 2014, VGG-Net from Karen Simonyan and Andrew Zisserman [36],
won the first and the second position in localization and classification tracks respec-
tively. Their main contribution is a thorough evaluation of networks of increasing
depth. To this end, they constructed multiple architectures with increasing depth
from 11 to 19 layers including convolutional and fully-connected layers. The key
novelty of the VGG-Net is the use of convolutional layers with small receptive fields
of size 3×3, stride 1 and pooling 1, and max-pooling layers with 2×2 receptive fields
and a stride of 2 across the whole network. This is a minimalistic and very homo-
geneous architecture which has all the nice properties we described in Section 3.5.3.
Furthermore, multiple convolutional layers are stacked on top of each other, which
as we described in Section 3.5.3 diminishes the need for large receptive fields. They
were the first that constructed such a homogeneous architecture, while previously
different kernel sizes and stride/padding sizes were used across different layers of
the network. They showed that this architecture outperforms several other previous

73

Figure 3.14: VGG-Net architecture. Different colors are used to discriminate between
the input layer, convolutional layers, max-pooling layers and fully-connected layers.
The architecture consists of 13 convolutional layers, 4 max-pooling layers and 3
fully-connected layers from which the last is the output layer. Convolutional layers
are stacked on top of each other before a max-pooling layer. Stacks of convolutional
layers are called convoutional groups. The number of feature maps in successive
convolutional groups is doubled, where the first convolutional group has 64 feature
maps and the last convolutional group has 512 feature maps. The hidden fully-
connected layers have 4096 hidden units while the output layer has 1000 output
units.

successful architectures. Very importantly, a very deep VGG-Net (16 trainable lay-
ers) yielded the best performance, which suggests that the increased ConvNet depth
is beneficial in terms of classification accuracy. A graphical illustration of their best
performing ConvNet architecture can be seen in figure 3.14.

3.8 Dataset augmentation

The best way to reduce overfitting and increase the generalization performance of
a machine learning model is to train it on more data. In practice, the amount of
available data is limited. A solution is to create artificial data instances and add it
to the training set. This is particularly useful for deep convolutional networks and
generally deep neural models which they are more prone to overfitting.
The most common way of creating new instances of data is called dataset aug-

mentation, where new examples are generated by randomly transforming the original
dataset examples. Dataset augmentation in images is pretty straightforward, where
they exhibit geometric and photometric transformations. The goal is to make our
model invariant to these transformations. Hence, the original images are transformed
by random geometric transformations such as translation and rotation and by ran-
dom color perturbations. In classification, dataset augmentation is a label preserving
process, that is, while the original images are transformed, their corresponding labels

74

are unchanged, such that, the model learns invariant mappings from the images to
the corresponding labels. In regression, in some cases the target values should be
changed correspondingly with the image transformation. For example, in hand pose
estimation, if the model regresses for joint locations, a geometric image transformation
should also be applied to the target values, such that, in the transformed image the
transformed target values match the new joint locations.
Most commonly, data augmentation is applied in an online scheme with mini-batch

stochastic gradient descent. For each mini-batch of images, random transformations
are applied to the whole mini-batch and the model is trained on the transformed
images. In such a way, in each epoch the algorithm observes different versions of the
original images and the generalization performance of the model is improved since
it observes a bigger amount of data. Data augmentation is especially useful when
training on small datasets.
The most common image transformations for dataset augmentation are the fol-

lowing:

• Horizontal flips: During training, flip the image horizontally with probability
0.5. Vertical flips are not common, since the vertically flipped version of objects
is not common in nature. During testing, either the predictions are based on
the original image or they result from the average of the original image and its
flipped version.

• Random crops/scales: Resize the training image with random scale and subse-
quently sample a random patch and crop the image. In such way, we obtain
zoomed versions of the original image and the random crops are similar to ran-
dom image translations but in a computationally cheaper way. During testing,
the images are scaled using multiple scales, and for each scale the images are
cropped using multiple crops that span the image space. These crops and scales
are identical across the test set. The predictions are obtained as an average of
the predictions of the multiple transformed versions of the image.

• Color jitter: There are two ways of jittering the color values of images:

1. Randomly contrast jittering: Add small Gaussian noise to the pixels.

2. PCA jittering [11]: Before training, PCA is applied on the RGB vectors of
the pixels of the training set. During training, at each training image, add

75

multiples of the found principal components, with magnitudes proportional
to the corresponding eigenvalues times a random variable drawn from a
Gaussian distribution with zero mean and standard deviation 0.1.

In each case, we observe that during training the images are transformed ran-
domly, while during testing a deterministic procedure is followed, where either the
predictions are averaged on multiple fixed image transformations, or the transfor-
mations are not applied at all. This follows a general regularization scheme where
random noise is added to the training procedure and during testing the noise is
marginalized out. Similarly, in dropout, during training we sample random binary
masks for the hidden units in each iteration while during testing we leave all hidden
units active.
Of course, more transformations can be applied in the training images such as

translation, rotation and shearing, but they are less common since they are more
computationally expensive.

3.9 Pretrained models

Deep ConvNets are preferred over shallow ones since they learn more expressive and
highly discriminant features. Yet, the limited amount of training data prevents the
employment of large ConvNets due to overfitting concerns. Since it is rare to have a
dataset of sufficient size to train a large ConvNet, it is usual to pretrain a ConvNet on
a very large dataset (e.g. ImageNet [35]) and subsequently use the pretrained model
for the task of interest. This falls in the category of transfer learning where a learned
model in a task is used for the task of interest. There are two major scenarios of
transfer learning with pre-trained ConvNets.
In the first scenario, the pretrained ConvNet is used as a fixed feature extractor.

The output layer is removed and features for the images of the new dataset are
extracted from the last hidden layer of the ConvNet. It is important to extract the
features after the activation functions of the hidden units since the network is trained
to classify images based on the values of the activations functions. Once features are
extracted for each image from the pretrained ConvNet, a linear classifier such as a
simple softmax fully-connected layer or a linear SVM is trained on these ConvNet
based image features. This scenario is particularly convenient when the dataset is

76

small where training the ConvNet would lead to overfitting.
In the second scenario, the pretrained weights are used as an initialization of

the weights of the ConvNet. The original output layer is replaced with an output
layer suitable for the task of interest (e.g. for classification the number of the output
units would be equal to the number of classes of the new task). Then, the weights
of the network are fine tuned by applying optimization on the new dataset. It is
possible to train only part of the network while keeping the weights of the rest of
the network unchanged. The motivation for that, is that ConvNets learn hierarchical
features and the shallow layers learn more generic features (e.g. edge detectors or
color blob detectors) that should be useful to many tasks, but deeper layers of the
ConvNet becomes progressively more specific to the details of the classes contained
in the original dataset. Hence, it is typical to keep the first layers of the ConvNet fixed
and train the later layers. The amount of layers that will be fine tuned depends on
the amount of training data due to overfitting concerns. In the case of a medium size
dataset, it is typical to train the fully-connected layers or even some convolutional
layers too. In the case of a large dataset, more convolutional layers can be fine tuned
or even the whole network. Usually, the learning rate during fine tuning is smaller
than the initial learning rate since we expect that the pretrained weights are already
good and we do not wish to change them fast and much.
Since, the training of deep ConvNets on large datasets can be very time consuming,

it is common that researchers release their pretrained models (e.g. VGG [36] trained
on ImageNet [35]). These models are used by the community for fine tuning on new
tasks. The limitation is that in order to employ the pretrained weights, someone is
restricted to use the corresponding model. Since successive layers are connected to
each other, the structure of the network cannot be changed by removing convolutional
layers or reducing the number of kernels in convolutional layers. Nevertheless, the
utilization of pretrained models is very common as it has proven beneficial for the
performance of ConvNets.

77

Chapter 4

Hand pose estimation with
convolutional networks using RGB-D

data

4.1 Introduction

4.2 Related work

4.3 Our approach

4.4 Evaluation

4.1 Introduction

Articulated pose estimation refers to the problem of estimating all the kinematic
parameters of the skeleton of an articulated object, expressed in joint angles or joint
positions. The problem of pose estimation of 3D articulated objects such as human
body and hand has aroused a lot of attention in the computer vision community for
long, as their solution can provide support to several important applications such
as human computer interaction (HCI), augmented reality, gesture recognition, robots
learning by demonstration and gaming.
In this work we study the problem of 3D hand pose estimation. Articulated hand

pose estimation shares a lot of similarities with the popular 3D body pose estimation.

78

Despite their similarities, proven approaches in body pose estimation [37] cannot be
repurposed directly to hand articulations, due to the unique challenges of the task.
The human hand has far more complex articulations; hence, self occlusions between
joints are prevalent which make the pose prediction a very challenging task. The
projected image of a human hand is much smaller than that of a human body which
results in low resolution hand images. Moreover, hand motion exhibits much larger
variations in both camera viewpoints and finger articulations. This is because a human
body can be assumed to be upright but a hand can take any orientation; the hand
has much more meaningful configurations.
The literature is classified in two major categories: discriminative methods

(appearance-based or data-driven) and generative methods (model-based). In model-
based approaches [38,39,40,41,42], hypotheses are generated from a 3D hand model
and poses are tracked by fitting the model to the test data using optimization. While
these model-based approaches inherently deal with the kinematic constraints, joint
articulations and viewpoint changes, their performance heavily relies upon accurate
pose initialization and structural correlation between the synthetic model and testing
subject (i.e. hand width and height). Furthermore, generative methods, rely upon ac-
curate initialization, and at each frame the pose is initialized from the previous pose
estimation which can lead to error accumulation and drift from the ground truth
pose. Lastly, these methods require a hand-crafted carefully designed cost function
to avoid local minima and a proper optimization method.
Discriminative methods [13, 14, 15, 37, 43, 44, 45, 46, 47, 48] deploy a classifier or

regressor and use labeled datasets to learn a mapping from image features to hand
poses. Data-driven approaches are more advantageous as they do not require com-
plex model calibration and are robust to poor initialization. Moreover, discriminative
methods have state-of-the-art performance in human body and hand pose estimation.
Therefore, we are focusing on discriminative methods for hand pose estimation.
In the past few years, with the popularization of consumer depth sensors, human

body pose estimation [37,45] have seen rapid progress and significant success. Depth
images provide 3D information which is directly correlated with the task of 3D pose
estimation, and hence the regressor or classifier can learn easier mappings from depth
images to 3D poses, which results in increased performance. Since the widespread
success of real-time human body pose estimation, the area of hand pose estimation
has received much attention within the computer vision community.

79

The first successful data-driven approaches to human body pose estimation are
based on random forests [37] and depth images, in which a random forest classifies
pixels to body parts and a subsequent step estimates the position of the joints in each
respective part. This combination of depth images with random forests that employ
very simple depth features, enabled real-time performance and achieved state-of-the-
art results in human pose estimation.
This paradigm has been applied to hand pose estimation [44] but with less success.

That is, because the body is mostly near-frontal and there is less occlusion between
limbs. However, hand motion exhibits much larger variations in both camera view-
points and finger articulations. This can lead to occluded parts, and consequently to
wrong labeling of hand parts from the classifier. As a result the subsequent step of
joint position inference in each hand part is affected by the classification errors and
the estimation accuracy is limited. Furthermore, in this scheme the predictions on
each joint are independent, and thus the estimator does not consider the dependency
between joints which may result in poses that violate kinematic constraints.
The aforementioned problems that arise from classification methods applied in

hand pose estimation are tackled by the regression based approaches [13, 14, 15, 43,
45,46,47,48]. This approaches incorporate a regressor which directly learns mappings
from depth images to 3D hand poses. Such methods are more principled since their
learning is directly guided by the task. Regression based methods do not rely on a
subsequent estimation step, they learn a direct mapping from a depth image to a
3D hand pose; hence, they can mitigate the problem of self-occlusion and recover
the hand pose from occluded joints since they can learn meaningful mappings from
occluded joints to the ground truth pose.
Regression forests were applied extensively for hand pose estimation [45,46,47,48],

and have shown state-of-the-art performance. The authors usually propose a variant
of random forests particularly designed taking into consideration the hand topology.
With the emergence of deep learning most recent hand pose estimation methods
turned their attention towards convolutional networks [13, 14, 15, 16, 43] where they
outperform previous state-of-the-art regression forest based methods.
We propose a convolutional network based approach for 3D hand pose estimation.

Since the structure of convolutional networks plays a crucial role in their performance,
in the first part of our proposed methodology, we design and evaluate several different
convolutional network architectures by alternating the depth of the network as well

80

as other parameters that change the structure of the network. The depth of a network
plays a crucial role in its performance. The amount of pooling is also essential since
redundant pooling can lead to information loss and decreased performance. Having
these and other important design considerations in mind, we carefully designed each
one of our evaluated architectures in order to investigate different cases and find the
one that performs best for the problem of 3D hand pose estimation. Our experimen-
tal analysis shows that our deepest convolutional network outperforms all the other
considered architectures and provide state-of-the-art performance. Previous convolu-
tional network based methods employ much shallower convolutional networks with
reduced capacity. It turns out that hand pose estimation is a problem of high com-
plexity and requires high capacity models, such that the network can learn good
feature representations and have good generalization performance in new 3D poses.
This is the main reason that our large convolutional network outperforms the state-
of-the-art. This convolutional network is our proposed architecture that we use in
the rest of our experiments.
Most methods use single depth images for 3D hand pose estimation. Depth im-

ages are noisy with quantization errors that result in missing parts around the hand
boundaries, yet they provide useful 3D information. RGB images provide an accu-
rate description of objects with color and texture information, but they lack of 3D
infromation. We conjecture that the combination of RGB and depth images can im-
prove the performance of convolutional networks. Based on these observations, in
the second part of our methodology we propose fusion methods of RGB and depth
information using convolutional networks. We propose three different approaches,
input fusion, score level fusion and double-stream architecture fusion. Input level
fusion aggregates RGB-D data and trains a convolutional network with images that
contain both RGB and depth channels, while score level fusion trains two different
convolutional networks with RGB and depth images respectively and fuses their pre-
dictions. Finally, double-stream fusion architecture, is based on training two separate
convolutional networks in parallel and fuse their feature maps at an intermediate
layer using fusion functions. From our experiments we conclude that fusion of RGB
and depth information do not leverage further useful information towards more ac-
curate 3D hand pose estimation. The fused nets perform quite comparably with the
state-of-the-art, but still our proposed convolutional network which is trained only
with depth images outperform the fusion techniques and provide state-of-the-art

81

performance.

