

Supporting exploratory analytics on repository-extracted
schema histories by integrating external contextual information

A Thesis

submitted to the designated

by the General Assembly of Special Composition

of the Department of Computer Science and Engineering

Examination Committee

by

Athanasios Pappas

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

WITH SPECIALIZATION

IN SOFTWARE

University of Ioannina

June 2017

DEDICATION

To my family.

ACKNOWLEDGMENTS

To anyone and everyone that has mentally, and otherwise helped me in succeeding
this huge task. First and foremost, I would like to thank my supervisor, Prof. Panos
Vassiliadis for his guidance throughout my graduate studies. Secondly, I would like
to express my gratitude to my family, for their support all of these years

Thank you all for making this thesis possible.

i

TABLE OF CONTENTS

Dedication iii

Acknowledgments v

Table of Contents i

List of Tables v

List of Figures vii

Abstract xi

Εκτεταμένη Περίληψη στα Ελληνικά xiii

CHAPTER 1. Introduction 1

1.1 Scope 1

1.2 Roadmap 4

CHAPTER 2. Related Work 5

2.1 Change Classification 5

2.2 Schema Evolution 8

CHAPTER 3. Sources of information foss projects 11

3.1 What can we extract from the web concerning a Free
and Open Source Software (FOSS) project? 12

3.2 Proof of Concept: experimental setup 15

3.2.1 Datasets 16

3.2.2 Retrieval of the contents of Github-located information 16

ii

3.2.3 Retrieval using external sources API 17

3.2.4 Data preprocess 19

3.2.5 Changes to Database Schema - Hecate 20

CHAPTER 4. A reference Model for the Biography of a Schema 23

4.1 Software Evolution Level 24

4.1.1 Project Structure Level 24

4.1.2 Software Evolution Level 25

4.2 Schema Evolution Level 26

4.2.1 Database structure 26

4.2.2 Schema evolution 27

4.3 Explanation of why / Motivational level 29

4.3.1 Contextual level 30

4.3.2 External systems level 30

4.4 Purpose / Summary Level 32

CHAPTER 5. Interactive analysis of schema histories 35

5.1 Technologies used 35

5.1.1 Back-end 36

5.1.2 Middle-end 37

5.1.3 Front-end 37

5.2 Architecture 38

5.2.1 Models Module 39

5.2.2 Controllers Module 39

5.2.3 Views Module 40

5.3 Interactive analysis 41

5.3.1 Levels of detail 42

5.3.2 A common scenario on using the system 45

iii

CHAPTER 6. What do the data on releases tell us with respect to
schema evolution? 51

6.1 An aggregate overview of release data for schema
evolution 52

6.1.1 Terminology 52

6.1.2 Breakdown of change 53

6.1.3 Aggregate measures of activity and growth 58

6.2 Schema size, heartbeat and progress of change over
time 63

6.3 Classifying Releases 68

6.3.1 Maintenance categories discretization 68

6.3.2 Zero logical change 69

6.3.3 Table activity 69

6.3.4 Intra table growth 71

6.3.5 Attribute updates 73

6.3.6 Volume of change discretization 73

6.3.7 Summarizing the labeling possibilities 78

6.3.8 Overall stats 80

6.3.9 The extent of tangled changes 86

6.3.10 The extent of unique label 88

CHAPTER 7. CONCLUSION AND FUTURE WORK 91

7.1 Conclusions 91

7.2 Future work 92

Bibliography 95

Appendices 99

Short CV 117

iv

v

LIST OF TABLES

Table 1 Repositories with their urls and the external systems that they use 18

Table 2 Stats for each dataset from the retrieved data 22

Table 3 Discretization thresholds for releases, including the two different
modification types. 75

Table 4 Discretization thresholds for commits, including the two different
modification types. 78

Table 5 Top-5 ranked characterizations of commits based on the average of
percentages over all datasets. 81

Table 6 Bottom-5 ranked characterizations of commits based on the average
percentages over all datasets 81

Table 7 Overall percentages for commit characterization 82

Table 8 Top-5 ranked labels of releases based on the average of percentages
over all datasets. 84

Table 9 Botom-5 ranked labels of releases based on the average of
percentages over all datasets. 84

Table 10 Overall percentages for release characterization 85

Table 11 Number of tangled and monothematic changes along with their
percentages per dataset. 87

Table 12 Number of releases that contain tangled and unique changes along
with their percentages per dataset. 88

Table 13 Number of unique changes along with their percentages per
dataset 89

Table 14 Number of releases that contain unique labels and number of
release that contain commits with unique changes along with
their percentages per dataset. 90

vi

vii

LIST OF FIGURES

Figure 1 Life story of a software repository 12

Figure 2 Graphical representation of the method used for linking a bug with
the corresponding commits. 20

Figure 3 Software evolution level 25

Figure 4 Schema evolution level 26

Figure 5 Relation between software structure and database schema
structure levels 27

Figure 6 Relation between software evolution and database schema
evolution levels 28

Figure 7 Relation between different concepts from schema evolution level
concepts and software evolution level 29

Figure 8 Explanation of why / Motivational level 32

Figure 9 Summary level 33

Figure 10 Model used in this study 34

Figure 11 A general representation of how different parts of the system are
connected together. 41

Figure 12 Graphical elements that are part of the release level 43

Figure 13 Automatically generated text for describing a release 43

Figure 14 Graphical elements that are part of the summary level. (1) The
basic change breakdown and schema size chart which presents
information about releases in a specific time period, (2) top co-
changed files along with the schema definition file, (3) developers
sorted by the number of commits they pushed on the repository,
(4) table lives across the whole lifetime of the database schema, (5)

viii

chord diagram which presents the relations between developers
(developers that make a commit in the same release) 44

Figure 15 Graphical elements that are part of the commit level. (1) presents
highlights and useful information for the specific commit, (2)
automatically generated text summary for a specific commit, (3)
useful statistics regarding the different types of changes, (4) issues
that was reported immediately before and immediately after the
commit. 47

Figure 16 Filtering option in summary level. (1) tool for filtering down in a
specific period, (2) change breakdown chart displaying
information for the releases in the selected time period and (3)
name and date for each release inside the time period, (4) menu
for choosing one of the three different levels of detail 48

Figure 17 Filtering option in release level. (1) tool for filtering down in a
specific period, (2) change breakdown chart displaying
information for the commits in the selected time period and (3)
for each commit we present the first 30 characters from the
commit text and the author of the commit. 48

Figure 18 Details for a selected commit in commit level 49

Figure 19 Aggregate measures of change for the entire life of the six data
sets that we study 55

Figure 20 Total volume of change and its breakdown (in attributes) for the
entire life of the data sets that we study 56

Figure 21 Release breakdown per schema size growth: for every value of
schema growth (in tables), we measure how many releases have
demonstrated this value 58

Figure 22 Release breakdown per amount of attributes injected or ejected:
we add the amount of attributes injected to existing tables and
ejected from tables that survive this change and measure we
measure how many releases have demonstrated this value 59

Figure 23 Cumulative percent of *jections for the releases in the top-5
positions with respect to *jections (dark red for the high values at
start and end, and for the steps higher than 10%; blue for low
values at start and end). 60

ix

Figure 24 Cumulative percentage of updates for the top-5 releases (dark red
for the high values at start and at the end, and for the steps higher
than 10%; blue for low values at start and end). 61

Figure 25 Release breakdown per amount of attributes updated: we add the
amount of attributes with a data type change or participating at a
key change and measure we measure how many releases have
demonstrated this value 61

Figure 26 Percentage of releases with zero change in different categories of
change 62

Figure 27 Schema size and heartbeat evolving over time for Biosql,
Ensembl, and MediaWiki 64

Figure 28 Schema size and heartbeat evolving over time for Opencart,
phpBB, and Typo3 65

Figure 29 Cumulative progress per update types including all datasets. 66

Figure 30 Distribution of total intra table updates for releases for Biosql,
Ensembl and Mediawiki. 76

Figure 31 Distribution of total intra table updates for releases for Opencart,
Phpbb and Typo3. 77

Figure 32 Distribution of total intra table updates for releases for Biosql,
Ensembl and Mediawiki. 108

Figure 33 Distribution of total intra table updates for releases for Opencart,
Phpbb and Typo3. 109

Figure 34 Distribution of total table births and deaths for releases for Biosql,
Mediawiki and Ensembl. 110

Figure 35 Distribution of total table births and deaths for releases for
Opencart, Phpbb and Typo3. 111

Figure 36 Distribution of intra table total updates for commits for Biosql,
Ensembl and Mediawiki. 112

Figure 37 Distribution of intra table total updates for commits for Opencart,
Phpbb and Typo3. 113

Figure 38 Distribution of total table births and deaths for commits for
Biosql, Ensembl and Mediawiki. 114

x

Figure 39 Distribution of total table births and deaths for commits for
Opencart, Phpbb and Typo3. 115

xi

ABSTRACT

Athanasios Pappas. MSc in Computer Science, Department of Computer Science and
Engineering, University of Ioannina, Greece. June 2017.

Supporting exploratory analytics on repository-extracted schema histories by
integrating external contextual information.

Advisor: Panos Vassiliadis, Associate Professor.

Data-intensive software systems evolve over time and, as part of this evolution
process, so does the schema of any database which is included as an integral part of
them. Version control systems store the version histories of open source software
projects and the information extraction from these histories can be useful for gaining
insights about their evolution. Alongside with the software evolution, new
information is posted in different external systems improving in this way the
software development experience for example. In this thesis, we combine all the
various, heterogeneous, dissimilar sources of information for the history of a schema
in one reference model which represents all the aspects of repository-based
information. Then, we use the defined reference model to create a system that
supports both an interactive and a traditional way to exploratory analytics using the
integrated contextual information about the schema histories. Beyond that, we use
the same meta-model in order to group the entire lifetime of a database into phases,
to which we refer to the term release, and perform a study on how these phases are
related to changes affecting the schema of the database. Based on our findings, we
can argue that change is mostly absent or kept in small numbers in contrast with few
releases collecting a large percentage of the changes.

xii

xiii

ΕΚΤΕΤΑΜΕΝΗ ΠΕΡΙΛΗΨΗ ΣΤΑ ΕΛΛΗΝΙΚΑ

Αθανάσιος Παππάς. ΜΔΕ στην Πληροφορική, Τμήμα Μηχανικών Η/Υ και
Πληροφορικής, Πανεπιστήμιο Ιωαννίνων, Ιούνιος 2017.

Αναλυτική πλοήγηση σε δεδομένα αποθετηρίου για την εξέλιξη του σχήματος
μιας βάσης δεδομένων δια της ενοποίησης εξωτερικών πηγών πληροφορίας

Επιβλέπων: Παναγιώτης Βασιλειάδης, Αναπληρωτής Καθηγητής.

Όπως το λογισμικό ανοικτού κώδικα έτσι και οι βάσεις δεδομένων, οι οποίες
αποτελούν αναπόσπαστο κομμάτι του λογισμικού, εξελίσσονται με την πάροδο
του χρόνου. Τα δημόσια αποθετήρια κώδικα είναι συστήματα που αποθηκεύουν
τις αλλαγές που έχει υποστεί ένα λογισμικό κατά την διάρκεια της ανάπτυξής
του. Η εξαγωγή των αλλαγών αυτών από τα αποθέτηρια είναι χρήσιμη για την
μελέτη και την κατανόηση τόσο της εξέλιξης του λογισμικού όσο και της
εξέλιξης των σχημάτων βάσεων δεδομένων. Παράλληλα με την εξέλιξη του
λογισμικού, νέες πληροφορίες δημιουργούνται σε διαφορετικά εξωτερικά
συστήματα τα οποία χρησιμοποιούνται για την βελτίωση της ανάπτυξης του
λογισμικού. Παραδείγματα τέτοιων συστημάτων μπορεί να είναι τα συστήματα
διαχείρισης των προβλημάτων που προκύπτουν στο λογισμικό ή το σύστημα με
το οποίο επικοινωνούν οι προγραμματιστές του λογισμικού. Στόχος της
συγκεκριμένης μεταπτυχιακής εργασίας είναι η μελέτη όλων αυτών των
ετερογενών πηγών πληροφορίας με στόχο την ενοποίηση τους σε ένα μοντέλο το
οποίο θα διευκολύνει την μελέτη της εξέλιξης των σχημάτων βάσεων
δεδομένων. Πιο συγκεκριμένα, ορίζουμε ένα μοντέλο αναφοράς που περιέχει
κάθε πτυχή των ετερογενών αυτών πηγών και κατασκευάζουμε ένα σύστημα το
οποίο χρησιμοποιεί το συγκεκριμένο μοντέλο και παρέχει έναν διαδραστικό
τρόπο μελέτης της εξέλιξης του σχήματος βάσεων.

