

Community Detection in Undirected Graphs Using a New

Quality Measure

A Thesis

submitted to the designated

by the General Assembly of Special Composition

of the Department of Computer Science and Engineering

Examination Committee

by

Nikolaos Koufos

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

WITH SPECIALIZATION

IN SOFTWARE

University of Ioannina

July 2017

DEDICATION

To my family and my friends.

ACKNOWLEDGMENTS

I would like to express my sincerest thanks and gratitude to my advisor Prof. Aristidis Likas

for the valuable guidance, advice he has offered during the elaboration of this thesis. For his

excellent work ethic. Our collaboration has been a pleasant and memorable experience that

has helped me develop strong research skills as well as develop my critical thinking.

I would also like to thank my colleagues for creating a pleasant and friendly environment at

the office and for the useful conversations we had during the past years. It has been a

privilege to conduct my research among them.

I would also like to thank my parents, Charalampos and Theodora, and my siblings Giorgos

and Fani for always believing and supporting me.

Ioannina, July 2017

Nikolaos Koufos

i

TABLE OF CONTENTS

Dedication ii

Acknowledgments iii

Table of Contents i

List of Tables iii

List of Figures vi

Abstract vii

Εκτεταμένη Περίληψη στα Ελληνικά viii

CHAPTER 1. Introduction 10

1.1 Introduction 10

1.2 Contribution and Roadmap 12

CHAPTER 2. Related work 14

2.1 Basics 14

2.2 Graph Partitioning 15

2.3 Hierarchical Clustering 16

2.4 Partitional Clustering 18

2.5 Methods Based on Statistical Inference 21

2.6 Divisive Algorithms 22

2.7 Quality Measures 23

2.7.1 General Methodology 23

2.7.2 Modularity Measure 24

CHAPTER 3. Inclusion Quality Measure (I) 28

3.1 Introducing the New Quality Measure (I) 28

ii

3.2 Optimizing Inclusion 30

CHAPTER 4. Datasets & Results 34

4.1 Synthetic & Real-World Data 34

4.2 Results 35

4.2.1 Equal Cluster Size – Large Intra Cluster Probability 36

4.2.2 Equal Cluster Size – Variable Intra Cluster Probability 37

4.2.3 Variable Cluster Size – Large Intra Cluster Probability 38

4.2.4 Variable Cluster Size – Variable Intra Cluster Probability (Small

Cluster High Density) 40

4.2.5 Variable Cluster Size – Variable Intra Cluster Probability (Large

Cluster High Density) 41

4.2.6 Summary of Results 42

4.2.7 Large Graphs – Optimization via Spectral Clustering 44

4.2.8 Real-World Graphs 48

CHAPTER 5. Conclusion and Future Work 52

5.1 Conclusion 52

5.2 Future Work 53

References 54

Short CV 56

iii

LIST OF TABLES

Table 1 Results for Graph Model with 60 Nodes, 4 Clusters, Equally Distributed

Cluster Size, External Probability 15% and Probability List ranging from

90% to 100%. 36

Table 2 Results for Graph Model with 80 Nodes, 5 Clusters, Equally Distributed

Cluster Size, External Probability 15% and Probability List ranging from

90% to 100%. 37

Table 3 Results for Graph Model with 60 Nodes, 4 Clusters, Equally Distributed

Cluster Size, External Probability 15% and Probability List ranging from

90% to 100% for the First Cluster Followed by a 15% Reduction for each

Subsequent Cluster. 37

Table 4 Results for Graph Model with 80 Nodes, 5 Clusters, Equally Distributed

Cluster Size, External Probability 15% and Probability List ranging from

90% to 100% for the First Cluster Followed by a 15% Reduction for each

Subsequent Cluster. 38

Table 5 Results for Graph Model with 60 Nodes, 4 Clusters, Distributed Cluster

Size with Descending Order (40%, 30%, 20%, 10%), External Probability

15% and Probability List ranging from 90% to 100%. 39

Table 6 Results for Graph Model with 80 Nodes, 5 Clusters, Distributed Cluster

Size with Descending Order (30%, 25%, 20%, 15%, 10%), External

Probability 15% and Probability List ranging from 90% to 100%. 39

Table 7 Results for Graph Model with 60 Nodes, 4 Clusters, Distributed Cluster

Size with Ascending Order (10%, 20%, 30%, 40%), External Probability

15% and Probability List ranging from 90% to 100% for the First Cluster

Followed by a 15% Reduction for each Subsequent Cluster 40

Table 8 Results for Graph Model with 80 Nodes, 5 Clusters, Distributed Cluster

Size with Ascending Order (10%, 15%, 20%, 25%, 30%), External

Probability 15% and Probability List ranging from 90% to 100% for the

First Cluster Followed by a 15% Reduction for each Subsequent Cluster 41

Table 9 Results for Graph Model with 60 Nodes, 4 Clusters, Distributed Cluster

Size with Descending Order (40%, 30%, 20%, 10%), External Probability

15% and Probability List ranging from 90% to 100% for the First Cluster

Followed by a 15% Reduction for each Subsequent Cluster 41

iv

Table 10 Results for Graph Model with 80 Nodes, 5 Clusters, Distributed Cluster

Size with Descending Order (30%, 25%, 20%, 15%, 10%), External

Probability 15% and Probability List ranging from 90% to 100% for the

First Cluster Followed by a 15% Reduction for each Subsequent Cluster 42

Table 11 Results for Graph Model with 1000 Nodes, 8 Clusters, Equally Distributed

Cluster Size, External Probability 15% and Probability List ranging from

90% to 100%. 44

Table 12 Results for Graph Model with 1000 Nodes, 8 Clusters, Equally Distributed

Cluster Size, External Probability 10% and Probability List ranging from

90% to 100% for the First Cluster Followed by a 10% Reduction for each

Subsequent Cluster 44

Table 13 Results for Graph Model with 1000 Nodes, 8 Clusters, Distributed Cluster

Size with Descending Order (20%, 20%, 15%, 15%, 10%, 10%, 5%, 5%),

External Probability 15% and Probability List ranging from 90% to

100%. 44

Table 14 Results for Graph Model with 1000 Nodes, 8 Clusters, Distributed Cluster

Size with Ascending Order (5%, 5%, 10%, 10%, 15%, 15%, 20%, 20%),

External Probability 10% and Probability List ranging from 90% to 100%

for the First Cluster Followed by a 10% Reduction for each Subsequent

Cluster 45

Table 15 Results for Graph Model with 1000 Nodes, 8 Clusters, Distributed Cluster

Size with Descending Order (20%, 20%, 15%, 15%, 10%, 10%, 5%, 5%),

External Probability 10% and Probability List ranging from 90% to 100%

for the First Cluster Followed by a 10% Reduction for each Subsequent

Cluster 45

Table 16 Results for Graph Model with 2000 Nodes, 16 Clusters, Equally

Distributed Cluster Size, External Probability 15% and Probability List

ranging from 95% to 100%. 46

Table 17 Results for Graph Model with 2000 Nodes, 16 Clusters, Equally

Distributed Cluster Size, External Probability 15% and Probability List

ranging from 95% to 100% for the First Cluster Followed by a 5%

Reduction for each Subsequent Cluster 46

Table 18 Results for Graph Model with 2000 Nodes, 16 Clusters, Distributed

Cluster Size with Descending Order (10%, 10%, 10%, 8%, 8%, 8%, 7.5%,

6.25%, 6.25%, 6.25%, 5.25%, 5%, 3.5%, 2%, 2%, 2%), External Probability

15% and Probability List ranging from 95% to 100%. 46

Table 19 Results for Graph Model with 2000 Nodes, 16 Clusters, Distributed

Cluster Size with Ascending Order (2%, 2%, 2%, 3.5%, 5%, 5.25%, 6.25%,

6.25%, 6.25%, 7.5%, 8%, 8%, 8%, 10%, 10%, 10%), External Probability

v

15% and Probability List ranging from 95% to 100% for the First Cluster

Followed by a 5% Reduction for each Subsequent Cluster 47

Table 20 Results for Graph Model with 2000 Nodes, 16 Clusters, Distributed

Cluster Size with Descending Order (10%, 10%, 10%, 8%, 8%, 8%, 7.5%,

6.25%, 6.25%, 6.25%, 5.25%, 5%, 3.5%, 2%, 2%, 2%), External Probability

15% and Probability List ranging from 95% to 100% for the First Cluster

Followed by a 5% Reduction for each Subsequent Cluster 47

Table 21 Real-World Networks’ Statistics 48

Table 22 Results for Karate Club Dataset (2 Clusters) 48

Table 23 Results for American College Football Dataset (12 Clusters) 49

Table 24 Spectral Optimization for Zachary's Karate Club Dataset 49

Table 25 Spectral Optimization for American College Football Dataset 49

vi

LIST OF FIGURES

Figure 1 Simple graph clustering. 11

Figure 2 Graph Partitioning Example |V| = 14, number of clusters 2. 15

Figure 3 Hierarchical Clustering illustrated with dendrograms. 18

Figure 4 Spectral Clustering vs K-Means. 20

Figure 5 Visualizations of the steps used by Louvain's method [BGLL08]. 27

Figure 6 a) Graph clustered into three communities, I = 0.85 b) Graph clustered into

four communities, I = 0.89 c) Graph clustered into five communities, I =

0.80. 29

vii

ABSTRACT

Nikolaos Koufos

MSc, Computer Science and Engineering, University of Ioannina, Greece

July 2017

Title: Community Detection in Undirected Graphs Using a New Quality Measure

Supervisor: Aristidis Likas

The detection of communities is of great significance in sociology, biology, computer science

and other disciplines where complex systems are often represented as graphs or networks.

One of the most interesting properties of graphs representing real systems is community

structure, i.e. the partitioning of graph nodes into clusters, with many edges joining nodes of

the same cluster and comparatively few edges joining nodes of different clusters. This hard

but important problem has attracted an increasing scientific interest over the past few years

and several techniques have been proposed, especially for the case where the number of

communities is not known in advance.

The most popular family of community detection methods is based on the optimization of

the so called ‘modularity’ criterion using various clustering approaches. The modularity of a

community is defined as fraction of the edges that fall within a given group minus the

expected fraction if edges were distributed at random. However, it has been shown that

modularity has several drawbacks, such as for example the ‘resolution limit’, i.e., it is unable

to detect small communities.

We introduce a new quality measure to evaluate a partitioning of a graph into communities

that is called ‘inclusion’. This quality measure evaluates how well each node is ‘included’ in

its community by considering both its existing and its non-existing edges. We have

implemented several techniques to optimize the inclusion criterion. A first technique follows

the agglomerative principles, as it starts with every node in a separate community and

iteratively merges communities so that inclusion is improved. A second technique is

similarly initialized, but instead of community merging, it improves the inclusion of the

partitioning by moving each time a single node to another community. Another method is

based on evaluating the solutions provided by spectral clustering. In the experimental

evaluation we conducted, it has been shown that the inclusion measure is very effective in

evaluating communities and usually leads to improved community detection results without

requiring the a-priori specification of the number of communities.

viii

ΕΚΤΕΤΑΜΕΝΗ ΠΕΡΙΛΗΨΗ ΣΤΑ ΕΛΛΗΝΙΚΑ

Νικόλαος Κουφός

MSc, Τμήμα Μηχανικών Η/Υ και Πληροφορικής, Πανεπιστήμιο Ιωαννίνων

Ιούλιος 2017

Τίτλος: Εντοπισμός κοινοτήτων σε μη κατευθυνόμενα γραφήματα με ένα νέο κριτήριο

ποιότητας διαμέρισης

Επιβλέπων: Αριστείδης Λύκας

Ο εντοπισμός κοινοτήτων παίζει σημαντικό ρόλο στην κοινωνιολογία, βιολογία,

επιστήμη υπολογιστών καθώς και σε όλους τους τομείς όπου πολύπλοκα συστήματα ,

συχνά αναπαρίστανται ως γραφήματα η δίκτυα. Μία από τις πιο ενδιαφέρουσες

ιδιότητες που έχει η αναπαράσταση με γραφήματα, είναι η δομή του σε κοινότητες,

δηλαδή, η διαμέριση του γράφου σε συστάδες που απαρτίζονται από κόμβους που

συνδέονται με πολλούς κόμβους της ίδιας συστάδας μέσο ακμών, και όσο δυνατόν

λιγότερους κόμβους που ανήκουν σε άλλες συστάδες. Αυτό το πρόβλημα, παρά την

δυσκολία του, έχει κεντρίσει το ενδιαφέρων διάφορων επιστημών τα τελευταία χρόνια,

με αποτέλεσμα να προταθούν αρκετές τεχνικές επίλυσης του προβλήματος, κυρίως για

τις περιπτώσεις όπου ο αριθμός των συστάδων δεν είναι γνωστός εκ των προτέρων.