4.2 Related work

The problem of hand pose estimation has been studied in the computer vision liter-
ature for decades. We refer the reader to [49] for a detailed survey of earlier hand
pose estimation methods. Here we focus on more recent methods. After the popular-
ization of low cost depth sensors, e.g. Kinect [50], 3D hand pose estimation as well
as 3D body pose estimation have received much attention. More recent methods are
classified into two different categories: the generative (or model-based) approaches and
the discriminative (or appearance-based) approaches.
In generative hand pose estimation methods [38, 39, 40, 41, 42], hypotheses are

made from a 3D articulated hand model e.g. a 3D hand mesh and poses are tracked
by fitting the model to input image observations. Typically, an optimization method
is responsible for searching in the parameter pose space and find the pose parameters
that best explains the available observations. The objective function to be optimized
measures the discrepancy between the visual cues that are expected due to a model
hypothesis and the actual ones. The synthetic model is derived from well-known
computer animation and graphics concepts. One downside of these methods is that
they rely on very careful initialization, and hence they depend on previous pose es-
timation. In that case, output poses may drift away from the ground truth when the
error accumulates over time. The objective function has to be designed very care-
fully in order to avoid local minima, or else proper optimization methods have to
be incorporated that search the entire pose space. Oikonomidis et. al. [40] proposed
the use of particle swarm optimization to track the hand pose in real-time from
RGB-D images. De La Gorce et al. [41] incorporated shading and texture informa-
tion into a model-based tracker. Ballan et al. [38] used color images and deployed
a multi-camera setup to alleviate color ambiguitites. To this end, they used salient
points like finger tips and they proposed an objective function that takes into account
edges, optical flow and salient points. They formulated the optimization problem as
a nonlinear least squares problem and they used the Levenberg-Marquard algorithm
for local optimization. In [39], a novel optimization method is proposed, that ef-
fectively and efficiently explores the high-dimensional space of human hands. It is

82

an evolutionary-based optimization method that deploys quasi-random sampling for
more uniform coverage of the hand parameter space. Qian et. al. [42] introduced a
very simple hand model that is approximated by a set of spheres and a very fast cost
function that allowed real-time performance. Furthermore, they proposed a hybrid
optimization algorithm which combines the Iterative Closest Points algorithm (ICP)
and particle swarm optimization for faster convergence and better resistance to local
optima.
Generative approaches are very accurate and can handle articulation and view-

point changes. On the other hand, they are very computationally expensive methods
as hypotheses are generated online and the optimization method searches for the
best observed pose at each frame. Furthermore, in a generative method, joint angle
constraints need to be imposed to the optimization method so that the estimations
do not violate the allowed range of poses. Finally, they need very carefully designed
objective functions, proper selection of optimization algorithm and they rely on ini-
tialization, which can lead to drift from the original pose from error that accumulates
from previously tracked poses.
Discriminative methods [13, 14, 15, 16, 37, 43, 44, 45, 46, 47, 48, 51, 52] learn a map-

ping from visual features to target parameter space such as joint locations. Oppositely
to generative methods, they do not need an explicit specification of joint angles con-
straints, motion constraints or a synthetic model as these informations are encoded in
the training data. Typically, they use a regressor or a classifier to infer joint locations.
Discriminative methods are single-frame methods, that is they estimate the pose at
each frame independently of previous frames; hence they do not require initialization
and they are more robust to previous errors.
With the advance of Kinect and other similar depth sensors, several discrimina-

tive methods have been developed and gave impressive results in the task of pose
estimation. Shotton et. al. [37], tackled the problem of human pose estimation using
an intermediate body part representation. A depth image is first segmented into body
parts which are spatially centered to the skeletal joints. They treated the segmenta-
tion in body parts as pixel-wise classification where they trained a deep Randomized
Decision Forest to classify pixels to body parts. For training, they generated a large
realistic synthetic dataset with depth images of human bodies. Each tree in the forest
takes pixel data as input, and after branching left or right based on the decision in
the split nodes, pixels end up in the leaf nodes where probability distributions are

83

constructed that classify pixels to body parts. At the splitting nodes, the comparison
is based on:

fθ(I,x) < τ (4.1)

where fθ is a feature function on the input parameterized by θ, I is the input image,
x is the pixel that is on the splitting node and τ is a threshold. τ and θ are learned
during training. For the feature function they propose:

fθ(I,x) = dI(x+
u

dI(x)
)− dI(x+

v

dI(x)
), (4.2)

where dI(x) is the depth of image I at pixel location x and the parameters θ = (u,v)

are image offsets. These features that simply compare the depth between offsets of
the current pixel have shown very good performance at pose estimation tasks using
depth images. The normalization with 1

dI(x)
ensures depth invariance such that at a

given body point the length of the offsets scales with the depth of the point. Now
that the body is segmented into parts, the mean shift algorithm is used at each part
to find local modes in the distribution of the part, i.e. to estimate the centers of each
part which correspond to a skeletal joint.
In [45], a similar approach with [37] is followed. They used a regression forest

where they employed the same test features at the split nodes like [37]. The difference
is that now pixels do not vote for body parts but for offsets from the joints. Votes
are accumulated to the leaf nodes where distributions are formed that represent the
relative 3D offset for each body joint. Thus, now pixels vote for their joint offsets and
the forest directly produces continuous outputs of the estimated joint locations.
A big part of the hand pose estimation literature based on discriminative ap-

proaches were inspired by [37,45] and used RDFs or regression forests in combina-
tion with depth images. In [51], the idea of [37] was adopted and trained an RDF
to classify pixels to hand parts and finally infer the 3D hand pose estimation using
the mean shift algorithm. In [44], the idea of Shape Classification Forests (SCF) was
introduced. They first cluster the dataset, where each cluster represents a different
hand shape. Then they train the SCF to infer the cluster for each pixel where a sep-
arate pose estimator is trained on each cluster forming a network of experts. In [52],
Hough regression forests were used. In the first step a Hough forest provides an initial
estimation of the hand orientation and 3D location. In the second step the parameters

84

of the orientation of the hand from the first step are used to form a new Hough For-
est which with the use of hand orientation parameters transforms the classical pixel
features used in [37] and provides features invariant to rotations. This second Hough
Forest produces a set of candidate poses where a final optimization step selects the
best among the candidates. Tang et al. [48] introduced the Semi-supervised Trans-
ductive Regression forest, which learns associations between partially labeled realistic
data and fully labeled synthetic data and leverages merits from both domains. The
forest handles viewpoint changes along with poses by using a hierarchical classifi-
cation scheme, where in the first step it performs viewpoint classification, it follows
a classification step of individual joints and in the final step the forest regresses the
joint location and infer the pose. In [47], the hand topology is learned in an unsu-
pervised manner by using a Latent Tree Model. Then the authors introduced the
Latent Regression Forest, which given the learned Latent Tree Model, it trains binary
classification trees which iteratively divide the image in two sub-regions until each
sub-region corresponds to a skeletal hand joint. Sun et. al. [46] proposed a cascaded
hand pose regression scheme, where it deploys a sequence of weak regressors that
are regression forests and progressively each weak regressor is parameterized with
the pose estimation of the previous regressor, and learns the residual error. With this
procedure the pose estimations are updated iteratively by the new estimations of the
weak regressors. Furthermore they further improved their approach by introducing
a hierarchical approach which regresses the pose of different parts sequentially in
the order of their articulation complexity, such that easier parts are first estimated
such as the palm, and then conditioned on this estimation more complex joints are
estimated such as the fingers.
The widespread use of convolutional networks and their outstanding performance

in several computer vision tasks influenced also the hand pose estimation literature.
Tompson et al. [13] were the first that employed convolutional networks for hand
pose estimation. They trained a convolutional network to predict 2D heat-maps for
each joint location where the intensity of the heat map represents the probability
that the joint is present in that location. Afterwards, they used an inverse kinematics
optimization algorithm to recover the 3D pose of the hand from the 2D heat-maps.
The drawback is that their inverse kinematic procedure relies on the depth map
for the inference of the depth, which may result in large errors under occlusions of
joints. They stated, that they used the intermediate heat-map representation because

85

it reduces the complexity of the learning problem; it is very difficult for the network
to directly map depth images to poses. The input image is downsampled twice and
produces a multi-resolution image pyramid. Then, a multi-resolution convolutional
network is deployed and benefits from both local and global features depending on
the scale. Each image at a different scale is fed as input to a convolutional module,
with two layers of convolutions followed by max-pooling. Finally, the feature maps
from the three modules are concatenated in a vector and they are connected two a
neural network with two fully-connected layers and at the output of the network
predicts the heat-maps.
Oberweger et al. [14] first considered several different convolutional network archi-

tectures to examine which one performs best for the problem of hand pose estimation.
Subsequently, they used a refinement step that for refining the positions of the joints.
They first examined two classical architectures, a shallow network with one convo-
lutional layer followed by max pooling and one fully-connected hidden layer, and a
deeper network with three convolutional layers followed by max-pooling layers and
finally two fully-connected layers. Similarly to [13], they investigated a multi-scale
architecture where at each scale the image is downsampled. Their results showed
that the multi-scale architecture performed better than the deep architecture which
performed better than the shallow architecture.
Their last architecture was motivated by the idea that a low dimensional embed-

ding is sufficient for parameterizing the hand pose. To this end, they wanted instead
of predicting directly the hand pose to predict first the parameters of the hand in
a lower dimensional space which will impose a prior on the physical constraints of
the hand. For the prior they used a ”bottleneck” layer at the end of the network
before the output layer with size smaller than the number of joints and this layer
predicts the parameters of the hand in the low dimensional space. They initialized
the weights of this layer with some of the principal components of PCA. In their ex-
periments they showed that this network with the prior layer, performed best among
the architectures they evaluated.
Finally, in [14], a pose refinement step was proposed, which used a multi-scale

approach. They centered patches of different scales on each joint and they used an
architecture similar to their multi-scale architecture described before, but now cen-
tered on each joint separately. For further improvement they iterated this refinement
step more than once. Their results outperformed previous state-of-the-art.

86

Oberweger et al. [15] adopted a generative approach without using a hand model
or an optimization method accompanied with a carefully designed cost function. In-
stead they learned to generate images from training data. Very interestingly, each
component of this approach is a convolutional network. A typical convolutional net-
work is employed as the predictor, which makes an initial pose estimation. The
second part consists of the synthesizer. This network takes poses as inputs and learn
to generate the corresponding depth images. It does so by successively performing
convolutional and unpooling operations. Unpooling is the inverse operation of pooling,
that is the feature map is expanded. Unpooling has been used by other researchers
too, for image generation with convolutional networks [53, 54]. Finally, the updater
network is an architecture with two parallel streams of convolutions and max-pooling
operations that share weights and they are merged at the fully-connected layers of
the network. Given a depth image, and a corresponding generated image from syn-
thesizer for the current pose estimate, the updater learns to correct the errors from
the initial pose estimate that are seamlessly integrated in the generated image from
the synthesizer. Their method significantly outperformed previous state-of-the-art
methods.
Zhou et al. [16] introduced a model based deep learning approach that considers

the geometry of a hand model. A new layer was proposed that maps joint angles to
joint locations. The layer is differentiable and can be trained along with the network
in an end-to-end fashion. The layer implements a forward kinematic function that
maps pose parameters to joints. Their network is similar to the baseline architecture
of [14] (three convolutional layers followed by max-pooling and two fully-connected
hidden layers and the output layer). The key difference is that after the second
fully connected layer they introduced a new fully-connected layer that outputs the
pose parameters which is connected with the hand model layer that uses the forward
kinematic function to output 3D joint locations and take geometry into account which
ensures that the output poses do not violate any physical constraint. Lastly, they added
in the loss function a term that enforces physical constraints on the rotation angle
range. Their approach had performance comparable to state-of-the-art.
In [43], a multi-view CNN approach was used, which can better exploit depth cues

and recover 3D information of hand joints without the need for model fitting. Firstly,
the point cloud of the input depth image is projected onto three orthogonal planes
and then each view is fed in a separate convolutional network to generate a set of

87

heat-maps. They used the same convolutional network as in [13]. As the heat-map
in each view encodes the 2D distribution of joint locations, the combination from all
views contains information about the 3D location of hand joint. By fusing heat-maps
from each of the three views they finally obtain the 3D joint location. The approach
of [43] has several advantages over [13]. Firstly, in [13] the depth joint location is
inferred by the depth value at the estimated 2D heat-map position, which may result
in large errors even with small deviation from the true 2D joint location. On the
contrary, in [43] heat-maps in multiple viewpoints are estimated, from which the 3D
hand pose can be estimated more robustly. Moreover, differently to [13], multi-view
CNN do not require a hand model for fitting the pose with optimization, but they
learn inherently hand kinematic constraints from data.
Convolutional networks have shown outstanding performance in the task of hand

pose estimation [14,15,43] where the ConvNet based methods outperformed the pre-
vious state-of-the-art random forest based methods. In [55], a thorough review for
depth-based hand pose estimation was presented, which we strongly recommend the
interested reader to study. In their analysis, Supančič et. al compared deep models,
random forests, deformable part models and a nearest neighbor method which they
introduced for hand pose estimation. Their results showed clearly that deep models
outperform all the other methods in the problem of articulated hand pose estimation.
As deep models have proven to be the best estimators in the task, we are turning our
attention towards developing a ConvNet based method for addressing the problem
of 3D hand pose estimation.
Our first major concern is to find which architecture performs best for the problem

of hand pose estimation. To this end, we evaluate several different architectures, by
alternating the depth of the network as well as the size and the number of the kernels
in the convolutional layers.
Very few works in the literature exploit the use of both RGB and depth information

for hand pose estimation. Oikonomidis et al. [40] incorporated both RGB and depth
data, by adding terms in the objective function that measure the discrepancy between
observed color and depth hand images and the color and depth hand images that are
rendered for a given hand hypothesis. The same authors followed a similar approach
in [56] but they applied pose estimation on two hand interacting with each other.
Sridhar et. al [57] proposed a hybrid approach that combines a generative and a
discriminative hand pose estimator. The generative hand pose estimator performs

88

local optimization to find the hypothesis that best explains the observed RGB image.
The discriminative pose estimator first detects finger tips and uses the finger tips along
with finger databases to generate multiple pose hypotheses, and finally, the pose with
the least discrepancy in observed and estimated fingertips is chosen. This pose is
used then as an initialization for the local optimization. Apart from these methods, to
our knowledge, there are not other approaches to hand pose estimation that combine
RGB and depth cues.
We propose ConvNet based fusion techniques, that combine RGB and depth infor-

mation in an end-to-end learning paradigm. Our intention is to investigate whether
the fusion of RGB and depth information can leverage benefits of both domains and
provide more accurate hand pose estimation. We propose three fusion techniques,
input fusion, score level fusion, and double-stream architecture fusion. We compare
these methods with our best performing deep architecture trained only with depth
images. The ConvNet that is incorporated in each fusion technique has the same
structure as our best performing architecture. While the examined fusion approaches
have performance comparable to state-of-the-art, our proposed convolutional network
trained only with depth images outperforms all our fusion methods.