Επιπλέον, χρησιμοποιώντας το μοντέλο αναφοράς ομαδοποιούμε την ιστορία
μιας βάσης δεδομένων σε φάσεις με βάση τις πληροφορίες που έχουν εξαχθεί
από το αποθετήριο κώδικα και μελετούμε πως οι αλλαγές στο σχήμα της βάσης

xiv

οργανώνονται σε φάσεις και πώς αυτές σχετίζονται με την ιστορία της εξέλιξης
του σχήματος της βάσης δεδομένων. Με βάση τις μετρήσεις μας, μπορούμε να
υποστηρίξουμε ότι ένα μεγάλο μέρος της ιστορίας των σχημάτων βάσεων
δεδομένων χαρακτηρίζεται από την απουσία αλλαγών. Αντίθετα, ένα μικρό
ποσοστό των φάσεων συγκεντρώνει το μεγαλύτερο ποσοστών αλλαγών σε όλη
την ιστορία της εξέλιξης του σχήματος βάσεων δεδομένων.

1

CHAPTER 1.

INTRODUCTION

1.1 Scope

1.2 Roadmap

1.1 Scope

Every software project faces the need to evolve for various reasons. Firstly,
new requirements may arise due to the fact that some of the specifications of a
large project are not easy to be defined in detail from the start of the project.
In addition, bugs may appear or alternations of the requirements that they
were not foreseen are likely to occur and need to be addressed by making
changes to the source code. Any database which is integral part of software
also needs to evolve along with it. Much like any other module that is part of
a project, database schemata defining the structure of the database that
support the software project, evolve too. The evolving of a database schema to
adapt to the new changes is called schema evolution.

The last years, the rise of Free and Open Source Software (FOSS) is rapid due to
the fact that distributed version control systems like git1 support multiple

1 https://git-scm.com/

2

repositories and cheap branching capabilities that makes easier the
involvement of more developers in a software project. The increase on the
amount of developers in open source projects in combination with the
software and schema evolution has impact on the amount of data that exist in
open source software repositories. This amount of data becomes large and
makes the tracking of the development process harder. Beyond that, most of
the open source software projects use external systems (issue tracking systems,
forums, build systems and project management systems) for archiving useful
information that improves the development experience. Most of these
external systems contain useful contextual information which is gathered from
the content that is generated from the developers involved in the project or
the users that use the software. The most important problem that arises from
the usage of all these different sources of information is the difficulty for
someone to connect the different pieces of information from those sources
together in order to understand the evolution. Therefore, there is the need of a
system, or a method that unifies all the data from the different information
sources and helps the analysis of open source software repositories.

Until today, the previous studies on the topic of schema evolution (described
in detail in Chapter 2) of open source projects were focused on exploring what
was affected based only in the descriptive statistics that can be extracted from
the version history of the database schema. To our knowledge, none of the
previous studies combined the information which is archived in the
repository and the data from the external systems with the version history of
the database schema to enrich the details on why. Software development is a
human-intensive activity and for this reason, enriching the study of schema
and software evolution with additional information is important because we
can gain useful insights on how software and database schemas evolve.

In this thesis, we focus on the study of integrating external contextual
information in order to support exploratory analytics on the version histories
of database schemas. Specifically, one of our main research questions is: can
we combine the various, heterogeneous, dissimilar sources of information for
the history of a schema in one integrated, all-encompassing representation?
To answer this question, we study in depth the characteristics of open source
software repositories and what we can extract from those as well as the types
of external systems that are used for improving the development experience.
Then, our next step is to create a reference model in order to solve the
aforementioned data integration problem. This reference model will help us
combine the heterogeneous sources of information into one internal
representation that connects everything together.

3

The second research question we answer is: given the entire version history of
a schema can we group individual changes in phases? The entire lifetime of a
database schema can be separated into phases where each of them contains a
series of events. Organizing events in phases can be very helpful to
understand the general evolution of the system. Focusing on development
phases of a project may provide insights regarding the development goals for
the specific time period. In order to group the series of events we use
information gathered on releases where a release is the sum of the stages of
development for a piece of software. Then, we discuss statistical findings that
we observed on releases and how releases are related to schema changes.
Section 3 discusses in detail how the releases are used to group individual
changes and Chapter 6 presents the discussion on the statistical findings.

Finally, the last research question is: how can statistical observations from
schema evolution be used for characterization of individual releases? Based
on the aggregate measures we gathered on releases for six open source
software projects, we follow a rule-based classification technique that utilizes
rules to characterize the nature of a release’s activity and the intensity of the
activity (low, medium, high). Then, we study these characterizations and
present our observations.

Based on the above, the contributions of this thesis can be summarized as
follows:

- We provide a guide on what we can extract from a typical open source
software repository and how we can extract the data from all these
dissimilar sources of information.

- We provide a reference meta-model that puts together all the different
sources of information into one representation that can be used to
analyze the version history of a database schema.

- We create a system which contains a database that is loaded with the
information gathered from different sources of information for the life
and evolution of a software project, with an emphasis to the life of the
database schema and provides an interactive way for the inspection of
schema histories.

- We relate releases to individual commits in terms of aggregate values
and study these aggregate measures providing useful statistic
observations on the schema evolution.

- We provide a principled method for classifying releases based on
descriptive statistics extracted from the evolution history of a schema.

4

1.2 Roadmap

The structure of this thesis is as follows. In Chapter 2, we present related
work on change classification and on schema evolution. In Chapter 3, we
describe in detail the data that can be extracted from an open source software
repository including the different external sources which are usually used in
the software development process. In Chapter 4, we define our reference
model which combines all the different sources of information into one
representation. Chapter 5 describes the architecture of the system we created
and also the interactive way that provides in order to explore the entire life of
database schemata. In Chapter 6, we present off-line analytics and findings on
the data gathered for releases. Finally, Chapter 7 summarizes our findings on
schema evolution and presents open issues for future research.

5

CHAPTER 2.

RELATED WORK

2.1 Change Classification

2.2 Schema Evolution

There is a very long list of work in the area of Mining Software Repositories.
The flagship conference of the area, MSR, is annually held in conjunction with
the major conference of the Software Engineering discipline (ICSE). We have
focused only on works that pertain to charting the evolution of a software
project. Moreover, we also present results in the area of schema evolution.

2.1 Change Classification

Kagdi et al. [KaMS07] apply a heuristic-based approach that uses sequential-
pattern mining to the commits in software repositories for uncovering highly
frequent co-changing sets of artifacts (e.g., source code and documentation).
Firstly, the authors present three heuristics for grouping related change-sets
formed from version history metadata found in software repositories (i.e.,
developer, time, and changed files). These heuristics can be considered similar
to the fixed; and sliding window techniques. Secondly the authors import the
changes into a sequential-pattern mining tool, namely sqminer, which they
have developed and that is based on the Sequential Pattern Discovery
Algorithm (SPADE). To evaluate their approach to recovering traceability
links they use the open-source system KDE. The evaluation methodology is to
first mine a portion of the version history for traceability patterns (training-
set). Next the authors mine a later part of the version history (called the

6

evaluation-set) and check if the results generated from the training-set can
accurately predict changes that occur in the evaluation-set. Metrics: Precision,
Recall, Coverage.

Kim et al [KiWZ08] present a technique called change classification for
predicting bugs in file-level software changes. A key insight behind this work
is viewing bug prediction in changes as kind of a classification problem
assigning each change to one of 2 classes: clean changes and bug changes.
Features are extracted from the revision history of 12 projects and each of
them is used to train a Support Vector Machine (SVM). Features include all
terms (variables, method calls, operators, constants and comment text) in the
complete source code, the lines modified in each change (delta), and change
metadata such as author and change time. Complexity metrics, if available,
are computed at this step. Once a classifier has been trained, new changes can
be fed to the classifier which determines if a new change is clean or buggy.

The classification performance is evaluated using the 10-fold cross-validation
method and the computation of the standard classification evaluation
measures, including accuracy, recall, precision, and F-value.

Hindle et al [HGGH09] (see also [HiGH08]) introduce a method for
classifying large commits. Large commits are those in which a large number
of files (say thirty or more), are modified and submitted to the Source Control
System (SCS) at the same time. The authors show that large source control
system (SCS) commit messages often contain enough information to
determine the type of change occurring in the commit.

The authors gather the version histories from a set of long-lived projects and
they manually classified 1% of the largest commits based on the number of
files changed. The authors use the following features to train the classifiers:
(1) Word Distribution, (2) Author, (3) Module and File Types. In this work 7
Machine Learners are used: J48, NaiveBayes, SMO, KStar, IBk, JRip, ZeroR
and 5 metrics to evaluate each learner.

Finally the authors conclude that commit messages provide enough
information to reliably classify large commits. Each learner indicates that
there is some consistent terminology internal and external to projects that can
be used to classify commits by their maintenance task. The author’s identity
may be significant for predicting the purpose of a change, which suggests that
some authors may take on a role or take responsibility for a certain aspect of
maintenance in a project.

Zimmermann et al. [ZWDZ04] apply data mining techniques to obtain
association rules from version histories, detect coupling between fine-grained

7

program entities such as functions or variables and thoroughly evaluate the
ability to predict future or missing changes. The authors use their ROSE
server which collects the version history from CVS archives and then, run the
Apriori Algorithm to compute association rules which refer to a set of
changed entities. The use of the Apriori Algorithm is to compute all rules
beforehand, and then search the rule set for a given situation. For their
evaluation, they analyzed the archives of eight large open-source projects.
Metrics: Precision, Recall, Likelihood, Closure, Granularity

Herzig and Zeller [HeZe13] try to find out the impact of tangled code changes
and use a multi-predictor approach to untangle these changes. A tangled
change is eminent when a developer is assigned multiple tasks (let’s say A, B,
and C) all with a separate purpose (for example A is a bug fix, B is a feature
request, and C is a refactoring or code cleanup). Once all tasks are completed,
the developer commits her changes to the source code management system
(SCM), such that her changes to be visible to other developers and integrated
into the product. However, when committing changes, developers frequently
group separate changes into a single commit, resulting in a tangled change. In
this work the main assumption is that untangling changes can be seen as a
code change classification problem. The authors conduct an exploratory study
on 5 open-source projects and manually classify more than 7000 individual
change sets and check whether they address multiple (tangled) issue reports.
In addition, the authors show that 73% of all change sets have 2 of individual
tasks compiled into a tangle. Finally, the authors observe that tangled change
sets have impact on bug counting models.

Kevic and Fritz [KeFr14], given (a) the vocabulary used for describing change
tasks and (b) the one used for identifiers in the source code as two separate
languages, introduce an approach for creating a dictionary that maps the
different vocabularies using information from change sets and interaction
histories stored with previously completed tasks. The dictionary to map
natural language to source code language is built by mining previously
resolved change tasks from task repositories and the source code associated to
these change tasks. The summary and description are preprocessed, resulting
in a list of distinct terms. For each term of a change task, it then creates or
updates the mapping in the dictionary from the term to all code elements in
the change set or task context of a change task. Each mapping between a term
in natural language (denoted as NL) and the terms in source code language
(denoted as SCL) has a weight that is one at first. To identify the best
translation of a change task into SCL, a weight is calculated for each NL term
in the change task based on tf/idf and used as a multiplier to update the
weights of the mapping. This approach creates an approximate mapping

8

between the terms of the natural language used for change tasks (NL) and the
source code language (SCL). Finally the authors evaluate their approach
gathering information from four open source projects.

