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Ο στόχος της συγκεκριμένης διατριβής είναι η ανάπτυξη αλγορίθμων για την επίλυση χωρο-

λεκτικών ερωτημάτων (spatio-textual queries) πάνω σε δεδομένα μεγάλου όγκου (big-data) 

και κατανεμημένο περιβάλλον. Το συγκεκριμένο αντικείμενο έχει μελετηθεί εκτενώς από την 

ακαδημαϊκή κοινότητα και έχουν προταθεί πολλοί και αποδοτικοί αλγόριθμοι για την 

αντιμετώπιση του ζητήματος. 

 

Οι υπάρχουσες μελέτες (και κατά συνέπεια και υλοποιήσεις) επικεντρώνονται στην 

λειτουργία σε κεντρικό υπολογιστικό περιβάλλον, ήτοι την επεξεργασία των δεδομένων σε 

ένα και μόνο τερματικό μηχάνημα (Η/Υ, κινητό, κτλ). Το γεγονός αυτό επιφέρει ένα 

σημαντικό μειονέκτημα: Θα πρέπει τα δεδομένα να είναι αρκούντως μικρά ώστε να μπορούν 

να επεξεργαστούν από τις πολλές φορές περιορισμένες υπολογιστικές δυνατότητες του 

τερματικού μηχανήματος. 

 

Με το πέρασμα του χρόνου και την ευρύτατη εξάπλωση του διαδικτύου και των κινητών 

συσκευών που έχουν πρόσβαση σε αυτό, ο όγκος των παραγόμενων δεδομένων (όλων των 

τύπων) έχει πολλαπλασιαστεί. Μιλάμε πλέον για big-data ήτοι δεδομένα της τάξης των 
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πολλών gigabytes. Τα δεδομένα αυτά στην πλειοψηφία των περιπτώσεων αφορούν και την 

τοποθεσία των χρηστών, άρα μιλάμε για χωρικά δεδομένα (location based data). 

 

Στην διατριβή αυτή θα επιλύσουμε το ζήτημα της επεξεργασίας αυτών των δεδομένων σε 

κατανεμημένο περιβάλλον και θα προτείνουμε αλγορίθμους για το περιβάλλον αυτό. 

Λέγοντας κατανεμημένο περιβάλλον εννοούμε κάποιο υπολογιστικό σύστημα με 2 η 

παραπάνω κόμβους. Ενώ όπως είπαμε το αντικείμενο των spatio-textual queries έχει 

μελετηθεί σε κεντρικό επίπεδο εκτενώς, η μεταφορά του σε κατανεμημένο περιβάλλον 

παρουσιάζει προκλήσεις. 

 

Στην παρούσα εργασία θα παρουσιάσουμε τις προκλήσεις αυτές και θα δούμε πως 

αντιμετωπίζονται καθώς και θα προτείνουμε έναν παράλληλο αλγόριθμο που επιλύει με τον 

βέλτιστο τρόπο spatio-textual queries σε κατανεμημένο περιβάλλον. 

  

Στους επιμέρους στόχους της εργασίας ανήκει και ο σχεδιασμός ενός προσομοιωτή ο οποίος 

θα προσομοιώνει την λειτουργία του παράλληλου αλγορίθμου σε κεντρικό περιβάλλον. 
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In this thesis we aim to implement algorithms for solving spatio-textual queries over big data 

and thus over a distributed environment. 

 

This topic has been extensively studied by the academic community, while a plethora of 

algorithms have been proposed and implemented that handle these types of queries. 

 

The problem with the existing solutions is that they focus on a centralized environment, or 

processing of the available data on a single terminal device (PC, mobile phone, etc). This fact 

incurs a significant disadvantage: The data to be processed should be sufficiently small in 

order to be able to be processed by the sometimes limited processing capabilities of the 

terminal device. 

 

With the advent of time and the huge growth of the internet and the widespread availability of 

devices that can access it, the amount of data produced has increased exponentially. We now 

talk about big-data, or data in the magnitude of hundreds of gigabytes. Depending on the 
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application that generates the data (eg Facebook, Flickr, twitter, foursquare, etc.) more often 

than not, the geographical location of the user is also included. Thus we are faced with 

location based data. 

 

In this thesis we will tackle the problems that arise when trying to process such data on a 

distributed environment and we will propose algorithms that run on such environments. A 

distributed environment is a computational system that is comprised of at least two computing 

nodes.  

 

As mentioned before, spatio-textual queries have been studied in a centralized environment, 

but transferring the existing knowledge to a distributed environment poses challenges. We 

will study those challenges and propose parallel algorithms that solve spatio-textual queries in 

an optimum way. 

 

Motivated by this trend, in this thesis, we study the novel problem of parallel and distributed 

processing of spatial preference queries using keywords, where the input data is stored in a 

distributed way. 

 

Given a set of keywords, a set of spatial data objects and a set of spatial feature objects that 

are additionally annotated with textual descriptions, the spatial preference query using 

keywords retrieves the top-k spatial data objects ranked according to the textual relevance of 

feature objects in their vicinity.  

 

This query type is processing-intensive, especially for large datasets, since any data objects 

may belong to the result set while the spatial range defines the score, and the k data objects 

with the highest score need to be retrieved.  

 

We propose a solution that has two notable features:  

 

 we propose a deliberate re-partitioning mechanism of input data to servers, which 

allows parallelized processing, thus establishing the foundations for a scalable query 

processing algorithm, and  
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 we boost the query processing performance in each partition by introducing an early 

termination mechanism that delivers the correct result by only examining few data 

objects.  

 

Capitalizing on this, we implement parallel algorithms that solve the problem in the 

MapReduce framework. Our experimental study using both real and synthetic data in a cluster 

of sixteen physical machines demonstrates the efficiency of our solution. 
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CHAPTER 1. INTRODUCTION 

With the advent of modern applications that record the position of mobile users by means of 

GPS, and the extensive use of mobile smartphones, we have entered the era of Big Spatial 

Data. The fact that an increasing amount of user-generated content (e.g., messages in Twitter, 

photos in Flickr, etc.) is geotagged also contributes to the daily creation of huge volumes of 

location-based data. Apart from spatial locations, the data typically contain textual 

descriptions or annotations.  

 

Analyzing and exploiting such textually annotated location-based data is estimated to bring 

high economic benefits in the near future. In order to extract useful insights from this wealth 

of Big Spatial Data, advanced querying mechanisms are required that retrieve interesting 

results from massively distributed spatio-textual data.  

 

Advanced queries that combine spatial constraints with textual relevance to retrieve objects of 

interest have attracted increased attention recently due to the ever-increasing rate of user-

generated spatio-textual data. 

 

Such queries are processing-intensive, especially for large datasets, since any object may 

belong to the result set if it complies with the query restraints.  

 

In this thesis, we study such a query that retrieves data objects based on the textual relevance 

of other (feature) objects in their spatial neighborhood.  

 

In particular, given a keyword-based query, a set of spatial data objects and a set of spatial 

feature objects that are additionally annotated with textual descriptions; the spatial preference 

query using keywords retrieves the top-k spatial data objects ranked according to the textual 

relevance of feature objects in their vicinity.  
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This query is generic, as it can be used to retrieve locations of interest based on the relevance 

of Tweets in their vicinity, based on popular places (bars, restaurants, etc.), and/or based on 

the comments of other people in the surrounding area. 

  

However, processing this query raises significant challenges. First, due to the query 

definition, every data object is a potential result and cannot be pruned by spatial or textual 

constrains. Second, the size of the data ranges from a few gigabytes to hundreds of gigabytes 

(or more). This means that processing the data on a central level, i.e. on a single machine, is 

impossible taking into account the limited hardware capabilities such a machine could 

possess. This in turn leads to the need of parallelizing the problem. The initial dataset must be 

split into pieces and each piece must be processed independently by a distributed system, 

while ensuring that the final result is not affected by this procedure. 

 

Similar queries have been extensively studied by academia, while efficient algorithms have 

been proposed that solve that queries  [1],[2],[71] etc. However those works focus exclusively 

on a centralized processing environment and thus cannot be classified under the “big-data” 

category.  

 

In this thesis, we address the technical challenges described above and provide the first 

solution to parallel/distributed processing of the spatial preference query using keywords.  

 

Our approach has two notable features:  

 

 We propose a method to parallelize processing by deliberately re-partitioning input 

data, in such a way that the partitions can be processed in parallel, independently from 

each other, and  

 Within each partition, we apply an early termination mechanism that eagerly restricts 

the number of objects that need to be processed in order to provide the correct result 

set.  
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In more detail, we make the following contributions in this thesis: 

 

 We formulate and address a novel problem, namely parallel/distributed evaluation of 

spatial preference queries using keywords over massive and distributed spatio-textual 

data. 

 We propose a grid-based partitioning that uses careful duplication of feature objects in 

selected neighboring cells that allows independent processing of subsets of input data 

in parallel, thus establishing the foundations We further boost the performance of our 

algorithm by introducing an early termination mechanism for each independent work 

unit, thereby reducing the processing cost. 

 We demonstrate the efficiency of our algorithms by means of experimental evaluation 

using both real and synthetic datasets in a medium-sized cluster. 

 We examine further possible improvements that can be implemented without 

significant overhead, that take into account the distribution of the objects in the 

dataset. Those improvements incur quantified performance gains that are independent 

of the proposed algorithm, thus reusable to other similar works. 
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CHAPTER 2. RELATED WORK 

 2.1. Spatial preference queries 

 2.2. Top-k spatial preference queries 

 2.3. Set similarity joins 

 2.4. Spatio-textual search 

 

 

In this section we will briefly present some existing work on the subject of spatial queries. 

Most of the existing work studies spatial queries with or without textual information based on 

a centric approach. That is that the solutions and algorithms proposed work on a single device 

(personal computer, mobile phone, etc).  

  

2.1. Spatial preference queries  

 

Spatial preference queries [71] rank objects based on the qualities of features in their spatial 

neighborhood.  

 

For example, think a real estate agency database of flats for lease; a customer may want to 

rank the flats with respect to the appropriateness of their location, defined after aggregating 

the qualities of other features (e.g., schools, cafes, hospital, market, etc.) within their spatial 

neighborhood.  

 

Such a neighborhood concept can be specified by the user via different functions. It can be an 

explicit circular region within a given distance from the flat. Another intuitive definition is to 

consider the whole spatial domain and assign higher weights to the features based on their 

proximity to the flat.  
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Given a set D of objects of interest (e.g., candidate locations), a top-k spatial preference query 

retrieves the k objects in D with the highest scores. The score of an object is defined by the 

quality of features (e.g., facilities or services) in its spatial neighborhood. 

2.2. Top-k spatial preference queries 

 

Top-k spatial preference queries return a ranked set of the k best data objects based on the 

scores of feature objects in their spatial neighborhood. Despite the wide range of location-

based applications that rely on spatial preference queries, existing algorithms incur non-

negligible processing cost resulting in high response time. The reason is that computing the 

score of a data object requires examining its spatial neighborhood to find the feature object 

with highest score.  

 

One technique to speed up the performance of top-k spatial preference queries is the mapping 

of pairs of data and feature objects to a distance-score space, which in turn allows identifying 

and materializing the minimal subset of pairs that is sufficient to answer any spatial 

preference query [67]. 

 

In [67] the authors also present a novel algorithm that improves query processing 

performance by avoiding examining the spatial neighborhood of the data objects during query 

execution. In addition, an efficient algorithm for materialization is proposed and the useful 

properties that reduce the cost of maintenance are described.  

2.3. Set similarity joins 

 

Recently, the set-similarity join has attracted significant interest. Given a collection D of set-

valued data, the problem is to find pairs (x, y) of sets in D, such that simt(x, y) ≥ θ, where 

simt(x, y) is a similarity function and θ is a threshold. The main application of set-similarity 

joins is near-duplicate object detection [38] (e.g., identify plagiarism, record linkage in data 

integration, duplicate data cleansing, etc.). Set-similarity joins can also be used to facilitate 
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string matching; [40] showed that the edit distance between two strings can be bounded by 

set-similarity measures defined on two sets of q-grams, which approximate the strings.  

 

Computing set-similarity joins based on inverted files [55] was first proposed in [49]: for each 

object x, the inverted lists that correspond to x’s elements are scanned to accumulate the 

similarity between x and all other objects. Several optimizations over this baseline approach 

are proposed, including scanning only a smaller subset of x’s lists and performing a single 

pass over the data that constructs the inverted index and computes the join result at the same 

time.  

 

Chaudhuri et al. [10] suggested an efficient filter-refinement framework for set-similarity 

joins, based on the observation that for two sets x, y to satisfy sim(x, y) ≥ t, a necessary 

condition is that prefixes of x and y should have at least some minimum overlap.  

 

Arasu et al. [26] showed that this prefix-based filtering is just one of the possible summary 

schemes that one could use as necessary conditions and provided alternative schemes with 

theoretical bounds on their effectiveness.  

 

Bayardo et al., [28] proposed an efficient framework for evaluating set-similarity joins, which 

minimizes the necessary elements to add in the inverted file, during join evaluation, based on 

pre-computed bounds on the element weights in the sets and appropriate orderings for the 

domain of set elements and the database D.  

 

This method is further optimized by Xiao et al. [52], by enhancing prefix-filtering using 

positional information of elements in the prefixes and partially-seen suffixes of the joined 

objects.  
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2.4. Spatio-textual search 

 

In the past decade, there has been increasing interest on extracting spatial information from 

web pages such as addresses, phone numbers, zip codes, and then assigning geographic tags 

to the pages, a process known as geo-tagging [1, 13, 21].  

 

Documents are given a geographic footprint, i.e., a set of locations; the footprint is often 

approximated by an MBR. Geo-tagging facilitates multi-criteria search, such as searching 

documents by textual content and spatial location; this type of search has already been 

considered by commercial search engines like Google Maps. SPIRIT [50] is a search engine 

that supports spatio-textual selection queries; the user inputs a set of keywords and a set of 

spatial predicates and the engine returns the documents, which contain the keywords and their 

spatial footprint satisfies the spatial predicates (e.g., “find all documents about children 

hospitals within 10km from the city center”).  