Η πιο γνωστή οικογένεια μεθόδων εντοπισμού κοινοτήτων είναι βασισμένη στην

βελτιστοποίηση του κριτηρίου ‘modularity’ με διάφορες τεχνικές ομαδοποίησης. Το

modularity για μια κοινότητα ορίζεται ως ένα κλάσμα των ακμών μέσα σε μία συστάδα

μείον τον κλάσμα των αναμενόμενων ακμών αν οι ακμές είχαν τοποθετηθεί τυχαία.

Παρόλα αυτά, το κριτήριο modularity, έχει αρκετά μειονεκτήματα όπως για παράδειγμα

η ανικανότητά του να ανιχνεύσει μικρές σε μέγεθος κοινότητες.

Σε αυτήν την εργασία, προτείνουμε ένα καινούρια κριτήριο διαμέρισης, εν ονόματι

‘inclusion’. Αυτό το κριτήριο εκτιμάει πόσο καλά ένα κόμβος ‘συμπεριλαμβάνεται’ στην

κοινότητα του εξετάζοντας την ύπαρξη ακμών αλλά και την μη-ύπαρξη ακμών. Έχουμε

υλοποιήσει αρκετές τεχνικές για την βελτιστοποίηση του κριτηρίου. Η πρώτη τεχνική

ακολουθεί την agglomerative λογική , καθώς ξεκινάει τοποθετώντας κάθε κόμβο σε

ξεχωριστή κοινότητα και έπειτα συνενώνει κοινότητες έτσι ώστε να βελτιωθεί το

inclusion. Η επόμενη τεχνική που υλοποιήσαμε, έχει παρόμοια αρχική κατάσταση με

την πρώτη, αλλά αντί να συνενώνει κοινότητες, μετακινεί ένα κόμβο κάθε φορά σε

άλλη κοινότητα. Μία άλλη τεχνική, ήταν να αξιολογήσουμε τις λύσεις που παρήγαγε ο

αλγόριθμος του spectral clustering. Στην πειραματική αξιολόγηση που κάναμε, τα

αποτελέσματα έδειξαν πως το κριτήριο inclusion είναι αρκετά αποδοτικό στον

ix

εντοπισμό κοινοτήτων και συνήθως οδηγεί σε καλύτερες λύσεις του προβλήματος χωρίς

να χρειάζεται να προσδιορίσουμε τον αριθμό των κοινοτήτων εκ των προτέρων.

10

CHAPTER 1.

INTRODUCTION

1.1 Introduction

1.2 Contribution and Roadmap

1.1 Introduction

Graph theory is the study of graphs, which are mathematical structures used to model

pairwise relations between objects. A graph is made up of nodes and edges. The origins of

graph theory dates back to 1736, where Euler proposed a solution for the puzzle of

Königsberg's bridges [Eule36]. Since then, we have learned a lot about graphs and their

mathematical properties [Boll98].

Through the years, graph models became an extremely useful representation of a wide

variety of systems in different scientific areas. Social, Biological and Telecommunication are

some of the networks that have been studied as graphs and helped researchers extract some

valuable features for these systems. For example, social network analysis started in the 1930's

and since then, it has become one of the most important topics in sociology [WaFa94].

Due to the fact that we are living in the computer revolution era, scientists and researchers

are provided with a huge amount of data, as well as computational resources. Those

enormous data, can lead to graph models with millions or even billions of nodes and edges.

So, the need of analysis rose, to determine helpful insights about the data.

Graphs that represent real systems are not always regular, meaning that each node does not

have the same number of neighbors. The first attempt on modeling those graphs was

introduced by Erdös and Rényi [ErRé59]. In their method, the probability of having an edge

between a pair of nodes is equal for all possible pairs. Their model is quite simple and

powerful with many applications. Although, their model does not have two important

properties of real-world networks. Triadic closure, which is the property among three nodes

11

A, B, and C, such that if a strong relationship exists between A and B as well as A and C,

there is a weak or strong relationship between B and C. The second property not present in

Erdös–Rényi model, is the power-law distribution on the nodes degree which is commonly

observed in real-world networks. Erdös–Rényi graphs converge to a Poison distribution. To

tackle the aforementioned problems, Watts and Strogatz proposed a different approach

based on interpolation between an Erdös–Rényi graph and a regular ring lattice [WaSt98].

In a random graph, the degree distribution is highly homogenous, which can lead to a

problem, as some of the real networks follow a power law distribution as previously

mentioned. Furthermore, real networks show high edge concentration within some group of

nodes and low edge concentration between those groups. That property is called clustering

or community structure [GiNe02].

Figure 1 Simple graph clustering.

The need to create communities, is in the human nature. From families and friendship circles

to alliances between countries at times of war. So, the need for community study inevitable

rose. Communities also appear in many networked systems like computer science,

economics, politics, biology, etc. For instance, in World Wide Web there are corresponding

12

group of pages that may deal with the same or related topic i.e. American Presidential

Election.

Finding those aforementioned communities, has many applications. Identifying clusters of

clients based on their previous purchases, improves significantly the recommendation

system, which in return increases business opportunities. Another application is in parallel

computing. For example, it is critical to allocate group of tasks to different processors in

order to minimize communication between them and thus enabling rapid performance. The

mathematical formalization of this problem falls under the category of NP-hard problems.

1.2 Contribution and Roadmap

In this thesis, we study the community detection problem as well as algorithmic techniques

that try to approach it. More specifically, in Chapter 2, we present widely used algorithms

such as Hierarchical clustering, Partitional clustering, Statistical models, etc. Finally, we

thoroughly present a state-of-the-art quality function, called modularity.

In Chapter 3, which is the thesis contribution, we present a new quality measure, called

inclusion. Our quality measure can be considered as a multi-criteria score function, since it

focuses both on groups inter and intra edge density. Furthermore, we present two

optimization techniques for our inclusion criterion. The first one follows the agglomerative

principles, as it starts with every node in a separate cluster and iteratively merges clusters in

a greedy way, that best improve the inclusion criterion. The second technique has the same

initialization process as the first one, but instead of cluster merging, it moves a single node at

a time to a new cluster that yielded the best value of inclusion.

Chapter 4 is dedicated on the experimental comparison between inclusion and modularity

measures. It contains results from both of the aforementioned criteria on various synthetic

graphs with different properties and sizes. Moreover, we also tested both criteria on real-

world datasets such as Zachary’s Karate Club and American College Football.

Finally, Chapter 5 summarizes the results which indicate that the inclusion measure is very

effective in evaluating communities and usually leads to improved community detection

results. Furthermore, we provide some future work/open issues regarding the exploitation of

the inclusion criterion.

13

14

CHAPTER 2.

RELATED WORK

2.1 Basics

2.1 Graph Partitioning

2.2 Hierarchical Clustering

2.3 Partitional Clustering

2.4 Quality Measures

2.1 Basics

The problem of graph clustering, has a major semantic problem thus making it actually not

well defined. The main reason behind that problem is the definition of community itself.

There are many suggestions on the definition of a community, but scientists tend to always

disagree which led to a rich literature regarding this problem.

It is important to stress that the identification of communal structure is possible when the

graphs are sparse enough. That means that the number of edges m is of the order of the

number of nodes n of the graph. Otherwise, the distribution of edges is too homogeneous for

communities to make sense.

In this section, we will present many algorithms for graph clustering, but before that some

basic definitions are essential:

15

Α graph 𝐺 with nodes |𝑉| = 𝑛 and edges undirected and unweighted |𝐸| = 𝑚 i.e. 𝑒𝑖𝑗 = 𝑒𝑗𝑖 ,

𝑒𝑖𝑗 ∈ {0,1}.

2.2 Graph Partitioning

Graph partitioning is the problem of dividing the nodes of a graph in k groups, such that the

number of edges between the groups is as small as possible. The number of edges between

clusters is called cut size. The next figure is from Fortunato’s survey on community detection

in graphs and shows a graph with 14 vertices and 2 clusters [Fort10].

Figure 2 Graph Partitioning Example |V| = 14, number of clusters 2.

One major problem with the graph partitioning is that you need to specify the number of

groups. If one does not specify the number of clusters, then the problem becomes quite

trivial in the sense that you can group all nodes in one big cluster which will minimize the

cut size. This problem can be actually avoided by choosing a different measure to optimize

for the partitioning, which accounts for the size of the clusters as well. Specifying the size is

also necessary, as otherwise the most likely solution of the problem would be a two-way

partition where the lowest degree node will be in one cluster and all the other nodes in

another. But this case is also quite simple and uninteresting.

Most variants of the graph partitioning problem are NP-hard. However, there are several

algorithms that can produce some heuristic solutions with good results Many of those

algorithms perform a bisection of the graph. To achieve further partitioning into more than

two clusters, the technique of iterative bisectioning is used. Furthermore, in most cases there

is a constraint that suggests that all clusters are of equal size. This problem is known as the

minimum bisection and is NP-hard.

One of the first proposed algorithms that is still widely used is the Kernighan-Lin algorithm

[KeLi70]. The motivation behind this algorithm was the partitioning of electronic circuits

16

onto boards. More specifically, the nodes contained in different boards need to be linked to

each other with the minimum number of connections. The first thing they did was to define a

benefit function Q. That function, quantifies the difference between the number of edges

inside the modules and the number of edges lying between them. Then they tried to

optimize it as follows: The initialization was the partition of the graph into two clusters of

predefined size. This partition can be either random or suggested by some information

regarding the graph. Then, subsets of equal numbers of nodes are swapped between the two

clusters, so that maximum Q increase is achieved. To reduce the risk of Q’s local maxima, the

process may include some transitions that reduce the Q value. After a series of swaps with

positive and negative Q values, the partition with the largest value of Q is selected and used

as starting point of a new series of iterations (𝑂(𝑛2log (𝑛))).

As far as the complexity of the algorithm, the Kernighan-Lin algorithm is considered quite

fast if you use a constant number of swaps at each iteration. The solution is heavily

dependent on the initial configuration, thus is most commonly used to improve the

partitions found by other techniques.

Algorithms for graph partitioning are not very suitable for community detection. That is

because it is necessary to provide the number of clusters and in some cases even their sizes.

Instead, it is preferable to have an algorithm to be capable of providing this kind of

information as its output.

2.3 Hierarchical Clustering

Community structure of a graph, is an uncharted territory in general. It is most unlikely to

know the number of clusters or any information indicating connections between nodes

beforehand. In cases like that, which are the most common ones, graph partitioning

algorithms cannot be helpful.

In order to handle those cases, one must make some reasonable assumptions about the

clusters structure. One major assumption is that the graph may have a hierarchical structure.

For instance, a graph may display levels of grouping of nodes, with small clusters inside

larger ones, which in respect they are included within even larger clusters.

In cases like the aforementioned ones, we can use any of the hierarchical clustering

algorithms, which reveal the multilevel structure of the graph. Hierarchical graph clustering,

has been successfully used in several areas such as: Biology, Marketing, Social Network

analysis etc.