Howard et al in [HGPS13] present an approach to automatically mine word
pairs that are semantically similar in the software domain. The authors claim
that semantic similarity is useful when analyzing maintenance requests and
tools for finding differences between versions of software, especially when
the change between two versions involves renaming to a synonymous word.
The authors based on the simple observation that a leading comment sentence
and a method name are expected to express the same action, they present a
sequence of automated steps to map the main action verb from the leading
comment of each method to the main action verb of its method signature. In
addition, the authors demonstrate all the challenges in designing a system
that uses this simple observation that leading descriptive comments and the
documented method name should describe the same action. The results show
that their miner has 87% accuracy in identifying descriptive comments and
94% accuracy in extracting the correct main action word from a descriptive
comment.

2.2 Schema Evolution

One of the first studies on schema evolution was done by D. Sjoberg [Sjob93].
The author created a measuring tool called “thesaurus” which was built to
monitor the evolution of a large, industrial database application – a health
management system. This system was observed in a period of 18 months and
during these months was found that there was 139% increase in the number
of relations, as well as 274% increase in the number of fields. In addition, the
results showed that, 35% more additions than deletions took place and every
relation was changed. Finally, the author noted that the results confirm that
change management tools are needed.

Several years later, a new study was published [CMTZ08]. In this study, the
authors investigate MediaWiki, the back-end system that powers the well-
known Wikipedia. The authors gather 171 different versions over 4 years and
7 months and show that there is a 100% increase in schema size and 142%
increase in the number of fields. In addition, they observe that on average,
each table and field lasts 60.4% and 56.8% of the total database history
respectively. Finally, the authors conclude that there are serious indications
that the database schema evolution has impact in application which uses it

9

and support the contention that there is the need for better support in schema
evolution.

In [DoBZ13], the authors make an empirical analysis of the co-evolution of
database schemas and code in ten popular large open-source database
applications. In this work, the authors study how frequently and extensively
database schemas evolve, how it evolves and how much application code has
to co-changed with a schema change. Specifically, the authors state that the
results provide solid evidence that schemas evolve frequently and that
schemas increase in size. In addition, the authors note that there are 3 main
high-level schema change categories: Transformations, Structure Refactoring
and Architectural Refactoring and that schema changes impact code greatly.

One more study [SkVZ14] in larger scale was published in 2014. In this study
the authors inspect if the Lehman laws [LMR+97] for the software evolution
hold in the database schema evolution. Specifically, the authors collect and
study 8 open-source systems using their open source SQL diff tool, Hecate.
The results show that there are periods where there is an increase in the
schema size, mostly in the beginning or after large decreases in the size, but
there are also periods of stability. In addition, the authors observe that the
database maintenance exists in all datasets and conclude that the Lehman
laws hold in open source database systems.

Until today, the previous studies on the topic of schema evolution of open
source projects were focused on exploring what was affected based only in
the descriptive statistics that can be extracted from the version history of the
database schema. To our knowledge, none of the previous studies combined
the information which is archived in the repository and the data from the
external systems with the version history of the database schema to enrich the
details on why. Software development is a human-intensive activity and for
this reason, enriching the study of schema and software evolution with
additional information is important because we can gain useful insights on
how software and database schemas evolve.

10

11

CHAPTER 3.

SOURCES OF INFORMATION FOSS PROJECTS

3.1 What can we extract from the web concerning a Free and Open Source
Software (FOSS) project?

3.2 Proof of Concept: experimental setup

The last years, the rise of Free and Open Source Software (FOSS) is rapid due to
the fact that distributed version control systems like Git support multiple
repositories and cheap branching capabilities that makes easier the
involvement of more developers in a software project. The large amount of
publicly available software repositories attracted the interest of the research
community that focus on both qualitative and quantitative studies. In this
chapter, we discuss on the availability of data for FOSS projects at the web.
First, we start with a discussion on the information that can be extracted from
the web concerning Free and Open Source Software projects. Then, we move to
our experimental setup where we present the six dataset we used in this
thesis along with the retrieval process we followed to extract them from the
publicly available repositories.

12

3.1 What can we extract from the web concerning a Free and
Open Source Software (FOSS) project?

The process of extracting useful information from open source software
repositories as well as from the external information sources they use has
become easier in recent years with the rise of web-based code hosting services
like Github2. However, the mining of publicly available data may have
potential risks of misinterpretation. For this reason, there is the need for deep
understanding of the characteristics of publicly available data for choosing
the appropriate software repositories regarding the specific research goals. In
[KGBS14], the authors document the results of an empirical study that aims at
understanding the characteristics of the repositories on Github, where
recommendations to research are provided on how to use the data available
from Github.

Figure 1 Life story of a software repository

2 https://github.com/

13

Before we go further on discussing the information that can be extracted from
an open source software repository, we need to see an example of a software
repository. Figure 1 shows an example of the structure of a Git repository. Git
version control system is software repository with the goal of facilitating,
composing and saving snapshots of a project and then working with and
comparing those snapshots. Every repository has, by default, a master branch
and maybe one or more, optional development branches that may keep
different stages of the source code. The different branches can be cloned from
the master branch and also can be merged to master. Every branch has a list
of commits and every commit consists of changes which are made to one or
more files in the repository. Moreover, every commit can contain a tag that
provides useful insights regarding the specific commit. These tags may refer
to the starting point of a release as we will see later.

Commit is an individual change to a file, or set of files, with a unique ID that
keeps a record of what changes were made when and by whom.

Branch in Git is simply a lightweight movable pointer to one commit. The
default branch name in Git is master. This pointer points to the last commit
and every time a new commit is made, it moves forward automatically.

Version control systems like Git provide a rich set of features for the
development process but most of the times active software projects do not
conduct all their software development in Git as mentioned in [KGBS14].
There is a wide variety of external systems in the web that provide solutions
to different development tasks. For example, there are systems for issue
tracking, code review, build capabilities, project management or even forums
for the development community of a project. Based on the above, we present
a list of all the different types of information that can be extracted from an
open source software project.

List of branches: constitutes to different development versions of a software
project’s file structure.

List of commits: when someone makes a list of changes to files in a branch and
he wants to record these changes he needs to create a snapshot which is
created using Git commit command. Individual changes can be grouped to
separate commits where each of them contains a text describing the commit,
the commit date and also the author of the commit.

14

Using the information about the files that changed in the same commit
we can compute co-changed files for this specific commit. Therefore,
using the term co-changed files, we refer to two files that change in the
same commit.

Difference between two commits: we can also extract the difference between two
different versions of the same file. This way we can detect all the new changes
which have been introduced by a new commit.

Using the information from the difference between two different
versions of the same file we can also detect source comments added,
removed or changed in the source code of the file that appears in a
newest commit. Examining the source comments that are changed from
a version to another, someone may be in position of spotting useful
information about the purpose of the changes.

List of releases: using Git commands we can also extract the releases for a
specific repository. Like most of version control systems, Git has the ability to
tag specific points in history as being important. Typically, people use this
feature to mark release points. We remind the reader that a software release is
the process of launching a new version of the software publicly available.

List of bug/issues: Git does not support issue / bug tracking by its own but most
of the projects are using external systems for this job such as Redmine3,
Bugzilla4, JIRA5 and Github. Issue tracking systems are useful for organizing
different kinds of issues like bugs and tasks in a software development
process.

List of builds: most of the projects also use an external service for testing. Using
these services someone can try to build a specific project from a Git repository

3 http://www.redmine.org/

4 https://www.bugzilla.org/

5 https://www.atlassian.com/software/jira

15

and check if the build was successful or not. There are various services in the
web for this kind of job, such as TravisCI6 and Coveralls7.

Code Review Systems: these types of systems provide a systematic examination
of the source code of a project. A code review system can be used in a
software development process for finding mistakes, vulnerabilities or bugs
before the official release is published. Examples of these systems are Gerrit8,
Codacy9 and Crucible10.

Developer Social aspect: services like Github have integrated social features for
developers. Specifically, developers are able to follow other developers and to
watch projects of their choice. Using this information, it is easy for someone to
extract the relation between the developers as well as their interests.

3.2 Proof of Concept: experimental setup

The purpose of the first part was to list all the different sources which are
usually used in a development lifecycle and can be extracted from open
source software repositories. In this section, we start with the description of
the datasets which are used in this thesis and then we move on presenting the
methodology for retrieving the data from the selected repositories. We
divided our retrieval process in two parts: (a) retrieval of the contents of
Github-located information and (b) retrieval using external sources API.

6 https://travis-ci.org/

7 https://coveralls.io/

8 https://www.gerritcodereview.com/

9 https://www.codacy.com/

10 https://www.atlassian.com/software/crucible

16

3.2.1 Datasets

In this study we have collected data from six open source-projects. BioSQL11 is
a generic relational model covering sequences, features, sequence and feature
annotation, a reference taxonomy, and ontologies from various sources such
as GenBank or Swissport. Ensembl12 is a joint scientific project between the
European Bioinformatics Institute (EBI) and the Wellcome Trust Sanger
Institute (WTSI). The goal of Ensembl is to automatically annotate the three
billion base pairs of sequences of the genome, integrate this annotation with
other available biological data and make all this publicly available via the
web. MediaWiki13 was first introduced in early 2002 by the Wikimedia
Foundation along with Wikipedia, and hosts Wikipedia’s content since then.
OpenCart14 is an open source eCommerce platform. PhpBB15 is a free flat-
bulletin board software solution. TYPO316 is a free and open source web
content management framework.

3.2.2 Retrieval of the contents of Github-located information

We collected our data during February 2017. For all the projects we focused
on the master branch and on commits where the file holding the database
schema appears. Then, from each of those commits we extracted:

1. Text describing the commit

2. Author of the commit

11 http://www.biosql.org/wiki/Main Page

12 http://atlas.web.cern.ch/Atlas/Collaboration/

13 https://www.mediawiki.org/wiki/MediaWiki

14 http://www.opencart.com

15 https://www.phpbb.com

16 http://typo3.org/

17

3. Date of the commit

4. Contents of the SQL file containing the definition of the database
schema

We saved the different versions of the file containing the database schema in
separate files, one file per version, using the UNIX timestamp of the commit
as filename.

In addition, we got the difference between every two consecutive commits in
history and extracted the comments added in the new version of SQL source
code.

We also retrieved, from every commit, the names of the files which are
modified together with the database schema.

Finally, for all the projects, the Git tags referring to the whole history were
gathered.

3.2.3 Retrieval using external sources API

This part of the retrieval was challenging because we had to manually search
every repository to identify the external systems that are used by the project.
After this process, we came with a list of external systems for every
repository. Some of these systems such as Github, JIRA and TravisCI have an
API which can be used to retrieve the data from them and some of them such
as Redmine and JIRA provide a graphical interface from which someone can
manually download the tasks / bugs.

After our research on the 6 datasets we observed that three issue / bug
tracking systems are used: Github, Redmine and JIRA. Specifically, BioSQL and
Typo3 use Redmine, Opencart uses Github and PhpBB use JIRA for issue
tracking. In order to retrieve the data from Github project we used its API, for
gathering the data from Redmine we used its graphical interface and for JIRA
we used both its API and graphical interface. It is worth mentioning that we
gathered issues for the whole history of the projects.

In addition we used TravisCI API to retrieve the build information for the
whole history of the projects that use external system for testing.

Table 1 presents the datasets along with the external systems that they use.
However, the full list of sources for each dataset is shown in Appendix 1.

18

Dataset Repository URL Releases Issues Builds

Biosql https://github.com/biosql/biosql/ Git Redmine -

Ensembl https://github.com/ensembl/ensembl/ Git - Travis CI

Mediawiki https://github.com/wikimedia/mediawiki Git - Travis CI

Opencart https://github.com/opencart/opencart/ Git Github -

PhpBB https://github.com/phpbb/phpbb/ Git JIRA Travis CI

Typo3 https://github.com/typo3/typo3.cms/ Git Redmine Travis CI

Table 1 Repositories with their urls and the external systems that they use

19

3.2.4 Data preprocess

We created an ETL workflow to transform and load the data into a SQLite
database. For the transformations we used Pentaho17 data integration tool.

Connect Builds with commits

The linking between build and commits is very easy because TravisCI
provides the commit id for every build. Every build has a unique identifier
across the project which refers to a commit. We observed that from a total of
1573 commits that belong to six different projects, only 20 commits have
information about a build, while the total number of builds which are
referring to the six datasets are 50297. Therefore, we conclude that when a
change in the schema of the database takes place developers do not build the
project. This is reasonable because in most cases, changes must be done in the
source code of the project that uses the database first and then test and build
the project.