 

Several indexing approaches for the efficient support of spatio-textual selections have been 

proposed [35, 42, 50, 54]. Some of these methods propose extensions of the R-tree, which 

associate nodes or entries of the tree with inverted files for the contents of the corresponding 

subtrees [42]; other approaches primarily index the data using an inverted file and then 

spatially index each inverted list by an R-tree [51] or a space-filling curve [35].  

 

De Felipe et al. [39] extend the R-tree to support containment nearest neighbor queries. Given 

a query location q, a set of keywords K, and an integer k, the objective is to find the k nearest 

objects to q which include all keywords in K. Each entry e of the tree, apart from its MBR, 

stores a bitmap, which encodes the set of keywords included in every document in the subtree 

indexed by e.  

 

The algorithm of [43] is used to retrieve the nearest neighbors of q incrementally; entries that 

violate the keyword containment constraint of the query are pruned during search. Cong et al. 

[36] and Li et al. [44] independently proposed an IR-tree index, which primarily indexes the 

data using an R-tree, but creates an inverted file for each node of the tree. The inverted file of 

a leaf node indexes all documents in the node, while in the inverted file of a non-leaf node, 

each id corresponds to a child (i.e., subtree) of the non-leaf node. The inverted list for a term 
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contains the children which include that term and the maximum weight of the term in any 

object of the corresponding subtree.  

 

By extending the nearest neighbor algorithm of [43], the IR-tree can be used to answer spatio-

textual proximity queries, where the user provides a location q and a set of keywords K and 

asks for the best object on a map with respect to both distance from q and similarity with K.  

 

An alternative, Spatial Inverted Index for spatio-textual proximity queries was recently 

proposed by [48]. This method generates one inverted list per term and indexes each long 

inverted list using an aggregate R-tree [47]; given a query, the lists of the query terms are 

joined, by accessing from each tree the objects in increasing order of relevance and merging 

them, until the k best objects are guaranteed to be found.  

 

Several, more complex queries have also been defined and studied in the context of spatio-

textual search, like prestige-based spatio-textual similarity [31] and finding spatially close 

groups of objects that match the query keywords [32, 53]. 
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CHAPTER 3. PARALLEL AND DISTRIBUTED 

PROCESSING OF SPATIAL PREFERENCE QUERIES 

USING KEYWORDS 

 

 3.1. Preliminaries 

 3.2. Problem statement and overview of solution 

 3.3. Grid-based partitioning and initial algorithm 

 3.4. Algorithms with early termination 

 3.5. Theoretical results 

 3.6. Experimental evaluation 

 3.7. Performance improvement techniques 

 3.8. Emulator 

 

3.1. Preliminaries  

 

In this section we give a brief overview of MapReduce and HDFS, and define the type of 

queries we will focus on. 

 

3.1.1 MapReduce and HDFS 

 

Hadoop is an open-source implementation of MapReduce [59], providing an environment for 

large-scale, fault-tolerant data processing. Hadoop consists of two main parts: the HDFS 

distributed file system and MapReduce for distributed processing.  
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Files in HDFS are split into a number of large blocks which are stored on DataNodes, and one 

file is typically distributed over a number of DataNodes in order to facilitate high bandwidth 

during parallel processing. In addition, blocks can be replicated to multiple DataNodes (by 

default three replicas), in order to ensure fault-tolerance. A separate NameNode is responsible 

for keeping track of the location of files, blocks, and replicas thereof. HDFS is designed for 

use-cases where large datasets are loaded (“write-once”) and processed by many different 

queries that perform various data analysis tasks (“read-many”).  

 

A task to be performed using the MapReduce framework has to be specified as two steps. The 

Map step as specified by a map function takes some input (typically from HDFS files), 

possibly performs some computation on this input, and redistributes it to worker nodes (a 

process known as “shuffle”). An important aspect of MapReduce is that both the input and 

output of the Map step is represented as key-value pairs, and that pairs with same key will be 

processed as one group by a Reducer. As such, the Reduce step receives all values associated 

with a given key, from multiple map functions, as a result of the redistribution process, and 

typically performs some aggregation on the values, as specified by a reduce function.  

 

It is important to note that one can customize the redistribution of data to Reducers by 

implementing a Partitioner that operates on the output key of the map function, thus 

practically enforcing an application-specific grouping of data in the Reduce phase. Also, the 

ordering of values in the reduce function can be specified, by implementing a customized 

Comparator. In our work, we employ such customizations to obtain a scalable and efficient 

solution to our problem. 

 

3.1.2 Spatial Preference Queries 

 

The spatial preference query belongs to a class of queries that rank objects based on the 

quality of other (feature) objects in their spatial neighborhood [67, 70, 71]. Inherently a 

spatial preference query assumes that two types of objects exist: the data objects, which will 

be ranked and returned by the query, and the feature objects, which are responsible for 

ranking the data objects. As such, the feature objects determine the score of each data object 

according to a user-specified metric. Spatial preference queries find more applications in the 

case of textually annotated feature objects [68], where the score of data objects is determined 
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by a textual similarity function applied on query keywords and textual annotations of feature 

objects. This query is known as top-k spatio-textual preference query [68]. In this thesis, we 

study a distributed variant of this query. 

Table 1: Overview of symbols 

  Symbol   Description 

  O   Set of data Objects 

  p   Objects in O, p ∈ O 

  F   Set of feature Objects 

  f   Feature object in F,  f  ∈ F 

  f.W   Keywords associated with feature object f 

  q(k, r, W)   Query for top-k data objects 

  w(f, q)   Textual relevance of feature f to query q 

  �̅�(𝑓, 𝑞)   Upper bound of  w(f, q) 

  dist(p,f)   Spatial distance between p and f 

  τ(p)   Score of data object p 

  𝜏 ̅   Score of the k-th best data object 

  R   Number of reduce tasks 

  C = {C1, . . . ,CR}   Grid cells 

3.2. Problem statement and overview of solution 

 

3.2.1 Problem Formulation 

 

Consider an object dataset O of spatial objects p ∈ O, which are described by their 

coordinates p.x and p.y. Also, consider a feature dataset 𝐹〈𝑖〉 of spatio-textual objects f ∈ F, 

which are represented by spatial coordinates f.x and f.y, and a set of keywords f.W.  

 

The spatial preference query using keywords returns the k data objects {p1, . . . , pk} from O 

with the highest score. The score of a data object p ∈ O is defined by the scores of feature 

objects  f ∈ F in its spatial neighborhood. As already mentioned, each feature object  f  is 

associated with a set of keywords  f.W.  

 

A query q consists of a neighborhood distance threshold r, a set of query keywords q.W for 

the feature set F, and the value k that determines how many data objects need to be retrieved.  

For a quick overview of the basic symbols used in this thesis, we refer to Table 1. 
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Given a query q(k, r, W) and a feature object f ∈ F, we define the non- spatial score w(f, q) 

that indicates the goodness (quality) of f as the similarity of sets q.W and t.W. In this work, we 

employ Jaccard similarity for this purpose. Obviously, the domain of values of w(f, q) is the 

range [0, 1]. 

 

Definition 1: (Non-spatial score w(f, q)): Given a query q and a feature object f ∈ F, the non-

spatial score w(f, q) determines the textual relevance between the set of query keywords q.W 

and the keywords f.W of f using Jaccard similarity:  

 

w(f, q) =  
|𝑞.𝑊 ⋂  𝑓.𝑊|

 |𝑞.𝑊 ⋃ 𝑓.𝑊|
 

 

The score τ (p) of a data object p is determined by the feature objects that are within distance r 

from p. More specifically, τ (p) is defined by the maximum non-spatial score w(f, q) of any 

feature object f in the r-neighborhood of p. This range based neighborhood condition is 

typically used in the related work [67, 68, 70, 71].  

 

Formally: 

 

Definition 2: The score τ (p) of p based on feature dataset F, given the range-based 

neighborhood condition r is defined as:  

 

τ (p) = max{w(f, q) |  f ∈ F : d(p, f) ≤ r} 

 

Example 1: Figure 1 depicts an example: The spatial area contains both data objects (denoted 

as pi) and feature objects (denoted as fi). The data objects represent hotels and the feature 

objects represent restaurants.  

 

Assume a user issues the following query: Find the best (top-k) hotels that have an Italian 

restaurant nearby. Let us assume that k = 1 and “nearby” is translated to r = 1.5 units of 

distance. Then, the query is expressed as: Find the top-1 data object for which there exists a 

highly ranked feature object based on the keyword “Italian” at a distance at most 1.5 units.  
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Figure 1: Example of spatial preference query using keywords (SPQ). 

 

Table 2 lists the locations and descriptions of both data and feature objects. Only feature 

objects f1, f4 and f7 have a common term with the user specified query (the keyword “italian”). 

Thus, only f1, f4 and f7 will have a Jaccard score other than 0.  

 

In the last column of Table 2 the Jaccard score for all feature objects is shown. The score of 

each data object is influenced only by the feature objects within a distance at most 1.5 units.  

 

In Figure 1 the circles with radius 1.5 range units and center each data object include the 

feature objects that are nearby each data object and influence its score. The actual score of a 

data object is the highest score of all nearby feature objects.  

 

Data object p4 has a score of 0.5 due to feature object f1, data object p1 has a score of 1 

because of feature object f4 and data object p5 has a score of 0.5 due to feature object f7. 

Hence, the top-1 result is object p1. 
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Table 2: Example of datasets and scores for query q.W = {italian} 

Object X Y Keywords Jaccard 

p1 4.6 4.8 - 

- 

- 

p2 7.5 1.7 - 

 

- 

p3 8.9 5.2 - - 

p4 1.8 1.8 - - 

p5 1.9 9.0 - - 

f1 2.8 1.2 italian,gourmet 0.5 

0 
f2 5.0 3.8 chinese,cheap 0 

0 

 

f3 8.7 1.9 sushi,wine 0 

 
f4 3.8 5.5 italian 

 

1 

f5 5.2 5.1 mexican,exotic 0 

f6 7.4 5.4 greek,traditional notInRange 

f7 3.0 8.1 italian,spaghetti 0.5 

f8 9.5 7.0 indian 0 

 

 

In the parallel and distributed setting that is targeted in this thesis, datasets O and F are 

horizontally partitioned and distributed to different machines (servers), which means that each 

server stores only a fraction (partition) of the entire datasets.  

 

In other words, there exists a number of partitions Oi ∈ O and Fi ∈ F of datasets O and F 

respectively, such that ⋃ Oi = O, Oi ⋂ Oj = ∅ for i ≠ j, and ⋃ Fi = F, Fi ⋂  Fj = ∅ for i ≠ j. Due 

to horizontal partitioning, any (data or feature) object belongs to a single partition (Oi or Fi 

respectively). We make no assumption on the number of such partitions nor on having equal 

number of data and feature object partitions. Also, no assumptions are made on the specific 

partitioning method used; in fact, our proposed solution is independent of the actual 

partitioning method employed, which makes it applicable in the most generic case. 

 

Problem 1. (Parallel/Distributed Spatial Preference Query using Keywords (SPQ)) Given an 

object dataset O and a feature dataset F, which are horizontally partitioned and distributed to 

a set of servers, the parallel/distributed spatial preference query using keywords returns the k 

data objects {p1, . . . , pk} from O with the highest τ (pi) scores. 
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3.2.2 Design Rationale 

 

The spatial preference query using keywords (SPQ) targeted in this thesis is a complex query 

operator, since any data object p may belong to the result set and the spatial range cannot be 

used for pruning the data space. 

 

As a result, the computation becomes more challenging and efficient query processing 

mechanisms are required that can exploit parallelism and the availability of hardware 

resources. Parallelizing this query is also challenging because any given data object p and all 

feature objects within the query range r from p must be assigned to the same server to ensure 

the correct computation of the score τ(p) of p. 

 

As such, a repartitioning mechanism is required in order to assign (data and feature) objects to 

servers in a deliberate way that allows local processing at each server. To achieve the desired 

independent score computation at each server, duplication of feature objects to multiple 

servers is typically necessary. Based on this, we set the following objectives for achieving 

parallel, scalable and efficient query processing:  

 

 Objective #1: parallelize processing by breaking the work into independent parts, 

while minimizing feature object duplication. In addition, the union of the results in 

each part should suffice to produce the final result set.  

 Objective #2: avoid processing the input data in its entirety, by providing early 

termination mechanisms for query processing. 

 

To meet the above objectives, we design our solution by using the following two techniques: 

 

 a grid-partitioning of the spatial data space that uses careful duplication of feature 

objects in selected neighboring cells, in order to create independent work units 

(Section 3.3), and 

 sorted access to the feature objects in a deliberate order along with a thresholding 

mechanism that allows early termination of query processing that guarantees the 

correctness of the result (Section 3.4). 
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3.3. Grid-based partitioning and initial algorithm 

 

In this section, we present an algorithm for solving the parallel/distributed spatial preference 

query using keywords, which relies on a grid-based partitioning of the 2-dimensional space in 

order to identify subsets of the original data that can be processed in parallel. To ensure 

correctness of the result computed in parallel, we repartition the input data to grid cells and 

deliberately duplicate some feature objects in neighboring grid cells. As a result, this 

technique lays the foundation for parallelizing the query processing and leads to the first 

scalable solution. 

 

Figure 2: Example of grid partitioning 

3.3.1 Grid-based Partitioning 

 

Consider a regular, uniform grid in the 2-dimensional dataspace that consists of R cells: C = 

{C1, . . . ,CR}. Our approach assigns all data and feature objects to cells of this grid, and 

expects each cell to be processed independently of the other cells. In MapReduce terms, we 

assign each cell to a single processing task (Reducer), thus all data that affect this cell need to 
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be sent to the assigned Reducer. The repartitioning mechanism operates in the following way: 

Based on the spatial location of an object (data or feature object), this object is assigned to the 

cell that encloses it in a straightforward way. However, some feature objects must be 

additionally assigned to other cells (i.e., duplicated), in order to ensure that the data in each 

cell can indeed be processed independently of the other cells and produce the correct result. 