4.3 Our approach

In this section, we describe our general approach as well as our contributions on the
problem of hand pose estimation. We first give a formulation of the problem, and we
describe a simple procedure for segmenting the hand from depth images given an
annotated dataset of hand poses. Hand segmentation and data preprocessing are very
crucial steps for hand pose estimation and their absence can significantly decrease
the performance of a regressor.
Next, we describe our main methodology for designing and evaluating several

different convolutional network architectures, for the problem of hand pose estimation
from a depth image. At this point we consider only the problem of finding the optimal
architecture for the problem of hand pose estimation, using a single convolutional
network trained only with depth images.
Depth maps are very useful features for hand pose estimation as the 3D infor-

mation they provide is strongly correlated with the problem. Yet, depth images are

89

noisy with quantization errors, that result in missing parts around the boundaries,
which can decrease the estimation accuracy. On the other hand RGB images provide
an accurate description of the object with color and texture information. We build
upon this observation, and we are pushing forward combining RGB and depth in-
formation in an end-to-end learning fashion using convolutional networks. To this
end, we propose three different approaches for fusing RGB and depth information in
convolutional networks.
In the first approach, the channels of RGB and depth images are fused, and the

network learns to combine RGB and depth features at a very early stage. The second
fusion technique we employ, is to fuse the predictions of two independently trained
convolutional networks, each one trained with RGB and depth images respectively.
Finally, we consider the case of fusing feature maps of double-stream architectures,
were we employ different fusion functions.
We describe our benchmark dataset as well as the evaluation metrics we used

for our experimental analysis. We provide details related to the training of the net-
works. Next, we make a self-comparison between all the architectures we considered
for hand pose estimation from single depth images and show our best performing
convolutional network were we discuss our findings. Next, we compare our fusion
approaches between each other but also with our proposed convolutional network
which is trained only with depth images. We investigate whether fusing RGB-D data
further improves the performance of the convolutional network. Finally, we compare
our best performing approach with the state-of-the-art.

4.3.1 Problem formulation and data preprocessing

The problem of 3D hand pose estimation consists of estimating the 3D kinematic
parameters of the hand which can be expressed either in joint angles or in joint
positions, given an image. We consider the case of estimating the 3D joint positions
of a hand J = {ji}Ji=1, where ji = (xi, yi, zi) and J is the number of joints. We assume
that we have an annotated dataset where for each image in our dataset we have J .
In this case, a specific hand model is not needed, as the model is determined from
the dataset, and consists of the joints that are considered for each different dataset.
Thus, the number of joints J varies among datasets. While most of the modern
discriminative approaches estimate the 3D hand pose from a single depth image, we

90

employ both RGB and depth images.
3D hand pose estimation ”in the wild”, i.e. from cluttered images where both

the whole human body and the background are present, is a very complex task. To
this end, most methods first employ a hand detection step, to simplify the estimation
process. Hand detection in depth images can be achieved either by performing pixel-
wise classification with random forests [13] or by assuming that the hand is the closest
object to the camera and performing depth segmentation [42,47].
In our case, the dataset we employ provides the position of the center of the

hand, and we incorporate this information as the hand location, which eliminates the
need for hand detection. We follow a similar preprocessing procedure as in previous
work [14,16], assuming that the hand is already detected. A fixed-size cube is extracted
from the raw depth image, centered at the center of mass of the hand. The cube is
modeled by converting a patch from real world 3D coordinates to image coordinates,
and using the depth values at that image patch as the third dimension of the cube.
The conversion from real word 3D coordinates to image coordinates is accomplished
by assuming the pinhole camera model, where the formulas are given by:

u =
ϕxx

z
+ δx, (4.3)

v =
ϕyy

z
+ δy, (4.4)

d = z, (4.5)

where [u, v, d]⊤ is a vector in image coordinates, where given a depth image I the
depth at position (u, v) is given by I(u, v) = d. Vector [x, y, z]⊤ corresponds to 3D
real world coordinates, ϕx, ϕy are the focal length parameters in x and y direction
respectively and δx, δy are the principal point coordinates. The cube is resized to a
128× 128 image where the depth values are normalized to [−1, 1] by using:

dnorm =
d− I(cmx, cmy)

cs/2
, (4.6)

where d is the depth of the unnormalized image and dnorm is the normalized depth,
I(cmx, cmy) is the depth at the the center of mass of the hand with coordinates
(cmx, cmy) in depth image I and cs is the size of the cube. Pixels in the resized and
normalized image for which their depth is not available, which is very common to
structured-light sensors, or pixels that correspond to the background, i.e points in
the 3D space that lie behind the back face of the cube are assigned to a depth of 1.

91

The above process, translates the hand at the origin (0, 0, 0) and normalize it to a
hand that fits in a unit size cube. This process is very crucial for the performance of
a convolutional network, as it provides depth and translation invariance in the sense
that the predictions do not rely on the 3D position of the hand. In other words, the
ConvNet learns depth and translation invariant features, such that the pose can be
predicted correctly independently of the position of the hand.
It is essential that the 3D joint positions in the annotations are also normalized

using the process described above for depth normalization. That is, for a given joint
ji = (xi, yi, zi) we apply:

x′
i =

xi − cmx

cs/2
, (4.7)

y′i =
yi − cmy

cs/2
, (4.8)

z′i =
zi − I(cmx, cmy)

cs/2
. (4.9)

The 3D joint locations now become j ′i = (x′
i, y

′
i, z

′
i) and this process is applied for all

joints. At test time, first the regressor estimates normalized joint locations and then
the inverse transformations from (4.7), (4.8) and (4.9) are applied to provide the
estimations in the original image locations. We train our models using as targets the
3D normalized joint locations then we apply the inverse transformations and finally
we apply (4.3), (4.4) and (4.5) to obtain the joint locations in image coordinates. In
figure 4.1 you can see a raw depth image with its corresponding hand pose as well as
the same image after hand segmentation and depth normalization with the process
described above. In the normalized image the joint locations are normalized as well.
For the RGB images segmentation we follow a very simple procedure. First we

extract an 128×128 patch with a procedure similar to the one described above for the
depth image. Then, given the segmented depth image, we construct a binary image
with ones at the hand location and zeros everywhere else. We multiply this mask
with the RGB patch and we obtain the segmented RGB image. The RGB images are
normalized to follow a distribution with zero mean and standard deviation of one as:

92

(a) Unsegemented and unnormalized depth

image.

(b) Depth image after segmentation of the

hand.

Figure 4.1: Annotated depth images of hand pose. (a) Raw depth image with the an-
notated pose. (b) The image in (a) after hand segmentation and depth normalization.
The image is from the NYU dataset [13].

R′ =
R− µR

σR

, (4.10)

G′ =
G− µG

σG

, (4.11)

B′ =
B − µB

σB

, (4.12)

(4.13)

where R, G, B are the initial pixel values for each color channel, R′, G′, B′ are the
corresponding normalized values, µR, µG, µB is the mean pixel intensity for each color
channel and finally σR, σG, σB are the corresponding standard deviations. The mean
as well the standard deviation are computed from the pixels of training images and
they are used for the normalization of both training and testing images. A graphical
depiction of a normalized depth image and its corresponding normalized RGB image
can be seen in figure 4.2.

4.3.2 Designing convolutional networks for hand pose estimation

Now, we will describe the basic design principles we followed, to construct our Con-
vNet architectures for hand pose estimation. We will state each structural element that
is part of the architectures, and we will outline all different ConvNet configurations

93

(a) Depth image (b) RGB image

Figure 4.2: Depth segmented and normalized image and its corresponding segmented
and normalized RGB image. In this figure it is clear that while depth images are noisy,
RGB images have a well-defined structure with several details that are absent from
depth images. In the depth image you can see that the pointer, the middle and the
ring fingers appear to be joined together while in the RGB image they are clearly
separated. Furthermore, in the RGB image joint positions are visible while in the
RGB image they are not.

we evaluated. Finally, we will show the final convolutional network we preferred for
estimating 3D joint positions, which was selected based on our experiments. Here, we
investigate the problem of designing convolutional networks for hand pose estimation
from a single depth image. Subsequently, we will describe fusion techniques for RGB
and depth information, we will use our best performing architecture that was trained
with depth images also for the other networks that utilize RGB images.
Our architectures are inspired by the general design philosophy introduced in [36].

This is an extremely homogeneous architecture which deploys in all convolutional
layers 3×3 kernels with stride 1 and zero-padding 1, and max-pooling layers with 2×2

receptive fields. We’ve discussed before about the advantages of such an architecture
and in this work we will confirm from our experiments that is a beneficial architecture
for hand pose estimation too.
All of our architectures apply ReLU nonlinearities for all convolutional and fully-

connected (fc) hidden layers. Since the preprocessing we described in Section 4.3.1
normalizes the 3D joints positions in [−1, 1], we employ hyperbolic tangent activation
functions for the output units which estimate the 3D joints position. Although it is

94

common to use a linear activation function for the output units in a regression setting,
our early experiments shown improvements in the performance of our networks by
using tanh activation functions. The networks training is performed by minimizing
the mean squared error between the ground-truth 3D joints positions and the outputs
of the network; hence the loss per image is:

L(f(I;θ),y) =
1

2J
∥f(I;θ)− y∥22 =

1

2J

3J∑
i=1

(f (i)(I;θ)− y(i))2, (4.14)

where f(I;θ) is a 3J-dimensional vector of outputs from the ConvNet and J is the
number of joints, y is the ground-truth vector which is formed by reshaping the
ground-truth pose matrix we introduced in Section 4.3.1 denoted with J , from a
3× J matrix to a 3J-dimensional vector. Since different joints depend on each other,
we use the same loss across all joints to enforce kinematic constraints, as the error
for a joint depend on the error for other joints.
Similarly to [36], most of our ConvNet configurations stack 3 × 3 convolutional

kernels with stride of 1 and zero-padding 1 such that convolutions preserve the
spatial extent of feature maps. We’ve seen that stacking very small filters on top
of each other is very effective as deeper layers have implicitly large receptive fields
through the swallower layers and that using a stack of convolutional layers with small
filters is preferable over a convolutional layer with a large receptive field. Nevertheless,
we also experiment with an architecture that utilizes larger filters with varying size
across different convolutional layers, with stride 1 and zero-padding accordingly to
the size of the filter such that it preservers the spatial resolution.
All the ConvNet configurations we evaluated are presented in table 4.1 and ta-

ble 4.2. In each table we consider different cases of configurations. Table 4.1 examines
the case where all the nets have the same number of max-pooling layers that is 3,
while table 4.2 considers architectures with bigger and varying number of max-
pooling layers, specifically 4 and 5. While all these architectures are inspired by [36],
they differ in the layout of the networks to be adjusted in our problem. We investigate
three different design patterns of ConvNet configurations. In all design patterns we
consider varying depth of the networks to investigate the importance of the depth on
the performance.

95

Table 4.1: This table contains the first case of convolutional networks we considered.
In this case all convolutional networks have the same number of pooling layers that
is 3. We denote convolutional layers with ”convi” which denotes the i-th convolu-
tional layer. We denote pooling layers with ”max-pooling”. In convolutional layers,
in parentheses we indicate the number of filters with the first number and the size of
filters with the rest two numbers. Fully-connected layers are denoted with ”fc-4096”
where 4096 is the number of hidden units. After the fc layers the output layer follows,
that is 3J units, where J is the number of joints. Finally follows the loss layer.

Convolutional network architectures 1
Net1 Net2 Net3 Net4 Net5 Net6
4 conv 5 conv 5 conv 5 conv 7 conv 9 conv

Input(depth image 128× 128)
conv1
(32x3x3)

conv1
(32x3x3)

conv1
(32x7x7)

conv1
(64x3x3)

conv1
(32x3x3)

conv1
(32x3x3)

conv2
(32x3x3)

conv2
(32x3x3)

max-pooling
conv2
(64x3x3)

conv2
(64x3x3)

conv2
(64x5x5)

conv2
(128x3x3)

conv3
(64x3x3)

conv3
(64x3x3)

conv4
(64x3x3)

conv4
(64x3x3)

max-pooling
conv3

(128x3x3)
conv3

(128x3x3)
conv3

(128x3x3)
conv3

(256x3x3)
conv5

(128x3x3)
conv5

(128x3x3)
conv4

(128x3x3)
conv4

(128x3x3)
conv4

(128x3x3)
conv4

(256x3x3)
conv6

(128x3x3)
conv6

(128x3x3)
conv5

(128x3x3)
conv5

(128x3x3)
conv5

(256x3x3)
conv7

(128x3x3)
conv8

(128x3x3)
max-pooling

conv8
(128x3x3)
conv9

(128x3x3)
fc-4096
fc-4096
output-3J
loss

96

Table 4.2: This table contains the second case of convolutional networks we consid-
ered. In this case we consider more pooling layers than in the first case. Specifically,
Net7 and Net9 have 4 pooling layers while Net8 has 5 pooling layers. We use green
color in the lines that refer to the pooling layers to discriminate which networks are
affected by the pooling operation. Specifically, all networks are affected by the first 4
pooling layers while only Net8 is affected by the 5-th pooling layer and that is why
it is colored with green.