Linking bugs with commits

Links between bugs and commits are not easy to be found. Bird et al.
[BBAD09] showed that linked bug fixes can sometimes be found, amongst
commits in a code repository by pattern-matching but all the bug-fixing
commits cannot be identified without extensive, costly and post-hoc effort. In
addition, Bachmann et al [BBRD10] found that the bug tracking systems may
be biased because not all bugs are reported through those systems but also
some bugs are reported in mailing lists for example.

In order to link bugs with commits we made the following simple
assumption: for every bug which has three different dates (date created, date
updated and date closed) we keep two pointers for each of those dates. These
two pointers point to the next and the previous chronologically commits
respectively. An example of this method is shown in Figure 2. A bug which

17 http://www.pentaho.com/

20

was created chronologically between commit1 and commit2 will have
prev_created pointer set to the id of commit1 and next_created pointer set to the
id of commit2. The pointers for update and close event are set in a similar
manner.

Figure 2 Graphical representation of the method used for linking a bug with
the corresponding commits.

Linking releases with commits

Every release in Git and every commit have both dates. We link every commit
to the previous and the next release using the date information. Specifically,
we assign as previous release to every commit, the release with the most
recent date which is smaller than the date of the commit and as next release,
the oldest release which its date is more recent than the date of the commit.

3.2.5 Changes to Database Schema - Hecate

In order to retrieve the changes in the schema of the database, the files
containing the database schema were processed in sequential pairs from
Hecate18, to give us in an automated way the differences between two
subsequent commits. Hecate is a tool which detects changes at the attribute
level and changes at the relation level. Attributes are marked as altered if they
exist in both versions and their type or participation in their table’s primary
key changed. Tables are marked as altered if they exist in both versions and
their contents have changed (attributes inserted/deleted/altered).

18 https://github.com/DAINTINESS-Group/Hecate

21

In Table 2 some representative stats for each dataset, based on the retrieved
data, are shown. The stats for #Branches, #Releases, #Issues and #Builds refer to
the whole project and the stats for #Commits and #Developers refer only to the
commits and developers that affect the schema of the database.

22

Dataset #Branches #Commits #Releases Start/end date #Issues #Builds #Developers

Biosql 6 47 18 2002/01/28 – 2017/02/03 13 0 6

Ensembl 100 527 247 1999-10-10 - 2017/02/03 0 1164 53

Mediawiki 42 411 295 2003-04-14 - 2017/02/03 0 16430 80

Opencart 5 412 30 2009-02-11 - 2017/02/03 14087 0 69

Phpbb 13 230 134 2002-07-16 - 2017/02/03 17388 19344 23

Typo3 26 98 422 2003-10-03 - 2017/02/03 1184 13359 39

Table 2 Stats for each dataset from the retrieved data

23

CHAPTER 4.

A REFERENCE MODEL FOR THE BIOGRAPHY OF A

SCHEMA

4.1 Software Evolution Level

4.2 Schema Evolution Level

4.3 Explanation of why / Motivational level

4.4 Purpose / Summary Level

In this chapter we define a reference model that can be used to host the
available information for FOSS projects as described in detail in Chapter 3.
First, we analyze why we need a reference model and then we describe in
detail every aspect of the model.

We define our reference model in order to support the problem of mining the
software evolution. The reference model will help us answer one of our initial
research questions regarding the generation of a biography which highlights
the reasons of important actions out of the heterogeneous various, dissimilar
sources of info.

In order to include all the needed functionality, we define four major levels
for our reference model: (a) software evolution level, (b) schema evolution
level, (c) explanation of why / motivational level and (d) purpose / summary
level.

24

4.1 Software Evolution Level

In this level we define two sets of concepts. The first one is used to represent
the structure of the software project in each version of the system’s history.
The second one is used to represent the changes that affect the project
structure in each version. The relation between the two inner layers of our
model is shown in Figure 3.

4.1.1 Project Structure Level

This level contains the basic elements of a software project. The concepts that
compose this level are useful for the representation of the project’s structure
combined with the version history of a project.

Repository: this concept represents the central element in the software project
and it contains all the files of the project. It consists of branches which are
different development versions of the project’s source code which is usually
cloned from the master branch. In addition, a repository can have different
versions which are created when a new commit takes place.

Repository version: a snapshot of the repository’s structure. When a commit
takes place, it may introduce a change in the repository’s folder structure.
Thus, this element consists of a tree of modules for every different snapshot of
the repository.

Tree of modules: an entity that represents the structure of the repository in a
hierarchical manner. Specifically, a tree of modules holds the hierarchy of the
system’s modules and how they are connected. The hierarchical
representation of different modules of the repository can be a graph, a tree, or
any other structure.

Module: a part of the repository that implements a particular functionality.
Every module can contain a list of submodules which are in fact modules
appeared lower in the hierarchy. A module can be a whole folder or a single
file and it can provide a list of module parts.

Module part: a module part can be a small part of a module that provides a
single functionality. An example of a module part is a method or attribute if
we are talking about an object-oriented class or a table if we are talking about
database schema.

25

Figure 3 Software evolution level

4.1.2 Software Evolution Level

The concepts of this level are defined for modeling the evolution of a project
and its components. The evolution of a software project is characterized by (a)
different development branches and (b) a series of change events that affect
one or more module and module parts of the system. For this reason, we
define the following four basic concepts that represent the key functionality of
this level.

Branch History: constitutes a version history of a development branch. Every
branch history contains a list of commits where each of them may introduce
new change events.

Commit: corresponds to a single commit in the version history of a repository.
It contains a message written by a user and a timestamp. Every commit can
affect more than one file and can also change the repository’s folder structure.
In addition the same commit can be in more than one branch. Therefore,
based on the above, a commit consists of a list of module changes.

Module Change: corresponds to a change that affects a repository’s module.
This change can affect a whole folder or a single file. Every module change
contains a list of module part changes.

Module Part Change: changes at a single file which is affected from a commit.
These changes can be lines of code added, modified, deleted or any other type
of change one can think of.

26

4.2 Schema Evolution Level

A database is frequently an integral part of a FOSS software project, so as the
software evolves so does the schema of the database. During the project’s
lifetime the schema of the database is changing in a manner similar to every
other module on the version history of the project. This level is a subset of
software evolution level because schema evolution constitutes only a part of a
project’s history. In this level we define two sets of concepts. The first one is
used to represent the structure of the database schema in each version of the
system’s history. The second one is used to represent the changes affected the
database schema in each version. The relation between the two inner layers of
our model is shown in Figure 4.

Figure 4 Schema evolution level

4.2.1 Database structure

The concepts which are part of this level represent the structure of a database
schema in the evolution history of a system. This level is a subset of the project
structure level and it consists of four basic concepts which are connected to the
concepts of the project structure. More specifically, diachronic schema
corresponds to repository version, schema corresponds to tree of modules, table
corresponds to module and attributes correspond to module part.

Diachronic schema: contains all the versions of a database schema for a specific
development branch.

Schema: corresponds to a database schema of the system. More specifically,
this concept contains a list of tables as well as their attributes and their
constraints.

Table: a single database table which contains the information which is
connected to a table such as a list of attributes and a list of constraints.

27

Attribute: corresponds to a single database field and holds information for its
type, name and constraints.

Figure 5 Relation between software structure and database schema structure
levels

4.2.2 Schema evolution

The concepts of this level are used to model the evolution history of a
database schema. The history of a database schema is composed of module
changes where in this level, we refer to them as transitions. Every module
change contains a list of module parts changes where in this level we refer to
them as table changes. In addition, every table change contains a list of change
events (we refer to them as atomic change events) which corresponds to
changes that affect module parts placed lower in the hierarchy. To clarify the
above sentences better, we present four basic concepts on this level which
model the evolution of a database schema.

Schema history: contains a list of grouped change events which affect the
schema of the database. When we refer to transition, we refer to one group of
those change events.

Transition: contains the whole information about a transition from a database
schema version vi to a database schema version vj, where i < j. Every transition
may contain information about which tables are affected in the specific
transition. In addition, every transition can have additional metrics and
statistics.

Table change: contains the name of the table whose changes are kept, and a list
of these changes named Atomic Change Events.

28

Atomic change event: any individual change that affects the database schema.
An atomic change event describes a change that took place in a database table.
Specifically, we distinguish the types of changes in the following categories:

- Attribute insertion at pre-existing table
- Attribute insertion at new table
- Attribute deletion at table without deleting the whole table
- Attribute deletion at table deletion
- Table insertion
- Table deletion
- Attribute type change
- Primary key change

Summarizing the above, a transition from schema evolution level can be
mapped to a commit. Hence, we can use all the metadata from a commit to
enrich the information of every transition. In addition, schema history is also a
subset of branch history.

In this point it’s worth mentioning that commits and therefore transitions are
subset of the total commits of the project.

Figure 6 Relation between software evolution and database schema evolution
levels

29

Figure 7 Relation between different concepts from schema evolution level
concepts and software evolution level

4.3 Explanation of why / Motivational level

Every module change in a software development project is the result of a
decision taken from a group of people involved in the project. Therefore,
every module change in the version history of a project is characterized by a
reason and maybe a motivation. In order to capture the decisions, the
motivations and the reasons of change events as well as the people involved
in those, we define two levels of concepts. The contextual level contains
concepts which are required by every version control system and every
version history of a software project accommodates. Specifically, the concepts
of contextual level represent the explanation of why a change has taken place,
when and by whom. The external systems level contains concepts which are
optional in the development process but they are often used to improve the
development experience. In essence, the concepts that belong to external
systems level form a basic model for the representation of external systems
used in a development environment such as issue tracking systems or project
management systems.

30

4.3.1 Contextual level

This level contains the elements that create the WWW (When, Who, Why) three-
dimensional space. Moreover, this level is directly connected with project
structure level, the software evolution level and schema evolution level. This is
because the elements which are part of this level contain useful metadata in
order to explain the nature of the detected changes.

Timestamp: this element defines the time where an event took place.
Timestamps can be measured in human time or in a sequential version id. This
concept is responsible for modeling the When dimension.

Commit text: text describing the reason of the commit. Every commit text is
written by a contributor and it is used to model the Why dimension.

Contributor: an individual user who is affiliated with specific events in a
repository. For example, a contributor may be affiliated with a commit, a
change event or an issue. This concept is used for modelling the Who
dimension.

4.3.2 External systems level

This level is optional and it consists of the simplest possible model for the
representation of any external system which is used in the development life
cycle. We define three abstract concepts on this level.

External system: corresponds to any external system that is used to improve
the experience of the software development process. Examples of such
systems are (a) issue tracking systems, (b) code review systems, (c) build
systems, (d) project management systems and more. In addition, every
external system contains a list of postings which are created by the people
involved in the software development project. Therefore, these systems can be
connected to the WWW three-dimensional space.

Examples of such external systems are shown in the following list:

- Issue system: a system that tracks all the reported issues for a
repository. This concept contains a list of issues that are registered to
the system by different users.

- Code Review System: a system which helps the examination of a
project’s source code through the process of software development.
This concept provides the Why, the When and Who and therefore can be
connected to the WWW three-dimensional space.

31

- Build System: a system which provides the functionality of building and
testing a project.

Posting: an element in the external system. A posting may refer to a specific
development branch or even a specific module on a specific development
branch. It contains a list of post entities.

- Issue: An element in issue tracker in a bug system.

- Build: contains useful information about a build which run after the
commit. This information can the status of the build (if the build was
successful or not) as well as time started, the duration of build etc.

Post entity: corresponds to an element which contains all the information
about a single external event. An external event can be one reported issue, one
build or any other external event one can think of. Examples of post entities
are shown in the following list:

- Issue entity: an issue in general contains a text description, a timestamp,
a status (open, closed) and a category (task, feature, bug and more).
Depending on the level of detail, someone can also use additional
information such as assignees, labels, due date, priority, percentage
done and more. The basic elements of this concept provide the Why,
the When and the Who and depending on the level of details someone
can discover more insights into projects issues and how these arise
from the project’s evolution.

- Build entity: contains information such as the status of the build (if the
build was successful or not) as well as time started, the duration of
build etc. This concept provides the Why and then When.