More specifically, given a feature object f ∈ Cj and any grid cell Ci (Ci ≠ Cj), we denote by 

MINDIST(f, Ci) the minimum distance between feature object f and Ci. This distance is 

defined as the distance of f to the nearest edge of Ci, since f is outside Ci. When this minimum 

distance is smaller than the query radius r, i.e., MINDIST(f, Ci)  ≤  r, then it is possible that f 

is within distance r from a data object p ∈ Ci. Therefore, f needs to be assigned (duplicated) 

also to cell Ci. The following lemma guarantees the correctness of the afore-described 

technique.  

 

Lemma 1. (Correctness) Given a parallel/distributed spatial preference query using keywords 

with radius r, any feature object f ∈ Cj must be assigned to all other grid cells Ci (Ci ≠ Cj), if 

MINDIST(f, Ci) ≤ r. 

 

Figure 2 illustrates the same dataset as in Figure 1 and a 4x4 grid (the numbering of the cells 

is shown in the figure). Consider a query with radius r = 1.5, and let us examine feature object 

f7 as an example. Assuming that f7 has at least one common term in its keyword set (f7.W) with 

the user specified query (q.W), then f7 may affect neighboring cells located near cell with 

identifier C14. It is fairly easy to see that f7 needs to be duplicated to cells C9, C10, and C13, for 

which MINDIST(f7,Ci) ≤ r, thus the score of data objects located in these cells may be 

determined by f7.  

 

Before presenting the algorithm that exploits this grid partitioning, we make a note on how to 

select an appropriate grid size, as this affects the amount of duplication required. It should 

also be noted that in our approach the grid is defined at query time, after the value of r is 

known. Let α denote the length of the edge of a grid cell. For now, we should ensure that α ≥ 

r, otherwise excessive replication to neighboring cells would be performed. Later, in Section 

6, we provide a thorough analysis on the effect of the grid cell size to the amount of 

duplicated data. Moreover we will show experimental results on this relationship in the results 

section. 
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3.3.2 Parallel Algorithm 

 

We design a parallel algorithm, termed pSPQ, that solves the problem in MapReduce. The 

Map phase is responsible for re-partitioning the input data based on the grid introduced 

earlier. Then, in the Reduce phase, the problem of reporting the top-k data objects is solved in 

each cell independently of the rest. This is the part of the query that dominates the processing 

time; the final result is produced by merging the k results of each of the R cells and returning 

the top-k with the highest score. However, this last step can be performed in a centralized way 

without significant overhead, given that the number of these results is small because k is 

typically small.  

 

In more detail, in the Map phase, each Map task (Mapper) receives as input some data objects 

and some feature objects, without any assumptions on their location. Each Mapper is 

responsible for assigning data and feature objects to grid cells, including duplicating feature 

objects. Each grid cell corresponds to a single Reduce task, which will take as input all 

objects assigned to the respective grid cell. Then, the Reducer can accurately compute the 

score of any data object located in the particular grid cell and report the top-k. 

 

   1:  𝐈𝐧𝐩𝐮𝐭: 𝑞(𝑘, 𝑟, 𝑊), grid cells 𝐶 =  { 𝐶1, … , 𝐶𝑅} 

   2:  𝐟𝐮𝐧𝐜𝐭𝐢𝐨𝐧 𝑀𝐴𝑃(𝑥: 𝑖𝑛𝑝𝑢𝑡 𝑜𝑏𝑗𝑒𝑐𝑡) 

   3:  𝐶𝑖  ← {𝐶𝑖 ∶  𝐶𝑖 ∈   𝐶 and 𝑥 enclosed in 𝐶𝑖} 

   4:  𝐢𝐟 𝑥 is a data object 𝐭𝐡𝐞𝐧 

   5:     𝑥. 𝑡𝑎𝑔 ←  0 

   6:     output  〈(𝑖, 𝑥. 𝑡𝑎𝑔), 𝑥〉 

   7:  𝐞𝐥𝐬𝐞 

   8:     𝑥. 𝑡𝑎𝑔 ←  1 

   9:     𝐢𝐟 (𝑥. 𝑊 ⋂ q.W = ∅) then 

10:        output 〈(𝑖, 𝑥. 𝑡𝑎𝑔), 𝑥〉 

11:        𝐟𝐨𝐫 (𝐶𝑗   ∈  𝐶, such that 𝑀𝐼𝑁𝐷𝐼𝑆𝑇(𝑥, 𝐶𝑗)  ≤  𝑟 𝐝𝐨 

12:           output 〈(𝑗, 𝑥. 𝑡𝑎𝑔), 𝑥)〉 

13:        𝐞𝐧𝐝 𝐟𝐨𝐫 

14:     𝐞𝐧𝐝 𝐢𝐟 

15:  𝐞𝐧𝐝 𝐢𝐟 

16:  𝐞𝐧𝐝 𝐟𝐮𝐧𝐜𝐭𝐢𝐨𝐧 

 

Figure 3: Algorithm 1: pSPQ: Map function  
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3.3.2.1 Map Phase 

 

Algorithm 1 shows the pseudo-code of the Map phase, where each call of the Map function 

processes a single object denoted by x, which can be a data object or a feature object.  

 

First, in line 3, the cell Ci that encloses object x is determined.  

 

Then, if x is a data object, it is tagged (x.tag) with the value 0, otherwise with the value 1. In 

case of a data object, x is output using a composite key that consists of the cell id i and the tag 

as key, and as value the entire data object x. In case of a feature object, we apply a simple 

pruning rule (line 9) to eliminate feature objects that do not affect the result of the query. This 

rule practically eliminates from further processing any feature object that has no common 

keyword with the query keywords, i.e., 𝑞. 𝑊 ∩ 𝑓. 𝑊 = ∅. The reason is that such feature 

objects cannot contribute to the score of any data object, based on the definition of our query. 

This pruning rule can significantly limit the number of feature objects that need to be i) 

duplicated and ii) be sent to the Reduce phase. For the remaining feature objects that have at 

least one common keyword with the query, they are first output with the same composite key 

as above, and value the entire feature object x. 

 

In addition, we identify neighboring cells Cj that comply with Lemma 1, and replicate the 

feature object in those cells too. In this way, we have partitioned the initial data to grid cells 

and have performed the necessary duplication of feature objects.  

 

The output key-values of the Map phase are grouped by cell id and assigned to Reduce tasks 

using a customized Partitioner. Also, in each Reduce task, we order the objects within each 

group by their tag, so that data objects precede feature objects. This is achieved through the 

use of the composite keys for sorting. As a result, it is guaranteed that each Reducer accesses 

any feature object after it has accessed all data objects. 
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3.3.2.2 Reduce Phase 

 

As already mentioned, a Reduce task processes all the data assigned to a single cell and 

reports the top-k data objects within the respective cell. The pseudo-code of the Reduce 

function is depicted in Algorithm 2.  

 

First, all data objects are accessed one-by-one and loaded in memory (Oi). Moreover, a sorted 

list Lk of the k data objects pi with higher scores τ (pi) is maintained. Let 𝜏 ̅denote the k-th best 

score of any data object so far.  

 

Then, for each feature object x accessed, its non-spatial score w(x, q) (i.e., textual similarity to 

the query terms) is compared to 𝜏 ̅ . Only if the non-spatial score w(x, q) is larger than 𝜏 ̅ (line 

9), may the top-k list of data objects be updated. Therefore, in this case we test all 

combinations of x with the data objects p kept in memory Oi. If such a combination (x, p) is 

within distance r (line 11), then we check if the temporary score of p denoted by score(p) can 

be improved based on x (i.e., w(x, q)), and if that is the case we check whether  p has obtained 

a score that places it in the current top-k list of data objects (Lk).   

 

Line 12 shows how the score can be improved, however we omit from the pseudo-code the 

check of score improvement of p for sake of simplicity. Then, in line 13, the list Lk is updated. 

As explained, this update is needed only if the score of p is improved. In this case, if p already 

exists in Lk we only update its score; otherwise p is inserted into Lk. After all feature objects 

have been processed, Lk contains the top-k data objects of this cell.  

 

3.3.2.3 Limitations 

 

The above algorithm provides a correct solution to the problem in a parallel manner, thus 

achieving Objective #1. However, in each Reducer, it needs to process the entire set of feature 

objects in order to produce the correct result. In the following section, we present techniques 

that overcome this limitation, thereby achieving significant performance gains. 
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   1:  𝐈𝐧𝐩𝐮𝐭: 𝑞(𝑘, 𝑟, 𝑊) 

   2:  𝐟𝐮𝐧𝐜𝐭𝐢𝐨𝐧 𝑅𝐸𝐷𝑈𝐶𝐸(𝑘𝑒𝑦, 𝑉: objects assigned to cell with id 𝑘𝑒𝑦) 

   3:  𝐿𝑘  ← ∅ 

   4:  𝐟𝐨𝐫 (𝑥 ∈  𝑉) 𝐝𝐨 

   5:     𝐢𝐟 𝑥 is a data object 𝐭𝐡𝐞𝐧 

   6:     Load 𝑥 in memory 𝑂𝑖 

   7:     𝑠𝑐𝑜𝑟𝑒(𝑥)  ← 0 // 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑠𝑐𝑜𝑟𝑒 

   8:     𝐞𝐥𝐬𝐞 

   9:        𝐢𝐟 𝑤(𝑥, 𝑞) > 𝜏 ̅ 𝐭𝐡𝐞𝐧  

10:           𝐟𝐨𝐫 (𝑝 ∈  𝑂𝑖) 𝐝𝐨 

11:              𝐢𝐟 𝑑(𝑝, 𝑥) ≤ 𝑟 𝐭𝐡𝐞𝐧 

12:                 𝑠𝑐𝑜𝑟𝑒(𝑝)  ← max{𝑠𝑐𝑜𝑟𝑒(𝑝), 𝑤(𝑥, 𝑞)} 

13:                 update list 𝐿𝑘 of top⁃𝑘 data objects and 𝜏 ̅        

14:              𝐞𝐧𝐝 𝐢𝐟 

15:           𝐞𝐧𝐝 𝐟𝐨𝐫 

16:        𝐞𝐧𝐝 𝐢𝐟 

17:     end if 

18:  𝐞𝐧𝐝 𝐟𝐨𝐫 

19:  𝐟𝐨𝐫 𝑝 ∈  𝐿𝑘 𝐝𝐨  

20:     output 〈𝑝, 𝑠𝑐𝑜𝑟𝑒(𝑝)〉 // 𝑎𝑡 𝑡ℎ𝑖𝑠 𝑝𝑜𝑖𝑛𝑡: 𝑠𝑐𝑜𝑟𝑒(𝑝) = 𝜏(𝑝) 

21:  𝐞𝐧𝐝 𝐟𝐨𝐫 

22:  𝐞𝐧𝐝 𝐟𝐮𝐧𝐜𝐭𝐢𝐨𝐧   

 

Figure 4: Algorithm 2: pSPQ: Reduce function 

3.4. Algorithms with early termination 

 

Even though the technique outlined in the previous section enables parallel processing of 

independent partitions to solve the problem, it cannot guarantee good performance since it 

requires processing both data partitions in a cell in their entirety (including duplicated feature 

objects). To alleviate this shortcoming, we introduce two alternative techniques that achieve 

early termination, i.e., report the correct result after accessing all data objects but only few 

feature objects. This is achieved by imposing a deliberate order for accessing feature objects 

in each cell, which in turn allows determining an upper bound for the score of any unseen 

feature object. When this upper bound cannot improve the score of the current top-k object, 

we can safely terminate processing of a given Reducer. 
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3.4.1 Accessing Feature Objects by Increasing Keyword Length 

 

The first algorithm that employs early termination, termed eSPQlen, is based on the intuition 

that feature objects f with long textual descriptions that consist of many keywords (|f.W|) are 

expected to produce low scores w(f, q). This is due to the Jaccard similarity used in the 

definition of w(f, q) (Defn. 1), which has |𝑞. 𝑊 ⋃ 𝑓. 𝑊 | in the denominator. Based on this, 

we impose an ordering of feature objects in each Reducer by increasing keyword length, 

aiming at examining first feature objects that will produce high score values w(f, q) with 

higher probability.  

 

In more technical details, given the keywords q.W of a query q, and a feature object f with 

keywords f.W, we define a bound for the best possible Jaccard score that this feature object 

can achieve as:  

 

𝑤 ̅̅ ̅(𝑓, 𝑞) =  {
    1       , |𝑓. 𝑊| < |𝑞. 𝑊|  

|𝑞.𝑊|

|𝑓.𝑊|
   , |𝑓. 𝑊| ≥ |𝑞. 𝑊|

   (1) 

 

Given that feature objects are accessed by increased keyword length, this bound is derived as 

follows. As long as feature objects f are accessed that satisfy |𝑓. 𝑊| < |𝑞. 𝑊|  , it is not 

possible to terminate processing, thus the bound takes the value of 1. The reason is that 

|𝑓. 𝑊| < |𝑞. 𝑊|  | holds, it is possible that a subsequent feature object f′ with more keywords 

than f may have higher Jaccard score than f. However, as soon as it holds that |𝑓. 𝑊| ≥ |𝑞. 𝑊| 

the bound (best possible score) equals: 

 

min{|𝑞. 𝑊|, |𝑓. 𝑊|}

min{|𝑞. 𝑊|, |𝑓. 𝑊|} + |𝑓. 𝑊| − |𝑞. 𝑊}
=  

|𝑞. 𝑊|

|𝑓. 𝑊|
 

 

because in the best case the intersection of sets q.W  and f.W will be equal to: min{|q.W|, 

|f.W|}, while their union will be equal to:  min{|q.W|, |f.W|} + |f.W| − |q.W|. Recall that 𝜏 ̅ 

denotes the k-th best score of any data object so far. Then, the condition for early termination 

during processing of feature objects by increasing keyword length, can be stated as follows: 

  



33 

 

Lemma 2. (Correctness of Early Termination eSPQlen) Given a query q and an ordering of 

feature objects based on  increasing number of keywords, it is safe  to stop accessing more 

feature objects as soon as a feature object f is accessed with: 

 

𝜏 ̅  ≥  𝑤(𝑓, 𝑞) 

 

Based on this analysis, we introduce a new algorithm that follows the paradigm of Section 4, 

but imposes the desired access order to feature objects and is able to terminate early in the 

Reduce phase. 