The first step of every hierarchical clustering algorithm is the definition of the similarity

function. Cosine, Euclidean and Manhattan are some of the most commonly used similarity

functions. After the function is well defined, the next step is to compute the pairwise

similarity between all 𝑛 nodes. This step will result in a 𝑛 × 𝑛 matrix S, also known as the

similarity matrix.

17

This kind of clustering techniques aim at finding groups of nodes with high similarity, and

are generally distinguished into two categories:

1. Agglomerative algorithms, in which clusters are merged iteratively if their similarity is high

enough.

2. Divisive algorithms, in which clusters are split iteratively by removing edges connecting nodes with

low similarity.

These two categories reflect on opposite processes: agglomerative algorithms are bottom-up,

as the process starts from the nodes in separate clusters and ends up with the graph as a

unique cluster. On the other hand, divisive algorithms are top-down as they follow the

opposite direction. They begin with all the nodes in one big cluster and they end up in a

graph with several clusters.

Since the clusters are merged based on their mutual similarity, the number and quality of

clusters is highly dependent on the nature of the similarity function. In agglomerative

techniques such as single linkage clustering, the similarity between two groups 𝐶1 and 𝐶2 is

the defined as minimum 𝑆𝑖𝑗 where 𝑖 ∈ 𝐶1 , 𝑗 ∈ 𝐶2. This leads to iteratively combining two

clusters that contain the closest pair of elements not yet belonging to the same cluster as each

other. One major problem with this algorithm is that it usually produces long thin clusters in

which nearby elements of the same cluster have small distances, but elements at opposite

ends of a cluster may be more distant from each other than to elements of other clusters.

Another algorithm, is the complete linkage clustering. In this technique, the similarity of two

clusters 𝐶1 and 𝐶2 is the similarity of their most dissimilar members, meaning the maximum

𝑆𝑖𝑗 where 𝑖 ∈ 𝐶1 , 𝑗 ∈ 𝐶2. This is equivalent to choosing the cluster pair whose merge has the

smallest possible diameter. Complete linkage clustering has its drawbacks as well. More

specifically, a single node far from the center can increase the diameters of candidate merge

clusters dramatically and result in completely changing the final clustering.

Finally, in average linkage clustering, the distance between two clusters is defined as the

average of distances between all pairs of nodes, where each pair is made up of one node

from each group. At each step, the algorithm merges the clusters with the minimum average

value. As it can be observed, this algorithm lies in between single and complete linkage

clustering, as it shares both their advantages and drawbacks.

One of the advantages of hierarchical clustering, is that if the number of data is fairly small,

the clusters can be easily visualized by dendrograms. The figure below represents a simple

example of hierarchical clustering solution illustrated by dendrograms.

18

Figure 3 Hierarchical Clustering illustrated with dendrograms.

Hierarchical clustering does not avoid the problem with the number of clusters. It simply

constructs the tree spanning over all samples and let you manually chose the “right” number

of clusters. However, the results highly depend on the adopted similarity function.

Moreover, this technique constructs a partition of clusters assuming hierarchical structure,

which in some cases the graph does not have. Another problem is that nodes with only one

other node as neighbor are often classified in a separate cluster, which makes no sense.

Finally, another major problem is the scalability of the agglomerative clustering. For

example, the computational complexity of single linkage is 𝑂(𝑛2) and 𝑂(𝑛2 𝑙𝑜𝑔 𝑛) for

complete and average linkage.

2.4 Partitional Clustering

Another popular class of methodologies is the partitional clustering. In this class, the number

of clusters is pre-required. The data points are usually fixed in a metric space, so that each

node is a point and a distance measure is defined between pairs of points in the space. The

distance is usually a function of dissimilarity between nodes. The goal is to separate the

points in k (number of clusters given) clusters in order to maximize/minimize a given cost

function based on distances between points. Some of the most commonly used functions are

listed below:

19

• Minimum k-clustering: The cost function here is the diameter of a cluster, which is

the largest distance between two points of a cluster. The classification of the points is

done in a way that the largest diameter of the k cluster diameters is minimized. The

key idea behind this function is that the clusters are tightly compact.

• Average k-clustering: It is similar to the minimum k-clustering, but the diameter is

replaced by the average distance between all pairs of points of a cluster.

• K-center: For every cluster, a representative is selected (centroid). Then the maximum

distance 𝑑𝑖 of the distances of each cluster point from the centroid is computed. The

cluster and centroids are changing to minimize the largest value of 𝑑𝑖.

• K-median. Same as k-center, but the maximum distance from the centroid is replaced

by the average distance.

One of the most popular techniques, if not the most popular, is the k-means clustering

algorithm [MacQ67]. The cost function of k-means is the squared error function:

∑ ∑ ‖𝑥𝑗 − 𝑚𝑖‖
2

𝑥𝑗∈𝐶𝑖

𝑘

𝑖=1

Where 𝐶𝑖 is the subset of points of the 𝑖𝑡ℎ cluster and 𝑚𝑖 is its centroid. The steps of the

algorithm are shown below

Algorithm 2.3.1 K-means Algorithm

1. Select K points as the initial centroids

2. repeat

3. Form K clusters by assigning each point to its closest centroid

4. Recompute the centroid for each cluster

5. until centroids do not change

The results of each K-means run may vary a lot, and that is because it is highly dependent on

the initial positions of the centroids. To increase the performance of the algorithm, you can

run multiple randomly initialized instances of the algorithm and keep the one that yields the

minimum squared error.

20

Another major technique in clustering is spectral clustering [NgJW01]. The main

characteristic of all spectral clustering techniques is that they partition the graph using the

eigenvectors of similarity matrices. More specifically, the objects could be points in any

metric space. Spectral clustering consists of a transformation of the initial set of objects into a

set of points in space, whose coordinates are elements of eigenvectors. Then the set of points

is clustered with standard techniques, usually k-means.

The reason that we do not apply k-mean directly, is that the change of representation

induced by the eigenvectors makes the cluster properties much clearer. In this way, spectral

clustering is able to separate data points that could not be resolved by applying directly k-

means clustering. Finally, Spectral Clustering algorithm needs the similarity matrix 𝑆 as its

input, which as mentioned in the previous section, it contains all the pairwise similarities

between all 𝑛 nodes. If the 𝑆 matrix is not given, the algorithm must calculate it first, using

some similarity function (e.g. RBF)

Algorithm 2.3.2 Spectral Clustering Algorithm

Input: Similarity Matrix, number of clusters 𝑘

1. Compute the first 𝑘 eigenvectors 𝑣1, … , 𝑣𝑘 of the matrix 𝑆

2. Build matrix 𝑉 ∈ 𝑅𝑛 𝑥 𝑘 with the eigenvectors as columns

3. Interpret the rows of 𝑉 as new data points 𝑍𝑖

4. Cluster the points 𝑍𝑖 with the k-means algorithm

Figure 4 Spectral Clustering vs K-Means.

21

2.5 Methods Based on Statistical Inference

The statistical inference in general is the process of extracting properties of data sets, starting

from a set of examples and model hypotheses [Mack03]. If the data are in a form of a graph,

the model, which is based on the hypotheses on how nodes are connected to each other, has

to fit the actual graph topology. In this section, we will focus specific on the Bayesian

inference [Wink03].

Bayesian inference is a specific case of statistical inference where the Bayes’ theorem is used

update the estimation the probability that a given hypothesis is true, as more examples

become available. It consists of two main characteristics: a statistical model with parameters

{𝜃} and the examples which are expressed by system’s information 𝐷. Bayesian inference

starts by writing the likelihood 𝑃(𝐷|{𝛩}) that the observed examples are produced by the

model for a given set of parameters {𝜃}. The aim is to determine the choice of {𝜃} that

maximizes the posterior distribution 𝑃({𝛩}|𝐷) of the given parameters of the model and the

examples provided. With the use of Bayes' theorem, one has

𝑃({𝛩}|𝐷) =
1

𝑍
𝑃(𝐷|{𝛩})𝑃({𝛩}),

where 𝑃({𝛩}) is the prior distribution of the model parameters and 𝑍 is a normalizing

constant

𝑍 = ∫ 𝑃(𝐷|{𝛩})𝑃({𝛩}) 𝑑𝜃

Unfortunately, computing the integral above is a major challenge, plus, the choice of the

prior distribution 𝑃({𝛩}) is not quite obvious. Different generative models distinguish

themselves from each other by the choice of the model and the way they address the

aforementioned issues.

Bayesian inference is frequently used in the analysis of real graphs, including social

networks [Hart07]. One major part of this analysis is graph clustering. In graph clustering,

the examples are represented by the graph structure in either adjacency or weight matrix

form. One additional information, that one wants to extract is the partition of the nodes into

groups, which is missing. Along with this information, the parameters of the model which is

supposed to be responsible for the partition is required as well.

This idea is at the basis of several recent papers, which we discuss here. In all these works,

one essentially maximizes the likelihood 𝑃(𝐷|{𝛩}) that the model is consistent with the

observed graph structure, with different constraints. We specify the set of parameters {𝛩} as

the triplet ({𝑞}, {𝜋}, 𝑘) where {𝑞} indicates the community assignment of the nodes, {𝜋} the

model parameters, and k the number of clusters.

22

In 2006, Hastings [Hast06] tried to approach the community detection problem as an

inference problem: n nodes are assigned to q clusters with the following requirements: nodes

of the same cluster are connected with an edge with a probability 𝑝𝑖𝑛, while nodes of

different clusters are connected with an edge with a probability 𝑝𝑜𝑢𝑡. If 𝑝𝑖𝑛 > 𝑝𝑜𝑢𝑡 the model

shows community structure. The probability of a node correctly assigned to a cluster is given

by the following model:

𝑝({𝑞𝑖}) = 𝑐𝑒𝑥𝑝[∑ 𝐽𝛿𝑞𝑖𝑞𝑗
]

<𝑖,𝑗>

𝑒𝑥𝑝[∑
𝐽′𝛿𝑞𝑖𝑞𝑗

2
]

𝑖≠𝑗

Where ∑ <𝑖,𝑗> denotes a sum over pairs of 𝑖, 𝑗 connected by an edge in the graph, 𝛿 is the

delta function, with 𝛿𝑞𝑖𝑞𝑗
 is 1 if 𝑞𝑖, 𝑞𝑗 are in the same community and 0 otherwise and

𝑐 = exp [
log(1 − 𝑝𝑜𝑢𝑡) 𝑁(𝑁 − 1)

2
]exp [∑ log(𝑝𝑜𝑢𝑡/(1 − 𝑝𝑜𝑢𝑡)]

<𝑖,𝑗>

J = log[(𝑝𝑖𝑛(1 − p𝑜𝑢𝑡))/((1 − 𝑝𝑖𝑛)p𝑜𝑢𝑡)]

𝐽′ = log[(1 − 𝑝𝑖𝑛)/(1 − p𝑜𝑢𝑡)]

The above equations present the probability as a Potts model problem with combined short

and long-range interactions, with coupling constants 𝐽, 𝐽′. So, the problem of community

detection is reduced to finding the ground state of this Potts model. Hastings used belief

propagation [Gall63] to find the ground state of the spin model.

The complexity of the model on sparse graphs, is expected to be 𝑂(𝑛𝑙𝑜𝑔𝛼(𝑛)), where 𝛼 needs

to be estimated numerically. Also, in order for the model to work, one has to specify the 𝑝𝑖𝑛,

𝑝𝑜𝑢𝑡. However, these parameters turn out that they can be chosen arbitrarily, as any bad

choices can be recognized and corrected.

2.6 Divisive Algorithms

The main idea behind divisive algorithms is to detect the edges that connect nodes of

different clusters and remove them, so that the clusters get disconnected from each other.

The most critical part of any divisive algorithm, is finding the property of edges between

clusters that will lead to their identification.

23

Divisive algorithms are pretty similar to the traditional hierarchical top down clustering. The

main difference is that the divisive algorithms remove inter-cluster edges instead of edges

between pairs of nodes with low similarity. That process does not provide assurance that the

edges removed connected nodes with low similarity.