Convolutional network architectures 2
Net7 Net8 Net9

6 conv /
4 pool

8 conv /
5 pool

8 conv /
4 pool

Input(depth image 128× 128)
conv1
(32x3x3)

conv1
(32x3x3)

conv1
(32x3x3)

max-pooling
conv2
(64x3x3)

conv2
(64x3x3)

conv2
(64x3x3)

max-pooling
conv3

(128x3x3)
conv3

(128x3x3)
conv3

(128x3x3)
conv4

(128x3x3)
conv4

(128x3x3)
conv4

(128x3x3)
conv5

(128x3x3)
max-pooling

conv5
(128x3x3)

conv5
(128x3x3)

conv6
(128x3x3)

conv6
(128x3x3)

conv6
(128x3x3)

conv7
(128x3x3)
conv8

(128x3x3)
max-pooling

conv7
(128x3x3)
conv8

(128x3x3)
max-
pooling

As it can be seen in the tables we name the configurations with Net1-Net9, and
thus from now on we will refer to the nets with their names. In the tables, each net is
a column in the table. Lines that are across all columns mean that this element is used
by all configurations. All nets take an 128 × 128 depth image as input. In table 4.1
all configurations have 3 pooling layers and this is why the lines that describe the
max-pooling operation are shared across all nets. On the other hand in table 4.2, Net8
has more pooling layers than Net7 and Net9 and that is why colors are used to better

97

visualize which nets incorporate each pooling layer. After convolutional and max-
pooling layers, all configurations incorporate two fc layers with 4096 hidden units
each. In early experiments we evaluated architectures with smaller number of hidden
units in fc layers which they have shown inferior performance. For regularization,
we used dropout for each fc layer. We will talk more about selecting the dropout
probability as well as its effect in performance in Section 4.4.3. Finally, each net has
an output of size 3J with tanh activation functions to estimate the 3D joint positions.
In the first design pattern, each one of the first two convolutional layers are fol-

lowed by max-pooling while the rest of the network stacks two convolutional layers
on top of each other and then follows a max-pooling operation. Networks that fall
in this category are Net1 in table 4.1 and Net7, Net8 in table 4.2. Our second design
pattern, first incorporates two convolutional layers each one followed by max-pooling
but then stacks three convolutional layers on top of each other before each max-
pooling operation. Networks under this category are Net2, Net3, Net4 and Net9. The
last design pattern we investigate is to stack both two and three convolutional layers
at different depths of the network. Net5 and Net6 follow this design pattern. Net3
examines the case of bigger kernels with varying sizes across the network where
conv1 and conv2 layers incorporate 7× 7 and 5× 5 kernels respectively and the rest
of the network uses kernels of size 3 × 3. Lastly, with Net4 we evaluate the case of
using bigger number of kernels where all convolutional layers have double number
of kernels comparing to all the other nets.
Our experiments will show that the depth as well as the design pattern that is used

for constructing the network plays a crucial role in the performance of the model.
We will give details on the performance of each configuration as well as a discussion
on why one architecture performs better over an other in Section 4.4.5. Our best per-
forming configuration is Net6 which we call Depth-Net and is graphically depicted in
figure 4.3. It has 9 convolutional layers. It utilizes a stack of two convolutional layers
before the first two max-pooling layers, subsequently a stack of three convolutional
layers before the third max-pooling layer and lastly a stack of two convolutional lay-
ers which they are not followed by max-pooling. We refer to stacks of convolutional
layers as convolutional groups. The first convolutional group has 32 kernels on each
layer, the second 64 and the third as well as the fourth 128. All convolutional kernels
have size 3× 3 with zero-padding 1 and stride 1.
To our knowledge, there is no prior work that evaluated such a deep network

98

Figure 4.3: Depth-Net: Our best performing convolutional network. It is the deepest
network among all different configurations we evaluated. In convolutional layers, the
number before @ refers to the number of filters while the size of the filters is indicated
in parentheses. The stride is denoted by s while zero-padding by p. In pooling layers,
the size of the receptive field is indicated in parentheses and s refers to the stride.
Different colors are used to discriminate between convolutional, max-pooling and fc
layers.

for hand pose estimation. Our experimental results will show that our proposed ar-
chitecture, Depth-Net, outperforms the state-of-the-art. In fact, we will show in the
experimental analysis that we obtained state-of-the-art performance by directly es-
timating 3D joint positions from single depth images using Depth-Net, while other
methods had inferior performance even by refining the joint locations [14] or by first
estimating heat-maps of joint locations and then incorporating an inverse kinematics
algorithm to infer the hand pose [13]. The key difference of Depth-Net with these
approaches is that they used very shallow networks with limited generalization per-
formance which prevents them from an accurate estimation of the hand pose even
by employing an additional procedure for the estimation apart from the ConvNet.

4.3.3 RGB and depth fusion techniques with convolutional net-

works

Until now, we described a procedure for inferring 3D hand poses from a single depth
image. As mentioned before, RGB and depth images have both some benefits and
drawbacks. Depth images provide depth information which is strongly correlated with
the task of 3D hand pose estimation and this benefits significantly the performance
of regressors as it provides a more direct mapping from images to poses and the
regressor requires less capacity to solve the task. Nevertheless, depth images are
noisy with quantization errors and the description of the object that they provide

99

is imprecise and much coarser than RGB images. RGB images can alleviate this
problem as they provide much more precise description of the object. We have seen
in figure 4.2 that in RGB hand images the 2D location of joints is much more distinct
than in depth images, yet RGB images lack of depth information which make the
problem of 3D pose estimation more complex.
We can say that the merits and drawbacks of RGB and depth images are com-

plementary with each other. We want to investigate whether the combination of both
sources of information can reveal the benefits of each and boost the performance of
a regressor. To this end, we propose three different techniques, of fusing RGB and
depth information. We call the first technique input fusion, where RGB and depth
images are aggregated at the input level of a convolutional network, and the network
learns to create correspondences between RGB and depth images at a very early stage.
The second and third fusion techniques we propose are based on the idea of two-
stream convolutional networks which was introduced in [58,59]. In these works the
authors suggested the use of two streams of convolutional networks for the problem
of action recognition. A stream refers to a convolutional network. In the first stream
they employed RGB images while in the second stream the corresponding optical
flow frames where they showed significant improvement in the recognition of hu-
man actions. For our second and third fusion tehniques we employ double-stream
architectures where the first stream is fed with RGB images while the second stream
is fed with depth images. Our second fusion technique, which we call score level
fusion, consists of training two separate convolutional networks and at the output
layer fuse their predictions. Finally our last fusion technique which we call double-
stream architecture fusion (or feature level fusion) is inspired by [59]. We consider
the case of training a double-stream architecture and fuse the feature maps of the
RGB and depth streams at an intermediate layer using several different feature map
fusion functions. We employ fusion functions proposed in [59] and investigate their
performance in hand pose estimation.

Input fusion

The idea of input fusion is very simple. First, RGB and depth images are aggregated
into 4 input channels (3 channels from RGB and 1 from depth) to form RGB-D
images. Then, a convolutional network is employed which has the same structure as
Depth-Net, with the only difference that is alternated to take as input RGB-D images.

100

Now the network has 4 input-channels, which affects the first convolutional layer, in
the sense that each one of its kernels has dimensionality 4× 3× 3 instead of 1× 3× 3

as in Depth-Net. A convolutional layer performs convolutions with different kernels
for each input channel and then sum the results to obtain a feature map. This can
be seen as a weighted sum of its input channels at several spatial locations.
Consequently, fusing RGB-D data which are fed in a convolutional network, has

the effect that the first convolutional layer learns weighted combinations of RGB and
depth channels. The weights of the kernels are learned in a way, such that at each
spatial location the input channel that contributes more towards accurate estimation
takes a higher weight. Hence, the weights serve as importance factors at all spatial
locations across RGB and depth images. Lets say that we have an RGB and the
corresponding depth image of a human hand and imagine that we are observing
a joint location. It may happen that at that location the information for the third
dimension of the position of the joint can be inferred from the depth image, while
the 2D position of the joint is difficult to be estimated due to the coarse structure
of the depth image. At the same time, the RGB image may have more precisely the
2D position of the joint yet lacks of depth information. In that case, the kernels of
the first convolutional layer of the network are learned in a way such that weighted
combinations of RGB and depth can form feature maps with blended information for
the 3D joint position where the RGB channels contribute to the 2D spatial location
of the joint and the depth channel contributes to the depth of the joint.
If this is the case, somebody may wonders why we do not train a convolutional

network with RGB images to infer the 2D spatial location of joints and another
convolutional network with depth images to infer the third coordinate of the joint
3D position. The answer is that it is better to leverage information for the 3D joints
position from both RGB and depth images and let the training algorithm learn the
best weighted combination from both information sources towards more accurate 3D
hand pose estimation.
We call this architecture RGBD-Net, and it is depicted in figure 4.4. As you can

see the architecture is identical to Depth-Net with the only difference that it takes
fused RGB-D images in the input layer.

101

Figure 4.4: RGBD-Net: It takes fused RGB-D images at the input layer and infers
the 3D hand pose at the output layer. The first convolutional layer learns weighted
combinations of both RGB and depth images and exploits useful information from
both domains towards more accurate 3D hand pose estimation.

Score level fusion

Score level fusion refers to the combination of the predictions of different models.
We consider two convolutional networks as the models that their predictions are to
be fused, the Depth-Net and we introduce a new network identical to the Depth-Net
with the difference that it takes as inputs RGB images. We call this network RGB-
Net. Depth-Net and RGB-Net are trained independently with depth and RGB images
respectively. Then, weights are determined for the predictions of each network and
the final 3D hand pose is estimated as a weighted average of the predictions of each
net.
A graphical illustration of this approach can be seen in figure 4.5. We call this

architecture FusePred-Net. The edges that connect the output of each network with
the element that performs the score fusion, namely ”Fuse Predictions”, are weighted
with w1 and w2 which refer to the weights of the predictions of the Depth-Net and
RGB-Net respectively. The sum symbol denotes the weighted sum operation.
In the general case w1 and w2 are vectors with the same dimensionality as the

number of predicted outputs which in our case is 3J . That is, a weighted combination
is computed independently between each one of the corresponding outputs of the two
nets. We consider the simple case where the weight vectors have the constant value of
0.5 across all their entries, that is we compute the arithmetic mean of each predicted
output of the two nets. However, more sophisticated methods for the determination
of the weights can be incorporated such as an additional learning step that learns
the optimal fusion weights, or another simple method is to compute the weights for
each output of each regressor according to the error of the regressor in that output.

102

Figure 4.5: Score level fusion with RGB-Net and Depth-Net. Both networks are iden-
tical with the difference that they are trained on different domains, the RGB-Net with
RGB images while the Depth-Net with depth images. After the predictions of both
networks are obtained, the final 3D hand pose is estimated as a weighted sum of the
predictions of both nets. The weights w1 and w2 are determined in advance.

These techniques have the additional beneficial effect, that different weights are used
across different outputs and each network contributes to each output with a factor
proportional to its ability to predict that output correctly.

Double-stream architecture fusion

The main drawback with score level fusion is that it is not able to learn pixel-wise
correspondences between RGB and depth features since the fusion is performed at
the output layers of the two streams. Moreover, input fusion learns pixel-wise corre-
spondences only for the input RGB and depth images, We wish to be able to learn
pixel-wise correspondences between color and depth features at any layer of our con-
volutional networks. To this end, we propose a double-stream architecture fusion for
hand pose estimation. This method was first proposed in [59] for activity recognition
using a spatial and a temporal stream. Here we investigate its performance in hand
pose estimation. We adopt the idea of fusing double-stream architectures as well as
some of the proposed fusion techniques.
We employ two streams similarly to score level fusion, the RGB stream and the

103

depth stream. The goal is to fuse the two streams at any layer such that feature
map responses of the RGB and depth streams at the same pixel location are put in
correspondence. The motivation for feature map fusion is similar to input fusion,
that is we want to learn combinations of color and depth features towards better pose
estimation by blending the merits of both domains. The difference is that now we may
fuse the networks at any particular layer, as input fusion is not necessarily the optimal
level to fuse the networks and at a deeper layer of the network we may leverage richer
fused feature representations. Additionally, we want to investigate different fusion
functions as weighted combinations of the inputs is not necessarily the best choice
of fusing feature maps. Depending on the layer of the ConvNet in which fusion is
performed, someone can implement early fusion, late fusion or multilayer fusion.
A fusion function f : xa,xb → y, fuses two feature maps xa ∈ RH×W×D and

xb ∈ RH′×W ′×D′ to produce an output blended map y ∈ RH′′×W ′′×D′′ , where H,W,D

are the height, width and number of channels of the respective feature maps. Fusion
functions can be applied straightforward when the two feature maps have the same
spatial resolution. Hence, for simplicity we assume that H = H ′ = H ′′, W = W ′ =

W ′′ and D = D′ = D′′. Among several different choices of fusion functions that
can be considered, similarly to [59] we examine the cases of max fusion, sum fusion,
concatenation fusion and convolutional fusion.
Max fusion which is denoted as y = fmax(xa,xb), computes the max between

features maps xa and xb at the same spatial locations i, j and feature map channels
k:

ymax
i,j,k = max(xa

i,j,k, x
b
i,j,k), (4.15)

where 1 ≤ i ≤ H , 1 ≤ j ≤ W , 1 ≤ k ≤ D and xa, xb, y ∈ RH×W×D. The ordering
of the feature maps in a convolutional layer is arbitrary; hence, the correspondence
between feature maps a and b is arbitrary. Nevertheless, the training procedure can
learn the convolutional filters of the two streams that produced a and b respectively, in
a way such that it can leverage advantageous correspondence between feature maps
a and b.
Sum fusion, y = f sum(xa,xb) computes the sum of two feature maps a and b at

the same pixels i, j and feature map channels k as:

ysumi,j,k = xa
i,j,k + xb

i,j,k, (4.16)

104

where the notation is the same as (4.15). Again correspondence between feature maps
can be accomplished via learning the corresponding kernels.
Concatenation fusion, y = f cat(xa,xb) is equivalent to input fusion which we

described in Section 4.3.3, yet applied on feature maps instead of input images and
can be injected at any particular layer. The feature maps are aggregated at the same
spatial locations i, j and the resulting fused layer has a double number of feature
maps. Concatenation function is given by:

ycati,j,2k = xa
i,j,k, ycati,j,2k−1 = xb

i,j,k, (4.17)

where y ∈ RH×W×2D. Similarly to input fusion, concatenation fusion lets the sub-
sequent convolutional layers to learn the correspondence between feature maps as
weighted combinations of their responses.
Lastly, we consider the case of convolutional fusion denoted as y = f conv(xa,xb).