 

3.4.1.1 Map Phase 

 

Algorithm 3 describes the Map phase of the new algorithm. The main difference to the 

algorithm described in Section 4 is in the use of the composite key when objects are output by 

the Map function (lines 8 and 10).  

 

The composite key contains two parts. The first part is the cell id, as previously, but the 

second part is a number. The second part corresponds to the value zero in the case of data 

objects, while it corresponds to the length |f.W| of the keyword description in the case of a 

feature object f.  

 

The rationale behind the use of this composite key is that the cell id is going to be used to 

group objects to Reducers, while the second part of the key is going to be used to establish the 

ordering in the Reduce phase in increased order of the number used. In this sorted order, data 

objects again precede feature objects, due to the use of the zero value.  

 

Between two feature objects, the one with the smallest length of keyword description (i.e., 

fewer keywords) precedes the other in the sorted order. 
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   1:  𝐈𝐧𝐩𝐮𝐭: 𝑞(𝑘, 𝑟, 𝑊), grid cells 𝐶 =  { 𝐶1, … , 𝐶𝑅} 

   2:  𝐟𝐮𝐧𝐜𝐭𝐢𝐨𝐧 𝑀𝐴𝑃(𝑥: 𝑖𝑛𝑝𝑢𝑡 𝑜𝑏𝑗𝑒𝑐𝑡) 

   3:  𝐶𝑖  ← {𝐶𝑖 ∶  𝐶𝑖 ∈   𝐶 and 𝑥 enclosed in 𝐶𝑖} 

   4:  𝐢𝐟 𝑥 is a data object 𝐭𝐡𝐞𝐧 

   5:     output  〈(𝑖, 0), 𝑥〉 

   6:  𝐞𝐥𝐬𝐞 

   7:     𝐢𝐟 (𝑥. 𝑊 ⋂ q.W = ∅) then 

   8:        output 〈(𝑖, |𝑥. 𝑊|), 𝑥〉 

   9:        𝐟𝐨𝐫 (𝐶𝑗   ∈  𝐶, such that 𝑀𝐼𝑁𝐷𝐼𝑆𝑇(𝑥, 𝐶𝑗)  ≤  𝑟 𝐝𝐨 

10:           output 〈(𝑗, |𝑥. 𝑊|), 𝑥〉 

11:        𝐞𝐧𝐝 𝐟𝐨𝐫 

12:     𝐞𝐧𝐝 𝐢𝐟 

13:  𝐞𝐧𝐝 𝐢𝐟 

14:  𝐞𝐧𝐝 𝐟𝐮𝐧𝐜𝐭𝐢𝐨𝐧 

 

Figure 5: Algorithm 3: eSPQlen: Map function 

3.4.1.2 Reduce Phase 

 

As already mentioned, feature objects with long keyword lists are expected to result in 

decreased textual similarity (in terms of Jaccard value). Thus, our hope is that after accessing 

feature objects with few keywords, we will find a feature object that has so many keywords 

that all remaining feature objects in the ordering cannot surpass the score of k-th best data 

object thus far.  

 

Algorithm 4 explains the details of our approach. Again, only the set of data objects assigned 

to this Reducer is maintained in memory, along with a sorted list Lk of the k data objects with 

best scores found thus far in the algorithm.  

 

The condition for early termination is based on the score 𝜏 ̅ of the k-th object in list Lk and the 

best potential score w(f, q) of the current feature object f (line 9). 
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   1:  𝐈𝐧𝐩𝐮𝐭: 𝑞(𝑘, 𝑟, 𝑊) 

   2:  𝐟𝐮𝐧𝐜𝐭𝐢𝐨𝐧 𝑅𝐸𝐷𝑈𝐶𝐸(𝑘𝑒𝑦, 𝑉: objects assigned to cell with id 𝑘𝑒𝑦) 

   3:  𝐿𝑘  ← ∅ 

   4:  𝐟𝐨𝐫 (𝑥 ∈  𝑉) 𝐝𝐨 

   5:     𝐢𝐟 𝑥 is a data object 𝐭𝐡𝐞𝐧 

   6:     Load 𝑥 in memory 𝑂𝑖 

   7:     𝑠𝑐𝑜𝑟𝑒(𝑥)  ← 0 // 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑠𝑐𝑜𝑟𝑒 

   8:     𝐞𝐥𝐬𝐞 

   9:        𝐢𝐟 𝜏 ̅  ≥ 𝑤 ̅̅ ̅(𝑥, 𝑞) 𝐭𝐡𝐞𝐧 

10:           break  

11:        𝐞𝐧𝐝 𝐢𝐟 

12:        𝐢𝐟 𝑤(𝑥, 𝑞) > 𝜏 ̅ 𝐭𝐡𝐞𝐧  

13:           𝐟𝐨𝐫 (𝑝 ∈  𝑂𝑖) 𝐝𝐨 

14:              𝐢𝐟 𝑑(𝑝, 𝑥) ≤ 𝑟 𝐭𝐡𝐞𝐧 

15:                 𝑠𝑐𝑜𝑟𝑒(𝑝)  ← max{𝑠𝑐𝑜𝑟𝑒(𝑝), 𝑤(𝑥, 𝑞)} 

16:                 update list 𝐿𝑘 of top⁃𝑘  data objects and 𝜏 ̅        

17:              𝐞𝐧𝐝 𝐢𝐟 

18:           𝐞𝐧𝐝 𝐟𝐨𝐫 

19:        𝐞𝐧𝐝 𝐢𝐟 

20:     end if 

21:  𝐞𝐧𝐝 𝐟𝐨𝐫 

22:  𝐟𝐨𝐫 𝑝 ∈  𝐿𝑘 𝐝𝐨  

23:     output 〈𝑝, 𝑠𝑐𝑜𝑟𝑒(𝑝)〉 // 𝑎𝑡 𝑡ℎ𝑖𝑠 𝑝𝑜𝑖𝑛𝑡: 𝑠𝑐𝑜𝑟𝑒(𝑝) = 𝜏(𝑝) 

24:  𝐞𝐧𝐝 𝐟𝐨𝐫 

25:  𝐞𝐧𝐝 𝐟𝐮𝐧𝐜𝐭𝐢𝐨𝐧   

 

Figure 6: Algorithm 4: eSPQlen: Reduce function with Early Termination 

3.4.2 Accessing Feature Objects by Decreasing Score 

 

In this section, we introduce an even better early termination algorithm, termed eSPQsco.  

 

The rationale of this algorithm is to compute the Jaccard score in the Map phase and use this 

score as second part of the composite key.  

 

In essence, this can enforce a sorted order in the Reduce phase where feature objects are 

accessed from the highest scoring feature object to the lowest scoring one.  
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To explain the intuition of the algorithm, consider the feature object with highest score. By 

drawing a circle in the dataset space with center that feature object and range r and checking 

witch data objects reside in that circle we get the top-k results. This observation leads to a 

more efficient algorithm that can (in principle) produce results when accessing even a single 

feature object.  

 

As a result, the algorithm is expected to terminate earlier, by accessing only a handful of 

feature objects. This approach incurs additional processing cost at the Map phase (i.e., 

computation of the Jaccard score), but the imposed overhead to the overall execution time is 

minimal. 

 

Lemma 3. (Correctness of Early Termination eSPQsco) Given a query q and an ordering of 

feature objects {fi} based on decreasing score w(fi, q), it is safe to stop accessing more 

feature objects as soon as k data objects are retrieved within distance r from any already 

accessed feature object. 

 

3.4.2.1 Map Phase 

 

Algorithm 5 describes the Map function, where the only modifications are related to the 

second part of the composite key (lines 5, 8, and 10).  

 

In the case of data objects, this must be set to a value strictly higher than any potential Jaccard 

value, i.e., it can be set equal to 2, since the Jaccard score is bounded in the range [0, 1]. Thus, 

data objects will be accessed before any feature object.  

 

In the case of a feature object f, it is set to the Jaccard score w(f, q) of f with respect to the 

query q. Obviously, the customized Comparator must also be changed in order to enforce the 

ordering, from highest scores to lowest scores.  
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   1:  𝐈𝐧𝐩𝐮𝐭: 𝑞(𝑘, 𝑟, 𝑊), grid cells 𝐶 =  { 𝐶1, … , 𝐶𝑅} 

   2:  𝐟𝐮𝐧𝐜𝐭𝐢𝐨𝐧 𝑀𝐴𝑃(𝑥: 𝑖𝑛𝑝𝑢𝑡 𝑜𝑏𝑗𝑒𝑐𝑡) 

   3:  𝐶𝑖  ← {𝐶𝑖 ∶  𝐶𝑖 ∈   𝐶 and 𝑥 enclosed in 𝐶𝑖} 

   4:  𝐢𝐟 𝑥 is a data object 𝐭𝐡𝐞𝐧 

   5:     output  〈(𝑖, 2), 𝑥〉 

   6:  𝐞𝐥𝐬𝐞 

   7:     𝐢𝐟 (𝑥. 𝑊 ⋂ q.W = ∅) then 

   8:        output 〈(𝑖, 𝑤(𝑥, 𝑞)), 𝑥〉 

   9:        𝐟𝐨𝐫 (𝐶𝑗   ∈  𝐶, such that 𝑀𝐼𝑁𝐷𝐼𝑆𝑇(𝑥, 𝐶𝑗)  ≤  𝑟 𝐝𝐨 

10:           output 〈(𝑗, 𝑤(𝑥, 𝑞)), 𝑥〉 

11:        𝐞𝐧𝐝 𝐟𝐨𝐫 

12:     𝐞𝐧𝐝 𝐢𝐟 

13:  𝐞𝐧𝐝 𝐢𝐟 

14:  𝐞𝐧𝐝 𝐟𝐮𝐧𝐜𝐭𝐢𝐨𝐧 

 

Figure 7: Algorithm 5: eSPQsco: Map function 

3.4.2.2 Reduce Phase 

 

Algorithm 6 details the operation of the Reduce phase. After all data objects are loaded in 

memory, the feature objects are accessed in decreasing order of their Jaccard score to the 

query. For each such feature object f, the algorithm draws a circle in the dataspace of the 

current reducer with center the feature object and range r. It then accesses all data objects and 

checks if they reside in that circle. If so (if dist ≤ r) that data object is part of the results. 

 

If k data objects are found in the circle of the best feature object, the procedure stops. Since 

this feature object has the best possible score (in the scope of the current reducer), it is 

guaranteed that no other feature objects will be able to give a better score.  

 

Here we have to note that if the best feature object does not have any data objects in its circle, 

it is discarded – it cannot be part of the results. In that case the next feature object with the 

second best score is accessed etc. until the k data objects are found.  
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In the highly unlikely case that no feature object has any data objects in its circle, then the 

algorithm will not produce a result for this specific reducer, and its performance will degrade 

to that of the pSPQ algorithm. 

 

 

   1:  𝐈𝐧𝐩𝐮𝐭: 𝑞(𝑘, 𝑟, 𝑊) 

   2:  𝐟𝐮𝐧𝐜𝐭𝐢𝐨𝐧 𝑅𝐸𝐷𝑈𝐶𝐸(𝑘𝑒𝑦, 𝑉: objects assigned to cell with id 𝑘𝑒𝑦) 

   3:  𝐟𝐨𝐫 (𝑥 ∈  𝑉) 𝐝𝐨 

   4:     𝐢𝐟 𝑥 is a data object 𝐭𝐡𝐞𝐧 

   5:        Load 𝑥 in memory 𝑂𝑖 

   6:     𝐞𝐥𝐬𝐞 

   7:        𝐢𝐟 ∃𝑝 ∈  𝑂𝑖 ∶ 𝑑(𝑝, 𝑥) ≤ 𝑟 𝐭𝐡𝐞𝐧  

   8:           output 〈𝑝, 𝑤(𝑥, 𝑞)〉 // ℎ𝑒𝑟𝑒:  𝑤(𝑥, 𝑞)  = 𝜏(𝑝) 

   9:           𝑐𝑛𝑡 + +         

10:           𝐢𝐟 (𝑐𝑛𝑡 = 𝑘) 𝐭𝐡𝐞𝐧 

11:                 break        

12:              𝐞𝐧𝐝 𝐢𝐟 

13:        𝐞𝐧𝐝 𝐢𝐟 

14:     end if 

15:  𝐞𝐧𝐝 𝐟𝐨𝐫 

16:  𝐞𝐧𝐝 𝐟𝐮𝐧𝐜𝐭𝐢𝐨𝐧   

 

Figure 8: Algorithm 6: eSPQsco: Reduce function 
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3.5. Theoretical results 

 

In this section, we analyze the space and time complexity in the Reduce phase, which relate to 

the number of cells and the number of duplicate objects. 

 

3.5.1 Complexity Analysis 

 

Let R denote the number of reducers, which is also equivalent to the number of grid cells. 

Further, let Oi and Fi denote the subset of the data and feature object s assigned to the i-th 

reducer respectively.  

 

Notice that Fi contains both the feature objects enclosed in the cell corresponding to the i-th 

reducer, as well as the duplicated feature objects that are located in other neighboring cells. In 

other words, it holds that: 

 

⋃ |𝐹𝑖|  ≥  |𝐹|

𝑅

𝑖=1

 

 

In the case of the initial parallel algorithm that does not use early termination (Section 4), a 

Reducer needs to store in memory the data objects |Oi| and the list of k data objects with best 

scores, leading to space complexity: O(|Oi|) since |Oi| >> k. 

 

On the other hand, the time complexity is: O(|Oi| * |Fi|), since in worst case for all data objects 

and for each feature object the score is computed. In practice, when using the early 

termination the processing cost of each Reducer is significantly smaller, since only few 

feature objects need to be examined before reporting the correct result set. 