Probably one of the most popular algorithm, if not the most one, was proposed by Girvan

and Newman [GiNe02, NeGi04]. In their approach, edges are selected according to the

values of measures of edge “betweenness”, which is defined of each edge as the number of

shortest paths between all pair of nodes that run along the edge. The steps of the algorithm

are the following:

1. Calculate the “betweenness” for all edges in the graph.

2. Remove the edge with the highest betweenness.

3. Recalculate betweennesses for all edges affected by the removal.

4. Repeat from step 2 until no edges remain.

They considered three alternative definitions: geodesic edge betweenness, random-walk

edge betweenness and current-flow edge betweenness but calculating edge betweenness was

by far the fastest one (𝑂(𝑛2) vs 𝑂(𝑛3) on sparse graphs). Moreover, in real-world

applications the edge betweenness gives better results than adopting the other centrality

measures.

A major problem they came across on their original work was that they had to deal with the

whole hierarchy of the partitions, as they had not found a way to choose the best partition.

On a later work [NeGi04], they introduced the modularity criterion, which sparked another

kind of clustering technique that we discuss in the following section.

2.7 Quality Measures

2.7.1 General Methodology

As we have already mentioned in the previous chapter, a cluster or community is typically

considered as a group of nodes with high edge connectivity among its members than with

the nodes of different communities/clusters. The general methodology when trying to detect

communities via quality measures, is usually following the next two major steps in their

approach:

• Define a quality measure (objective function), that captures the definition of

community structure in a way nodes in the same group have better internal than

external connectivity.

• Use algorithmic techniques, so that the nodes of the network are assigned to specific

communities, through optimization of the objective function.

24

In many cases, the optimization of the objective function leads to computational difficult

problems. So, a common approach is to employ some kind of heuristic algorithms or other

approximation techniques.

Some of the quality measures focus on both the intra as well as the inter cluster edge density

(multi-criterion scores). Another kind of measures is the single-criterion score, where the

measure focuses only in one of them (either inter or intra). An excellent example of that kind

of measure is modularity, which we will get into detail in the next section.

2.7.2 Modularity Measure

Newman and Girvan introduced modularity Q as a stopping criterion for one of their

previous algorithms [NeGi04]. Since then, modularity became one of the most popular and

widely used measures to evaluate the quality of the graph partition. It is a classic example of

one of the first attempts to achieve a better understanding of the community detection

problem, as it presents key elements such as the definition of a community as well as its

strength.

The main idea of modularity is that given a specific partition of a graph, it measures the

number of edges that exist within a cluster compared to the expected number of edges of a

random graph with the same degree distribution.

In other words, modularity is taking advantage of the fact that a random graph is not

expected to have inherent community structure. So, comparing the density of a subgraph

with the expected one of the same subgraph in a random graph, will determine a method for

identifying clusters. More specifically, the modularity value Q is defined below:

𝑄 =
1

2𝑚
∑ [𝑒𝑖𝑗 −

𝑘𝑖𝑘𝑗

2𝑚
]

𝑖,𝑗

𝛿(𝑐𝑖, 𝑐𝑗)

Where

𝑖, 𝑗 are the graph nodes

𝑒𝑖𝑗 represents the weight of the edge between i and j

𝑘𝑖 is the sum of the weights of the edges attached to vertex i

𝑚 is the sum of all of the edge weights in the graph

𝑐𝑖 and 𝑐𝑗 are the communities of nodes 𝑖, 𝑗 respectively

𝛿 is delta function, with 𝛿(𝑢, 𝑣) is 1 if 𝑢 = 𝑣 and 0 otherwise

25

The assumption made by one, is that high values of modularity indicate good partitions. This

indicates that the partition that corresponds to the maximum value of modularity is a very

good one if not the best. The optimization of modularity 𝑄 through exhaustive search is not

feasible due to the huge number of possible ways to partition a graph. In 2006, it has been

proved that optimizing modularity is a NP-complete problem [BDG+06]. However, there are

several algorithms able to find good approximations of the modularity maximum in a

reasonable time.

The first algorithm to maximize modularity was a greedy agglomerative clustering method

proposed by Newman himself [Newm04]. The algorithm starts by assigning 𝑛 nodes to 𝑛

different clusters, each containing exactly one node. The edges are not available all at once,

as they are added one by one during the algorithm. However, the 𝑄 value of partitions is

calculated with the full topology of the graph.

Adding the first edge to the set of disconnected nodes reduces the number of clusters from 𝑛

to 𝑛 − 1, creating a new partition of the graph. The edge is chosen in order for the partition

to achieve the maximum increase of modularity. This process is repeated for all other edges.

The number of partitions found during the procedure is 𝑛, each with a different number of

clusters, from 𝑛 to 1. The largest modularity value from those subsets is the solution given by

the algorithm.

As for the complexity of the algorithm, at each iteration step, one needs to compute the

difference 𝛥𝑄 produced by the merging of any two communities of the current partition, and

choose the best merge. An interesting thing is that, merging communities with no edges

between them, can never lead to an increase of 𝑄, so there is no need to check all the

available communities, only the connected ones which are at most 𝑚. Since the calculation of

each 𝛥𝑄 can be done in constant time, this part of the calculation requires a time 𝑂(𝑚). After

choosing the communities merging pair, the edge matrix update which expressing the

number of edges between clusters 𝑖 and 𝑗 of the running partition can be done in 𝑂(𝑛) at

worst-case. Since the algorithm requires 𝑛 − 1 iterations to run to completion in order to

merge all communities, its complexity is 𝑂((𝑚 + 𝑛)𝑛).

Clauset, Newman and Moore [ClNM04] in 2004 pointed out that a large amount of

operations regarding the update of edge matrix, where redundant. They proposed a max-

heap data structure to perform this operation, which stores the data in a binary tree form.

They maintained the matrix of modularity 𝛥𝑄, in a max-heap containing the largest elements

of each row as well as the corresponding communities. The optimization process is done in

the same way as before, but much faster due to the new data structures.

The complexity of the algorithm is 𝑂(𝑚𝑑(𝑙𝑜𝑔(𝑛))), where d is the depth of the max-heap,

which grows up to 𝑙𝑜𝑔(𝑛) for graphs with a strong hierarchical structure. This algorithm is

still used to estimate the modularity maximum on such large graphs.

Finally, in 2008, Blondel, Guillaume, Lambiotte and Lefebvre [BGLL08] proposed a simple

heuristic algorithm that outperformed the previous methods in terms of computational time

and at some times in the achieved modularity value as well. This method is also known as

26

the Louvain method. In order to maximize the modularity value, the Louvain algorithm

consisted of two steps that are repeated iteratively:

At first, each node in the graph is assigned to its own community. Then for each node 𝑖, the

change in modularity is calculated by removing 𝑖 from its own community and moving it

into all the possible communities that the neighbors of 𝑖 belong.

To avoid the intense computations of moving each node to different communities and then

calculate modularity from the start, they came up with this function that yield the

modularity change:

∆𝑄 = [
∑ +𝑖𝑛 2𝑘𝑖,𝑖𝑛

2𝑚
− (

∑ +𝑡𝑜𝑡 𝑘𝑖

2𝑚
)

2

] − [
∑ 𝑖𝑛

2𝑚
− (

∑ 𝑡𝑜𝑡

2𝑚
)

2

− (
𝑘𝑖

2𝑚
)

2

]

∑ 𝑖𝑛 is the sum of all the weights of the links inside the community 𝑖 is moving into

∑ 𝑡𝑜𝑡 is the sum of all the weights of the links to nodes in the community

𝑘𝑖 is the weighted degree of 𝑖

𝑘𝑖,𝑖𝑛 is the sum of the weights of the links between i and other nodes in the community

𝑚 is the sum of the weights of all links in the graph.

Once this value is calculated for all possible communities that 𝑖 is connected to, 𝑖 is placed

into the community that yields the greatest modularity increase. If there is no possible

increase, then 𝑖 stays in its initial community. This process is applied repeatedly and

sequentially to all nodes until no modularity increase can be achieved. After the local

modularity maximum is hit, this phase has ended.

In the second phase, the algorithm groups all the nodes in the same communities and builds

a new graph. Nodes are the communities from the first phase. The links between nodes in

the same group, represented as self-loops on the new merged community. Also, links from

multiple nodes in the same community to a node in a different community are represented

by weighted edges between nodes. Once the new graph is constructed, phase one can be re-

applied to it. This phase is optional and usually omitted.

27

Figure 5 Visualizations of the steps used by Louvain's method [BGLL08].

Another technique for optimizing modularity is via simulated annealing [KiGV83].

Simulated annealing is used in many different problems and simply performs an exploration

of all possible states, while trying to achieve global optimum of a given function 𝐹. The

probability of a transition from one state to another is 1 if the function 𝐹 increases and 𝑒
𝛥𝐹

𝑇

otherwise, where 𝛥𝐹 is the function decrease and 𝑇 is the temperature which decreases over

time. At some point, the system converges to a stable state, which can be a good

approximation of the maximum of 𝐹.

Guimerà, Pardo and Amaral [GuSA04] were the first ones to use simulated annealing as an

optimization technique for modularity. In his implementation two types of moves are used.

The first one is local move where a single node is moved to another cluster at random. The

second one is global move which contains communities’ splits and merges. The split move is

implemented in order to reduce the risk of trapping in local minima. The simulated

annealing method can be potentially equal to the true modularity maximum, but it is very

slow. The true complexity cannot be estimated, due to the heavy dependence on the

parameters chosen for the optimization such as initial temperature and cooling factor.

Simulated annealing is usually used for small graphs.

Although optimizing modularity has many advantages compared to other methods, it has

some limitations as well. As noted by Fortunato and Barthélemy [FoBa07], modularity

suffers from the resolution limit. More precisely, modularity optimization might fail to detect

clusters smaller than a scale number, which is mainly dependent on the graph size. This

limitation is important because real world networks, often contain communities of various

sizes.

28

CHAPTER 3.

INCLUSION QUALITY MEASURE (I)

3.1 Introducing the New Quality Measure (I)

3.2 Optimizing Inclusion

3.1 Introducing the New Quality Measure (I)

As we have presented previously, the modularity measure has many advantages but a major

disadvantage as well. With our new quality measure named Inclusion, that we will present

in detail below, we tried to approach the community detection problem from another

perspective. Assume a graph 𝐺 with nodes |𝑉| = 𝑛 and edges undirected and unweighted

|𝐸| = 𝑚 i.e. 𝑒𝑖𝑗 = 𝑒𝑗𝑖, 𝑒𝑖𝑗 ∈ {0,1}

The first main difference of our measure compared to the existing ones, is that we value the

absence of edges between two different clusters. The reason behind this idea is that for a

cluster to be compact, the number of edges from/to different clusters should be minimum.

The second and probably the most important difference, is that our measure focuses

primarily on nodes and not on clusters. With this approach, we believe that we will be able

to predict the number of main communities, but also discover the communities that are small

compared to the size of the whole graph.

Given a community structure 𝐶 = {𝐶1, 𝐶2, … , 𝐶𝑘}, the definition for the Inclusion model is

presented below:

𝐼𝑖 =
1

2
 [

𝑊1
𝑖(𝑖𝑛)

𝑑𝑖
+ [

𝑊0
𝑖(𝑜𝑢𝑡) + 1

𝑁 − 𝑑𝑖
]] 𝐼𝑖 ∈ [0.5, 1]

29

where

𝑊1
𝑖(𝑖𝑛), is the number of existing edges between the corresponding node and the nodes of

the same cluster

𝑊0
𝑖(𝑜𝑢𝑡), is the number of non-existing edges between the corresponding node and nodes

belonging in different clusters

𝑑𝑖, is the degree of node 𝑖

𝑁, is the total number of nodes

In other words, inclusion measures for each node, its existing edges inside its community

and non-existing edges with the other communities. With the presented formula, it is now

easier to understand that our criterion is node-centric and not cluster centric. Another

property of our criterion is that it is in fact a multi-criterion score function as it focuses both

on inter as well as intra edge density. The following formula expresses the inclusion measure

on the whole graph:

𝐼 =
∑ 𝐼𝑖

𝑁
𝑖=1

𝑁
 𝐼 ∈ [0.5 ,1]

Figure 6 a) Graph clustered into three communities, I = 0.85 b) Graph clustered into four

communities, I = 0.89 c) Graph clustered into five communities, I = 0.80.