It first stacks the two feature maps at the same spatial locations i, j across the feature
channels k, as in (4.17), producing 2D concatenated feature maps, and subsequently
a convolutional layer is incorporated that utilizes D kernels of size 1 × 1 to reduce
the feature maps from 2D to D. Hence, the convolutional layer employs D filters of
size 1× 1× 2D. Convolutional fusion is given by:

yconv = conv
(
ycat,f

)
, (4.18)

where conv(·, ·) is the convolutional layer that convolves the 2D aggregated feature
maps ycat with a filter bank f ∈ R1×1×2D×D. The difference with input fusion is that in
the case of input fusion the first convolutional layer computes for each spatial location
i, j weighted combinations of the input channels in a local neighborhood 3× 3 since
it utilizes 3 × 3 filters. On the other hand convolutional fusion computes for each
spatial location i, j weighted combinations of the input channels only in location i, j

across the input channels and not in a neighborhood around i, j. Thus convolutional
fusion learns directly pixel-wise correspondences while input fusion learns pixel-wise
correspondences but averaged in a local neighborhood.
Feature map fusion can be inserted anywhere in the convolutional network af-

ter convolutional, fully-connected or pooling layers. And that is its main advantage
in comparison with input fusion and score level fusion. At any particular layer we
can investigate whether the fusion of color and depth features can lead to increasing

105

Figure 4.6: FuseNet: Our architecture for double-stream architecture fusing. Two
streams are trained in parallel, the depth stream and the RGB stream with depth
and RGB images respectively, and at any intermediate layer the feature maps may
be fused. Depth and RGB streams have identical structure with Depth-Net and RGB-
Net respectively with the difference that after the fusion the remaining part of each
respective net is truncated. Here, for simplicity we demonstrate the fusion only in
the last layer but it can be inserted anywhere in the network. After the fusion, the
architecture continues as a single ConvNet.

estimation performance. In figure 4.6 we demonstrate our double-stream fusing ar-
chitecture for hand pose estimation which we call Fuse-Net. Two separate streams,
the depth stream and the RGB stream are put in parallel and trained simultaneously
with depth and RGB images respectively. At any particular layer feature map fusion
can be inserted with any of the fusion functions we presented above. For simplicity
of demonstration we show the case were the fusion takes part after the last convo-
lutional layer. Each stream is identical to Depth-Net and RGB-Net respectively with
the difference that after the inserted fusion each respective net is truncated. After
fusion, the network continues as a single ConvNet. The feature maps xa and xa we
introduced in the fusion functions (4.15),(4.16),(4.17) and (4.18) are now a depth
feature map from the Depth-Net and an RGB feature map from the RGB-Net.

4.4 Evaluation

In this section we evaluate our approach for hand pose estimation. We first introduce
the benchmark dataset which we used for training the ConvNets as well as for evalu-
ation. We then describe the evaluation metrics we used as well as details concerning

106

the training procedure. We first evaluate all our different ConvNet architectures for
hand pose estimation from a single depth image and subsequently we evaluate the
different fusion techniques we proposed to find the most beneficial for hand pose
estimation. Finally, we compare our methods with the state of the art on hand pose
estimation.

4.4.1 Benchmark dataset

We evaluated our methods on NYU Hand pose dataset [13]. It contains 72757 training-
set frames and 8252 test-set frames of RGB-D data, captured with PrimeSense, a
structured-light RGB-D sensor. The training set contains samples from a single sub-
ject, while the test set contains samples from two subjects. While for each frame the
dataset provides RGB-D data for three different views, a frontal view and two side
views, we used only the frames that correspond to the frontal view, similarly to prior
works [14, 15, 16].
Ground truth is annotated by fitting a skinned 3D hand model, using an offline

hybrid optimization algorithm which combines particle swarm optimization and the
Nelder-Mead algorithm. NYU Hand pose dataset provides very accurate ground truth
annotations. As mentioned in [55], it exhibits very large pose variation, which makes
it one of the most challenging datasets in the literature. Although the ground truth
contains J = 36 annotated joints, we use a subset of J = 14 joints to follow the
evaluation protocol of prior work [13, 14, 15, 16].
Although there are also other popular benchmark datasets in the literature, such

as [46, 47], we did not consider another dataset since the NYU Hand pose dataset
is the only one that provides RGB-D data. The Dexter dataset [57] also provides
RGB-D data but is very limited in pose variation, and hence evaluating in NYU is
more challenging. All the other datasets provide only depth images, and thus they
are inappropriate for our fusion approaches.

4.4.2 Evaluation metrics

We used two evaluation metrics which are widely used in prior works ([14, 15, 16,
46,47]). The first is the per-joint error averaged over the test set, that is the average
Euclidean distance between the ground truth joint location and the predicted joint
location over the frames of the test set, for each joint independently.

107

The second evaluation metric is the success-rate, that is the fraction of test set
frames whose max-joint-error is below a threshold. In other words, it measures the
fraction of test set frames for which each predicted joint is below a maximum Eu-
clidean distance between the ground truth and the predicted joint locations. This is
a very challenging evaluation metric since with a single displaced joint prediction
the whole pose can be regarded as false positive. It can be considered as analog to
the accuracy metric in classification, and the variation of the value of the threshold,
results in graphs similar to ROC curves on which we base our evaluation when we
consider this metric.

4.4.3 Experimental setup and training

We performed our experiments in a three step pipeline. In the first step, we performed
several experiments to evaluate all different ConvNet architectures we considered, for
training a ConvNet with depth images (Net1-Net9), in order to select the best per-
forming architecture. In the second step, we employed the best performing ConvNet
architecture from the previous step, and we performed hyperparameter optimization
with cross validation in order to find the best hyperparameters to train our models.
Finally, in the last step, we used the best performing architecture from the first step,
and the best values for the hyperparameters from the second, with which we trained
and subsequently evaluated our models and fusion techniques.
As it is fairly well-known, convolutional networks have several sensitive hyper-

parameters that affect the optimization as well as the generalization of the model.
Slightly different values for these hyperparameters can lead to underfitting and over-
fitting issues. To this end, we performed hyperparameter optimization to select good
settings for the hyperparameters. For cross validation we split the training set in
training and validation set, where we train our models with the trainining set and
select the best hyperparameters based on the performance on the validation set. The
validation set size was set to 25% of the training set size while the validation examples
were sampled uniformly form the training set.
For generating several different combinations of hyperparameters values for eval-

uation there are two popular methods, grid search and random search. In grid search,
sets of values are defined for each hyperparameter and the cartesian product between
all sets is computed, that is all possible combinations of hyperparameters values be-

108

tween the values of the sets. Random search [60], was introduced for hyperparameter
optimization in deep learning models. The motivation is that when the number of
hyperparameters becomes big, which is the case for neural nets, grid search becomes
inefficient as the search space is bigger; hence, more configurations should be con-
sidered for each hyperparameter, and the cartesian product will produce a large
number of possible combinations. Training ConvNets is computationally expensive
and training such a big number of models would demand a lot of resources.
To this end, [60] proposes to sample independently each hyperparameter from

a different distribution. A desired number of experiments is defined and for each
training-evaluation experiment different values of hyperparameters are sampled from
the hyperparameter distributions. The authors show that this method searches effec-
tively the hyperparameter space and less experiments are needed in order to find
good values.
We train our models using mini-batch stochastic gradient descent with momen-

tum. We performed preliminary experiments with simple SGD without momentum
but since it is much slower it was leading to underfitting of our models. We use a
batch size of 128 training examples per iteration, while we train our models for 100
epochs. The hyperparameters that we validate are the learning rate, the momentum
term and dropout probability. For the validation we use random search. For the
learning rate we define a uniform distribution in the log-scale, that is:

lr ∼ 10U(log10 a,log10 b), (4.19)

where lr is the learning rate and U(a, b) is a uniform distribution in the range (a, b).
We sample momentum from a uniform distribution in log-scale too. For the dropout
probability p we define a uniform distribution in the linear scale. We performed cross
validation in an iterative fashion were we start with a big range for the distributions of
the hyperparameters and subsequently we shrink the ranges based on the evaluation
of the previous cross-validation step. We start with a range of (10−3, 10−1) for the
learning rate, (0.8, 1) for the momentum and (0, 0.1) for the dropout probability. We
iterate this process three times and each time we sample 50 different hyperparameter
combinations. For the initial ranges we performed preliminary experiments.
For the first step of our experimental pipeline, we use manually tuned hyperpa-

rameters values for training all our ConvNet architectures. We use the value of 0.01
for the learning rate, 0.9 for the momentum and 0.03 for the dropout probability.

109

We use the best performing architecture from this step that is Depth-Net to perform
hyperparameter optimization with cross validation. The best hyperparameter settings
we obtained was 0.009 for the learning rate, 0.98 for the momentum and 0.03 for the
dropout probability. It is surprising that such a small dropout probability is sufficient,
since typically in classification problems dropout is set around 0.5. In our problem,
this hyperparameter is very sensitive and slightly larger values than the optimal ones
can very easily lead to underfitting. Nevertheless, using the right probability, dropout
is a very effective regularizer for hand pose estimation and probably for regression
generally. Although our model is large with the use of dropout it does not overfit
and provide good generalization performance. We conclude that dropout is a very
strong regularizer for regression problems, and very small probability values should
be used in comparison with classification problems.
We use early stopping such that the optimal number of training epochs is se-

lected and training stops when the validation error saturates. For learning rate decay
strategy, we decay the learning rate with a factor of 0.5 every time the validation
error saturates. On each epoch the training examples are shuffled where preliminary
experiments showed that this increases the performance.
For the double-stream architecture fusion we show our experiments by fusing

their feature maps at the fourth convolutional layer. Of course the fusion can be
inserted anywhere in the network, but we did not consider other cases due to limited
computational resources. Our intuition of fusing at the fourth convolutional layer is
that the fusion takes place approximately in the middle of the network; hence, before
the fusion the convolutional layers learn meaningful feature representations to by
fused, and after the fusion the subsequent layers extract further useful knowledge
from the fused feature maps.

4.4.4 Implementation details

We implemented our approach in Python using Lasagne [61] which is a framework
that provides abstractions for Theano library [62]. The experiments ran on Opuntia
Cluster, were we utilized two HP Proliant SL 250 compute blades, each one equipped
with an NVIDIA Tesla K40 GPU with 24GB of memory and an Intel Xeon E5-2680v2
2.8 GHz CPU with 64GB of memory.

110

Table 4.3: Self-comparison of our ConvNet architectures which are trained with depth
images and are described in table 4.1 and table 4.2. Each row represents a different
architecture. In the first column is the name of each net. In the second and third
row, we state the training and validation error respectively which are measured with
the mean square error (MSE) between the nets’ predictions and the ground truth
across the training and validation set respectively. We choose the best performing
architecture based on its validation error. The winning ConvNet is Net6 which is our
deepest architecture.

ConvNet Training error Validation Error

Net1 0.00366 0.00447

Net2 0.00359 0.00419

Net3 0.00353 0.00411

Net4 0.00341 0.00364

Net5 0.00235 0.00325

Net6 0.00183 0.00242

Net7 0.00384 0.00434

Net8 0.00415 0.00462

Net9 0.00393 0.00439

4.4.5 Self-comparison of ConvNet configurations

We make a self-comparison of our ConvNet architectures trained with depth images.
We provide the performance of each net on the training and validation set by mea-
suring the mean square error (MSE) between the predicted joint locations and the
ground truth across the training and validation set respectively. We present our ex-
perimental results in table 4.3. In the first column is the name of each ConvNet, and
in the second and third column is the training and validation error respectively.
Net2 performs better than Net1 where Net2 stacks three convolutional layers on

top of each other while Net1 two. This implies that is beneficial two stack more
convolutional layers on top of each other since as we explained before the deeper
convolutional layers have implicitly larger receptive fields and apart from that, more
convolutions followed by nonlinearities provide more expressive feature representa-
tions.
Now we keep Net2 for our following two comparisons as it outperforms Net1.

111

We compare Net2 with Net3 and Net4 with which they have the same number of
convolutional and pooling layers with the same ordering, but with the difference that
Net3 has bigger filters with varying size across the network while Net4 has double
size of filters than all the other nets. We can see that the training and validation
errors of Net2 and Net3 is quite close which implies that using bigger filters with
varying size does not have significant impact in performance. That is why in all
our rest architectures we employ 3 × 3 convolutional kernels as they show almost
identical performance with bigger filters. Net4 has more significant improvement in
performance, in terms of validation error, as if you compare Net2 and Net4 their
training error is quite close while their validation error has more significant difference
in favor of Net4. This finding suggests that using more filters does not affect drastically
the training error but improves the generalization of the model, as more feature
maps in a layer means more feature map combinations for the computation of each
feature map of the subsequent layer (since convolutional layers convolve each kernel
with each input feature map channel and sum the results), and hence more general
features of high abstraction. Yet, using the double number of filters affects highly
the training time and the model becomes computationally inefficient, concerning our
limited computational resources. Hence, in all the rest configurations we keep the
same number of filters as in Net2 (form 32 to 128).
Next, we wanted to test the impact in performance of the depth of the network. To

this end, first we considered the case of keeping the architectural design of Net1 and
Net2, namely stacking two and three conv layers respectively, but by adding more
convolutional groups of stacked convolutional layers followed by max-pooling. For
this purpose we evaluated Net7-Net9. Net7 and Net8 are extensions of Net1 which
add one and two more stacks of two convolutional layers followed by max pooling
respectively. Net9 is extension of Net2 which adds one more stack of three convo-
lutional layers followed by max-pooling. We observe that while Net7 has very small
improvement performance comparing to Net1, Net8 performance degrades. Similarly,
Net9 validation error increases comparing to Net2. Thus, for both Net1 and Net2,
even with an increasing depth validation error increases when adding more pooling
layers. Net1 and Net2 has three pooling layers while Net8 and Net9 has five and four
respectively. We conclude that the number of max-pooling layers is very important
since redundant subsampling can lead to information loss. To this end, we propose
Net5 and Net6 which keep the same number of max-pooling as Net2 or Net1 but

112

increase the depth of the network by adding multiple convolutional layers on top of
each other without adding more max-pooling layers. In the first two convolutional
groups Net5 stacks two convolutional layers while Net2 one. Lastly, Net6 extends Net5
by adding two more convolutional layers stacked on top of each other but without
the addition of max-pooling after.
As you can see from table 4.3, the best performing architecture is Net6 which is the

Depth-Net we introduced in Section 4.3.2. In Section 4.4.7, we show that Depth-Net
has state-of-the-art performance in our benchmark dataset and outperforms previous
convolutional network based methods. We conclude that the depth of the network is
of high importance but should be combined with controlled number of max-pooling
layers by stacking multiple convolutional layers on top of each other before a max-
pooling operation.