 

If we make the simplistic assumption that the work is shared fairly in the R Reducers (e.g., 

assuming uniform distribution and a regular uniform grid), then we can replace in the above 

formulas:  

|𝑂𝑖|  =  
|𝑂|

𝑅
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Let us also consider the duplication factor df  of the feature dataset F, which is a real number 

that is grid-dependent and data-dependent, such that: 

 

⋃ |𝐹𝑖| 

𝑅

𝑖=1

 =  𝑑𝑓 ∗  |𝐹| 

 

Then, we can also replace in the above formulas: 

 

|𝐹𝑖|  =  
𝑑𝑓 ∗ |𝐹|

𝑅
 

 

Thus, the processing cost of a Reducer is proportional to: 

 

|𝑂𝑖| ∗  |𝐹𝑖| =  
|𝑂|

𝑅
 ∗  

𝑑𝑓 ∗ |𝐹|

𝑅
 

 

3.5.2 Estimation of the Duplication Factor 

 

In the following, we assume that the size a of each side of a grid cell is larger than twice the 

query radius, i.e., 𝑎 ≥  2𝑟, or equivalently 𝑟 ≤ =  
𝑎

2
 . This is reasonable, since we expect r to 

be smaller than the size of a grid cell.  

 

Depending on the area where a feature object is positioned, different number of duplicates of 

this object will be created. Figure 9 shows an example of a grid cell.  

 

Given a feature object enclosed into a cell, we identify four different cases. If the feature 

object has a distance smaller than or equal to r from any cell corner then the feature object is 

enclosed in the area A1 that is depicted as the dotted area. In this case, the feature object must 

be duplicated to all three neighboring cells to the corner of the cell.  

 

If the feature object has a distance smaller than or equal to r from two cell borders but not 

from a cell corner then the feature object is enclosed in area A3. This area is depicted with 

solid blue color defined by the four rectangles, but does not include the circles.  
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If located in A3, then only 2 duplicates will be created (not on the diagonal cell). The third 

area is A2 depicted as dashed area and corresponds to the feature objects that have a distance 

smaller than or equal to r from only one border of the cell. In this case, only one duplicate is 

needed. Finally, if the feature object is enclosed in the remaining area of the cell (white area, 

called area A4), no duplication is needed.  

 

Obviously, since it holds 𝑟 ≤ =  
𝑎

2
 , any feature object that belongs to a cell is located in only 

one of these four areas. Let |Ai| denote the surface of area Ai, and A denote the area of the 

complete cell. Then:  

•  |𝐴1|  =  4 ・
𝜋𝑟2

4
 =  𝜋𝑟2  

•  |𝐴2|  =  4 ・𝑟2  −  |𝐴1|  =  (4 −  𝜋) 𝑟2  

•  |𝐴3|  =  4 ・ (𝛼 −  2𝑟)𝑟  

•  |𝐴4|  =  𝛼2  −  |𝐴1|  − |𝐴2|  − |𝐴3|  =   (𝛼 −  2𝑟)2  

•  |𝐴|  =  𝛼2  

 

Let P(Ai) denote the probability that a feature object belongs to area Ai. Then, if we assume 

uniform distribution of feature objects in the space, we obtain the following probabilities: 

(𝐴𝑖)  =  
|𝐴𝑖|

|𝐴|
 . Based on this, given n feature objects enclosed in a cell, we can calculate the 

total number of feature objects (including duplicates), denoted by �̂�, of the n feature points: 

 

 �̂�  =  3 ・ 𝑛 ・ 𝑃(𝐴1)  +  2 ・ 𝑛 ・ 𝑃(𝐴2)  +  𝑛 ・ 𝑃(𝐴3)  +  𝑛  

 

and we  can calculate the duplication factor df for this cell:  

 

𝑑𝑓 =  
�̂�

𝑛
   

       =  3 ・ 𝑃(𝐴1) +  2 ・ 𝑃(𝐴2) +  𝑃(𝐴3) +  1 

        =  3 
𝜋𝑟2

𝛼2
 +  2

(4 − 𝜋)𝑟2

𝛼2
   +  4

(𝑎 − 2𝑟)𝑟

𝛼2
+  1 

        =  
𝜋𝑟2

𝛼2
 +  

4𝑟

𝑎
 +  1 
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Based on the above formula, we conclude that the worst value of 𝑑𝑓is 3 +
𝜋

4
 for the case of 

𝑎 =  2𝑟 and it holds that 1 ≤  𝑑𝑓  ≤  3 +  
𝜋

4
 for any query range r such that 𝑎 ≤ 2𝑟. 

 

Also, the duplication factor depends only on the ratio of the cell size to the query range, under 

the assumption of uniform distribution. Moreover, the formula shows that smaller cell size α 

(compared to the query range r) increases the number of duplicated feature objects. Put 

differently, a larger cell size α reduces the duplication of feature objects. 

 

 

Figure 9: Breaking a cell in areas based on the number of duplicates. 

3.5.3 Analysis of the Cell Size 

 

Even though using a larger cell size α reduces the total number of feature objects, it also has 

significant disadvantages. 

 First, it results in fewer cells thus reducing parallelism. 

 Second, the probability of obtaining imbalanced partitions in the case of skewed data 

is increased.  

 

Let us assume that all R cells can be processed in a single round, i.e., the hardware resources 

are sufficient to launch R Reduce tasks in parallel. 
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In this case, the total processing time depends on the performance of one Reducer, which as 

mentioned before depends on: 

 

|𝑂𝑖|・ |𝐹𝑖| =  
|𝑂|

𝑅
 ∗

𝑑𝑓  ∗ |𝐹|

𝑅
 =  |𝑂| ∗  |𝐹| ∗  

𝑑𝑓 

𝑅2
  

 

If we normalize the dataset in [0, 1] × [0, 1], then 𝛼 ≤  1 and  =  
1

𝛼
 .  

 

Then, |𝑂𝑖| ∗ |𝐹𝑖| =  |𝑂| ∗ |𝐹| ∗ 𝑑𝑓 ∗ 𝑎4.  

 

In order to study the performance of one Reducer while varying α, it is sufficient to study 𝑑𝑓 ∗

𝑎4 since the remaining factors are constant. Based on the estimation of 𝑑𝑓 in the previous 

section, 

 

𝑑𝑓 ∗ 𝑎4 =  (
𝜋𝑟2

𝑎2 
+ 

4𝑟

𝑎
+ 1) ∗ 𝑎4  = 𝜋 ∗ 𝑟2 ∗ 𝑎2 + 4 ∗ 𝑟 ∗ 𝑎3 +  𝑎4 

 

If we consider r as a constant, then for increasing positive values of a, the value of the 

previous equation increases, which means that the complexity of the algorithm increases. 

Thus, a smaller cell size α increases the number of cells and parallelism, and also reduces the 

processing cost of each Reducer. 

 

 

3.5.4 Worst case performance of eSPQlen algorithm 

 

The eSPQlen algorithm, as mentioned in section 5.1, accesses the feature objects by the 

number of features the have in |f.W| in increasing order. That means that the first feature 

objects that will be evaluated will be those that have at least a word in their |f.W|. We say at 

least because of the filter applied during the map phase (line 9 at Algorithm 3). 
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The early termination filter for the reduce function of the eSPQlen algorithm states:  

 

upper bound =   𝑤 ̅̅ ̅(𝑓, 𝑞) =  { 

    1          , |𝑓. 𝑊| < |𝑞. 𝑊| 
|𝑞. 𝑊|

|𝑓. 𝑊|
   , |𝑓. 𝑊| ≥ |𝑞. 𝑊|

 

 

Let’s assume the following scenario: It holds that |𝑓. 𝑊| ≥ |𝑞. 𝑊| but there are no feature 

objects that have score w|f,q| = 
|𝑞.𝑊|

|𝑓.𝑊|
.  

 

In that case the early termination condition will not be satisfied by the feature objects that 

have the minimum number of features which we denote as |𝑓. 𝑊|′ from now on, nor will it be 

satisfied by any other feature objects that have number of features > |𝑓. 𝑊|′ ,since the 

denominator on the Jaccard score index formula will be greater. For this specific reason the 

algorithm needs to update the upper bound value each time a new feature object with 

|𝑓. 𝑊|𝑐𝑢𝑟𝑟𝑒𝑛𝑡 > |𝑓. 𝑊|′ 

 

Lemma 4. (Worst case performance of eSPQlen algorithm) At the worst case, the eSPQlen 

algorithm will need to evaluate all the feature objects that have:  

 

|𝑓. 𝑊|𝑐𝑢𝑟𝑟𝑒𝑛𝑡  ≥  
|𝑞. 𝑊| ∗ ( |𝑞. 𝑊| ⋃ |𝑓. 𝑊|′)

|𝑞. 𝑊| ⋂ |𝑓. 𝑊|′
 

  

where |𝑓. 𝑊|′ stands for the last feature object that the top-k memory has. 

 

Proof: First we assume that for a specific reducer we receive both some data objects and some 

feature objects. If this condition is not satisfied then that specific reducer cannot produce (and 

will not produce) any results. Now let’s assume that |𝑓. 𝑊| ≥ |𝑞. 𝑊| (The alternate possibility 

|𝑓. 𝑊| < |𝑞. 𝑊|will be examined later). Since the reducer has some feature objects, that 

means that all of those feature objects share at least one common term with the user specified 

query (otherwise they would be cut from further processing by the filter applied during the 

map phase of the algorithm). Since the feature objects are ranked (in increasing order) by the 

number of feature they have, the first feature object to be processed will have the 

 𝑚𝑖𝑛|𝑓. 𝑊| = |𝑓. 𝑊|′  
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If this specific feature object has one or more data objects in its vicinity (inside the circle with 

center the f.o and radius r) then that/those data objects will be part of the results list (the top-k 

memory will hold that/those data objects). In case that feature object is not near a data object, 

it will be discarded and the second feature object will be evaluated. If the second f.o doesn’t 

have any data objects in its vicinity, it is discared as well etc, until a f.o that has one or more 

data objects in its vicinity is found. (In the highly unlikely case that no feature object has any 

data objects in its vicinity then the reducer will not produce any result so the results memory 

will be empty) 

 

Since a feature object was found that has one or more data objects in its vicinity, we are 

interested in the number of features it has. That number is |𝑓. 𝑊|′ and is important to know. 

Now the top-k memory will be filled with the id of this specific data object(s).  

 

Since we keep the top-k memory sorted (decreasing order so that the best score comes first), 

the last position of the memory will hold the id of the first data object that satisfied the range 

query. Also let’s assume that this specific feature object does not have a score that is equal to 

the upper limit score = 
|𝑞.𝑊|

|𝑓.𝑊|′
  or in other words, not all of its terms are the same with the user 

specified query. In that case the early termination criterion will not be satisfied by this 

specific feature object and the next one will have to be evaluated. 

 

Now let’s assume that all the remaining feature objects that the reducer received do not have a 

score that is equal to their possible maximum score. That means that 

 

𝑤(𝑓, 𝑞) <  𝜏 ̅ =>  
|𝑞. 𝑊| ∩ |𝑓. 𝑊|𝑐𝑢𝑟𝑟𝑒𝑛𝑡

|𝑞. 𝑊| ⋃ |𝑓. 𝑊|𝑐𝑢𝑟𝑟𝑒𝑛𝑡
 <

|𝑞. 𝑊|

|𝑓. 𝑊|𝑐𝑢𝑟𝑟𝑒𝑛𝑡
 

 

This is the absolute worst case for the algorithm. The algorithm will continue to evaluate the 

feature objects and compare the current worst top-k score with the current upper limit/early 

termination criterion.  
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Since all of the feature objects have scores lower than their maximum possible, the algorithm 

will continue to evaluate feature objects up to the point that the early termination criterion is 

satisfied: 

 

That is, 𝜏 ̅  ≥ 𝑤 ̅̅ ̅(𝑓, 𝑞).  But the score 𝜏 ̅is equal to the score of the last object in the top-k 

memory or:   

 

𝜏 ̅ =  
|𝑞. 𝑊| ⋂ |𝑓. 𝑊|′

|𝑞. 𝑊| ⋃ |𝑓. 𝑊|′
 

 

By replacing this equation to the previous we get:  

 

𝜏 ̅  ≥ 𝑤 ̅̅ ̅(𝑓, 𝑞) =>  
|𝑞. 𝑊| ⋂ |𝑓. 𝑊|′

|𝑞. 𝑊| ⋃ |𝑓. 𝑊|′
 ≥   

|𝑞. 𝑊|

|𝑓. 𝑊|𝑐𝑢𝑟𝑟𝑒𝑛𝑡
 

 

By solving this equation for |𝑓. 𝑊|𝑐𝑢𝑟𝑟𝑒𝑛𝑡  we get that: 

 

|𝑓. 𝑊|𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ∗ |𝑞. 𝑊| ⋂ |𝑓. 𝑊|′ ≥ |𝑞. 𝑊|  ∗  |𝑞. 𝑊| ⋃ |𝑓. 𝑊|′ => 

   

|𝑓. 𝑊|𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ≥
|𝑞. 𝑊|  ∗  |𝑞. 𝑊| ⋃ |𝑓. 𝑊|′

|𝑞. 𝑊| ⋂ |𝑓. 𝑊|′
 ∎ 

  

We now need to examine the opposite possibility, that |𝑓. 𝑊| < |𝑞. 𝑊|. All other conditions 

are the same as above (worst case for all f.o not having a score equal to the upper limit). 

 

It is easy to see that in this case nothing changes. The upper limit score is still updated each 

time |𝑓. 𝑊|𝑐𝑢𝑟𝑟𝑒𝑛𝑡 is increased. Regardless of the |𝑓. 𝑊|′ the first f.o that makes it into the 

results memory has, the early termination criterion will check the 𝜏 ̅  ≥ 𝑤 ̅̅ ̅(𝑓, 𝑞) condition. 

 

By following the same computation as above, we reach the exact same formula. 

 

This proves the lemma.  
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3.6. Experimental evaluation 

 

In this section, we report the results of our experimental study. All algorithms are 

implemented in Java. 