30

As you can easily observe from Figure 6, I tends to increase as the quality of the clusters

increases. In the first case, the graph is separated in three clusters which is a visually fine

solution. That partition has I = 0.85. For the second case, the graph is separated in four

clusters, which is the visually the best one. That partition has I = 0.89. In the third case, graph

is separated in five clusters, which seems kind of over-partitioning it. That results in I = 0.80.

The visual results from the three cases, align with the Ι values of each graph partition.

To examine the extreme cases where all nodes into one cluster or every node on a separate

cluster, assume a fully connected graph, where all nodes are connected to each other. In the

case where all nodes are in the same cluster, the first part of inclusion measure,
𝑊1

𝑖(𝑖𝑛)

𝑑𝑖
 , is one

for every node because in a fully connected graph, the degree of every node is N-1 and the

since all the nodes are in the same cluster, the intra-edges are also N-1. For the second part of

the inclusion formula,
𝑊0

𝑖(𝑜𝑢𝑡)+1

𝑁−𝑑𝑖
, is also one cause as we already established the degree of

every node is N – 1 thus the denominator is N – (N-1) = 1. Moreover, the non-existing edges

to other clusters is zero because there is only one cluster thus the numerator is also 1. So, the

inclusion value for this case is 1.

In the case of every node belonging in a separate cluster the first part of the inclusion

formula,
𝑊1

𝑖(𝑖𝑛)

𝑑𝑖
 , is zero because there are no other nodes in each node’s cluster. As for the

second part,
𝑊0

𝑖(𝑜𝑢𝑡)+1

𝑁−𝑑𝑖
, is one as it does not differ from the previous case. So, the inclusion

value for this case is 0.5.

3.2 Optimizing Inclusion

After explaining how our criterion works, it is only natural to try to optimize our criterion in

order to detect the underlying communities. To achieve that, we tried two major techniques

which are presented in detail below.

Agglomerative Cluster Merging:

Our first approach on the optimization problem, was based on cluster merging in each step.

More precisely, at the start of the algorithm, each node is in a separate cluster containing

only the node itself. Then for every possible cluster merge, we calculate all the corresponding

𝐼 values and store the cluster pair that yielded the maximum 𝐼. Afterwards, we merge the

aforementioned clusters and repeat the second step for finding the max 𝐼. Our stopping

criterion was the improvement of 𝐼. If there was no pair that improves 𝐼, then we stop the

algorithm.

31

Algorithm 3.2.1 Agglomerative Cluster Merging

1. 𝐶 = Set all nodes into separate clusters (Initialization)

2. repeat

3. Set 𝑚𝑎𝑥𝐼 to 0

4. for cluster 𝑐𝑖 in 𝐶

5.. for cluster 𝑐𝑗 in 𝐶

6. Calculate corresponding 𝐼 value

7. Store 𝑐𝑖, 𝑐𝑗 if corresponding 𝐼 > 𝑚𝑎𝑥𝐼

8. Update 𝑚𝑎𝑥𝐼 = 𝐼

8. Update 𝐶 by merging the 𝑐𝑖 and 𝑐𝑗that resulted in 𝑚𝑎𝑥𝐼

9. until 𝐼 does not improve

Our first results on the algorithm were encouraging, but the computational time was huge.

That is because for every possible cluster pair we need to computed I from scratch (𝑂(𝑛2)).

To tackle this issue, we compiled a delta function to compute this increase without

calculating the I from the whole graph. The nodes belonging in same cluster as the node n,

who is about to move to a new cluster are labeled as 𝑁𝑜𝑙𝑑 as on the other hand the nodes on

cluster that the node n is about to be moved to are labeled as 𝑁𝑛𝑒𝑤. The definition for our

delta function is presented below:

𝛥𝐼1 = ∑ ∑ 𝑒𝑖,𝑗 (
1

2𝑑𝑖
) − (1 − 𝑒𝑖,𝑗)

1

2(𝑁 − 𝑑𝑖)
𝑗∈𝑁𝑛𝑒𝑤𝑖∈𝑁𝑜𝑙𝑑

𝛥𝐼2 = ∑ ∑ 𝑒𝑖,𝑗 (
1

2𝑑𝑖
) − (1 − 𝑒𝑖,𝑗)

1

2(𝑁 − 𝑑𝑖)
𝑗∈𝑁𝑜𝑙𝑑𝑖∈𝑁𝑁𝑒𝑤

𝛥𝐼 =
𝛥𝐼1 + 𝛥𝐼2

𝑁

Although, there was a major improvement in computational time, the method was still

pretty slow. So, we abandon this technique and start experimenting with a new one

presented below.

32

Greedy Node Movement:

The second approach on the problem, was based on moving nodes between clusters instead

of whole clusters. The initiation process was the same, with every node belonging in a

separate cluster. Then for every node in our graph we calculate the 𝛥𝐼 value for every

possible cluster it can move to and store the maximum 𝛥𝐼 as well as the node and cluster that

yielded that 𝛥𝐼. Then we implement the best transition and start the search for the next

move. Our stopping criterion was the same, the lack of improvement of 𝐼.

Algorithm 3.2.2 Greedy Node Movement

1. 𝐶 = Set all nodes into separate clusters (Initialization)

2. 𝐺 = (𝑉, 𝐸)

3. repeat

4. Set 𝑚𝑎𝑥𝛥𝐼 to 0

5. for node 𝑛 in 𝑉

6. for cluster 𝑐 in C

7. Calculate corresponding 𝛥𝐼 value

8. Store 𝑛, 𝑐 if corresponding 𝛥𝐼 > 𝑚𝑎𝑥𝛥𝐼

9. Update 𝐶 by moving node 𝑛 to cluster 𝑐 that resulted in 𝑚𝑎𝑥∆𝐼

10. until I does not improve

After running several experiments, we observed that the results were highly dependent on

the processing order of the nodes. So, to manage this problem, our first try was to examine

nodes based on their degree. We tried to process nodes with descending and ascending

order regarding their degree. The results did not differ from a random selection, so we

abandon this technique. Furthermore, we slightly change the 𝛥𝛪 function to fit the nature of

our method (node-centric). As in our previously presented delta function, the nodes

belonging in same cluster as the node 𝑖, who is about to move to a new cluster are labeled as

𝑁𝑜𝑙𝑑 as on the other hand the nodes on cluster that the node 𝑖 is about to be moved to are

labeled as 𝑁𝑛𝑒𝑤.

𝛥𝐼1 = ∑ {(1 − 𝑒𝑖,𝑗) [
1

2
(

1

𝑁 − 𝑑𝑗
+

1

𝑁 − 𝑑𝑖
)] − 𝑒𝑖,𝑗 [

1

2
(

1

𝑑𝑗
+

1

𝑑𝑖
)]}

𝑗≠𝑖,𝑗∈𝑁𝑜𝑙𝑑

33

𝛥𝐼2 = ∑ {𝑒𝑖,𝑗 [
1

2
(

1

𝑑𝑗
+

1

𝑑𝑖
)] − (1 − 𝑒𝑖,𝑗) [

1

2
(

1

𝑁 − 𝑑𝑗
+

1

𝑁 − 𝑑𝑖
)]}

𝑗≠𝑖,𝑗∈𝑁𝑛𝑒𝑤

𝛥𝐼 =
𝛥𝐼1 + 𝛥𝐼2

𝑁

Our final approach with this technique, was to consider three major decisions for searching.

The first one, was either to search nodes sequentially or in a random order every time. The

second decision, rose from the nature of our criterion. Our criterion positively values the

existence of edges inside the cluster and the non-existence of edges between different

clusters. So, we chose to either search adjacent clusters only, which are clusters that contain

at least one neighbor of the respective node processed at the time, or every possible cluster.

The last decision was either to examine all the possible clusters and find the best or chose the

first better that we found.

Those three decisions, led us to develop eight optimization methods for inclusion that we

will compare against modularity on both real datasets as well as artificial ones with certain

properties. More specifically, we labeled these methods three parts separated with an

underscore. The first part is about node selection. The ‘All’ tag refers to exhaustive node

search as on the other hand, ‘Rnd’ refers to randomly selecting a node for examination. The

second part of the name is about the candidate clusters that a node can move to. The ‘Adj’

tag means that a node can move to adjacent clusters, which are clusters that contain at least

one neighbor of the respective node processed at the time. ‘All’ tag means that a node can

move to every possible cluster. Finally, the third tag refers to choosing either the best of the

available clusters (‘B’ tag) or the first cluster that improves inclusion (‘F’ tag).

34

CHAPTER 4.

DATASETS & RESULTS

4.1 Synthetic & Real-World Data

4.2 Results

4.1 Synthetic & Real-World Data

In order to test our data, we used both synthetic and real-world graphs. To produce synthetic

graphs, we implemented a function that creates a graph given the following parameters:

𝑁 number of nodes

𝐶 number of clusters

𝐶𝑙𝑢𝑠𝑡𝑒𝑟_𝑠𝑖𝑧𝑒 list of percentages regarding the number of nodes for each cluster

𝐸𝑥𝑡𝑒𝑟𝑛𝑎𝑙_𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 the probability of each node to have an edge with nodes from other

clusters

𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦_𝑙𝑖𝑠𝑡 list of probabilities for intra-edges in each cluster

After tweaking those parameters, we created five different categories of synthetic graphs to

examine our criteria against modularity. The first sub-category of our synthetic data, consists

graphs with equally distributed 𝐶𝑙𝑢𝑠𝑡𝑒𝑟_𝑠𝑖𝑧𝑒 (
1

𝐶
) and 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦_𝑙𝑖𝑠𝑡 values ranging from 80

to 100% percent for each cluster. This results in graphs that are separated in a clear way.

The next category contains of graphs with 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦_𝑙𝑖𝑠𝑡 values ranging from 80 to 100%

percent for each cluster and descending 𝐶𝑙𝑢𝑠𝑡𝑒𝑟_𝑠𝑖𝑧𝑒. This results in graphs with the dense

large clusters and sparse small clusters.

35

The third category contains graphs with equally distributed 𝐶𝑙𝑢𝑠𝑡𝑒𝑟_𝑠𝑖𝑧𝑒 (
1

𝐶
) and a

descending 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦_𝑙𝑖𝑠𝑡 values which starts ranging from 90 to 100 percent and reduced

for each cluster by a constant amount (15%). That category creates equally dense clusters

regarding the number of nodes, but addresses the various intra edge density.

The fourth category contains graphs with descending 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦_𝑙𝑖𝑠𝑡 values as described

above. Also, the 𝐶𝑙𝑢𝑠𝑡𝑒𝑟_𝑠𝑖𝑧𝑒 is descending as well. That parameter tweaking leads to

clusters with stable ration between number of nodes and intra edge density.

The final sub-category includes once again graphs with a descending 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦_𝑙𝑖𝑠𝑡 values

as described in the two previous categories. However, the 𝐶𝑙𝑢𝑠𝑡𝑒𝑟_𝑠𝑖𝑧𝑒 is ascending. That

leads to graphs with large sparse clusters and small dense clusters.

Due to the large running time for our optimization techniques on large graphs, on a

commercial personal computer, we implemented a different approach. In order to test both

criteria on large scale networks, we implement an optimization via the spectral clustering

algorithm. More specifically, we run the spectral clustering algorithm for k number of

clusters ranging from 2 to 20 for each graph, and store the partition that maximized

modularity and inclusion respectively. We did 20 independent runs for each category.