32

Figure 8 Explanation of why / Motivational level

4.4 Purpose / Summary Level

The concepts that compose this level are useful for generating the biography
of a schema but before we define these concepts, we must first determine
what characterizes a great schema biography. An interesting schema
biography must be characterized by the following properties:

- The entire lifetime of a database schema must be separated into phases
where each of them contains a series of events. Organizing events in
phases can be very helpful to understand the general evolution of the
system. Focusing on development phases of a project may provide
insights regarding the development goals for the specific time period.

- A biography must have periods of highlighted events, where
something interesting or worth mentioning has happened. Some
change events in a specific period are more interesting than others and
focusing on the events that matter can help us get rid of any kind of
noise.

- A biography must have some visuals that help us understand the
reasons of the evolution and maybe some metrics and statistics that
prove those reasons.

33

Therefore, based on the above preferred properties we define the concepts of
this level.

Schema Biography: constitutes the basic structure which in fact links all the
different concepts of this level. This concept consists of phases and phase
highlights.

Phase: a distinct time period in the evolution history of a module. A phase
consists of a sequential list of project’s versions. In this thesis, we consider
release equivalent to phase but in general case a phase provides better
abstraction than a release.

Release: a distinct time period that contains a list of commits. The start
of a release refers to the date where the release is first introduced in the
system and the end of the release refers to the date where the next
chronologically release tag is introduced.

Phase highlights: a series of change events which is a subset of a distinct phase.
These events are chosen instead of others based on a scoring function which
calculates the importance of each event.

Transition summary: contains a list of transitions which are combined based on
a summary generation algorithm.

Transition highlights: a series of transitions which are marked as important
based on a scoring function.

Metrics and statistics: any kind of metric and statistic that can be calculated in
order to explain the reason of a detected change.

Figure 9 Summary level

34

Based on the above, the meta-model used in this thesis is presented in Figure
10.

Figure 10 Model used in this study

35

CHAPTER 5.

INTERACTIVE ANALYSIS OF SCHEMA HISTORIES

5.1 Technologies used

5.2 Architecture

5.3 Interactive analysis

After creating our meta-model we need to provide a tool which visualizes and
helps the user to use the defined meta-model in order to interactively
navigate and explore the story of the version history of database schemata.
For this reason, we created a web-based application that provides the user a
variety of tools to explore the version histories of schemata.

5.1 Technologies used

In order to create the web application that provides the interactive story-
telling, we use state-of-the-art frameworks and techniques that help us keep
the application maintainable and extensible. The main programming
languages that are used are HTML, CSS and Typescript. HTML is the

36

standard markup language for web pages and can be visually enhanced using
CSS. Typescript is a typed superset of Javascript that compiles to plain
Javascript. Typescript was developed and maintained by Microsoft19 and adds
optional static typing and class-based object-oriented programming to the
language. We chose to use Typescript because we think that the feature of
using an object-oriented style makes the source code clean, maintainable and
extensible. Beyond these three programming languages, we also used some
auxiliary frameworks that improve the development experience. The most
important frameworks that are used for this system are presented below.

5.1.1 Back-end

Node.js20 is an open source, cross-platform JavaScript runtime environment.
Node.js through its runtime environment provides the ability to execute
Javascript code on the server-side. In addition, it uses an event-driven, non-
blocking I/O model that makes it lightweight and efficient. Also, Node.js
provides a package ecosystem which is one of the largest ecosystems of open
source libraries in the world. Some of the basic reasons that Node.js was
chosen as the lead framework for the back-end are (a) the fact that Node.js
unifies the web application development around a single programming
language (which is Typescript), (b) the event-driven architecture which is
capable of asynchronous I/O operations that aim to optimize the scalability of
the application and (c) the large ecosystem of open source packages and
extensive documentation that can be used.

SQLite21 is a library that implements a self-contained, serverless, zero-
configuration, transactional SQL database engine. We used SQLite to store all
the information that we gathered from the version history of the projects
which is described in Chapter 3. The basic reason that SQLite was chosen is

19 https://www.typescriptlang.org/

20 https://nodejs.org/en/

21 https://www.sqlite.org/

37

because it is very light and portable as it does not have a separate server
process.

5.1.2 Middle-end

Express 22 is a minimal and flexible Node.js web application framework which
provides a set of features for web applications. Our goal was to create a web
application which is easy to be built and run across different machines
without the need of setting up external HTTP server like Apache23. For this
reason, we used Express and Node.js to create the HTTP server and to handle
the routing and the middleware level of the application. In general, the
routing level is used to identify the resource which is requested from an
HTTP request and for invoking the middleware’s functions that can either (a)
execute any code, (b) make any changes to the request, (c) call the next
middleware in the stack, or, (d) end the request-response cycle. The reason
that we chose express is because it is the standard server framework for
Node.js.

5.1.3 Front-end

AngularJS24 is a Javascript-based open-source front-end web application
framework. AngularJS is usually used for developing single-page applications
and provides a framework for client-side, model-view-controller (MVC)
architectures. We used AngularJS in order to create our front-end part of the
application, which provides all the necessary functionality for interaction
with the user.

22 https://expressjs.com/

23 https://www.apache.org/

24 https://angular.io/

38

Bootstrap25 is one of the most popular HTML, CSS and JS framework for
developing responsive applications. It contains design templates and
graphical elements for HTML and CSS such as buttons, navigations and
forms. All these design templates are reusable and are designed to work nice
to all screen sizes and devices. Therefore, we use Bootstrap for creating the
front-end layout of the application.

Concerning the visualization of the different types of charts, we used D3.js26.
D3.js is a Javascript library that allows the binding of arbitrary data to a
Document Object Model (DOM), and supports data-driven transformations to
the document. We use this library in order to create interactive SVG charts
that provide useful insights on the evolution of database schemata.

5.2 Architecture

The whole application is built using the model-view-controller (MVC)
architectural pattern. MVC architecture divides a given application into three
interconnected parts in order to separate internal representation of the
information allowing the efficient code reuse. Specifically, the project
structure is separated into three large modules. The first module (models
module) is responsible for implementing the concepts of the reference model,
which is presented in Chapter 4, along with the database controllers that feed
those concepts with data from the database. The second module (controllers
module) is responsible for handling the HTTP requests making the resources
of the application available to the client. Finally, the third module (views
modules) is responsible for the interaction with the user.

25 http://getbootstrap.com/

26 https://d3js.org/

39

5.2.1 Models Module

The business logic of the application is implemented in this module. This
module is composed of three individual parts: (a) databases and database
handlers, (b) data structures that hold the meta-model which is described in
detail in Chapter 4, and, (c) data enrichment modules.

Databases and database handlers. In this part, the files holding the database of
the system are located. The SQLite database of the system is loaded with the
pre-processed data that was gathered with the method described in Chapter
3. Moreover, in this part of the system, a database controller is implemented
for every concept of the meta-model. Every database handler is responsible
for retrieving the data from the database, populate the data structures with
the data and return the result.

Data structures implementing the meta-model: This part contains the concepts
that are defined in each level of the meta-model as a data structures.

Data enrichment modules: This subpart of the system includes different
modules that are used in order to enrich the raw data that was gathered with
useful metrics and statistics. This sub-system, provides modules for automatic
text generation based on the descriptive statistics for each release and for each
commit. Moreover, in this part of the system, rule-based techniques are
implemented for the characterization of commits and releases based on the
change events that take place in any of them. More details for release and
commit characterization are given in Chapter 6.

5.2.2 Controllers Module

This module is responsible for handling all the HTTP requests. Moreover, this
module provides a RESTful web service using the HTTP protocol that
provides access to application’s resources. REST stands for Representational
State Transfer and it is a web-standards-based architecture27. Therefore, this
module is the intermediate that connects the back-end which holds all the

27 https://en.wikipedia.org/wiki/Representational_state_transfer

40

available information with the front-end which presents the data to the user
using an interactive way.

5.2.3 Views Module

This module is responsible for handling the human and computer interaction.
In fact, views module implements the front-end of the application that is built
using AngularJS, Bootstrap and D3.js. It is responsible for (a) retrieving the
necessary information using the RESTful API and (b) presenting the data to
the user in an interactive way. A detailed description about the features of the
views module is given in Section 5.3.

The general representation of how the modules of the system are connected
together and also how the system’s database is populated with the gathered
data is shown Figure 11. Specifically, the publicly online data are retrieved
using the methodology described in Chapter 3. Then, the data are pre-
processed and transformed to match the schema of the system’s database,
where they are finally stored. After, that additional summaries and metrics
are calculated and stored in the database. The data which are stored in the
database are available to different kind of clients (web applications, desktop
applications, HTTP request that are made from a browser) through the REST
API. In addition, different clients can use the REST API to enrich the
information which is stored in the database. For example, clients can make
changes to automatically generated text that describes a version.

41

Figure 11 A general representation of how different parts of the system are

connected together.

5.3 Interactive analysis

In this thesis, we decide to focus on the information gathered on releases. We
treat the version history of database schema as a collection of releases, as
published by the developers, with a release to contain a list of commits.
Therefore, we enrich the raw data with contextual data gathered for releases,
and, we create aggregate measures for each release. Then, based on the
releases, we create the front-end application in which we use the Visual
Information Seeking Mantra: Overview first, zoom and filter, then details-on-
demand which is presented in [Shne96]. Based on this principle, we define
three different levels of detail: (a) the summary level, (b) the release level and (c)
the commit level.

42

5.3.1 Levels of detail

Summary level. This level of details contains the subset of releases in the
schema history that include at least one commit to the schema definition file
of the database of a project. Releases that have not touched the schema are
omitted because they do not have statistics for our investigation and they only
provide unnecessary noise. In this level some useful overall statistics are
presented such as the top co-changed files along with SQL file and developers
ranked based on the number commits that they made. In this level, there is
the basic change breakdown and schema size chart for the releases using a
stacked bar chart in combination with a line chart and a scatter plot, an
example of which is shown in Figure 14. Someone could argue with the choice
of using stacked bar charts because are useless for comparing series
magnitudes in one or another certain category but in our case we do not use
them for that reason. We decided to use a stacked bar chart because it
provides the ability to simultaneously compare totals and notice sharp
changes at the release level. Moreover, a stacked bar chart enables a better
understanding of the big picture, which is what we are looking for in this
level of detail without much focus on details such as small changes.

In addition, in this level, the user can filter out unnecessary releases and focus
only on a specific time period which contains a subset of the total releases of
the project. Beyond that filtering, there is the ability to drill down to the lower
level named release level for a specific time period or for a specific release.

Release level. This level presents all the commits that took place inside the
selected time period or in the selected release. In this level, the basic change
breakdown and schema size chart (similar to the one that is presented in
upper level) appears, but this time information about commits is presented on
it. Also, there is a list of commits along with the date of the specific commit
and the author of the commit. Figure 12 depicts an example of this level. In
addition, depending on the number of releases which are selected, an
automatically generated text is shown. This generated text provides a
summary and the highlights of a release based on the descriptive statistics
and characterizations which are explained in detail in Chapter 6. An example
of a text summary for a release is shown in Figure 13.

43

Figure 12 Graphical elements that are part of the release level

Figure 13 Automatically generated text for describing a release

44

Figure 14 Graphical elements that are part of the summary level. (1) The basic change breakdown and schema size chart which
presents information about releases in a specific time period, (2) top co-changed files along with the schema definition file, (3)
developers sorted by the number of commits they pushed on the repository, (4) table lives across the whole lifetime of the database
schema, (5) chord diagram which presents the relations between developers (developers that make a commit in the same release)

45

Commit level. This level constitutes the most detailed level of the system. It
presents the detailed information about a specific commit. This information
includes:

- An automatically generated summary which presents the highlights of
the commit.

- Some descriptive statistics like the number of tables which are added to
the schema, the number of tables which are deleted from the schema
and information about the changes on attributes.

- An analytical list of all the tables affected in the specific commit along
with the details regarding the changes on the table attributes.

- Issues that have been reported immediately before and immediately
after the specific commit.

Figure 15 presents the different graphical elements of this level.

5.3.2 A common scenario on using the system

In this section we present a common scenario for exploring the history of a
database schema. When the user selects a project to examine, the page
containing the higher level of detail (summary level) is populated with the
useful information that was described in the previous section.