 

Table 3: Experimental parameters (default values in bold) 

  Parameter   Values 

  Datasets 
  Real: {TW, FL} 

  Synthetic: {UN, CL} 

  Query Keywords (|q.W|)   1, 3, 5, 10 

  Query Radius (r) (% of grid cell side α)   5%, 10%, 25%, 50% 

  Top-k   5, 10, 50, 100 

  Grid size (FL, TW)   35x35, 50x50, 75x75, 100x100 

  Grid size (UN, CL)   10x10, 15x15, 50x50, 100x100 

 

 

3.6.1 Experimental Setup 

 

Platform: We deployed our algorithms in an in-house CDH cluster consisting of sixteen (16) 

server nodes. Each of the nodes d1-d8 have 32GB of RAM, 2 disks for HDFS (5TB in total) 

and 2 CPUs with a total of 8 cores running at 2.6 GHz. The nodes d9-d12 have 128GB of 

RAM, 4 disks for HDFS (8TB in total) and 2 CPUs with a total of 12 cores (24 hyper threads) 

running at 2.6 GHz. Finally, each of the nodes d13-d16 is equipped 128GB RAM, 4 disks for 

HDFS (8TB in total), and 2 CPUs with a total of 16 cores running at 2.6GHz. 

 

Each of the servers in the cluster functions as DataNode and NodeManager, while one of 

them in addition functions as NameNode and ResourceManager. Each node runs Ubuntu 

12.04. We use the CDH 5.4.8.1 version of Cloudera and Oracle Java 1.7.  
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The JVM heap size is set to 1GB for Map and Reduce tasks. We configure HDFS with 

128MB block size and use a default replication factor of 3.  

 

Datasets: In order to evaluate the performance of our algorithms we used four different large-

scale datasets.  

 

Two real datasets are included, a dataset of tweets obtained from Twitter and a dataset of 

images obtained from Flickr.  

 

The Twitter dataset (TW) was created by extracting approximately 80 million tweets which 

requires 5.7GB on disk. Besides a spatial location, each tweet contains several keywords 

extracted from its text, with 9.8 keywords on average per tweet, while the size of the 

dictionary is 88,706 keywords.  

 

The Flickr dataset (FL) contains metadata of approximately 40 million images, thus capturing 

3.5GB on disk. The average number of keywords per image is 7.9 and the dictionary contains 

34,716 unique keywords.  

 

In addition, we created two synthetic datasets in order to test the scalability of our algorithms 

with even larger datasets.  

 

The first synthetic dataset consists of 512 million spatial (data and feature) objects that follow 

a uniform (UN) distribution in the data space. Each feature object is assigned with a random 

number of keywords between 10 and 100, and these keywords are selected from a vocabulary 

of size 1,000. The total size of the file is 160GB.  

 

The second synthetic dataset follows a clustered (CL) distribution. We generate 16 clusters 

whose position in space is selected at random. All other parameters are the same. The total 

size of the generated dataset is 160GB, as in the case of UN. Figures 9,10,11 depict the spatial 

distribution of the datasets employed in our experimental study. In all cases, we randomly 

select half of the objects to act as data objects and the other half as feature objects.  
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Figure 9: Spatial distribution of flickr dataset 

 

Figure 10: Spatial distribution of twitter dataset 
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Figure 11: Spatial distribution of clustered dataset 

Algorithms: We compare the performance of the following algorithms that are used to 

compute the spatial preference query using keywords in a distributed and parallel way in 

Hadoop: 

 pSPQ: the parallel grid-based algorithm without early termination , 

 eSPQlen: the parallel algorithm that uses early termination by accessing feature 

objects based on increasing keyword length, and  

 eSPQsco: the parallel algorithm that uses early termination by accessing feature 

objects based on decreasing. 

 

For clarification purposes, we note that centralized processing of this query type is infeasible 

in practice, due to the size of the underlying datasets and the time necessary to build 

centralized index structures.  

 

Query generation: Queries are generated by selecting various values for the query radius r and 

a number of random query keywords q.W from the vocabulary of the respective dataset. We 

also explored alternative methods for keyword selection instead of random selection, such as 

selecting from the most frequent words or the least frequent words, but the execution time of 

our algorithms was not significantly affected. This is shown in figures 30 and 31. 
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Parameters: During the experimental evaluation a number of parameters were varied in order 

to observe their effect on each algorithm’s runtime. These parameters, reported in Table 3, 

are: 

 the radius of the query, 

 the number of keywords of the query, 

 the size of the grid that we use to partition the data space,  

 the number of the k results that the algorithm returns, and  

 the size of the dataset. 

 

In all cases, the number of Reducers is set equal to the number of cells in the spatial grid.  

 

Metrics: The algorithms are evaluated by the time required for the MapReduce job to 

complete, i.e., the job execution time. Another metric that was considered is the duplication 

factor of the feature objects during the MapReduce job. This was done in order to get a better 

insight of the dependence of the execution time and the grid size. The duplication of the 

feature objects was measured and plotted. The results can be seen at figure 12. 

 

Figure 12: Duplication of feature objects 
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3.6.2 Experimental Results 

 

3.6.2.1 Experiments with Real Data: Flickr 

Figures 13, 14, 15 and 16 present the results obtained for the Flickr (FL) dataset.  

 

First, in Figure 13, we study the effect of grid size to the performance of our algorithms. The 

first observation is that using more grid cells (i.e., Reduce tasks) improves the performance, 

since more, yet smaller, parts of the problem need to be computed.  

 

The algorithms that employ early termination (eSPQlen, eSPQsco) are consistently much 

faster than the grid-based algorithm pSPQ. In particular, eSPQsco improves pSPQ up to a 

factor of 6x. Between the early termination algorithms, eSPQsco is consistently faster due to 

the sorting based on score, which typically needs to access only a handful of feature objects 

before reporting the correct result. 

 

Figure 14 shows the effect of varying the number of query keywords (|q.W|). In general, when 

more keywords are used in the query more feature objects are passed to the Reduce phase, 

since the probability of having non-zero Jaccard similarity increases. 

 

This is more evident in pSPQ, whose cost increases substantially with increased query 

keyword length. Instead, eSPQsco is not significantly affected by the increased number of 

keywords, because it still manages to find the correct result after examining only few feature 

objects. 

 

This experiment demonstrates the value of the early termination criterion employed in 

eSPQsco.  
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Figure 13: Flickr dataset grid size experiment results 

 

Figure 14: Flickr dataset keywords experiment results 
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Figure 15: Flickr dataset range experiment results 

In Figure 15, we gradually increase the radius of the query. In principle, this makes query 

processing costlier as again more feature objects become candidates for determining the score 

of any data object.  

 

However, the early termination algorithms are not significantly affected by increased values 

of radius, as they can still report the correct result after examining few feature objects only.  

 

Finally, in Figure 16, we study the effect on increased values of top-k. The chart shows that 

all algorithms are not particularly sensitive to increased values of k, because the cost of 

reporting a few more results is marginal compared to the work needed to report the first 

result. 
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Figure 16: Flickr dataset top-k parameter experiment results 

3.6.2.2 Experiments with Real Data: Twitter 

 

Figures 17, 18, 19 and 20 depict the results obtained in the case of the Twitter (TW) dataset. 

In general, the conclusions drawn are quite similar to the case of the FL dataset. Algorithms 

that employ early termination, and in particular eS-PQsco, scale gracefully in every setup.  

 

Even in the harder setups of many query keywords (Figure 18) and larger query radius 

(Figure 19), the performance of eSPQsco is not significantly affected. This is because as soon 

as the first few feature objects with highest scores are examined, the algorithm can safely 

report the top-k data objects in the cell. In other words, the vast majority of feature objects 

assigned to a cell are not actually processed, and exactly this characteristic makes the 

algorithm scalable both in the case of more demanding queries as well as in the case of larger 

datasets. 
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Figure 17: Twitter dataset grid size experiment results 

 

Figure 18: Twitter dataset keywords experiment results 
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Figure 19: Twitter dataset range experiment results 

 

Figure 20: Twitter dataset top-k parameter experiment results 
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3.6.2.3 Experiments with Uniform Data 

 

In order to study the performance of our algorithms for large-scale datasets, we employ in our 

study synthetic datasets. Figures 22, 23, 24 and 25 present the results obtained for the 

Uniform (UN) dataset. Notice the log-scale used in the y-axis. A general observation is that 

eSPQsco that uses early termination outperforms pSPQ by more than one order of magnitude. 

This is a strong indication in favor of the algorithms employing early termination, as their 

performance gains are more evident for larger datasets, such as the synthetic ones used in our 

study. Also, the general trends in the charts are in accordance with the conclusions derived 

from the real datasets. It is noteworthy that the performance of eSPQsco remains relatively 

stable in the harder setups consisting of many query keywords (Figure 23) and larger query 

radius (Figure 24).  

 

Figure 21: Scalability of our algorithms performance when varying the dataset size 

Moreover, Figure 20 shows the results obtained when we vary the dataset size. This 

experiment aims at demonstrating the nice scaling properties of our algorithms. In particular, 

pSPQ scales linearly with increased dataset size, which is already a good result. However, the 

algorithms that employ early termination perform much better, since they only examine few 
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feature objects regardless of the increase of dataset size. The experiment also shows that the 

gain of the algorithms that employ early termination compared to pSPQ increases for larger 

datasets. 

 

Figure 22: Uniform dataset grid size experiment results 

 

Figure 23: Uniform dataset keywords experiment results 
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Figure 24: Uniform dataset range experiment results 

 

Figure 25: Uniform dataset top-k parameter experiment results 



61 

 

3.6.2.4 Experiments with Clustered Data 

 

Figures 26, 27, 28 and 29 present the results obtained for the Clustered(CL) dataset. It should 

be noted that such a data distribution is particularly challenging as: (a) it is hard to fairly 

assign the objects to Reducers, thus typically some Reducers are overburdened, and (b) 

excessive object duplication can occur when a cluster is located on grid cell boundaries. 

 

 

Figure 26: Clustered dataset grid size experiment results 

 

 

For the CL dataset, we observed that pSPQ results in extremely high execution time, thus it is 

not depicted in the charts. For instance, for the default setup, it takes approximately 48 hours 

for pSPQ to complete. This is due to the fact that some Reducers are assigned with too many 

feature objects and pSPQ has to perform O(|Oi|・|Fi|) score computations before termination. 

Still, the algorithms employing early termination perform much better in all cases.  
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Again, when eSPQsco is considered, its performance is the best among all algorithms, and it 

remains quite stable even in the case of more demanding queries. This experiment verifies the 

nice properties of eSPQsco, even for the combination of large-scale dataset with a demanding 

data distribution. 

 

By using an emulator that emulates the map/reduce job (see section 3.8), we can verify that at 

most cases, the eSPQsco only evaluates a handful of feature objects in order to produce the 

result (usually only 1). That explains its significantly better performance than eSPQlen. 

 

 

 

Figure 27: Clustered dataset keywords experiment results 



63 

 

 

Figure 28: Clustered dataset range experiment results 

 

Figure 29: Clustered dataset top-k parameter experiment results 
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3.6.2.5 Query keyword selection and execution time 

 

In this section we describe the effect the query keyword selection method has on the 

execution time. We designed and executed two experiments to show that dependence. We 

chose the eSPQsco algorithm as our basis and run several queries keeping all parameters the 

same, except for the query keywords. 

 

In order to be as thorough as possible, we chose to run the queries with some of the most 

frequent words in the dataset, some of the least frequent and some random.  

 

This way we cover all possibilities and if a relation between the method of selecting the 

keywords and execution time exists, it will be reflected on the results.  

 

Also we run the experiment on all of our available datasets in order to verify that the results 

are not dataset dependent. 

 

 

Figure 30: eSPQsco execution time based on keyword selection (1/2) 
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In figure 30 we can see the first experiment: We chose the 3 most common, the 3 least 

common and 3 random words as the query input. As we can see, for all the datasets, the 

execution time does not vary significantly.  

 

In figure 31 we can see the second experiment. This time we chose 10 of the most common, 

least common and random words as the query input. Again the results are not affected in any 

significant way by the process of the query keyword selection. 

 

This justifies the decision we made to use a random selection of keywords for each set of 

experiments on our datasets. (That selection remained the same during the run of all the 

experiments for that specific dataset) 

 

 

 

Figure 31: eSPQsco execution time based on keyword selection (2/2) 

  



66 

 

3.7. Performance improvement techniques 

 

In this section we will examine possible improvements that can be achieved regarding the 

performance of the algorithms. Those improvements are not on the algorithms themselves – 

we showed that the eSPQsco algorithm is the optimal, but have to do with the grid 

partitioning method of the datasets. 

 

3.7.1 Dynamic Grid 

 

So far we only considered the use of a uniform grid. That is logical and of course yields the 

best possible results in case of datasets that their objects follow a uniform distribution. But as 

we saw in the case of the clustered dataset experiment, the performance of the algorithms is 

highly dependent on the distribution of the objects inside the dataset. This is expected. As we 

can see in figure 32 that depicts a clustered dataset, the objects (both data and feature) are in 

close proximity to each other and more importantly, do not take up much of the available 

dataset’s spatial dimensions. That in turn will lead to a highly unbalanced load to the reducers 

using the uniform grid partitioning method. Some reducers will receive no input, while others 

will be called to carry out the bulk of the computation. In the same picture we can see an 

example 5x5 static grid. Notice how many of the cells are empty. 

 

 

Figure 32: Clustered file with 5x5 static grid 
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To address this issue we consider a dynamic grid partitioning method. This method takes into 

account the spatial distribution of the data and finds an improved way of partitioning the 

dataset into cells. By achieving such a partitioning scheme, the processing load is distributed 

much more evenly to the reducers, thus significantly reducing the total processing time. 

 

To achieve such a partitioning scheme, the dataset needs to be preprocessed. In other words, 

we need to introduce a new step before the execution of our algorithms. That step will need to 

find the best possible partitioning scheme without incurring a significant time penalty to the 

total execution of our MapReduce jobs. For example, if we wanted to find the centroids of a 

clustered dataset of 512m entries, the use of an algorithm like k-means would be inadvisable. 

It’s time complexity is greater than O(n^2), (where n the dataset size) that our worst algorithm 

requires to solve the problem. So most of the time would be spent on trying to optimize the 

solution, than the actual solution of the problem itself. 

 

In figure 33 we can see the same clustered dataset as in figure 32, but this time partition with 

a 5x5 dynamic grid. Notice the large variation between the cell sizes. Also far less cells are 

empty.  

 

Figure 33: Clustered file with 5x5 dynamic grid 
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3.7.2 Reservoir Sampling 

 

To address this issue we propose the use of a sampling method like reservoir sampling.  