The second category, is actual real-world datasets. To determine which of the real-world

datasets to choose, we had two basic criteria. The first one was that the dataset was small

enough, so it could be processed in a simple personal PC. The second and the most

important one, was that the dataset had the ground truth provided. Ground truth, is the

actual partition of the nodes into clusters. That information was necessary to us, because a

couple of our metrics were based on it.

The first dataset that we chose was the famous Zachary’s Karate Club [Zach77]. This dataset

is a social network of a karate club that was studied for three years. During the study, a

conflict arose between the administrator and instructor, which led to the split of the club into

two.

The second dataset was the American College Football dataset. This dataset is a network of

American football games between Division IA colleges during regular season Fall 2000.

4.2 Results

In order to measure the quality of the solution given by inclusion and modularity, we

measure the similarity of an obtained solution with the ground truth solution, using two

different metrics that are presented below:

Normalized Mutual Information (NMI): Mutual Information score (MI) in general, is the

measure of mutual dependence between two random variables, but in our case, is adjusted

to measure dependence (similarity) between different partitions instead of random variables.

So, NMI, is a normalization of the Mutual Information score (MI), which is a measure of the

36

mutual dependence between the two random variables, to scale the results between 0 (no

mutual information) and 1 (perfect correlation).

Adjusted Rand Index (ARI): The Rand Index (RI) computes a similarity measure between

two partitions by considering all pairs of samples and counting pairs that are assigned in the

same or different clusters in the predicted and true partitions.

The adjusted Rand index is a normalization of RI that provides a value close to 0.0 for

random labeling independently of the number of clusters and samples and exactly 1.0 when

the clusters are identical.

Once we have defined the NMI and ARI performance measures, we will explain the contents

in the tables that follow. For each category, we created a graph with 60 nodes and 4 clusters

as well as a graph with 80 nodes and 5 clusters. For each type of graph, we conducted 100

runs and kept the average values for various metrics.

Starting with the table columns, the first one presents of the average cluster size. The second

one gives the average Inclusion value. The third one gives the average Modularity. Finally,

the last two correspond to the average NMI and average ARI respectively.

As for the table rows, the first one corresponds to the solution produced by the fast

modularity algorithm. The next rows, present the results for our optimization function. Each

row name consists of three parts separated with an underscore, which are thoroughly

described at the end of chapter 3.

4.2.1 Equal Cluster Size – Large Intra Cluster Probability

Tables 1 and 2 present the results for the case where all clusters are of equal size and have

high intra-edge density.

Table 1 Results for Graph Model with 60 Nodes, 4 Clusters, Equally Distributed Cluster Size,

External Probability 15% and Probability List ranging from 90% to 100%.

 Avg Clusters Avg I Avg Mod Avg NMI Avg ARI

Modularity 4 0.7672 0.2789 1 1

All_Adj_B 3.81 0.7613 0.2720 0.9741 0.9435

All_Adj_F 4 0.7672 0.2789 1 1

All_All_B 3.81 0.7613 0.2720 0.9741 0.9435

All_All_F 4 0.7672 0.2789 1 1

Rnd_Adj_B 3.97 0.7663 0.2777 0.9960 0.9911

37

Rnd _Adj_F 3.66 0.7543 0.2645 0.9542 0.9000

Rnd _All_B 3.98 0.7664 0.2779 0.9973 0.9940

Rnd _All_F 3.43 0.7457 0.2545 0.9229 0.8316

Table 2 Results for Graph Model with 80 Nodes, 5 Clusters, Equally Distributed Cluster Size,

External Probability 15% and Probability List ranging from 90% to 100%.

 Avg Clusters Avg I Avg Mod Avg NMI Avg ARI

Modularity 4.99 0.7306 0.2568 0.9991 0.9977

All_Adj_B 3.7 0.7069 0.2288 0.8779 0.7294

All_Adj_F 5 0.7307 0.2570 1 1

All_All_B 3.67 0.7064 0.2282 0.8750 0.7237

All_All_F 4.99 0.7306 0.2568 0.9991 0.9977

Rnd_Adj_B 4.87 0.7284 0.2542 0.9882 0.9711

Rnd _Adj_F 4.14 0.7139 0.2369 0.9212 0.8102

Rnd _All_B 4.9 0.7289 0.2548 0.9910 0.9774

Rnd _All_F 3.73 0.7042 0.2258 0.8817 0.7319

4.2.2 Equal Cluster Size – Variable Intra Cluster Probability

Tables 3 and 4 present the results for the case where all clusters are of equal size and have

intra-edge densities that are gradually reduced.

Table 3 Results for Graph Model with 60 Nodes, 4 Clusters, Equally Distributed Cluster Size,

External Probability 15% and Probability List ranging from 90% to 100% for the First Cluster

Followed by a 15% Reduction for each Subsequent Cluster.

Avg Clusters Avg I Avg Mod Avg NMI Avg ARI

Modularity 3.99 0.7335 0.2508 0.9960 0.9943

38

All_Adj_B 3.37 0.7164 0.2318 0.8891 0.7957

All_Adj_F 4.02 0.7335 0.2508 0.9954 0.9948

All_All_B 3.37 0.7164 0.2318 0.8891 0.7957

All_All_F 4.01 0.7336 0.2508 0.9955 0.9951

Rnd_Adj_B 3.99 0.7326 0.2498 0.9904 0.9852

Rnd _Adj_F 3.81 0.7252 0.2401 0.9585 0.9222

Rnd _All_B 3.98 0.7318 0.2488 0.9860 0.9760

Rnd _All_F 3.48 0.7165 0.2303 0.9088 0.8290

Table 4 Results for Graph Model with 80 Nodes, 5 Clusters, Equally Distributed Cluster Size,

External Probability 15% and Probability List ranging from 90% to 100% for the First Cluster

Followed by a 15% Reduction for each Subsequent Cluster.

 Avg Clusters Avg I Avg Mod Avg NMI Avg ARI

Modularity 4.73 0.6827 0.2124 0.9022 0.8642

All_Adj_B 3.75 0.6687 0.1952 0.7643 0.6293

All_Adj_F 5.03 0.6840 0.2129 0.9309 0.9128

All_All_B 3.74 0.6687 0.1951 0.7652 0.6298

All_All_F 5.02 0.6839 0.2128 0.9285 0.9084

Rnd_Adj_B 4.79 0.6796 0.2070 0.8674 0.8110

Rnd _Adj_F 4.59 0.6767 0.2034 0.8501 0.7766

Rnd _All_B 4.94 0.6803 0.2077 0.8932 0.8464

Rnd _All_F 4.18 0.6703 0.1945 0.8148 0.7064

4.2.3 Variable Cluster Size – Large Intra Cluster Probability

Tables 5 and 6 present the results for the case where clusters are of various size and have

high intra-edge density.

39

Table 5 Results for Graph Model with 60 Nodes, 4 Clusters, Distributed Cluster Size with

Descending Order (40%, 30%, 20%, 10%), External Probability 15% and Probability List

ranging from 90% to 100%.

 Avg Clusters Avg I Avg Mod Avg NMI Avg ARI

Modularity 3.48 0.7850 0.2581 0.9545 0.9458

All_Adj_B 3.14 0.7797 0.2557 0.9180 0.8979

All_Adj_F 4 0.7883 0.2575 0.9983 0.9990

All_All_B 3.14 0.7797 0.2557 0.9180 0.8979

All_All_F 3.99 0.7883 0.2576 0.9976 0.9980

Rnd_Adj_B 3.93 0.7874 0.2572 0.9918 0.9896

Rnd _Adj_F 3.9 0.7877 0.2577 0.9892 0.9884

Rnd _All_B 3.9 0.7869 0.2569 0.9892 0.9856

Rnd _All_F 3.76 0.7855 0.2566 0.9764 0.9681

Table 6 Results for Graph Model with 80 Nodes, 5 Clusters, Distributed Cluster Size with

Descending Order (30%, 25%, 20%, 15%, 10%), External Probability 15% and Probability List

ranging from 90% to 100%.

 Avg Clusters Avg I Avg Mod Avg NMI Avg ARI

Modularity 4.36 0.7420 0.2551 0.9574 0.9327

All_Adj_B 3.36 0.7240 0.2383 0.8504 0.7511

All_Adj_F 4.91 0.7440 0.2548 0.9933 0.9874

All_All_B 3.37 0.7242 0.2383 0.8511 0.7519

All_All_F 4.92 0.7443 0.2551 0.9947 0.9910

Rnd_Adj_B 4.57 0.7415 0.2533 0.9673 0.9446

Rnd _Adj_F 4.3 0.7352 0.2468 0.9385 0.8831

40

Rnd _All_B 4.66 0.7419 0.2535 0.9729 0.9544

Rnd _All_F 3.88 0.7267 0.2375 0.8991 0.8082

4.2.4 Variable Cluster Size – Variable Intra Cluster Probability (Small

Cluster High Density)

Tables 7 and 8 present the results for the case where clusters are of various size and have

intra-edge densities that are gradually reduced, resulting in smaller sized clusters having

larger intra-edge density.

Table 7 Results for Graph Model with 60 Nodes, 4 Clusters, Distributed Cluster Size with

Ascending Order (10%, 20%, 30%, 40%), External Probability 15% and Probability List

ranging from 90% to 100% for the First Cluster Followed by a 15% Reduction for each

Subsequent Cluster

 Avg Clusters Avg I Avg Mod Avg NMI Avg ARI

Modularity 3.71 0.7242 0.2285 0.9684 0.9628

All_Adj_B 3.09 0.7168 0.2232 0.8930 0.8672

All_Adj_F 3.96 0.7255 0.2284 0.9943 0.9938

All_All_B 3.08 0.7166 0.2229 0.8904 0.8641

All_All_F 3.92 0.7254 0.2284 0.9890 0.9880

Rnd_Adj_B 3.78 0.7239 0.2276 0.9681 0.9641

Rnd _Adj_F 3.77 0.7238 0.2275 0.9692 0.9617

Rnd _All_B 3.91 0.7245 0.2276 0.9845 0.9797

Rnd _All_F 3.63 0.7217 0.2257 0.9536 0.9417

41

Table 8 Results for Graph Model with 80 Nodes, 5 Clusters, Distributed Cluster Size with

Ascending Order (10%, 15%, 20%, 25%, 30%), External Probability 15% and Probability List

ranging from 90% to 100% for the First Cluster Followed by a 15% Reduction for each

Subsequent Cluster

 Avg Clusters Avg I Avg Mod Avg NMI Avg ARI

Modularity 4.56 0.6663 0.1938 0.9225 0.8944

All_Adj_B 3.5 0.6526 0.1765 0.7584 0.6477

All_Adj_F 5.03 0.6678 0.1948 0.9504 0.9395

All_All_B 3.5 0.6525 0.1764 0.7589 0.6486

All_All_F 4.9 0.6674 0.1945 0.9358 0.9192

Rnd_Adj_B 4.75 0.6637 0.1896 0.8898 0.8435

Rnd _Adj_F 4.52 0.6626 0.1887 0.8766 0.8251

Rnd _All_B 4.59 0.6639 0.1901 0.8845 0.8424

Rnd _All_F 3.99 0.6563 0.1804 0.8084 0.7212

4.2.5 Variable Cluster Size – Variable Intra Cluster Probability (Large

Cluster High Density)

Tables 9 and 10 present the results for the case where clusters are of various size and have

intra-edge densities that are gradually increased, resulting in larger sized clusters having

larger intra-edge density.