4.4.6 Is fusion beneficial to the accuracy of the convolutional net-

works?

Now, we compare the performance of our fusing approaches with each other but also
with Depth-Net, which is our best performing architecture trained with depth im-
ages. Our intention is to investigate which fusion method performs better as well as
whether fusing RGB with depth information enhances the accuracy of the predictions
with respect to training and predicting from single depth images. For the evaluation
we show graphs of the evaluation indices we described in Section 4.4.2. We refer to
each approach with the name of the respective architecture, namely RGB-Net which is
trained only with RGB images, RGBD-Net which refers to the input fusion approach,
FusePred-Net that is the score level fusion and Fuse-Net which is the double-stream
architecture fusion. All these architectures are trained using the same net configu-
ration and hyperparameters that works best for Depth-Net which we presented in
Section 4.4.5 and Section 4.4.3 respectively. The comparative results are presented
in figure 4.7 and figure 4.8. Figure 4.7 compares the performance of our fusion ap-
proaches between each other as well as with Depth-Net. Figure 4.8 compares the
performance of double-stream architecture fusion for each fusion function. The best
performing fusion function is used for the comparisons in figure 4.7. Figure 4.7a and
figure 4.8a depict the success-rate, where the horizontal axis represents the distance
threshold (mm) and the vertical axis represents the fraction of frames (%) for which

113

the squared error for each joint is below the distance threshold. Figure 4.7b and
figure 4.8b illustrate the mean joint error where the horizontal axis represents the
different joints, and the vertical axis represents the mean error per joint across the
test set. The rightmost bars in figure 4.7b and figure 4.8b show the mean error per
joint averaged over all joints. Abbreviations: pinky (P), ring (R), middle (M), index
(I), thumb (T), wrist (W), palm center (C). For all fingers, the indices 1 and 2 refer
to the fingertip joints, for the thumb, the index 3 refers to the lower joint, and for the
wrist, the indices 1 and 2 refer to the left and right wrist position respectively.

0 10 20 30 40 50 60 70 80
Distance threshold / mm

0

20

40

60

80

100

Fr
a
ct

io
n
 o

f
fr

a
m

e
s

w
it

h
in

 d
is

ta
n
ce

 /
 %

Depth-Net
FuseNetCatConv

RGB-Net
RGBD-Net

FusePred-Net

(a) Success-rate

P1 P2 R1 R2 M1 M2 I1 I2 T1 T2 T3 W1 W2 C Avg
0

5

10

15

20

25

30

35

M
e
a
n
 e

rr
o
r

o
f

jo
in

t
/

m
m

Depth-Net
FuseNetCatConv

RGB-Net
RGBD-Net

FusePred-Net

(b) Mean joint error

Figure 4.7: Comparison of fusing approaches with Depth-Net. (a) In the success-rate
graph, the horizontal axis represents the distance threshold (mm) and the vertical
axis represents the fraction of frames (%) where the maximum joint error is below
the distance threshold. (b) In the mean joint error graph, the horizontal axis repre-
sents the various joints and the vertical axis indicates the the mean error per joint
(%). For the double-stream architecture fusion, the performance of the convolutional
fusion function is shown since it outperforms all the other fusion functions (Fig. 4.8).
Abbreviations: pinky (P), ring (R), middle (M), index (I), thumb (T), wrist (W), palm
center (C). For all fingers, the indices 1 and 2 refer to the fingertip joints, for the
thumb, the index 3 refers to th lower joint, and for the wrist, the indices 1 and 2 refer
to the left and right wrist position respectively.

114

0 10 20 30 40 50 60 70 80
Distance threshold / mm

0

20

40

60

80

100
Fr

a
ct

io
n
 o

f
fr

a
m

e
s

w
it

h
in

 d
is

ta
n
ce

 /
 %

FuseNetSum
FuseNetMax

FuseNetCat FuseNetCatConv

(a) Success-rate

P1 P2 R1 R2 M1 M2 I1 I2 T1 T2 T3 W1 W2 C Avg
0

5

10

15

20

25

30

M
e
a
n
 e

rr
o
r

o
f

jo
in

t
/

m
m

FuseNetSum
FuseNetMax

FuseNetCat FuseNetCatConv

(b) Mean joint error

Figure 4.8: Comparison of different fusing functions used in the double-stream archi-
tecture. (a) Success-rate and (b) the mean joint error. While all the fusion functions
perform comparably, convolutional fusion performs best among them.

We first look at figure 4.8, as that we first compare the different fusion functions in
double-stream fusion, and subsequently we use the best performing fusion function
to compare double-stream fusion with the rest of our fusion methods. In general, it
may be observed that all fusion functions perform quite comparably. If we observe
carefully at figure 4.8a we can see that the success-rate of convolutional fusion is
higher with respect to the rest of the fusion functions. In figure 4.8b, it is more clear
that convolutional fusion has lower mean joint error averaged over all joints than the
other fusion function as well as lower error on each joint separately. We conclude
that convolutional fusion can create better pixel-wise correspondences between RGB
and depth feature maps and as a result leverage more expressive fused feature rep-
resentations towards more accurate hand pose estimation. The main reason is that
convolutional fusion involves the extra step of convolving the concatenated feature
maps with 1 × 1 kernels, that is the value at each position (i, j) of the fused feature
map is a weighted combination of the values of the concatenated feature maps at the
same spatial location (i, j). Hence, convolutional fusion, first fuses the feature maps
by concatenation and subsequently learns inherently pixel-wise correspondences be-
tween depth and RGB feature maps by learning the kernel weights. Sum fusion, max
fusion, and concatenation fusion only fuse the feature maps and let subsequent con-

115

volutional layers to learn the pixel-wise correspondences. It turns out that it is better
to involve a step that learns pixel-wise correspondences inside the fusion function
than letting the subsequent convolutional layers to learn the correspondences. Con-
sequently, in the comparison of our fusing techniques that follows for double-stream
architecture fusion we show the performance using the convolutional fusion function.
If we look at figure 4.7, surprisingly Depth-Net outperforms all our fusion ap-

proaches. We discuss the results for each fusion approach. Since score level fusion
computes an average of the predictions of Depth-Net and RGB-Net, we plot the per-
formance of RGB-Net in both evaluations to understand its effect on the predictions
fusion. Figure 4.7a shows clearly that RGB-Net has significantly lower success-rate
comparing to Depth-Net. To have a better understanding of the performance of RGB-
Net in comparison to Depth-Net on each joint separately we look at figure 4.7b. We
observe that the RGB-Net performs worse for each joint in comparison to Depth-Net.
Nevertheless, if we look at the rightmost bar at figure 4.7b, the mean joint error of
RGB-Net averaged over all joints is around 25mm which is a relatively low error and
suggests that the predictions of RGB-Net could be leveraged. This is maybe possible
by using different weights for each prediction of each respective net instead of using
a simple average. A possible solution could be to set the prediction weights of each
net for each joint to be proportional to the error of that net on that joint.
For the deteriorated performance of input fusion, we conjecture that the input

of the ConvNet is a very early stage to fuse the data and as a result the network is
not able to extract useful features from the fusion. That is because, RGBD-Net fuses
raw depth and RGB images at the first convolutional layer by computing weighted
averages of the respective channel of each image. Hence, the feature maps of the
first convolutional layer are weighted combinations of RGB and depth images, which
may result in images that contain the artifacts of both domains since the fusion takes
place in a very early stage. This suggests that first feature representations should be
extracted from both RGB and depth images, that will preserve the useful information
from each domain and discard information that is not related with the task, and then
the features should be fused to combine more meaningful representations. That is
why we propose a double-stream architecture fusion, since first each net compute
feature maps from the convolutional layers and subsequently fusion is inserted to
create meaningful pixel-wise correspondence between feature maps which contain
mostly task-related information opposite to raw images which contain also noisy

116

artifacts. We observe that the performance of score level fusion and input fusion is
very similar, with input fusion to perform slightly better than score level fusion in
both success-rate and mean error per joint.
Double-stream architecture fusion outperforms both input fusion and score level

fusion. Our experiments confirm that it is better to fuse the feature maps of two
networks and let the subsequent learning define correspondences between feature
maps than to fuse the inputs or the predictions of two nets. Double-stream architecture
fusion learns more meaningful feature representations and exploits better, combined
RGB and depth information, and as a result, provide more accurate pose estimations
than input fusion and score level fusion.
We observe, that Depth-Net has the best performance among all our approaches

and outperforms all fusion methods. Despite that double-stream fusion provides us
more accurate predictions than input fusion and score level fusion, its performance
is still limited compared with Depth-Net which is trained only with depth images.
From our experiments we conclude that RGB-D fusion does not leverage further
useful information towards more accurate pose prediction. Training a large network
only with depth images performs better than incorporating also RGB images. Never-
theless, the increased performance of double-stream fusion compared with the other
fusion approaches reveals that it can learn better feature combinations. We performed
experiments by fusing only at the fourth convolutional layer. Maybe double-stream
architecture fusion at deeper layers of the network can learn better pixel-wise cor-
respondences and provide more accurate predictions than using just a convolutional
network trained with depth images.
Lastly, we discuss some general observations about the performance of all methods

on each joint by looking at figure 4.7b. Firstly, we observe that all ConvNets perform
very well on the palm center where the error is near zero. Even the RGB-Net has
very low error rate on the palm center. This suggests, that regression convolutional
networks can serve as very good hand detectors given datasets with annotations of
the hand center, which is a very useful observation and can be further leveraged
in computer vision methods. Lastly we observe that all methods have higher errors
in the fingertips and lower errors in the middle joints and the thumb in the lowest
joint too. That is because there are several configurations of the human hand where
the joints are visible while the fingertips are occluded. An example is a closed hand.
Another reason is that depth images have missing values on the hand boundaries

117

and fingertips lie on the hand boundaries, and hence the missing values make the
fingertip detection even more difficult. We conclude that fingertip detection is a very
challenging problem and more challenging than joint detection.

4.4.7 Comparison with the state of the art

In this section, we compare our proposed deep architecture Depth-Net as well as the
double-stream architecture fusion with the state-of-the-art. The baselines we are using
for our comparison are Tompson et al. [13], Oberweger et al. [14], Oberweger et al. [15]
and Zhou et al. [16] which are all convolutional network based approaches. For each
method we use their originally published predictions on the test set. Oberweger et
al. [14] provide the predictions for both the network with the pose prior layer as
well as the predictions based on the refinement stage. We use the predictions of
the refinement stage since they are more accurate. Tompson et al. [13] provide the
estimated 2D heat-map locations. We follow the protocol of [13,14,15] and augment
the 2D locations with the depth at that 2D location from the depth images, so that
we obtain comparable 3D pose predictions. If the augmented depth for a joint lies
outside the hand cube we assign to the joint the ground truth depth similarly to [15]
to alleviate large errors caused by occluded joints.
Figure 4.9a shows the comparisons based on the success-rate while figure 4.9b

presents the mean joint error. It may be observed that Depth-Net outperforms all
baseline methods in both evaluation metrics. The key difference between all these
approaches and our proposed architecture is the depth of the network. Tompson et
al. [13] use a convolutional network with 2 convolutional layers to infer 2D joint
positions. Oberweger et al. [14] incorporate a convolutional network with three con-
volutional layers to infer 3D joint positions by introducing the pose prior layer and
subsequently refine the joint locations in an iterative fashion. Zhou et al. [16] use the
same network as in [14] but the authors also introduce a hand model layer. Ober-
weger et al. [15] utilize three convolutional networks to train a feedback loop, the
first with one convolutional layer and the other two with four convolutional layers.
The average error over all joints in figure 4.9b shows that all approaches perform
well, yet our proposed architecture outperforms these approaches both in terms of
average error over all joints and in mean error per joint. Despite the efforts of these
approaches to improve the accuracy of the predictions of the ConvNet by involving

118

0 10 20 30 40 50 60 70 80
Distance threshold / mm

0

20

40

60

80

100

Fr
a
ct

io
n
 o

f
fr

a
m

e
s

w
it

h
in

 d
is

ta
n
ce

 /
 %

Depth-Net
FuseNetCatConv

Oberweger et al. Refinement
Oberweger et al. Feedback

Zhou et al.
Tompson et al.

(a) Success-rate

P1 P2 R1 R2 M1 M2 I1 I2 T1 T2 T3 W1 W2 C Avg
0

5

10

15

20

25

30

35

40

M
e
a
n
 e

rr
o
r

o
f

jo
in

t
/

m
m

Depth-Net
FuseNetCatConv

Oberweger et al. Refinement
Oberweger et al. Feedback

Zhou et al.
Tompson et al.

(b) Mean joint error

Figure 4.9: Comparison of our proposed deep architecture Depth-Net and the double-
stream architecture fusion with the state-of-the-art methods of Tompson et al. [13],
Oberweger et al. [14], Oberweger et al. [15] and Zhou et al. [16]. (a) Success rate, and
(b) mean joint error.

extra steps (e.g. prior+refinement [14], hand model layer [16]), their limited perfor-
mance is due to the shallow networks they incorporate. 3D hand pose estimation
is a problem of high complexity, and the limited capacity of such shallow architec-
tures is not sufficient to learn good mappings from input images to 3D hand poses.
Hence, they cannot learn very good feature representations and have limited gen-
eralization performance which affects the subsequent steps they involve. We obtain
state-of-the-art performance with a single network that does not involve any extra
step and directly estimates 3D hand poses from depth images. Our proposed ar-
chitecture (Depth-Net) with nine convolutional layers - significantly deeper than the
baseline we compare - has higher complexity and can learn better feature repre-
sentations, and hence provide better generalization performance on the problem of
3D hand pose estimation. Double-stream architecture fusion outperforms most of the
other approaches and achieves approximately similar accuracy with [15]. The method
of Oberweger et al. [15] is the competitor with the closest performance to Depth-Net.
In this work, the authors train a feedback loop using three different ConvNets with a
limited depth relatively to ours. Yet our approach with a single ConvNet of increased
depth outperforms the method in [15] and provides state-of-the-art performance.
We conclude that due to the high complexity of 3D hand pose estimation, high

capacity models are needed for accurate pose estimations. From our comparative

119

results we witness that large convolutional networks which directly estimate the 3D
hand pose, provide better estimation accuracy than shallow models that involve extra
refinement steps [14, 15] or impose hand pose priors [14, 16]. Consequently, it is
more advantageous to use a large network with sufficient representation capacity
that learn good mappings from the input image directly to the 3D pose space, over
using shallow networks and try to improve their performance with subsequent steps.
We obtain state-of-the-art performance with a single, large convolutional network
trained with depth images and designed with important architecture considerations
in mind. Double-stream fusion performs comparably with the previous state-of-the-
art method of Oberweger et al. [15], yet we do not observe further improvements in
performance in comparison with Depth-Net which suggests that fusion of RGB and
depth information does not leverage more expressive feature representations for more
accurate pose estimation. Experiments with fusion in a different layer may result in
increased performance, and we will investigate this issue in a future work.