 

The reservoir sampling method operates in the following manger: An array with fixed size ,i, 

is specified – that is the reservoir. Then the dataset is processed linearly and the first values of 

the dataset (up to the size of the reservoir) are stored in the reservoir array (the coordinates of 

the objects). When the i+1 element of the dataset is processed it will replace a random 

element of the reservoir with probability  
1

𝑖
  . This probability is gradually decreased as the 

dataset is processed.  

 

By providing a reasonable size for the reservoir (eg 1% of the dataset size), at the end of the 

procedure the reservoir will hold a representative sample for the distribution of the objects.  

 

The next step is to sort the reservoir in increasing order.  

 

Since we use a two-dimensional space, we need to create 2 reservoirs, one for each axis. Now, 

instead of using the static grid partitioning method that would produce a cell at each of the: 

𝑑𝑎𝑡𝑎𝑠𝑒𝑡𝑆𝑖𝑧𝑒/√𝑛𝑢𝑚𝑂𝑓𝑐𝑒𝑙𝑙𝑠 

we split at: 

𝑟𝑒𝑠𝑒𝑟𝑣𝑜𝑖𝑟𝑆𝑖𝑧𝑒[𝑟𝑒𝑠𝑒𝑟𝑣𝑜𝑖𝑟𝑆𝑖𝑧𝑒/√𝑛𝑢𝑚𝑂𝑓𝑐𝑒𝑙𝑙𝑠] 

(the element of the reservoir array at position   𝑟𝑒𝑠𝑒𝑟𝑣𝑜𝑖𝑟𝑆𝑖𝑧𝑒/√𝑛𝑢𝑚𝑂𝑓𝑐𝑒𝑙𝑙𝑠).  

 

This method produces a much fairer grid in terms of data distribution in each of its cells. 

Instead of having some grid cells overloaded with points of interest and others almost empty, 

the load is balanced. As a result a significant reduction in the total processing time is 

achieved, especially for non-early termination algorithms (since they process all of the points 

of interest in the cell).  
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Figure 34: Gains by using mbrs or dynamic grid 

Another possible improvement that has to do with the duplication factor of the feature objects, 

is the use of mbr’s (maximum bounding rectangles) of the grid cells instead of their physical 

limits during the collision detection test. In cases of real datasets that do not follow uniform 

distribution, the maximum bounding rectangle of a cell usually has significantly lower area 

than the cell itself. If this is the case, the collision detection filter will produce significantly 

fewer duplicates of the feature objects. This in turn has an effect of the performance, 

especially in the pSPQ algorithm. 

  

The experimental results for the aforementioned techniques can be seen in figure 34. In that 

figure we see how the performance of one of our algorithms (pSPQ) is affected by the use of a 

dynamic grid or mbrs. The most notable gains are given by the collision detection filter 

(which determines to which cells a f.o is duplicated) – if cd is off then each f.o is duplicated 

to all of its adjacent cells, thus significantly increasing the total number of objects each 

reducer receives. The use of mbrs shaves off some of the execution time while the dynamic 

grid offers slightly better results.  
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The gains are even more impressive if we take into account that the total execution time 

includes the time required by the map phase, which is constant (since the same piece of code 

runs for all the cases).  

 

To better quantify the results a new experiment was performed on a small dataset (cluster 

with 2 million entries). The map phase required approximately 10 seconds to complete. In the 

first case, where no performance improving technique is used, the total execution time was 42 

seconds (that means that the reduce phase took 32 seconds).  

 

Using the mbrs technique the total execution time dropped to 40 seconds, meaning that the 

reduce phase completed in 2 seconds less, or a 6.25% improvement.  

 

Using the dynamic grid, the total execution time dropped further, to 37 seconds, meaning the 

reduce phase completed in 5 seconds less, or a 15.625% improvement. 

 

Note that we can use both performance improvement techniques but that would require 

running two different preprocessing jobs on the dataset, one to determine the dynamic grid 

and one to determine the mbrs. 
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3.8. Emulator 

  

For the needs of this thesis we also produced a java based emulator that mimics the execution 

of the map-reduce jobs described at the previous sessions. In contrast with the Hadoop cluster, 

the emulator runs on a single machine and executes the reduce jobs sequentially. Its benefits 

are: 

 

 easy debugging of the source code for the three described algorithms 

 more readable output of the map-reduce job using apache POI library to write the 

results to an excel file. 

 

As expected, the emulator does not support processing datasets the size the Hadoop cluster 

does. This is due to the memory constraints imposed by running on a single machine. Also, 

the execution time is greatly increased since each reduce task is processed sequentially.  

 

Below are some figures that show the detailed output of the emulator for a run of the pSPQ 

algorithm: 

Table 4: Emulator output 1/4 

Reducer 
Id 

#of data 
elements 

#of feature 
elements 

#of feature 
elements 

from 
duplication 

sum of feature 
elements (column C 

+ column D) 

#of feature 
elements that 

were 
evaluated 

time taken 

load for 
reducer 
#0: 11410 85072 0 85072 85072 40,495 

load for 
reducer 
#3: 809 569 0 569 569 0,035 

load for 
reducer 
#5: 329 246 57 303 303 0,004 

load for 
reducer 
#6: 34631 26037 5033 31070 31070 4,516 

 

  



72 

 

In table 4 we can see the detailed results for each of the reduce tasks. The emulator keeps 

track for the following parameters: the data objects each reducer received, the feature objects 

it received, how many of the feature objects come from duplication, the sum of feature objects 

that were received, the number of feature objects that were evaluated in order to produce the 

result and finally the time taken for this reducer to complete. 

 

Table 5: Emulator output 2/4 

Vectors initialized in: 1,116 

Map phase completed in: 1,875 

Reducer input sorted in: 0,117 

Reducer phase completed in: 103,879 

Job completed in: 108,056 

  Total memory used during job execution (mb): 937 

  

Table 5 shows some statistics for a query run on the emulator. The times to complete each 

step of the job are recorded, along with the total memory requirements. One interesting thing 

to note is that the intermediate step of sorting the reducer input, which is mandatory for all the 

algorithms, only amounts to a small fraction of the total processing time. This is due to the 

use of the highly optimized sorting function that Java includes. 

 

In table 6 we can see some more detailed results for each of the reducers. This data is stored 

on a new sheet on the output file produced by the emulator. It documents (for each reducer) 

its best calculated score, its id, the feature object that gave that best score and its features. 

That helps a lot with the verification process. 
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Table 6: Emulator output 3/4 

Reducer id: Best score: Data object id: Feature 
object id: 

Features of f.o : 

#0: #1: 0.0833 #:974 #:15 
kv16|kv2|kv10|kv4|kv11|kv15

|kv6|kv13|kv1|kv17 

#0: #2: 0.0833 #:1012 #:15 
kv16|kv2|kv10|kv4|kv11|kv15

|kv6|kv13|kv1|kv17 

#0: #3: 0.0833 #:1211 #:15 
kv16|kv2|kv10|kv4|kv11|kv15

|kv6|kv13|kv1|kv17 

#0: #4: 0.0833 #:1579 #:15 
kv16|kv2|kv10|kv4|kv11|kv15

|kv6|kv13|kv1|kv17 

#0: #5: 0.0833 #:1851 #:15 
kv16|kv2|kv10|kv4|kv11|kv15

|kv6|kv13|kv1|kv17 

#0: #6: 0.0833 #:2141 #:15 
kv16|kv2|kv10|kv4|kv11|kv15

|kv6|kv13|kv1|kv17 

#0: #7: 0.0833 #:2264 #:15 
kv16|kv2|kv10|kv4|kv11|kv15

|kv6|kv13|kv1|kv17 

#0: #8: 0.0833 #:2408 #:15 
kv16|kv2|kv10|kv4|kv11|kv15

|kv6|kv13|kv1|kv17 

#0: #9: 0.0833 #:2698 #:15 
kv16|kv2|kv10|kv4|kv11|kv15

|kv6|kv13|kv1|kv17 

#0: #10: 0.0833 #:2821 #:15 
kv16|kv2|kv10|kv4|kv11|kv15

|kv6|kv13|kv1|kv17 

 

 

Finally in table 7 we can see the top-k results. The emulator creates a new sheet on the output 

file and there it stores the top-k results for the job. That is achieved by comparing the results 

each reducer produced and keeping the k best ones. 

 

Table 7: Emulator output 4/4 

Reducer id: Best score: Data object id: Feature object that gave best score: 

#0 0.0833 #:974 #:15 

#0 0.0833 #:1012 #:15 

#0 0.0833 #:1211 #:15 

#0 0.0833 #:1579 #:15 

#0 0.0833 #:1851 #:15 

#0 0.0833 #:2141 #:15 

#0 0.0833 #:2264 #:15 

#0 0.0833 #:2408 #:15 
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CHAPTER 4. CONCLUSIONS – FURTHER WORK 

 

 4.1. Conclusions 

 4.2. Further Work 

 

4.1. Conclusions 

 

In this thesis we studied the problem of parallel/distributed processing of spatial preference 

queries using keywords.  

 

We proposed scalable algorithms that rely on grid-based re-partitioning of input data in order 

to generate partitions that can be processed independently in parallel.  

 

To boost the performance of query processing, we showed that it is possible to employ early 

termination, thus reporting the correct result set after examining only a handful of the input 

data.  

 

Our experimental study using both real and synthetic datasets shows that our best algorithm 

consistently outperforms other implementations, whilst its performance is not significantly 

affected even in the case of demanding queries.  

 

Moreover, we examined additional possible improvements i.e dynamic grid partitioning and 

the use of mbrs and showed that those two methods, despite requiring an extra preprocessing 

step, offer quantified improvement gains over the static grid partitioning. 
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4.2. Further work 

  

One important contribution of this thesis is that the mechanism that deals with the datasets is 

reusable. If one has to deal with data that belongs to the “big-data” category (or in other 

words hundreds of gigabytes), he can then adopt the partitioning mechanism as described. By 

splitting one large problem into sub-problems, he can then design an algorithm based on the 

problem/query he has to solve.  

 

The queries examined in this thesis used the non-spatial score as the only parameter that 

defines the quality of a feature object/point of interest. In real life applications it makes sense 

to use another score function, the influence score [71].  

 

The influence score is a combination of both the quality of a feature object and its distance to 

the data objects. In other words, a traveler would likely be interested in renting a hotel room 

that has some quality restaurants/cafes nearby that are not necessarily the best ones available, 

just to save the trouble of getting to the best ones.  

 

Such a query would then involve a second parameter that directly impacts the score of each 

feature object, its distance to the candidate data objects.  

 

Formally we could write: = 𝑎 ∗ 𝑤(𝑓, 𝑞) + (1 − 𝑎)𝑑𝑖𝑠𝑡𝑠𝑐𝑜𝑟𝑒(𝑓, 𝑞) , where α ∈ [0,1], is a 

balancing parameter that defines which factor will have a greater influence on the score: the 

textual similarity or the distance between the two objects and 𝑑𝑖𝑠𝑡𝑠𝑐𝑜𝑟𝑒(𝑓, 𝑞) is the spatial 

score that is defined as: 𝑑𝑖𝑠𝑡𝑠𝑐𝑜𝑟𝑒 =  
𝑚𝑎𝑥𝐷𝑎𝑡𝑎𝑠𝑒𝑡𝐷𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛

𝑑𝑖𝑠𝑡(𝑓,𝑞)
 

 

The greater the distance between two points (f,q), the lower the 𝑑𝑖𝑠𝑡𝑠𝑐𝑜𝑟𝑒 is, so the 

𝐼𝑛𝑓𝑙𝑢𝑒𝑛𝑐𝑒𝑆𝑐𝑜𝑟𝑒 between f,g is reduced. The problem with this definition is that the 𝑑𝑖𝑠𝑡𝑠𝑐𝑜𝑟𝑒 

is by definition a continuous variable.  

 

That poses a challenge if we are to implement algorithms with early termination that would 

use the InfluenceScore, since a feature object might have a really low Jaccard score, but being 

extremely close to a data object would give it a high overall score. 
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To tackle this issue we propose using a quantified 𝑑𝑖𝑠𝑡𝑠𝑐𝑜𝑟𝑒. This means that the total possible 

values of 𝑑𝑖𝑠𝑡𝑠𝑐𝑜𝑟𝑒 are already known and defined. For instance let’s assume we have 3 

values (representing “close”, “average distance” and “far”) for the distance between f,q. Each 

possible distance 𝑑𝑖𝑠𝑡(𝑓, 𝑞) would then be assigned a quantified 𝑑𝑖𝑠𝑡𝑠𝑐𝑜𝑟𝑒 with the following 

check:  

 

 If 𝑑𝑖𝑠𝑡(𝑓, 𝑞) < MaxDistance/3 then  𝑑𝑖𝑠𝑡𝑠𝑐𝑜𝑟𝑒 = 1 

 If MaxDistance/3 < 𝑑𝑖𝑠𝑡(𝑓, 𝑞) < 2*MaxDistance/3 then  𝑑𝑖𝑠𝑡𝑠𝑐𝑜𝑟𝑒 = 0.5 

 If 𝑑𝑖𝑠𝑡(𝑓, 𝑞) > MaxDistance/3 then  𝑑𝑖𝑠𝑡𝑠𝑐𝑜𝑟𝑒 = 0.1 

 

Obviously the values 1, 0.5, 0.1 are not important and can be chosen arbitrarily. What is 

important is that the lowest possible distance category gets the highest score and the highest 

category gets the lowest score. Also the total possible distance categories can be as many as 

we like. 

 

Using this technique, we would be able to modify our early termination algorithms to work 

with this query. We would use the same strategy of sending the feature objects to the reducers 

sorted by their Jaccard score, and during the influence score calculation we would calculate 

the distance as before, but we would also retrieve the  𝑑𝑖𝑠𝑡𝑠𝑐𝑜𝑟𝑒 that corresponds to the 

calculated distance. The early termination criterion would be altered to the product of the best 

poi’s Jaccard score with the best 𝑑𝑖𝑠𝑡𝑠𝑐𝑜𝑟𝑒. Taking the poi with the best score and drawing the 

circle with radius MaxDistance/3, we then check if a data object resides in that area. If so we 

have an optimum result. 