Table 9 Results for Graph Model with 60 Nodes, 4 Clusters, Distributed Cluster Size with

Descending Order (40%, 30%, 20%, 10%), External Probability 15% and Probability List

ranging from 90% to 100% for the First Cluster Followed by a 15% Reduction for each

Subsequent Cluster

 Avg Clusters Avg I Avg Mod Avg NMI Avg ARI

Modularity 3.14 0.7686 0.2447 0.9069 0.9002

All_Adj_B 3.31 0.7675 0.2429 0.9039 0.8972

42

All_Adj_F 4.09 0.7724 0.2422 0.9748 0.9825

All_All_B 3.31 0.7678 0.2429 0.9078 0.9010

All_All_F 4.06 0.7725 0.2422 0.9761 0.9831

Rnd_Adj_B 3.96 0.7721 0.2427 0.9641 0.9692

Rnd _Adj_F 3.97 0.7721 0.2425 0.9699 0.9749

Rnd _All_B 3.98 0.7719 0.2423 0.9654 0.9704

Rnd _All_F 3.83 0.7705 0.2419 0.9538 0.9536

Table 10 Results for Graph Model with 80 Nodes, 5 Clusters, Distributed Cluster Size with

Descending Order (30%, 25%, 20%, 15%, 10%), External Probability 15% and Probability List

ranging from 90% to 100% for the First Cluster Followed by a 15% Reduction for each

Subsequent Cluster

 Avg Clusters Avg I Avg Mod Avg NMI Avg ARI

Modularity 3.95 0.7181 0.2338 0.8795 0.8598

All_Adj_B 4.17 0.7130 0.2272 0.8472 0.8073

All_Adj_F 4.98 0.7200 0.2317 0.9282 0.9324

All_All_B 4.18 0.7132 0.2275 0.8467 0.8087

All_All_F 4.99 0.7200 0.2317 0.9270 0.9323

Rnd_Adj_B 4.96 0.7192 0.2310 0.9152 0.9170

Rnd _Adj_F 4.71 0.7174 0.2299 0.8951 0.8840

Rnd _All_B 4.93 0.7193 0.2312 0.9177 0.9171

Rnd _All_F 4.55 0.7133 0.2246 0.8776 0.8485

4.2.6 Summary of Results

For the first category, where the all the clusters high equal size and high intra-edge density,

all methods performed generally well. Modularity, ‘All_Adj_F’ and ‘All_All_F’ performed

the best on both graphs on all metrics, with almost perfect results every time. ‘Rnd_Adj_B’

43

and ‘Rnd_All_B’ performed slight worse than the previous ones but still pretty great with

results for both NMI and ARI above 97%. Furthermore, their average number of

communities found 4.1 instead of 4. Finally, the rest of the methods performed great on the

first category were the graph had 60 nodes and 4 clusters, but on the next category with 80

nodes and 5 clusters, their percentage on NMI dropped about 10% to approximately 88%

while the ARI dropped even more to almost 20% on some cases. Moreover, their number of

detected communities was 3.7 for some cases instead of 5.

On the next category, where clusters are of equal size but the intra-edge density is dropping

gradually for every cluster, in graphs with 60 nodes and 4 clusters, ‘All_Adj_F’, ‘All_All_F’,

‘Rnd_Adj_B’, ‘Rnd _All_B’ and modularity performed really well with both NMI and ARI

nearly at 99%. Their number of detected communities was deviated by 0.01. ‘Rnd _All_F’,

‘All_Adj_B’ and ‘All_All_B’ performed worse than the others with NMI and ARI at 90%,

while their average number of communities deviated by 0.6. On the other hand, on graphs

with 80 nodes and 5 clusters all methods dropped their percentages on all metrics except

from ‘All_Adj_F’, ‘All_All_F’ which maintained their great performance.

On the next category, where clusters are of various size and have high intra-edge density,

‘All_Adj_F’, ‘All_All_F’ , ‘Rnd _Adj_B’, ‘Rnd_Adj_F’ and ‘Rnd _All_B’ performed

remarkably well on graphs with 60 nodes and 4 clusters, with average NMI and ARI

reaching 99% while their average number of clusters found had a very small deviation of

0.08. Modularity and ‘Rnd_All_F’, performed slightly worse than the previous ones but still

very good with an average of 96% on both NMI and ARI. As for their number of not detected

clusters, it is about 0.35. ‘All_Adj_B’ and ‘All_All_B’ performed the worst once again with an

average of 92% on NMI and 90% on ARI while their number clusters found was 3.15 instead

of 4. On the contrary, on graphs with 80 nodes and 5 clusters, all methods suffered from a

significant reduction on all metrics, with both ‘All_Adj_F’, ‘All_All_F’ outperforming the

other methods.

In the category where the clusters are of various size and have intra-edge densities that are

gradually reduced, resulting in smaller sized clusters having larger intra-edge density,

methods performed really well for the case of graphs with 60 nodes and 4 clusters. More

specifically, ‘All_Adj_F’, ‘All_All_F’ and ‘Rnd _All_B’ performed the best with an average of

98% on both NMI and ARI, while their number of clusters found deviated by 0.08.

Modularity, ‘Rnd_Adj_B’, ‘Rnd _Adj_F’ and ‘Rnd _All_F’, performed slightly worse than the

previous ones but still very good with an average of 96% on both NMI and ARI. As for their

number of clusters found, it is about 3.7 instead of 4. ‘All_Adj_B’ and ‘All_All_B’ performed

the worst once again with an average of 89% on NMI and 86% on ARI while their number of

clusters found was approximately 3.1 instead of 4. For the case of 80 nodes and 5 clusters, all

methods suffered a 5-10% reduction on both NMI and ARI except from ‘All_Adj_B’,

‘All_All_B’ and ‘Rnd _All_F’ which suffered a significant reduction up to 15%.

For the last category, where clusters are of various size and have intra-edge densities that are

gradually increased, resulting in larger sized clusters having larger intra-edge density,

almost all methods performed well on graphs with 60 nodes and 4 clusters. More

specifically, ‘All_Adj_F’, ‘All_All_F’, ‘Rnd _Adj_B’, ‘Rnd_Adj_F’ ,‘Rnd _All_B’ and ‘Rnd

_All_F’ performed really well with an average of 96% for NMI and 97% for ARI.

44

Furthermore, their number of detected clusters deviated by 0.05. Modularity, ‘All_Adj_B’

and ‘All_All_B’ performed the worst with 90% on both NMI and ARI, while their average

number of detected clusters deviated by 0.8. On the graphs with 80 nodes and 5 clusters all

methods suffered a 5-10% on every metric.

4.2.7 Large Graphs – Optimization via Spectral Clustering

In this section, we present the results for the spectral optimization. More specifically, we run

the spectral clustering algorithm for k number of clusters ranging from 2 to 20 for each

graph, and store the partition that maximized modularity and inclusion respectively. We did

20 independent runs for each category.

Table 11 Results for Graph Model with 1000 Nodes, 8 Clusters, Equally Distributed Cluster

Size, External Probability 15% and Probability List ranging from 90% to 100%.

 Avg Clusters Avg I Avg Mod Avg NMI Avg ARI

Modularity 8 0.6684 0.2122 1 1

Inclusion 8 0.6684 0.2122 1 1

Table 12 Results for Graph Model with 1000 Nodes, 8 Clusters, Equally Distributed Cluster

Size, External Probability 10% and Probability List ranging from 90% to 100% for the First

Cluster Followed by a 10% Reduction for each Subsequent Cluster

 Avg Clusters Avg I Avg Mod Avg NMI Avg ARI

Modularity 7.3 0.6200 0.1604 0.9694 0.9087

Inclusion 8 0.6213 0.1600 0.9973 0.9977

Table 13 Results for Graph Model with 1000 Nodes, 8 Clusters, Distributed Cluster Size with

Descending Order (20%, 20%, 15%, 15%, 10%, 10%, 5%, 5%), External Probability 15% and

Probability List ranging from 90% to 100%.

 Avg Clusters Avg I Avg Mod Avg NMI Avg ARI

45

Modularity 6.9 0.6877 0.2264 0.9786 0.9733

Inclusion 8 0.6883 0.2260 1 1

Table 14 Results for Graph Model with 1000 Nodes, 8 Clusters, Distributed Cluster Size with

Ascending Order (5%, 5%, 10%, 10%, 15%, 15%, 20%, 20%), External Probability 10% and

Probability List ranging from 90% to 100% for the First Cluster Followed by a 10% Reduction

for each Subsequent Cluster

 Avg Clusters Avg I Avg Mod Avg NMI Avg ARI

Modularity 8 0.6054 0.1400 0.9997 0.9997

Inclusion 8 0.6054 0.1400 0.9997 0.9997

Table 15 Results for Graph Model with 1000 Nodes, 8 Clusters, Distributed Cluster Size with

Descending Order (20%, 20%, 15%, 15%, 10%, 10%, 5%, 5%), External Probability 10% and

Probability List ranging from 90% to 100% for the First Cluster Followed by a 10% Reduction

for each Subsequent Cluster

 Avg Clusters Avg I Avg Mod Avg NMI Avg ARI

Modularity 5 0.6613 0.2057 0.8932 0.7827

Inclusion 7 0.6661 0.2031 0.9756 0.9774

For the spectral optimization on graphs with equally distributed and highly dense clusters,

both methods yielded perfect results, as they found the ground truth solution every time. For

the next category where the cluster sizes where equally distributed but there was various

inter-edge probability, the modularity failed to detect the correct number of communities on

some cases, resulting in a 96% NMI and 90% of ARI while its number of detected

communities deviated by 0.7. On the other hand, inclusion found the ground truth solution

nearly every time with an average of 99% on both NMI and ARI.

On the next category where the cluster sizes are created with various sizes, inclusion found

the ground truth partition on every occasion. On the contrary, modularity failed to detect the

correct number of communities once again providing an average of 6.9 communities instead

of 8.

On graphs where smaller clusters are denser, both methods yielded perfect solutions every

time. Finally, on the last category, where smaller clusters are sparser, both methods failed to

detect the correct number of communities. Inclusion though, found 7 instead of 8

46

communities with 97% NMI and ARI while modularity found 5 instead of 8 communities

with 89% on NMI and 78% on ARI.

Table 16 Results for Graph Model with 2000 Nodes, 16 Clusters, Equally Distributed Cluster

Size, External Probability 15% and Probability List ranging from 95% to 100%.

 Avg Clusters Avg I Avg Mod Avg NMI Avg ARI

Modularity 16 0.5959 0.1294 1 1

Inclusion 16 0.5959 0.1294 1 1

Table 17 Results for Graph Model with 2000 Nodes, 16 Clusters, Equally Distributed Cluster

Size, External Probability 15% and Probability List ranging from 95% to 100% for the First

Cluster Followed by a 5% Reduction for each Subsequent Cluster

 Avg Clusters Avg I Avg Mod Avg NMI Avg ARI

Modularity 13 0.5648 0.0926 0.9333 0.7021

Inclusion 14.8 0.5658 0.0919 0.9630 0.8995

Table 18 Results for Graph Model with 2000 Nodes, 16 Clusters, Distributed Cluster Size

with Descending Order (10%, 10%, 10%, 8%, 8%, 8%, 7.5%, 6.25%, 6.25%, 6.25%, 5.25%, 5%,

3.5%, 2%, 2%, 2%), External Probability 15% and Probability List ranging from 95% to 100%.

 Avg Clusters Avg I Avg Mod Avg NMI Avg ARI

Modularity 13.9 0.6095 0.1461 0.9853 0.9749

Inclusion 15.7 0.6097 0.1460 0.9982 0.9977

47

Table 19 Results for Graph Model with 2000 Nodes, 16 Clusters, Distributed Cluster Size

with Ascending Order (2%, 2%, 2%, 3.5%, 5%, 5.25%, 6.25%, 6.25%, 6.25%, 7.5%, 8%, 8%, 8%,

10%, 10%, 10%), External Probability 15% and Probability List ranging from 95% to 100% for

the First Cluster Followed by a 5% Reduction for each Subsequent Cluster

 Avg Clusters Avg I Avg Mod Avg NMI Avg ARI

Modularity 13.8 0.5563 0.0795 0.9598 0.8629

Inclusion 15.4 0.5566 0.0793 0.9818 0.9421

Table 20 Results for Graph Model with 2000 Nodes, 16 Clusters, Distributed Cluster Size

with Descending Order (10%, 10%, 10%, 8%, 8%, 8%, 7.5%, 6.25%, 6.25%, 6.25%, 5.25%, 5%,

3.5%, 2%, 2%, 2%), External Probability 15% and Probability List ranging from 95% to 100%

for the First Cluster Followed by a 5% Reduction for each Subsequent Cluster

 Avg Clusters Avg I Avg Mod Avg NMI Avg ARI

Modularity 10.1 0.5925 0.1291 0.9085 0.7074

Inclusion 13.4 0.5944 0.1276 0.9763 0.9639

To even further harden the problem, we test both methods on even bigger graphs with more

clusters. On the first category where all cluster sizes are equally distributed, both methods

found perfect solutions every time. For the next category where the cluster sizes where

equally distributed but there was various inter-edge probability, inclusion outperformed

modularity with 96% on NMI and 90% on ARI while the average number of communities

found was 14.8 instead of 16. Modularity, found 13 communities instead of 16 with 93% NMI

and surprisingly low ARI 70%.