Step 1: Zoom and filter on releases. As we mentioned earlier, the highest level of
detail displays a list which contains all the releases for a specific schema
history. This amount of information may be large for software projects with a
long lifetime. For this reason, the user can focus only in a specific time period
using the filter option. In this way, the user can explore the releases inside a
time period. In addition, the user is able to drill down to a specific release or
to a specific time period which may contain more than one release. In our
example, we selected to examine all the releases that are published in the last
three years of the Typo3 project and specifically between 2011 - 2013. The
zoom option directs the user to middle level of detail (release summary) where
useful information for the commits that took place in the selected releases are
shown. An example of the filter option for the summary level is shown in
Figure 16.

46

 Step 2: Zoom and filter on commits. The release level displays all the commits
that took place inside the selected releases. In our example, we selected to
examine commits that took place inside releases that were published between
2011 and 2013. In this level, the user is able to focus on specific commits inside
a selected time period using the filter tool in a manner similar to the filter tool
for release filtering. For this scenario, we decided to focus on commits that
took place in the last year of the project (from Feb 2012 to Feb 2013). Figure 17
shows the information about the commits for this time period using a chart
similar to the one for releases and a list containing the author and the date of
each commit. In this level we can zoom in a commit and examine all the
details for this commit. In our scenario we zoom to a commit with title
“[!!!][BUGFIX] *_user table password field is to short”. After choosing a commit,
the user is directed to the lowest level of detail (commit level) where the
changes that are introduced in the selected commit are presented in detail
along with an automatically generated text describing the highlights of the
commit.

Step 3: Exploring the details of a commit. At the commit level, the detailed
information for a selected commit is presented. In our case the details for the
commit with title “[!!!][BUGFIX] *_user table password field is to short” are
displayed. Figure 18 shows the information for the selected commit. More
specifically, (1) and (3) present some statistics about the change events that
took place along with the date of the commit and the release to which it
belongs. In (2) the automatically generated summary for the selected commit
is displayed along with the detailed message from the commit. The affected
tables along with their affected attributes are shown in detail in (4). Finally,
(5) presents all the issues that were reported in the issue tracking system
immediately before and immediately after the commit has taken place.

47

Figure 15 Graphical elements that are part of the commit level. (1) presents highlights and useful information for the specific
commit, (2) automatically generated text summary for a specific commit, (3) useful statistics regarding the different types of

changes, (4) issues that was reported immediately before and immediately after the commit.

48

Figure 16 Filtering option in summary level. (1) tool for filtering down in a
specific period, (2) change breakdown chart displaying information for the
releases in the selected time period and (3) name and date for each release
inside the time period, (4) menu for choosing one of the three different levels
of detail

Figure 17 Filtering option in release level. (1) tool for filtering down in a
specific period, (2) change breakdown chart displaying information for the
commits in the selected time period and (3) for each commit we present the
first 30 characters from the commit text and the author of the commit.

49

Figure 18 Details for a selected commit in commit level

50

51

CHAPTER 6.

WHAT DO THE DATA ON RELEASES TELL US WITH

RESPECT TO SCHEMA EVOLUTION?

6.1 An aggregate overview of release data for schema evolution

6.2 Schema size, heartbeat and progress of change over time

6.3 Classifying Releases

Apart from facilitating on-line interactive analysis, our integrated data model
allows the traditional, batch extraction of knowledge from the collected data.
As an example of this, in this chapter, we present how we can use contextual
information such as the grouping of individual commits to releases to extract
statistical findings that would otherwise be unattainable via the simple
history of commits alone. Previous studies on the same data [SkVZ14,
VaZS15, SkVZ15, VaZS17] studied evolution on the granularity of individual
commits, as the information on releases had not been gathered yet. In this
chapter, we exploit the data that we have gathered towards answering several
research questions. First, we start with some descriptive statistics on releases
in Section 6.1. Then, in Section 6.2 we continue our study on releases
presenting progress reports using the aggregate changes on releases. After
that, we discuss the schema size and heartbeat per release and finally we
move on to present a rule-based classification technique for characterizing the
nature of changes that affect the schema of the database. In Section 6.3 we
present the aforementioned technique and we discuss our findings.

52

6.1 An aggregate overview of release data for schema
evolution

We will start our deliberations, by observing how releases are related to
change in terms of aggregate values per data set. The goal of this chapter is to
answer one of our initial research questions: “given the entire version history
of a schema, can we group individual changes in phases in order to provide
statistic observations on the schema evolution?”. In order to answer the
above research question, we relate the information gathered on releases to
individual commits in terms of aggregate values and study these aggregate
measures.

6.1.1 Terminology

Some terminology is appropriate first. We remind the reader that unless
explicitly mentioned, in all our deliberations, we work with the subset of
releases in the schema history that include at least one commit to the schema
definition file of the database of a project. Releases that have not touched the
schema are omitted from our investigation.

The number of commits of a release is the number of commits touching the
schema definition file that are pushed in the master branch for each release.
The number of contributors is measured with similar semantics.

Schema size. When we refer to schema size of a version, without other
characterizations, we refer to the number of tables present at this version
(equivalently, we use the term schema size in terms of tables). It is possible that
we refer to schema size in terms of attributes, in which case, we count the
number of attributes in all the tables of the version.

Whenever we refer to releases, rather than versions, the schema size of a release is
the number of tables at the end of the release (i.e., the schema size of the last
version of the release).

A reference to schema growth concerns the difference between the schema size
of two (typically subsequent) versions (i.e., new–old).

Change Events. We discriminate births, deaths and updates as follows.

Births: for births, we count (a) the number of tables being added to the
schema, (b) the number of attributes being born along with these newborn

53

tables (which we call table-born attributes), and, (c) attributes added to tables
that pre-existed (which we call attributes injected). Table-born attributes do not
include the ones in the original, starting version of the schema.

Deaths: for deaths, we count (a) the number of tables being removed from the
schema, (b) the number of attributes being deleted along with these deleted
tables (which we call table-gone attributes), and, (c) attributes removed from
tables that continue to exist (which we call attributes ejected).

We collectively refer to the union of injected and ejected attributes as
*jected attributes.

Updates: with the collective term attributes updated we refer to the union of
attributes that undergo a data type change with the attributes that participate
in a primary key change.

The collective term intra-table updates (in attributes) refers to the sum of
the measures of *jected attributes and attributes updated, i.e., it measures
all the activity of change within a table, excluding its birth and possible
death.

The sum of intra table updates, table-born, and table-gone attributes is
the total volume of change (in attributes) of a table.

Durations. We handle several types of durations in our data. The release date is
the Unix time of a release, whereas the human release date is the date of release
in human time. The duration of the release is the difference of the dates between
the first and the last commit in the same release in days. The real duration of a
release is the duration (again in days) between its own start and the start of its
subsequent release. The latter is very useful for the case of releases with just a
single commit or releases having all their commits at the same day. The
commit gap is the time gap (in days) between the last commit of a release and
the first commit of its subsequent release. The release gap is the time gap (in
days) between two releases (say i and i+3), between which there exists one or
more releases (say i+1 and i+2) that did not include a commit of the schema
definition file.

6.1.2 Breakdown of change

Figure 19 presents an overview of the different metrics of the lifetime of our
six studied data sets. Clearly schemata grow over time, both in terms of tables

54

and in terms of attributes (the Pearson correlation between schema size in
terms of tables and attributes is 0.8 for the start of the lifetimes and 0.87 for
the end of the lifetimes of the data sets).

Figure 20 presents the breakdown of events in percentages. To use a unique
scale of measurements, we have used affected attributes as the unit of change.
So the births and deaths of tables are covered by the respective events to their
attributes. Then, we compute the percentage of each category of events over
the total volume of change of the data set (expressed in number of affected
attributes).

Table-born attributes range between 23% - 48% over the total number volume
of change in attributes, with an average of 34% over all datasets and are the
most common type in 4 out of 6 data sets and second in the other 2. The
percentage of injected attributes ranges between 6% - 27% with an average of
17% over all data sets. The percentage of table-gone attributes ranges between
14% - 35% of events (with an average of 21%) whereas the percentage of
ejected attributes ranges between 4% - 21% of events with an average of 12%
over all the datasets. Finally, data type updates range between 5% - 28%with
an average of 14% and key change ranges between 0% (in half the data sets)
and 7% with an average of 2%.

55

 Time as … Schema size … Births... Deaths… #Attr’s with…

Duration

(human time)
Releases
w. DDL

 Tables at
start

Tables at
end

Attributes
at start

Attributes
at end Tables

Table-born
attr.

Injected
attr. Tables

Table-gone
attr.

Ejected
attr.

Data type
update

Key
change

Biosql 14 years,
11 months,

9 days

12 21 28 74 129 24 88 104 17 55 82 30 26

Ensembl 17 years,
8 months,

10 days

122 19 73 82 464 144 729 375 90 461 261 365 38

Mediawiki 13 years,
9 months,

1 days

112 17 48 100 348 75 356 232 44 218 122 361 22

Opencart 7 years,
10 months,

18 days

27 48 131 297 815 276 1652 215 193 1198 151 184 7

PhpBB 11 years,
5 months,

15 days

45 25 67 247 584 119 694 602 77 458 501 472 9

Typo3 13 years,
4 months,

0 days

52 10 23 122 414 29 438 115 16 219 42 92 0

Figure 19 Aggregate measures of change for the entire life of the six data sets that we study

56

 Time as … Schema size … Total vol. Births... Deaths… Updates…

Duration

(human time)
Releases
w. DDL

 Tables at
start

Tables at
end

Attributes
at start

Attributes
at end

of change
(attr.)

 Table-born
attr.

Injected
attr.

Table-gone
attr.

Ejected
attr.

Data type
update

Key
change

Biosql 14 years,
11 months,

9 days

12 21 28 74 129 385 23% 27% 14% 21% 8% 7%

Ensembl 17 years,
8 months,

10 days

122 19 73 82 464 2229 33% 17% 21% 12% 16% 2%

Mediawiki 13 years,
9 months,

1 days

112 17 48 100 348 1311 27% 18% 17% 9% 28% 2%

Opencart 7 years,
10 months,

18 days

27 48 131 297 815 3407 48% 6% 35% 4% 5% 0%

PhpBB 11 years,
5 months,

15 days

45 25 67 247 584 2736 25% 22% 17% 18% 17% 0%

Typo3 13 years,
4 months,

0 days

52 10 23 122 414 906 48% 13% 24% 5% 10% 0%

 Value range: 23% - 48% 6% - 27% 14% - 35% 4% - 21% 5% - 28% 0% - 7%

Figure 20 Total volume of change and its breakdown (in attributes) for the entire life of the data sets that we study

57

Overall, we can summarize our findings as follows:

- Schemata typically grow via the addition of new tables and their
table-born attributes, rather than with addition of new attributes to
existing tables. On average, 1 out of 3 attribute events involves an
attribute being born with a new table and 1 out of 6 events involves an
attribute being injected in an existing table. There are exceptions to this
rule (here: Biosql with an inclination towards injections and PhPBB
with practically a balanced mixture of table-born and injected
attributes.) There are also different profiles of the intensity of the
inclination to table-born attributes: some data sets rely heavily to new
tables (OpenCart and Typo3) whereas others give a mild inclination to
this trend (Mediawiki and Ensembl). In addition, in 4 out of 6 the ratio
between table-born and attribute injected ranges 1.5 – 8.

- Schema cleanup, via the removal of tables and attributes (which
encompasses renames too) follows the same pattern with schema
expansion. On average, 1 in 5 events involved an attribute being
removed along with its containing table and 1 in 8 events involves an
attribute being removed from its table, with its table continuing to
exist. Attributes are mostly removed along with their containing
tables, albeit with exceptions and differences in the balance of the
different categories. Again, Biosql is an exception to the rule and
phpBB demonstrates a balanced mixture of table-gone and ejected
attributes. Two data sets favor strongly table-gone attributes (again,
Opencart and Typo3), signifying a development profile of working
with the tables and two other data sets, Mediawiki and Ensembl
demonstrate a mild inclination towards table-gone attributes.