 

If this quantification of the 𝑑𝑖𝑠𝑡𝑠𝑐𝑜𝑟𝑒 is acceptable, we have a technique to implement the best 

possible algorithm, based on our early termination work. 

  



77 

 

REFERENCES 

[1] M. L. Yiu, X. Dai, N. Mamoulis, and M. Vaitis, “Top-k Spatial Preference Queries,” in 

ICDE, 2007. 

 

[2] N. Bruno, L. Gravano, and A. Marian, “Evaluating Top-k Queries over Web-accessible 

Databases,” in ICDE, 2002. 

 

[3] A. Guttman, “R-Trees: A Dynamic Index Structure for Spatial Searching,” in SIGMOD, 

1984. 

 

[4] G. R. Hjaltason and H. Samet, “Distance Browsing in Spatial Databases,” TODS, vol. 

24(2), pp. 265–318, 1999. 

 

[5] R. Weber, H.-J. Schek, and S. Blott, “A quantitative analysis and performance study for 

similarity-search methods in highdimensional spaces.” in VLDB, 1998. 

 

[6] K. S. Beyer, J. Goldstein, R. Ramakrishnan, and U. Shaft, “When is “nearest neighbor” 

meaningful?” in ICDT, 1999. 

 

[7] R. Fagin, A. Lotem, and M. Naor, “Optimal Aggregation Algorithms for Middleware,” in 

PODS, 2001. 

 

[8] I. F. Ilyas, W. G. Aref, and A. Elmagarmid, “Supporting Top-k Join Queries in Relational 

Databases,” in VLDB, 2003. 

 

[9] N. Mamoulis, M. L. Yiu, K. H. Cheng, and D. W. Cheung, “Efficient Top-k Aggregation 

of Ranked Inputs,” ACM TODS, vol. 32, no. 3, p. 19, 2007. 



78 

 

[10] D. Papadias, P. Kalnis, J. Zhang, and Y. Tao, “Efficient OLAP Operations in Spatial 

Data Warehouses,” in SSTD, 2001. 

 

[11] S. Hong, B. Moon, and S. Lee, “Efficient Execution of Range Top-k Queries in 

Aggregate R-Trees,” IEICE Transactions, vol. 88-D, no. 11, pp. 2544–2554, 2005. 

 

[12] T. Xia, D. Zhang, E. Kanoulas, and Y. Du, “On Computing Top-t Most Influential 

Spatial Sites,” in VLDB, 2005. 

 

[13] Y. Du, D. Zhang, and T. Xia, “The Optimal-Location Query,” in SSTD, 2005. 

 

[14] D. Zhang, Y. Du, T. Xia, and Y. Tao, “Progessive Computation of The Min-Dist 

Optimal-Location Query,” in VLDB, 2006. 

 

[15] Y. Chen and J. M. Patel, “Efficient Evaluation of All-Nearest-Neighbor Queries,” in 

ICDE, 2007. 

 

[16] P. G. Yokesh Kumar, Ravi Janardan, “Efficient Algorithms for Reverse Proximity Query 

Problems,” in ACM GIS, 2008. 

 

[17] M. L. Yiu, P. Karras, and N. Mamoulis, “Ring-Constrained Join: Deriving Fair 

Middleman Locations from Pointsets via a Geometric Constraint,” in EDBT, 2008. 

 

[18] M. L. Yiu, N. Mamoulis, and P. Karras, “Common Influence Join: A Natural Join 

Operation for Spatial Pointsets,” in ICDE, 2008. 

 

[19] Y.-Y. Chen, T. Suel, and A. Markowetz, “Efficient Query Processing in Geographic Web 

Search Engines,” in SIGMOD, 2006. 

 

[20] V. S. Sengar, T. Joshi, J. Joy, S. Prakash, and K. Toyama, “Robust Location Search from 

Text Queries,” in ACM GIS, 2007. 

 



79 

 

[21] S. Berchtold, C. Boehm, D. Keim, and H. Kriegel, “A Cost Model for Nearest Neighbor 

Search in High-Dimensional Data Space,” in PODS, 1997. 

 

[22] E. Dellis, B. Seeger, and A. Vlachou, “Nearest Neighbor Search on Vertically Partitioned 

High-Dimensional Data,” in DaWaK, 2005, pp. 243–253. 

 

[23] N. Mamoulis and D. Papadias, “Multiway Spatial Joins,” TODS, vol. 26(4), pp. 424–

475, 2001. 

 

[24] A. Hinneburg and D. A. Keim, “An Efficient Approach to Clustering in Large 

Multimedia Databases with Noise,” in KDD, 1998. 

 

[25] E. Amitay, N. Har’El, R. Sivan, and A. Soffer. Web-a-where: geotagging web content. In 

SIGIR, 2004. 

 

[26] A. Arasu, V. Ganti, and R. Kaushik. Efficient exact set-similarity joins. In VLDB, 2006. 

 

[27] J. Ballesteros, A. Cary, and N. Rishe. Spsjoin: parallel spatial similarity joins. In GIS, 

pages 481–484, 2011. 

 

[28] R. J. Bayardo, Y. Ma, and R. Srikant. Scaling up all pairs similarity search. In WWW, 

2007. 

 

[29] C. B¨ohm, B. Braunm¨uller, F. Krebs, and H.-P. Kriegel. Epsilon grid order: An 

algorithm for the similarity join on massive high-dimensional data. In SIGMOD Conference, 

2001. 

 

[30] T. Brinkhoff, H.-P. Kriegel, and B. Seeger. Efficient processing of spatial joins using r-

trees. In SIGMOD Conference, 1993. 

 

[31] X. Cao, G. Cong, and C. S. Jensen. Retrieving top-k prestige-based relevant spatial web 

objects. PVLDB, 3(1):373–384, 2010. 

 



80 

 

[32] X. Cao, G. Cong, C. S. Jensen, and B. C. Ooi. Collective spatial keyword querying. In 

SIGMOD Conference, 2011. 

 

[33] E. P. F. Chan. Buffer queries. IEEE Trans. Knowl. Data Eng., 15(4):895–910, 2003. 

 

[34] S. Chaudhuri, V. Ganti, and R. Kaushik. A primitive operator for similarity joins in data 

cleaning. In ICDE, 2006. 

 

 [35] Y.-Y. Chen, T. Suel, and A. Markowetz.Efficient query processing in geographic web 

search engines. In SIGMOD Conference, 2006. 

  

[36] G. Cong, C. S. Jensen, and D. Wu. Efficient retrieval of the top-k most relevant spatial 

web objects. PVLDB, 2(1):337–348, 2009. 

 

[37] J. Ding, L. Gravano, and N. Shivakumar. Computing geographical scopes of web 

resources. In VLDB, 2000. 

 

[38] A. K. Elmagarmid, P. G. Ipeirotis, and V. S. Verykios. Duplicate record detection: A 

survey. IEEE Trans. Knowl. Data Eng., 19(1):1–16, 2007. 

 

[39] I. D. Felipe, V. Hristidis, and N. Rishe. Keyword search on spatial databases. In ICDE, 

2008.  

 

[40] L. Gravano, P. G. Ipeirotis, H. V. Jagadish, N. Koudas, S. Muthukrishnan, and D. 

Srivastava. Approximate string joins in a database (almost) for free. In VLDB, 2001. 

 

[41] A. Guttman. R-trees: A dynamic index structure for spatial searching. In SIGMOD 

Conference, 1984. 

 

[42] R. Hariharan, B. Hore, C. Li, and S. Mehrotra. Processing spatial-keyword (sk) queries in 

geographic information retrieval (gir) systems. In SSDBM, 2007. 

 



81 

 

[43] G. R. Hjaltason and H. Samet. Distance browsing in spatial databases. ACM Trans. 

Database Syst., 24(2):265–318, 1999. 

  

[44] Z. Li, K. C. K. Lee, B. Zheng, W.-C. Lee, D. L. Lee, and X. Wang. Ir-tree: An efficient 

index for geographic document search. IEEE Trans. Knowl. Data Eng., 23(4):585–599, 2011. 

 

[45] M. D. Lieberman, H. Samet, and J. Sankaranarayanan. Geotagging with local lexicons to 

build indexes for textually-specified spatial data. In ICDE, 2010. 

 

[46] J. A. Orenstein. Spatial query processing in an object-oriented database system. In 

SIGMOD, 1986. 

 

[47] D. Papadias, P. Kalnis, J. Zhang, and Y. Tao. Efficient olap operations in spatial data 

warehouses. In SSTD, 2001. 

 

[48] J. B. Rocha-Junior, O. Gkorgkas, S. Jonassen, and K. Nørv°ag. Efficient processing of 

top-k spatial keyword queries. In SSTD, 2011. 

 

[49] S. Sarawagi and A. Kirpal. Efficient set joins on similarity predicates. In SIGMOD 

Conference, 2004. 

 

[50] S. Vaid, C. B. Jones, H. Joho, and M. Sanderson. Spatio-textual indexing for 

geographical search on the web. In SSTD, 2005. 

 

[51] C. Xiao, W. Wang, X. Lin, and H. Shang. Top-k set similarity joins. In ICDE, 2009. 

 

[52] C. Xiao, W. Wang, X. Lin, J. X. Yu, and G. Wang. Efficient similarity joins for near-

duplicate detection. ACM Trans. Database Syst., 36(3):15, 2011. 

 

[53] D. Zhang, Y. M. Chee, A. Mondal, A. K. H. Tung, and M. Kitsuregawa. Keyword search 

in spatial databases: Towards searching by document. In ICDE,2009. 

 



82 

 

[54] Y. Zhou, X. Xie, C. Wang, Y. Gong, and W.-Y. Ma. Hybrid index structures for 

location-based web search. In CIKM, 2005. 

 

[55] J. Zobel, A. Moffat, and K. Ramamohanarao. Inverted files versus signature files for text 

indexing. ACM Trans. Database Syst., 23(4):453–490, 1998. 

 

[56] P. Bouros, S. Ge, and N. Mamoulis. Spatio-textual similarity joins. PVLDB, 6(1):1–12, 

2012. 

 

[57] X. Cao, G. Cong, C. S. Jensen, and B. C. Ooi. Collective spatial keyword querying. In 

Proc. Of SIGMOD, pages 373–384, 2011. 

 

[58] L. Chen, G. Cong, C. S. Jensen, and D. Wu. Spatial keyword query processing: An 

experimental evaluation. PVLDB, 6(3):217–228, 2013. 

 

[59] J. Dean and S. Ghemawat. MapReduce: simplified data processing on large clusters. In 

Proc. of OSDI, 2004. 

 

[60] K. Deng, X. Li, J. Lu, and X. Zhou. Best keyword cover search. IEEE Trans. Knowl. 

Data Eng., 27(1):61–73, 2015. 

 

[61] C. Doulkeridis and K. Nørv°ag. A survey of analytical query processing in MapReduce. 

VLDB Journal, 2014. 

 

[62] Y. Du, D. Zhang, and T. Xia. The optimal-location query. In Proc. of SSTD, pages 163–

180, 2005. 

 

[63] A. Eldawy and M. F. Mokbel. SpatialHadoop: A MapReduce framework for spatial data. 

In Proc. of ICDE, pages 1352–1363, 2015. 

 

[64] H. Gupta, B. Chawda, S. Negi, T. A. Faruquie, L. V. Subramaniam, and M. K. Mohania. 

Processing multi-way spatial joins on MapReduce. In Proc. Of EDBT, pages 113–124, 2013. 

 



83 

 

[65] H. Hu, G. Li, Z. Bao, J. Feng, Y. Wu, Z. Gong, and Y. Xu. Top-k spatio-textual 

similarity join. IEEE Trans. Knowl. Data Eng., 28(2):551–565, 2016. 

 

[66] J. Rao, J. J. Lin, and H. Samet. Partitioning strategies for spatio-textual similarity join. In 

Proc. Of BigSpatial Workshop, pages 40–49, 2014. 

 

[67] J. B. Rocha-Junior, A. Vlachou, C. Doulkeridis, and K. Nørv°ag. Efficient processing of 

top-k spatial preference queries. PVLDB, 4(2):93–104, 2010. 

 

[68] G. Tsatsanifos and A. Vlachou. On processing top-k spatio-textual preference queries. In 

Proc. of EDBT, pages 433–444, 2015. 

 

[69] T. Xia, D. Zhang, E. Kanoulas, and Y. Du. On computing top-t most influential spatial 

sites. In Proc. of VLDB, pages 946–957, 2005. 

 

[70] M. L. Yiu, X. Dai, N. Mamoulis, and M. Vaitis. Top-k spatial preference queries. In 

Proc. of ICDE, pages1076–1085, 2007.  

 

[71] M. L. Yiu, H. Lu, N. Mamoulis, and M. Vaitis. Ranking spatial data by quality 

preferences. IEEE Trans. Knowl. Data Eng., 23(3):433–446, 2011. 

 

[72] S. Zhang, J. Han, Z. Liu, K. Wang, and Z. Xu. SJMR: parallelizing spatial join with 

MapReduce on clusters. In Proc. of CLUSTER, pages 1–8, 2009. 

 

[73] Y. Zhang, Y. Ma, and X. Meng. Efficient spatio-textual similarity join using 

MapReduce. In Proc. of IEEE Web Intelligence, pages 52–59, 2014. 

  



84 

 

SHORT VITA 

 

Mpestas Dimitrios was born in Romania in 1983. He moved do Greece in 1985. In 2001 he 

received his high school diploma. He continued his studies at the University of the Aegean 

where he received his Diploma in Computer Science in 2009. In 2010 he enlisted to the Greek 

army and fulfilled his military obligations. In 2011 he was accepted as a post-graduate student 

at the University of the Aegean, where he studied computer networks and technologies. In 

2013 he received his Master from the University of the Aegean. In 2014 he got accepted as a 

post-graduate student at the University of Ioannina. Since 2015 he has worked as a java 

developer in two E.U co-funded projects (roadRunner at the University of Piraeus, 

economicLinkedOpenData at the University of Piraeus). In February 2017 he presented his 

thesis in order to complete the requirements for the Master’s degree set by the University of 

Ioannina.  

 