On the next category where the cluster sizes are created with various sizes, both methods

performed really well with 98% and 99% on both NMI and ARI, for modularity and

inclusion, respectively. The average number of communities found was 13.9 for modularity

and 15.7 for inclusion, instead of 16.

On graphs where smaller clusters are denser, both methods performed really well once

again. More specifically, modularity reached 96% on NMI and 86% on ARI while its number

of detected communities is 13.8 instead of 16. Inclusion, performed slightly better with 98%

on NMI and 94% on ARI while its number of detected communities is 15.4 instead of 16.

Finally, on the last category, where smaller clusters are sparser, both methods struggled on

the correct number of the underlying communities. More precisely, modularity found 10.1

48

communities on average instead of 16 and reached 90% on NMI and 71% on ARI. On the

other hand, inclusion performed significantly better as the number of detected communities

on average was 13.4 and its NMI and ARI is approximately 97%.

4.2.8 Real-World Graphs

Table 21 presents some basic statistics on the two real-world networks we used.

Furthermore, Table 22 and 23 present the results on the Zachary's Karate Club and American

College Football datasets respectively.

Table 21 Real-World Networks’ Statistics

 Number of Nodes Number of Edges Number of Clusters

Karate Club 34 78 2

American Football 115 616 12

Table 22 Results for Karate Club Dataset (2 Clusters)

 Avg Clusters Avg I Avg Mod Avg NMI Avg ARI

Modularity 4 0.8126 0.4188 0.6176 0.4619

All_Adj_B 9 0.7547 0.2940 0.5303 0.2321

All_Adj_F 11 0.7352 0.2588 0.5021 0.1576

All_All_B 9 0.7547 0.2940 0.5303 0.2321

All_All_F 11 0.7352 0.2588 0.5021 0.1576

Rnd_Adj_B 9.54 0.7563 0.2932 0.5280 0.2142

Rnd _Adj_F 6.11 0.7901 0.3687 0.6305 0.4142

Rnd _All_B 9.78 0.7521 0.2854 0.5202 0.1992

Rnd _All_F 6.15 0.7905 0.3666 0.6046 0.3803

49

Table 23 Results for American College Football Dataset (12 Clusters)

 Avg Clusters Avg I Avg Mod Avg NMI Avg ARI

Modularity 10 0.8367 0.6043 0.8856 0.8035

All_Adj_B 7 0.8350 0.6006 0.7955 0.5784

All_Adj_F 11 0.8363 0.6031 0.9115 0.8569

All_All_B 7 0.8350 0.6006 0.7955 0.5784

All_All_F 10 0.8342 0.5998 0.8895 0.8006

Rnd_Adj_B 10.9 0.8317 0.5948 0.8940 0.8003

Rnd _Adj_F 10.42 0.8308 0.5931 0.8867 0.7854

Rnd _All_B 10.71 0.8330 0.5970 0.8927 0.7934

Rnd _All_F 6.98 0.8111 0.5568 0.77573 0.5262

Table 24 Spectral Optimization for Zachary's Karate Club Dataset

 Avg Clusters Avg I Avg Mod Avg NMI Avg ARI

Modularity 4 0.8126 0.4188 0.6176 0.4619

Inclusion 4 0.8126 0.4188 0.6176 0.4619

Table 25 Spectral Optimization for American College Football Dataset

 Avg Clusters Avg I Avg Mod Avg NMI Avg ARI

Modularity 11 0.8363 0.6031 0.9115 0.8569

Inclusion 11 0.8363 0.6031 0.9115 0.8569

For the Zachary’s Karate Club dataset, modularity found 4 communities instead of 2 with an

NMI of 62% and ARI of 46. ‘Rnd_Adj_F’ and ‘Rnd_All_F’ performed similar to modularity in

regard to NMI and ARI with 62% and 41% respectively but the number of communities

50

found is on average 6.1 instead of 2. All the other methods performed significantly worst

with NMI nearly at 50% and ARI at 20% while on some cases the number of communities

found is 11. That results indicate that the Karate Club is quite a difficult problem and

probably there more than 2 actual communities.

On American College Football dataset, the results were significantly better. ‘All_Adj_B’,

‘All_All_B’ and ‘Rnd _All_F’ failed to detect the 5 clusters which led to poor results with

NMI of 78% and ARI of 55%. On the other hand, all the other methods found at least 10 of

the actual clusters with ‘All_Adj_F’ performing the best with 11 clusters found and NMI of

91% and ARI of 86%.

For the spectral optimization on Zachary’s Karate Club dataset, both methods chose the exact

same solution. More specifically, they found 4 communities instead of 2 with an NMI of 62%

and ARI of 46%. The same thing occurred with the American College Football, as both

methods chose the exact same solution. The clusters found was 11 instead of 12, while the

NMI was 91% and ARI was 86%.

51

52

CHAPTER 5.

CONCLUSION AND FUTURE WORK

5.1 Conclusion

5.2 Future Work

5.1 Conclusion

In this thesis, we studied the community detection problem and introduced a new quality

measure, inclusion. Furthermore, we presented several optimization techniques for this

criterion and compare them to the most popular family of community detection methods

which are based on the optimization of the so called ‘modularity’ criterion using various

clustering approaches.

In the experimental evaluation we conducted, we deducted some valuable insights. First of

all, in almost every case we examined, higher inclusion values led to better results, on both

the quality of the solution (NMI and ARI) and actual number of communities detected. Thus,

the optimization of the inclusion measure can help in solving the community detection

problem.

Although on smaller graphs both methods optimizing inclusion and modularity performed

remarkably well, when we scale out, modularity seems to struggle on detecting smaller

communities. On the other hand, our methods and specifically ‘All_Adj_F’ and ‘All_All_F’,

outperformed modularity on almost every occasion. Finally, when we used the spectral

optimization, thus narrowing our selection of solutions to a specific set, inclusion

outperformed modularity as a choice criterion.

53

5.2 Future Work

Given the encouraging community detection results obtained from the use of the proposed

inclusion measure, there are several research directions to be followed. At first it would be

interesting to test the approach on various community detection applications arising in

biological, social and other types of networks.

It would be also interesting to conduct a more detailed analysis of the strengths and

weaknesses of the proposed measure that will lead to the identification of graph cases where

the method succeeds or fails.

Another research direction is to consider alternative approaches for optimizing inclusion, in

analogy with the various techniques that have been proposed for optimizing modularity (e.g.

simulated annealing, alternative greedy search schemes, etc.).

It would also be important if we could formulate the inclusion maximization problem as a

trace maximization problem in analogy to the spectral clustering objective. In such a case, the

solution could be obtained from the eigenvectors of the corresponding matrix.

Finally, another important research direction concerns the possible use of inclusion measure

to detect communities in weighted graphs as well as in directed graphs. In such a case, an

adaptation of the inclusion definition would be necessary to take into account the richer

connection information included in the edge matrix.

54

REFERENCES

[Euler36] L. Euler, Solutio problematis ad geometriam situs pertinentis,

Commentarii Academiae Petropolitanae 8, 1736.

[Boll98] B. Bollobas, Modern Graph Theory, Springer Verlag, New York,

USA, 1998.

[WaFa94] S. Wasserman, K. Faust, Social Network Analysis, Cambridge

University Press, Cambridge, UK, 1994.

[ErRé59] P. Erdös, A. Rényi, On random graphs. I., Publ. Math. Debrecen 6,

1959.

[WaSt98] D. J. Watts, S. H. Strogatz, Collective dynamics of small-world

networks, Nature, 1998.

[GiNe02] M. Girvan, M.E.J. Newman, Community structure in social and

biological networks, Proc. Natl. Acad. Sci. USA 99 12, 2002.

[Fort10] S. Fortunato, Community detection in graphs, Physics Reports, 2010.

[KeLi70] B.W. Kernighan, S. Lin, An efficient heuristic procedure for

partitioning graphs, Bell Syst. Tech. J. 49 (1970) 291-307.

[MacQ67] J.B. MacQueen, Some methods for classification and analysis of

multivariate observations, in: L.M.L. Cam, J. Neyman (Eds.), Proc. of

the fifth Berkeley Symposium on Mathematical Statistics and

Probability, vol. 1, University of California Press, Berkeley, USA,

1967, pp. 281-297.

[NgJW01] A.Y. Ng, M.I. Jordan, Y. Weiss, On spectral clustering: Analysis and

an algorithm, in: T.G. Dietterich, S. Becker, Z. Ghahramani (Eds.),

Advances in Neural Information Processing Systems, vol. 14, MIT

Press, Cambridge, USA, 2001.

[Mack03] D.J.C. Mackay, Information Theory, Inference, and Learning

Algorithms, Cambridge University Press, Cambridge, UK, 2003.

[Wink03] R.L. Winkler, Introduction to Bayesian Inference and Decision,

Probabilistic Publishing, Gainesville, USA, 2003.

55

[HaRT07] M.S. Handcock, A.E. Raftery, J.M. Tantrum, Model based clustering

for social networks, J. Roy. Statist. Soc. A 170 (2007) 1-22. Working

Paper no. 46.

[Hast06] M.B. Hastings, Community detection as an inference problem, Phys.

Rev. E 74 (3) (2006) 035102.

[Gall63] R.G. Gallager, Low Density Parity Check Codes, MIT Press,

Cambridge, USA, 1963.

[NeGi04] M.E.J. Newman, M. Girvan, Finding and evaluating community

structure in networks, Phys. Rev. E 69 (2) (2004) 026113.

[BDG+06] U. Brandes, D. Delling, M. Gaertler, R. Görke, M. Hoefer, Z. Nikolski,

D. Wagner, On modularity np-completeness and beyond, 2006.

[Newm04] M.E.J. Newman, Fast algorithm for detecting community structure in

networks, Phys. Rev. E 69 (6) (2004) 066133.

[ClNM04] A. Clauset, M.E.J. Newman, C. Moore, Finding community structure

in very large networks, Phys. Rev. E 70 (6) (2004) 066111.

[BGLL08] V.D. Blondel, J.-L. Guillaume, R. Lambiotte, E. Lefebvre, Fast

unfolding of communities in large networks, J. Stat. Mech. P10008

(2008).

[KiGV83] S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Optimization by simulated

annealing, Science 220 (1983) 671-680.

[GuSA04] R. Guimerà, M. Sales-Pardo, L.A.N. Amaral, Modularity from

fluctuations in random graphs and complex networks, Phys. Rev. E

70 (2) (2004) 025101 (R).

[FoBa07] S. Fortunato, M. Barthélemy, Resolution limit in community

detection, Proc. Natl. Acad. Sci. USA 104 (2007) 36-41.

[Zach77] W.W. Zachary, An information flow model for conflict and fission in

small groups, J. Anthropol. Res. 33 (1977) 452-473.

56

SHORT CV

Nikolaos Koufos was born in Athens, Greece in 1992. In 2010, he enrolled in the Computer

Science & Engineering department in University of Ioannina and in 2015 he received his

diploma. In continuation to his studies, he joined the same department for his Master’s

Degree. After fulfilling his responsibilities as a post-graduate student, he presented his thesis

in July 2017 in order to complete his Master’s Degree.

57