- Attribute updates comprise the smallest group of the attribute activity
and are primarily of a data type change nature. On average, 1 in 7
events involves an attribute being updated for its data type and 1 in 50
events (frequently: none) involves an attribute being involved in an
updated primary key. Typically, updates are more often than deletions,
but way fewer than attribute additions (with the exception of
Mediawiki that demonstrates an excess of attribute data type updates).

The extent to which renames are involved (both at the table and at the
attribute level) is an area of future research. We insist that our method is fully
automated, and thus, the identification of renames (that would either require
a manual intervention, or, results that are not 100% certain) is a future task
and out of the context of this study.

58

6.1.3 Aggregate measures of activity and growth

There are some very interesting statistics concerning the amount of growth
and update activity over the different releases.

Table growth. Starting with the amount of change of the schema size, we
study the distribution of values of schema change: for each release we
measure the growth or shrinking of the schema size (in tables), collectively
referred to as schema growth, and we count how many releases pertain to each
value. Figure 21 depicts our findings graphically.

Clearly, lack of any growth (positively or negatively) dominates the
evolution of schemata. We have already seen this phenomenon when we
studied the evolution on the basis of individual commits, and, not
unexpectedly, we see the same behavior here. Very few releases express any
change in schema size, and this is a typical pattern in all data sets, with the
percentage of releases of zero growth ranging between 58% and 78%, and an
average of 68% over all data sets. In other words, in 2 out of 3 releases, the
schema size typically remains the same. Also, as the strong correlation of
attribute and table growth has been demonstrated [SkVa13], we do not delve
into the study of attribute growth.

Figure 21 Release breakdown per schema size growth: for every value of
schema growth (in tables), we measure how many releases have

demonstrated this value

59

Attribute *jections. In Figure 22 we present the breakdown of values for
attribute injections to pre-existing table and attribute ejections from tables that
are not deleted. It is straightforward to see that (a) in more than 40% of
releases, (actually, between 41% and 54% of all releases, with an average of
46% over all data sets) there is no occurrence of such actions (i.e., a value of
zero at the horizontal axis). In all the data sets, however, we can observe the
existence of releases with a large amount of such restructurings. Remember
that injections involve 17% of all events and ejections 12% of all events on
average.

Figure 22 Release breakdown per amount of attributes injected or ejected: we
add the amount of attributes injected to existing tables and ejected from tables
that survive this change and measure we measure how many releases have
demonstrated this value

For each release we compute the percentage of *jections it contains over the
total number of *jections. Then, we sort the releases over this percentage. To
show that few releases contain a large part of the *jections, in Figure 23, we
present the cumulative percentage of *jections, over the total number of
*jections, for the top ranked releases. We can see that the releases in the top-5
positions amass between 51% - 99% of *jections (Figure 23). In two cases,
Mediawiki and Ensembl, with a long number of releases that touch more than
5 attributes, the percentage of the releases in the top-5 positions slightly
surpasses 50% (which is already too much). In the rest of the data sets, it rests
between 78% -99%. Interestingly, the profiles of the different data sets differ

60

in their progress, however in all but one of the data sets, 50% is reached in the
top-3 releases. The point made here is that there exist releases of mass
maintenance in terms of attribute injections and ejections, and few of them
(indicatively, the top-5) take up between 51% and 99% of *jections.

Cumulative pct of *jections for the top-5 releases, with rank:

#Releases
total attr
change

attr
*jected

*jections
over total

1 2 3 4 5

Biosql 12 385 186 48% 75% 87% 92% 96% 99%
Ensembl 122 2229 636 29% 20% 35% 48% 53% 57%

Mediawiki 112 1311 405 31% 21% 35% 45% 48% 51%

Opencart 27 3407 366 11% 61% 71% 77% 80% 88%

PhpBB 45 2736 1103 40% 25% 48% 65% 74% 78%

Typo3 52 906 92 10% 35% 53% 68% 73% 79%

Range:

20% -75% 35% -87% 45%-92% 48%-96% 51%-99%

Figure 23 Cumulative percent of *jections for the releases in the top-5
positions with respect to *jections (dark red for the high values at start and

end, and for the steps higher than 10%; blue for low values at start and end).

Note than the actual values for the top-5 events can be seen in the values of
the x-axis in Figure 22. For the rare occasions where more than one releases tie
at the same value, we count all of them (so, we have the top -5 ranks and not
top-5 releases).

Attribute updates. Attribute updates are more frequent than one would
expect, but typically less in numbers than injections, and slightly higher than
ejections (see Figure 20). With a small supremacy of injection, the three
categories keep close in volumes with only a couple of exceptions (too few
data type updates in Biosql and too many of them in Mediawiki, compared to
the two other categories).

The breakdown of occurrences for the updated attributes follows the same
pattern with ejections and injections with (a) most releases carrying zero
such events, and (b) specific releases of mass maintenance in the attributes of
several tables of the schema.

61

Cumulative pct of updates for the top-5 releases, with rank:

#Releases
total attr
change

attr
updated

updates
over total

1 2 3 4 5

Biosql 12 385 56 15% 46% 88% 95% 98% 100%
Ensembl 122 2229 403 18% 28% 34% 45% 52% 55%

Mediawiki 112 1311 389 30% 37% 62% 66% 70% 73%

Opencart 27 3407 191 6% 81% 88% 91% 95% 98%

PhpBB 45 2736 192 7% 10% 20% 28% 39% 44%

Typo3 52 906 92 10% 35% 53% 68% 73% 79%

Range:

10%-81% 20%-88% 28%-95% 39%-98% 44%-100%

Figure 24 Cumulative percentage of updates for the top-5 releases (dark red
for the high values at start and at the end, and for the steps higher than 10%;

blue for low values at start and end).

Figure 25 Release breakdown per amount of attributes updated: we add the
amount of attributes with a data type change or participating at a key change
and measure we measure how many releases have demonstrated this value

To clearly show the role of top releases with respect to updates we compute
the percentage of attributes updated over the total number of attributes
updated. Then, we sort the releases over this percentage and we present the

62

cumulative percentage for the top ranked releases on Figure 24. Concerning
the role of the releases in the top-5 ranks with respect to updates, we see a
similar effect as in the case of *jections, albeit with less intensity. Interestingly,
all data sets except for Opencart, start with a low or medium sized percentage
for the top-1 release, but quickly build up the percentages; by the time we
reach to 5th highest release in terms of updates, only one data set is below
50%.

Releases with zero change dominate. An overall observation, vividly
reported on Figure 26, is that absence of change is omnipresent for all types of
changes. Releases with zero schema growth range between 58% - 78%, with
an average of 68%: 2 out of 3 releases mark zero schema growth. The
respective range for attribute injections and ejections ranges between 41% and
54%, whereas for attributes updated it demonstrates a much broader range,
between 33% - 69%. On average attribute *jections and updates occur only in
half the releases.

Overall, we can argue that change is mostly absent or kept in small numbers,
with more than 40% of the releases carrying zero change in at least one of the
categories, few releases collecting a large percentage of the changes, and, a
large number of releases carrying very small amounts of updates each.

Releases with zero …

 #releases

schema
growth

*jected
attributes

attributes updated

Biosql 12 75% 50% 58%
Ensembl 122 58% 43% 47%
Mediawiki 112 70% 42% 69%
Opencart 27 63% 41% 56%
PhpBB 45 78% 47% 33%
Typo3 52 67% 54% 54%

Range: 58%-78% 41% - 54% 33% - 69%

Average: 68% 46% 53%

Figure 26 Percentage of releases with zero change in different categories of
change

63

6.2 Schema size, heartbeat and progress of change over time

The research goal of this chapter is to answer the following research question:
“how frequently and extensively do database schemata evolve in terms of
releases? ”. In order to answer the above question, we study the breakdown
of changes in the version history of schema histories and the progress of
individual changes over time.

Starting with schema size and heartbeat, Figure 27 and Figure 28 depict the
combined evolution of schema size and heartbeat for the data sets that we
study.

− The horizontal axes represent human time. Every small orange square
over the horizontal axis signifies the date of a release (one can observe
that there exist releases without any change, marked only by their
particular small orange square).

− The left vertical axis measures change in terms of number of attributes
involved. The stacked bars within the chart indicate the attributes born
with new tables, deleted along with removed tables and the intra-table
updates (attributes *jected and updated, together).

− The right vertical axes measures schema size. The thin grey line that
traverses the chart of each data set relates to the right vertical axes and
measures schema size in tables (again, for completeness, let us mention
that measuring in attributes presents a very similar line, so we omit
this line to avoid cluttering the diagram).

64

Figure 27 Schema size and heartbeat evolving over time for Biosql, Ensembl,
and MediaWiki

65

Figure 28 Schema size and heartbeat evolving over time for Opencart, phpBB,
and Typo3

66

After studying the schema size and the heartbeat, we examine the progress of
each software project using the different types of change events that can take
place in the schema of the database. Specifically, we compute the cumulative
progress for (a) table-born attributes and table-gone attributes, (b) *jected attributes
and (c) attributes updated.

Figure 29 Cumulative progress per update types including all datasets.

Figure 29 presents the cumulative progress for all different update types
including all datasets. We observe that in the BioSQL dataset all progresses
are pretty much in synchronization. In addition, the progress is completed
within the 1st year. Concerning Ensembl, in the 5 first years 60% of the
progress is completed and in the 7 first years 80% of the progress is
completed. It is worth mentioning the spike of attribute updates in the 7th year
of the dataset and after that year, the progress is slower. We observe that all
the types of updates are in synchronization except for the spike of updates.
With the exception of *jections that show an abrupt rise in 2012, and another

0%
20%
40%
60%
80%

100%
120%

Biosql: : cumulative progress per
update type

cumulative b&d
cumlative *jections
cumulative updates
Total change 0%

20%

40%

60%

80%

100%

120% Opencart: : cumulative progress per
update type

cumulative b&d
cumlative *jections
cumulative updates
Total change

0%

20%

40%

60%

80%

100%

120%

M
ay

-9
9

M
ay

-0
0

M
ay

-0
1

M
ay

-0
2

M
ay

-0
3

M
ay

-0
4

M
ay

-0
5

M
ay

-0
6

M
ay

-0
7

M
ay

-0
8

M
ay

-0
9

M
ay

-1
0

M
ay

-1
1

M
ay

-1
2

M
ay

-1
3

Ensembl: cumulative progress
per update type

cumulative b&d
cumlative *jections
cumulative updates
Total change 0%

50%

100% Typo3:
cumulative

progress per
update type

cumulative b&d

cumlative *jections

cumulative updates

Total change

0%

20%

40%

60%

80%

100%

M
ay

-0
3

M
ay

-0
4

M
ay

-0
5

M
ay

-0
6

M
ay

-0
7

M
ay

-0
8

M
ay

-0
9

M
ay

-1
0

M
ay

-1
1

M
ay

-1
2

M
ay

-1
3

M
ay

-1
4

M
ay

-1
5

M
ay

-1
6

mwiki: cumulative
progress per
update type

cumulative b&d
cumlative *jections
cumulative updates
Total change

0%

20%

40%

60%

80%

100%

120%

Se
p-

02

Se
p-

03

Se
p-

04

Se
p-

05

Se
p-

06

Se
p-

07

Se
p-

08

Se
p-

09

Se
p-

10

Se
p-

11

Se
p-

12

Se
p-

13

PhpBB: cumulative progress per
update type

cumulative b&d
cumlative *jections
cumulative updates
Total change

67

abrupt rise of updates in 2007, the overall rate of change in Mediawiki seems
stable. Beyond that, a small slowdown towards the end (at the middle of
2014) is detected where all categories have reached the 95%. Opencart, in the
1st year starts with 60% *jections and 80% everything else. Over the next 4
years nothing happens to the schema and the 2nd release appears in 2013.
After that, there is small progress on the project. Regarding Typo3, except for
early updates, nothing really happens till late in 2012. Specifically, in Nov.
2011 the births and deaths gather 30%, *jections gather 57%, updates gather
93% and the percent of total updates is 41%. Most of the changes take place
afterwards, practically within 2012. Finally, PhpBB starts linearly for the first
3.5 years; then over the next 4 years nothing really happens and then goes
slowly up. All update types except attribute updates have an abrupt rise
(from ~75% to ~100%) in 2012 because attribute updates had risen already
with an abrupt rise in 2006.