4.4.8 Qualitative results

In this section, we will show some qualitative results of the estimated poses of Depth-
Net. We show results only from Depth-Net, since it is our best performing model. We
plot the estimated poses together with the ground truth poses for comparison along
with their corresponding hand images. We show the results for both the 2D and 3D
cases. For the 2D case, the 2D hand depth images are plotted with the 2D poses
(from the 3D estimated pose we plot only X and Y components), while for the 3D
case the 3D point clouds that correspond to the 2D hand depth images are plotted
with the 3D poses. We created the point cloud using equations (4.3), (4.4), (4.5) and
converting each hand pixel to a 3D point.
We show the results for both subjects of the test set. In figure 4.10, we show the

results for the first subject, while in figure 4.11 we show the results for the second
subject. The training set contains hand images only from the first subject. We plot
the results of both subjects to examine how well the model generalizes to the second
subject. In both figures 4.10 and 4.11, the left column shows results for the 2D case
while the right column for the 3D case. The ground truth poses are colored with
blue while the estimated poses with red. While we show the original 2D images,
we rotate the 3D point clouds properly such that the 3D poses are visible. The

120

colors in the point clouds denote different depth values where the colorbar shows the
corresponding depth for each color.
We can see that in general, the predictions for the first subject in figure 4.10 are

very accurate. Since the model is trained on this subject it is natural to learn its hand
topology, viewpoint change and gestures well. The results for the second subject in
figure 4.11 show that the model is less accurate on this subject. Nevertheless, the
predictions of the model on this subject are still quite close to the ground truth.
Specifically, in images 4.11a-4.11f we can see that the predictions are quite good,
while in images 4.11g-4.11j the predictions drift more from the ground truth.
The model predicts well the new unknown subject, but its generalization perfor-

mance is still limited to some level. This happens because in the specific dataset the
training set contains only one subject. We conclude that for the problem of hand
pose estimation, the training set should contain multiple subjects such that the model
observes different hand shapes, bigger range of gestures and viewpoints from each
subject. This makes the model able to generalize better to new subjects with varying
hand shapes and gestures.

121

(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Figure 4.10: We show some qualitative results by plotting both the groundtruth pose
and the estimated pose of Depth-Net along with the corresponding hand image for
both the 2D and 3D case. Left: 2D depth images with the 2D poses. Right: 3D point
clouds with the 3D poses. In each case, the groundtruth poses are colored with blue
while the estimated poses with red. Here, we show the results for the first subject of
the test set. The training set contains images only from this subject. Since the model
is trained on this subject, the predictions are very accurate.

122

(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Figure 4.11: Here we show some qualitative results for the second subject of the
test set who is not contained in the training set. The predictions are less accurate
for this subject which suggests that the model is subject to some level of overfitting.
Nevertheless, the predictions are still satisfying for this subject. Left: 2D depth images
with the 2D poses. Right: 3D point clouds with the 3D poses. In each case, the
groundtruth poses are colored with blue while the estimated poses with red.

123

Chapter 5

Conclusion

We studied the problem of 3D hand pose estimation with convolutional networks
using RGB-D data. Our contribution is twofold. First, we designed and evaluated
thoroughly several convolutional network architectures trained with depth images in
order to find which performs better for the problem of hand pose estimation. We
investigated the importance of the depth as well as the importance of the general
layout of the network, such as the number of pooling layers, the size and the number
of the convolutional kernels. We paid special attention to the training procedure, were
we performed hyperparameter optimization with cross validation in order to find the
best setting for several of our hyperparameters, since they are very sensitive and
have significant impact to training. We regularized our models using dropout, were
our experiments show that dropout serves as a very good regularizer for regression
convolutional networks. Interestingly, much smaller dropout probabilities should be
used in comparison with classification tasks.
Our best performing architecture is our deepest convolutional network with nine

convolutional layers. To the best of our knowledge, no prior work employed such a
large convolutional network for hand pose estimation. This is our main proposed ar-
chitecture which we called Depth-Net. Our experimental analysis showed that Depth-
Net outperforms the state-of-the-art. We conclude that the depth of the network is of
great importance towards more accurate hand pose estimation, since 3D hand pose
estimation is a problem with high complexity and requires high capacity models that
can learn good mappings from depth images to 3D hand poses. Apart from the depth,

124

the number of max-pooling layers is crucial since redundant max-pooling can lead
to information loss, and as a result, decreased performance. The solution is to stack
multiple convolutional layers on top of each other before a max-pooling layer instead
using a max-pooling layer after each convolutional layer. Finally, we found that it
is beneficial to use a homogeneous architecture of 3× 3 convolutional kernels across
the whole network with a stride of 1 and a pooling of 1. This is a VGG [36] based
architecture proposed for image recognition with state-of-the-art performance. Since
then, it has been applied to several problems with state-of-the-art performance, such
as in activity recognition [59]. We confirmed its state-of-the-art performance in the
problem of 3D hand pose estimation with depth images.
Our second contribution, is the study of the benefits of combining RGB and depth

information with convolutional networks for 3D hand pose estimation, where we
proposed three novel approaches that fuse RGB-D information. Input fusion, aggre-
gates RGB and depth images and trains a convolutional network with four input
channels. In this approach correspondences between RGB and depth features are
learned in the first convolutional layer of the network. Score level fusion trains inde-
pendently two convolutional networks with RGB and depth images respectively and
fuses their predictions. Finally, double-stream architecture fusion trains two convo-
lutional networks in parallel and fuses their feature maps at any intermediate layer
using feature map fusion functions where we employed different fusion functions
proposed in state-of-the-art activity recognition methods [59]. Double-stream fusion,
fuses the feature map responses at each spatial location and lets subsequent learning
to leverage meaningful correspondences between fused feature maps. Our experimen-
tal results showed that double-stream architecture fusion outperforms, input fusion
and score level fusion since in these methods the information is fused in a very early
and a very late stage of the network respectively, and as a result, the fusion is more
coarse with limited performance. Thus, double-stream fusion leverages more expres-
sive feature representations from the combination of RGB and depth information.
Double-stream fusion performs comparably to the state of the art. Nevertheless, our
proposed architecture trained only with depth images outperforms double-stream
fusion and provides us state-of-the-art performance in the problem of 3D hand pose
estimation. We conclude from our experiments that RGB-D fusion cannot leverage
further useful information for more accurate hand pose estimation. Nevertheless, our
knowledge of the problem is limited since we did not performed experiments by

125

fusing double-stream architectures in multiple layers of the networks and with more
sophisticated fusion functions.
In a future work, we intend to investigate further the problem of double-stream

architecture fusion for 3D hand pose estimation. We plan to study the effect of fusing
feature maps in different layers of the respective networks. Furthermore, we would
like to research on new fusion functions that can exploit better, useful information on
RGB data. Another future goal is to incorporate unsupervised learning in the training
of the convolutional network in order to impose a prior on the hand poses, learned
through hand images.

126

Bibliography

[1] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016.
http://www.deeplearningbook.org.

[2] http://dsdeepdive.blogspot.com/2016/03/optimizations-of-gradient-descent.

html.

[3] http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf.

[4] https://prateekvjoshi.com/2015/10/20/dissecting-bias-vs-variance-tradeoff-in-machine-learning/.

[5] http://parse.ele.tue.nl/education/cluster2.

[6] L. Fei-fei, R. Fergus, and P. Perona, “One-shot learning of object categories,”
IEEE Transactions On Pattern Analysis And Machine Intelligence, vol. 28, no. 4,
pp. 594–611, 2006.

[7] https://www.slideshare.net/zukun/icml2012-learning-hierarchies-of-invariant-features.

[8] https://devblogs.nvidia.com/parallelforall/deep-learning-nutshell-core-concepts/.

[9] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied
to document recognition,” Proceedings of the IEEE, vol. 86, pp. 2278–2324, Nov.
1998.

[10] http://eblearn.sourceforge.net/beginner_tutorial2_train.html.

[11] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet Classification with Deep
Convolutional Neural Networks,” in Advances in Neural Information Processing
Systems 25 (NIPS 2012), (Lake Tahoe, NV, USA), pp. 1097–1105, Dec. 2012.

[12] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Van-
houcke, and A. Rabinovich, “Going Deeper With Convolutions,” in Proceedings

127

http://www.deeplearningbook.org
http://dsdeepdive.blogspot.com/2016/03/optimizations-of-gradient-descent.html
http://dsdeepdive.blogspot.com/2016/03/optimizations-of-gradient-descent.html
http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
https://prateekvjoshi.com/2015/10/20/dissecting-bias-vs-variance-tradeoff-in-machine-learning/
http://parse.ele.tue.nl/education/cluster2
https://www.slideshare.net/zukun/icml2012-learning-hierarchies-of-invariant-features
https://devblogs.nvidia.com/parallelforall/deep-learning-nutshell-core-concepts/
http://eblearn.sourceforge.net/beginner_tutorial2_train.html

of the 28th IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
(Boston, MA, USA), pp. 1–9, June 2015.

[13] J. Tompson, M. Stein, Y. Lecun, and K. Perlin, “Real-Time Continuous Pose
Recovery of Human Hands Using Convolutional Networks,” ACM Transactions
on Graphics, vol. 33, pp. 169:1–169:10, Sept. 2014.

[14] M. Oberweger, P. Wohlhart, and V. Lepetit, “Hands Deep in Deep Learning for
Hand Pose Estimation,” in Proceedings of the 20th Computer Vision Winter Workshop
(CVWW), (Schloss Seggau, Styria, Austria), pp. 21–30, Feb. 2015.

[15] M. Oberweger, P. Wohlhart, and V. Lepetit, “Training a Feedback Loop for Hand
Pose Estimation,” in Proceedings of the 15th IEEE International Conference on
Computer Vision (ICCV), (Santiago, Chile), pp. 3316–3324, Dec. 2015.

[16] X. Zhou, Q. Wan, W. Zhang, X. Xue, and Y. Wei, “Model-based Deep Hand Pose
Estimation,” in Proceedings of the 25th International Joint Conference on Artificial
Intelligence (IJCAI), (New York, NY, USA), pp. 2421–2427, July 2016.

[17] F. Rosenblatt, “The Perceptron: A Probabilistic Model for Information Storage
and Organization in the Brain,” Psychological Review, vol. 65, pp. 386–408, 1958.

[18] K. Jarrett, K. Kavukcuoglu, M. Ranzato, and Y. LeCun, “What is the best multi-
stage architecture for object recognition?,” in Proceedings of the 12th IEEE In-
ternational Conference on Computer Vision (ICCV), (Kyoto, Japan), pp. 2146–2153,
Sept. 2009.

[19] A. L. Maas, A. Y. Hannun, and A. Y. Ng, “Rectifier Nonlinearities Improve Neu-
ral Network Acoustic Models,” in Proceedings of the 30th International Conference
on Machine Learning (ICML) Workshop on Deep Learning for Audio, Speech, and
Language Processing, (Atlanta, GA, USA), June 2013.

[20] K. He, X. Zhang, S. Ren, and J. Sun, “Delving Deep into Rectifiers: Surpass-
ing Human-Level Performance on ImageNet Classification,” in Proceedings of the
15th IEEE International Conference on Computer Vision (ICCV), (Santiago, Chile),
pp. 1026–1034, December 2015.

128

[21] B. Polyak, “Some methods of speeding up the convergence of iteration methods,”
USSR Computational Mathematics and Mathematical Physics, vol. 4, no. 5, pp. 1–17,
1964.

[22] I. Sutskever, J. Martens, G. E. Dahl, and G. E. Hinton, “On the importance of
initialization and momentum in deep learning,” in Proceedings of the 30th Interna-
tional Conference on Machine Learning (ICML), (Atlanta, GA, USA), pp. 1139–1147,
June 2013.

[23] Y. Nesterov, Introductory Lectures on Convex Optimization: A Basic Course. Springer
Publishing Company, Incorporated, 1 ed., 2014.

[24] Y. Nesterov, “A method of solving a convex programming problem with conver-
gence rate O(1/sqr(k)),” Soviet Mathematics Doklady, vol. 27, no. 2, pp. 372–376,
1983.

[25] J. Duchi, E. Hazan, and Y. Singer, “Adaptive Subgradient Methods for On-
line Learning and Stochastic Optimization,” Journal of Machine Learning Research,
vol. 12, pp. 2121–2159, July 2011.

[26] M. D. Zeiler, “ADADELTA: An Adaptive Learning Rate Method,” CoRR,
vol. abs/1212.5701, 2012.

[27] D. P. Kingma and J. Ba, “Adam: A Method for Stochastic Optimization,” CoRR,
vol. abs/1412.6980, 2014.

[28] X. Glorot and Y. Bengio, “Understanding the difficulty of training deep feed-
forward neural networks,” in Proceedings of the 13th International Conference on
Artificial Intelligence and Statistics (AISTATS), vol. 9, (Sardinia, Italy), pp. 249–
256, May 2010.

[29] J. Martens, “Deep learning via Hessian-free optimization,” in Proceedings of the
27th International Conference on Machine Learning (ICML), (Haifa, Israel), pp. 735–
742, June 2010.

[30] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov,
“Dropout: A Simple Way to Prevent Neural Networks from Overfitting,” Journal
of Machine Learning Research, vol. 15, pp. 1929–1958, 2014.

129

[31] Y. LeCun, Generalization and network design strategies. Elsevier, 1989.

[32] F. F. Li, A. Karpathy, and J. Johnson, “CS231n: Convolutional Neural Networks
for Visual Recognition.” http://cs231n.stanford.edu/. Stanford University.

[33] A. Krizhevsky, “Learning Multiple Layers of Features from Tiny Images,” Mas-
ter’s thesis, 2009.

[34] A. Coates, H. Lee, and A. Ng, “An analysis of single-layer networks in un-
supervised feature learning,” in Proceedings of the 14th International Conference
on Artificial Intelligence and Statistics (AISTATS), vol. 15 of JMLR Workshop and
Conference Proceedings, (Ft. Lauderdale, FL, USA), pp. 215–223, Apr. 2011.

[35] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang,
A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei, “ImageNet
Large Scale Visual Recognition Challenge,” International Journal of Computer Vi-
sion, vol. 115, no. 3, pp. 211–252, 2015.

[36] K. Simonyan and A. Zisserman, “Very Deep Convolutional Networks for Large-
Scale Image Recognition,” CoRR, vol. abs/1409.1556, 2014.

[37] J. Shotton, T. Sharp, A. Kipman, A. Fitzgibbon, M. Finocchio, A. Blake, M. Cook,
and R. Moore, “Real-time Human Pose Recognition in Parts from Single Depth
Images,” Communications of the ACM, vol. 56, pp. 116–124, Jan. 2013.

[38] L. Ballan, A. Taneja, J. Gall, L. V. Gool, and M. Pollefeys, “Motion Capture of
Hands in Action using Discriminative Salient Points,” in Proceedings of the 12th
European Conference on Computer Vision (ECCV), (Firenze, Italy), pp. 640–653,
October 2012.

[39] I. Oikonomidis, M. I. A. Lourakis, and A. A. Argyros, “Evolutionary Quasi-
Random Search for Hand Articulations Tracking,” in Proceedings of the 27th
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), (Columbus,
Ohio, USA), pp. 3422–3429, June 2014.

[40] N. K. Iason Oikonomidis and A. Argyros, “Efficient model-based 3D tracking
of hand articulations using Kinect,” in Proceedings of 22nd the British Machine
Vision Conference (BMVC), (University of Dundee), pp. 101.1–101.11, Aug. 2011.

130

http://cs231n.stanford.edu/

[41] M. de La Gorce, D. J. Fleet, and N. Paragios, “Model-Based 3D Hand Pose
Estimation from Monocular Video,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 33, pp. 1793–1805, Sept. 2011.

[42] C. Qian, X. Sun, Y. Wei, X. Tang, and J. Sun, “Realtime and Robust Hand
Tracking from Depth,” in Proceedings of the 27th IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), (Columbus, OH, USA), pp. 1106–1113,
June 2014.

[43] L. Ge, H. Liang, J. Yuan, and D. Thalmann, “Robust 3D Hand Pose Estimation
in Single Depth Images: From Single-View CNN to Multi-View CNNs,” in Pro-
ceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), (Las Vegas, NV, USA), pp. 3593–3601, June 2016.

[44] C. Keskin, F. Kiraç, Y. E. Kara, and L. Akarun, “Real time hand pose estimation
using depth sensors,” in Proceedings of the 13th IEEE International Confernce on
Computer Vision (ICCV) Workshops, (Barcelona, Spain), pp. 1228–1234, Nov. 2011.

[45] R. Girshick, J. Shotton, P. Kohli, A. Criminisi, and A. Fitzgibbon, “Efficient Re-
gression of General-activity Human Poses from Depth Images,” in Proceedings of
the 13th IEEE International Conference on Computer Vision (ICCV), (Barcelona,
Spain), pp. 415–422, Nov. 2011.

[46] X. Sun, Y. Wei, S. Liang, X. Tang, and J. Sun, “Cascaded Hand Pose Regres-
sion,” in Proceedings of the 28th IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), (Boston, MA, USA), pp. 824–832, June 2015.

[47] D. Tang, H. J. Chang, A. Tejani, and T.-K. Kim, “Latent Regression Forest:
Structured Estimation of 3D Articulated Hand Posture,” in Proceedings of the 27th
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), (Columbus,
OH, USA), pp. 3786–3793, June 2014.

[48] D. Tang, T.-H. Yu, and T.-K. Kim, “Real-Time Articulated Hand Pose Esti-
mation Using Semi-supervised Transductive Regression Forests,” in Proceedings
of the 14th IEEE International Conference on Computer Vision (ICCV), (Sydney,
Australia), pp. 3224–3231, Dec. 2013.

[49] A. Erol, G. Bebis, M. Nicolescu, R. D. Boyle, and X. Twombly, “Vision-based
hand pose estimation: A review,” Computer Vision and Image Understanding,

131

vol. 108, no. 1–2, pp. 52–73, 2007. Special Issue on Vision for Human-Computer
Interaction.

[50] Z. Zhang, “Microsoft Kinect Sensor and Its Effect,” IEEE MultiMedia, vol. 19,
pp. 4–10, Apr. 2012.

[51] C. Keskin, F. Kıraç, Y. E. Kara, and L. Akarun, “Hand Pose Estimation and
Hand Shape Classification Using Multi-layered Randomized Decision Forests,” in
Proceedings of the 12th European Conference on Computer Vision (ECCV), (Firenze,
Italy), pp. 852–863, Oct. 2012.

[52] C. Xu and L. Cheng, “Efficient Hand Pose Estimation from a Single Depth
Image,” in Proceedings of the 14th IEEE International Conference on Computer
Vision (ICCV), (Sydney, Australia), pp. 3456–3462, December 2013.

[53] A. Dosovitskiy, J. Tobias Springenberg, and T. Brox, “Learning to Generate Chairs
With Convolutional Neural Networks,” in Proceedings of the 28th IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), (Boston, MA, USA), pp. 1538–
1546, June 2015.

[54] M. D. Zeiler and R. Fergus, “Visualizing and Understanding Convolutional Net-
works,” in Proceedings of the 13th European Conference on Computer Vision (ECCV),
(Zurich, Switzerland,), pp. 818–833, Sept. 2014.

[55] J. S. Supančič, III, G. Rogez, Y. Yang, J. Shotton, and D. Ramanan, “Depth-
Based Hand Pose Estimation: Data, Methods, and Challenges,” in Proceedings
of the 15th IEEE International Conference on Computer Vision (ICCV), (Santiago,
Chile), pp. 1868–1876, Dec. 2015.

[56] I. Oikonomidis, “Tracking the Articulated Motion of Two Strongly Interacting
Hands,” in Proceedings of the 25th IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), (Providence, RI, USA), pp. 1862–1869, June 2012.

[57] S. Sridhar, A. Oulasvirta, and C. Theobalt, “Interactive Markerless Articulated
Hand Motion Tracking Using RGB and Depth Data,” in Proceedings of the 14th
IEEE International Conference on Computer Vision (ICCV), (Sydney, Australia),
pp. 2456–2463, Dec. 2013.

132

[58] K. Simonyan and A. Zisserman, “Two-Stream Convolutional Networks for Ac-
tion Recognition in Videos,” in Advances in Neural Information Processing Systems
27 (NIPS 2014), (Montreal, Canada), pp. 568–576, Dec. 2014.

[59] C. Feichtenhofer, A. Pinz, and A. Zisserman, “Convolutional Two-Stream Net-
work Fusion for Video Action Recognition,” in Proceedings of the 29th IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), (Las Vegas, NV,
USA), pp. 1933–1941, June 2016.

[60] J. Bergstra and Y. Bengio, “Random Search for Hyper-Parameter Optimization,”
Journal of Machine Learning Research, vol. 13, pp. 281–305, Feb. 2012.

[61] S. Dieleman, J. Schlüter, C. Raffel, E. Olson, S. K. Sønderby, D. Nouri, D. Mat-
urana, M. Thoma, E. Battenberg, J. Kelly, J. D. Fauw, M. Heilman, D. M.
de Almeida, B. McFee, H. Weideman, G. Takács, P. de Rivaz, J. Crall, G. Sanders,
K. Rasul, C. Liu, G. French, and J. Degrave, “Lasagne: First release.,” Aug. 2015.

[62] R. Al-Rfou, G. Alain, A. Almahairi, C. Angermueller, D. Bahdanau, N. Bal-
las, F. Bastien, J. Bayer, A. Belikov, A. Belopolsky, Y. Bengio, A. Berg-
eron, J. Bergstra, V. Bisson, J. Bleecher Snyder, N. Bouchard, N. Boulanger-
Lewandowski, X. Bouthillier, A. de Brébisson, O. Breuleux, P.-L. Carrier, K. Cho,
J. Chorowski, P. Christiano, T. Cooijmans, M.-A. Côté, M. Côté, A. Courville,
Y. N. Dauphin, O. Delalleau, J. Demouth, G. Desjardins, S. Dieleman, L. Dinh,
M. Ducoffe, V. Dumoulin, S. Ebrahimi Kahou, D. Erhan, Z. Fan, O. Firat, M. Ger-
main, X. Glorot, I. Goodfellow, M. Graham, C. Gulcehre, P. Hamel, I. Harlouchet,
J.-P. Heng, B. Hidasi, S. Honari, A. Jain, S. Jean, K. Jia, M. Korobov, V. Kulkarni,
A. Lamb, P. Lamblin, E. Larsen, C. Laurent, S. Lee, S. Lefrancois, S. Lemieux,
N. Léonard, Z. Lin, J. A. Livezey, C. Lorenz, J. Lowin, Q. Ma, P.-A. Manzagol,
O. Mastropietro, R. T. McGibbon, R. Memisevic, B. van Merriënboer, V. Michal-
ski, M. Mirza, A. Orlandi, C. Pal, R. Pascanu, M. Pezeshki, C. Raffel, D. Renshaw,
M. Rocklin, A. Romero, M. Roth, P. Sadowski, J. Salvatier, F. Savard, J. Schlüter,
J. Schulman, G. Schwartz, I. V. Serban, D. Serdyuk, S. Shabanian, E. Simon,
S. Spieckermann, S. R. Subramanyam, J. Sygnowski, J. Tanguay, G. van Tulder,
J. Turian, S. Urban, P. Vincent, F. Visin, H. de Vries, D. Warde-Farley, D. J.
Webb, M. Willson, K. Xu, L. Xue, L. Yao, S. Zhang, and Y. Zhang, “Theano:

133

A Python framework for fast computation of mathematical expressions,” arXiv
e-prints, vol. abs/1605.02688, May 2016.

[63] https://en.wikipedia.org/wiki/Convolution.

[64] http://mathworld.wolfram.com/Convolution.html.

[65] H. Larochelle, “Neural networks class.” https://www.youtube.com/playlist?list=
PL6Xpj9I5qXYEcOhn7TqghAJ6NAPrNmUBH. Université de Sherbrooke.

[66] L. Bottou, “Online Algorithms and Stochastic Approximations,” in Online Learn-
ing and Neural Networks (D. Saad, ed.), Cambridge, UK: Cambridge University
Press, 1998. revised, oct 2012.

[67] L. Bottou, “Stochastic Gradient Descent Tricks,” in Neural Networks: Tricks of the
Trade (Second Edition) (G. Montavon, G. B. Orr, and K.-R. Müller, eds.), Lecture
Notes in Computer Science, pp. 421–436, Springer, 2012.

[68] Y. Bengio, “Practical recommendations for gradient-based training of deep ar-
chitectures,” in Neural Networks: Tricks of the Trade (Second Edition) (G. Montavon,
G. B. Orr, and K.-R. Müller, eds.), Lecture Notes in Computer Science, pp. 437–
478, Springer, 2012.

[69] S. Ruder, “An overview of gradient descent optimization algorithms.” http:

//sebastianruder.com/optimizing-gradient-descent/.

[70] G. Hinton, “Neural Networks for Machine Learning (Coursera Video Lectures).”
https://www.coursera.org/learn/neural-networks. University of Toronto.

[71] A. Gibiansky, “Convolutional Neural Networks.” http://andrew.gibiansky.com/

blog/machine-learning/convolutional-neural-networks/.

[72] J. Kafunah, “Backpropagation in Convolutional Neu-
ral Networks.” http://www.jefkine.com/general/2016/09/05/

backpropagation-in-convolutional-neural-networks/.

134

https://en.wikipedia.org/wiki/Convolution
http://mathworld.wolfram.com/Convolution.html
https://www.youtube.com/playlist?list=PL6Xpj9I5qXYEcOhn7TqghAJ6NAPrNmUBH
https://www.youtube.com/playlist?list=PL6Xpj9I5qXYEcOhn7TqghAJ6NAPrNmUBH
http://sebastianruder.com/optimizing-gradient-descent/
http://sebastianruder.com/optimizing-gradient-descent/
https://www.coursera.org/learn/neural-networks
http://andrew.gibiansky.com/blog/machine-learning/convolutional-neural-networks/
http://andrew.gibiansky.com/blog/machine-learning/convolutional-neural-networks/
http://www.jefkine.com/general/2016/09/05/backpropagation-in-convolutional-neural-networks/
http://www.jefkine.com/general/2016/09/05/backpropagation-in-convolutional-neural-networks/

Short Biography

Evangelos Kazakos received his B.Sc. and the M.Sc. in Computer Science from the
Department of Computer Science and Engineering, University of Ioannina, Greece
in 2014 and 2017 respectively, where he has been a member of the Information
Processing and Analysis Research Group. During the summer of 2016, he worked
as an intern at the Computational Biomedicine Lab, Univeristy of Houston, USA. His
research interests include computer vision and machine learning with a special focus
on deep learning and convolutional networks.

	Table of Contents
	List of Figures
	List of Tables
	List of Algorithms
	Abstract
	Εκτεταμένη Περίληψη
	Introduction
	Feedforward neural networks and deep learning
	Introduction
	Definition of a feedforward neural network
	Activation functions
	Loss functions
	Empirical risk minimization
	Back-propagation algorithm
	Optimization
	Optimization methods
	Learning rate schedules
	Parameter initialization

	Regularization
	Parameter norm penalties
	Dropout

	Convolutional Networks
	Introduction
	Convolution
	Local connectivity
	Parameter sharing
	Basic structure of a Convolutional Network
	Convolutional layer
	Pooling layers
	Forward propagation in a convolutional network
	Design patterns

	Gradients of convolutional and pooling layers
	Popular convolutional network models
	Dataset augmentation
	Pretrained models

	Hand pose estimation with convolutional networks using RGB-D data
	Introduction
	Related work
	Our approach
	Problem formulation and data preprocessing
	Designing convolutional networks for hand pose estimation
	RGB and depth fusion techniques with convolutional networks

	Evaluation
	Benchmark dataset
	Evaluation metrics
	Experimental setup and training
	Implementation details
	Self-comparison of ConvNet configurations
	Is fusion beneficial to the accuracy of the convolutional networks?
	Comparison with the state of the art
	Qualitative results

	Conclusion
	Bibliography
	Short Biography