Concerning the calmness periods for each dataset, we observe that the
calmness period in Biosql constitutes to all of its life after the first year.
Similarly, the calmness period in Opencart starts after the first release and
ends at the end of the project’s lifetime. For Typo3 the calmness period lasts
for about six years starting in 2004 and ending in 2010. Similarly, the calmness
period of PhpBB starts in 2004, lasts for about six years and ends in 2010. The
calmness period for Mediawiki lasts for about three years, from 2008 to 2011.
Finally, Ensembl does not seem to have any calmness periods. The progress
seems to continuously raising during the entire lifetime of the project.

Overall, the progress of individual update types is in synchronization in all
datasets, except the spikes of updates in Typo3 and in Phpbb. Moreover, the
evolution patterns are different across the datasets.

- Ensembl and Mediawiki, in the first years of their project’s life, have a
steady progress until the last three years where the progress is slower.

- Opencart and Biosql contain abrupt rise in the progress and after that
the progress is almost frozen. The difference between the two of them
is that Opencart starts with 60% *jections and 80% for the other
categories in the first release and Biosql starts with small percentages
in the first release but the progress is completed within the first year.
Opencart is the only dataset that starts with progress percentages way
larger than zero. This is because the first stable version of the software
was in progress for 4 years (1504 days) and contains 152 commits.

- Both Typo3 and Phpbb have a large calmness period in the middle of
their life. The difference between the two of them is that Typo3 gathers
a small percentage of the progress before its calmness period instead of

68

Phpbb which gathers more than 50% of its progress before its calmness
period. For this reason, in Typo3 the progress has an abrupt rise in the
last year of its development in contrast with Phpbb where the progress
is lower after its calmness period.

6.3 Classifying Releases

Given the multitude of information on the behavior of the size of the schema
per release, as well as on the way the changes have occurred (in terms of table
and attribute births and deaths, attributes being injected and ejected and
attributes being updated in terms of data types and participation to key
constraints), the next question to ask is ”can we characterize the nature of a
release by inspecting these characteristics?”

As we mentioned in previous sections, organizing and studying the commits
of a database schema organized in releases is important because this way we
can obtain insights regarding the development goals for specific time periods.

In this study we focus on both commit and release classification. From here on
we refer to any of those as versions. We follow a rule-based classification
technique that utilizes rules to characterize (a) the nature of the version’s
activity (e.g whether the schema is expanded with new tables or the existing
tables are maintained internally) and (b) the intensity of the activity (low,
medium, high). Practically, we divide the multidimensional space created by
the different version metrics (eg. schema size and growth, amount of updates
within tables, amount of attributes added to existing tables etc) into regions
with different semantics. Of course, the problem is then reduced to deciding
the range of each such region. To this end, we define two different
discretization techniques, maintenance discretization and volume of change
discretization. The first one will provide the discretization of releases into
maintenance categories and the second one will discretize each of these
categories into three further categories based on the amount of changes that
take place in each release.

6.3.1 Maintenance categories discretization

In order to classify the commits or releases that affect the schema of the
database into maintenance categories, we first need to inspect the complex
behavior of schema evolution. Therefore, based on the change events that can
take place in a single commit or release, we consider three major categories of

69

structural modification that will help us classify a commit or a release
respectively.

- Table activity: this category includes two types of change events that
affect the schema from the scope of (a) table births and (b) table deaths.
We remind the reader that for table births we count the number of
tables added to the schema and for table deaths we count the number
of tables removed from the schema.

- Intra table growth: this category contains change events that affect the
number of table attributes. These change events include (a) the number
of attributes injected (attributes added to tables that pre-existed) and
(b) the number of attributes ejected (attributes removed from tables
that continue to exist).

- Intra table updates: this category includes change events concerning (a)
attributes that undergo a data type change and (b) attributes that
participate in a primary key change.

Based on the above structural modification categories, we apply at most one
label for each category.

6.3.2 Zero logical change

If a version does not have any label after the examination of the three
categories then we apply to the specific version the maintenance label “Zero
Logical Change”. This means that the changes that took place in the specific
version did not affect the logical schema of the database. Changes that do not
affect the logical schema of the database can be changes on indexes or in
comments.

6.3.3 Table activity

We define the sum of table births and table deaths as follows:

table_change = #table_births + #table_deaths

In order to apply a selected label for this category we discriminate the
following cases:

Case 1. 𝑡𝑎𝑏𝑙𝑒_𝑐ℎ𝑎𝑛𝑔𝑒 = 0

70

This means that no tables were added or removed from the schema on a
specific version. In this case there is no table activity, so we do not apply any
label.

Case 2. 𝑡𝑎𝑏𝑙𝑒_𝑐ℎ𝑎𝑛𝑔𝑒 > 0

This means that there is table activity that affects the schema of the database
and we need to address all the different cases. Practically, we identify the
following possible values (i.e the domain) for table activity:

i. Growth: table expansion, referring to the situation where the developers
are significantly expanding the schema with new tables

ii. Maintenance: table shrinking, where developers are intentionally
performing cleanup, perfective maintenance by removing unnecessary
tables

iii. Maintenance: table restructuring, where there is a mixed activity of
additions and deletions (typically encountered in renames and
restructurings)

Before we examine all the cases we define some useful equations that will be
used later. We use a user defined threshold 𝑡 ∈ [0, 1) that will help us classify
versions, to define two quantities, the table birth percentage and the table
death percentage, defined as follows:

𝑡𝑏𝑝 =
#𝑡𝑎𝑏𝑙𝑒_𝑏𝑖𝑟𝑡ℎ𝑠
table_change

𝑡𝑑𝑝 =
#𝑡𝑎𝑏𝑙𝑒_𝑑𝑒𝑎𝑡ℎ𝑠

table_change

For our characterizations we use t = 0.3

We have the following cases here:

Case 2.1. 𝑡𝑏𝑝 − 𝑡𝑑𝑝 > 𝑡

This case means that the percentage of tables added to the schema is larger
than the percentage of tables deleted from the schema by the threshold t.
Therefore, we apply the label Growth: table expansion to the specific version.

Case 2.2. 𝑡𝑑𝑝 − 𝑡𝑏𝑝 > 𝑡

This case means that the percentage of tables removed from the schema is
larger than the percentage of tables added to the schema by the threshold

71

t. Therefore, we apply the label Maintenance: table shrinking to the specific
version.

Case 2.3. �𝑡𝑏𝑝 − 𝑡𝑑𝑝� ≤ 𝑡

In this case we have maintenance in terms of restructuring in the specific
version. Therefore, we apply the label Maintenance: table restructuring to
the specific version.

Finally, we can summarize the discretization process for this category in the
following formula.

𝑇𝐴_𝑙𝑎𝑏𝑒𝑙 =

⎩
⎪⎪
⎨

⎪⎪
⎧

 − , 𝑡𝑏𝑝 + 𝑡𝑑𝑝 = 0

Growth: table expansion, 𝑡𝑏𝑝 − 𝑡𝑑𝑝 > 𝑡

Maintenance: table shrinking, 𝑡𝑑𝑝 − 𝑡𝑏𝑝 > 𝑡

Maintenance: restructuring, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

�

6.3.4 Intra table growth

In order to apply a selected label for this category we follow a similar
methodology with the methodology of table activity category. Again, we need
to classify a version’s activity into one of four classes:

i. Growth: intra table expansion, when there is a significant amount of
attributes added (injected) to existing tables.

ii. Maintenance: intra table shrinking where developers are performing
cleanup, perfective maintenance by removing (ejecting) attributes from
surviving tables.

iii. Maintenance: intra table restructuring where there is a mixed activity of
attributes injected and attributes ejected.

iv. No changes were made to the schema of the database.

We define the sum of attributes injected and attributes ejected as follows:

𝑖𝑛𝑡𝑟𝑎_𝑡𝑎𝑏𝑙𝑒_𝑐ℎ𝑎𝑛𝑔𝑒 = #𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠_𝑖𝑛𝑗𝑒𝑐𝑡𝑒𝑑 + #𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠_𝑒𝑗𝑒𝑐𝑡𝑒𝑑

72

Therefore, we discriminate the following cases:

Case 1. 𝑖𝑛𝑡𝑟𝑎_𝑡𝑎𝑏𝑙𝑒_𝑐ℎ𝑎𝑛𝑔𝑒 = 0

This means that there are not injected and ejected attributes in the schema on
a specific release. In this case we do not apply any label on the release.

Case 2. 𝑖𝑛𝑡𝑟𝑎_𝑡𝑎𝑏𝑙𝑒_𝑐ℎ𝑎𝑛𝑔𝑒 > 0.

We define a threshold 𝑡 ∈ [0, 1) and the percentage of attributes injected and
attributes ejected as follows:

𝑎𝑖𝑝 =
#𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠 𝑖𝑛𝑗𝑒𝑐𝑡𝑒𝑑
𝑖𝑛𝑡𝑟𝑎_𝑡𝑎𝑏𝑙𝑒_𝑐ℎ𝑎𝑛𝑔𝑒

𝑎𝑒𝑝 =
#𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠 𝑒𝑗𝑒𝑐𝑡𝑒𝑑
𝑖𝑛𝑡𝑟𝑎_𝑡𝑎𝑏𝑙𝑒_𝑐ℎ𝑎𝑛𝑔𝑒

For our characterizations we use t = 0.3

We have the following cases here:

Case 2.1. 𝑎𝑖𝑝 − 𝑎𝑒𝑝 > 𝑡

This case means that the percentage of attributes injected is larger than the
percentage of attributes ejected by the threshold t. Therefore, we apply the
label Growth: intra table expansion to the specific version.

Case 2.2. 𝑎𝑒𝑝 − 𝑎𝑖𝑝 > 𝑡

This case means that the percentage of attributes ejected is larger than the
percentage of attributes injected at the threshold t. Therefore, we apply the
label Maintenance: intra table shrinking to the specific version.

Case 2.3. �𝑎𝑖𝑝 − 𝑎𝑒𝑝� ≤ 𝑡

In this case, we consider that we have intra table maintenance in the
specific version. Thus, we apply the label Maintenance: intra table
restructuring to the specific version.

73

Finally, we can summarize the discretization process for this category in the
following formula.

𝐼𝑇𝐺_𝑙𝑎𝑏𝑒𝑙 =

⎩
⎪⎪
⎨

⎪⎪
⎧

 − , 𝑎𝑖𝑝 + 𝑎𝑒𝑝 = 0

G𝑟𝑜𝑤𝑡ℎ: 𝑖𝑛𝑡𝑟𝑎 𝑡𝑎𝑏𝑙𝑒 𝑒𝑥𝑝𝑎𝑛𝑠𝑖𝑜𝑛 , 𝑎𝑖𝑝 − 𝑎𝑒𝑝 > 𝑡

𝑀𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒: 𝑖𝑛𝑡𝑟𝑎 𝑡𝑎𝑏𝑙𝑒 𝑠ℎ𝑟𝑖𝑛𝑘𝑖𝑛𝑔, 𝑎𝑒𝑝 − 𝑎𝑖𝑝 > 𝑡

𝑀𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒: 𝑖𝑛𝑡𝑟𝑎 𝑡𝑎𝑏𝑙𝑒 𝑟𝑒𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑖𝑛𝑔, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

�

6.3.5 Attribute updates

In this category the things are simple. If #type_updates + #key_updates > 0 then
we apply the Maintenance: intra table amendment label. Otherwise we do not
apply any label.

6.3.6 Volume of change discretization

One problem that arises from the above labels is that they do not measure the
volume of change. Therefore, we need to define taxonomies for measuring the
volume of those changes. In this thesis, we consider three different levels (low,
medium and high) that measure the extent of the structural modifications in the
schema of the database.

This discretization process is based on descriptive statistics of two structural
modification types: intra table updates (includes attribute updates and intra table
growth) and table activity. At this point, it is useful to mention that the
discretization process is similar for both releases and commits. The two
processes are explained below.

(a) Releases

In order to be able to define when an update category has low, medium or high
impact on the database schema i.e, in order to define the range of each
intensity value, we inspect the distribution of changes across the major
modification types (intra table updates and table activity). More specifically, for
each dataset we create two different plots, one for each modification type. In
Appendix 2 we present, for all datasets and for each modification type (intra
table update and table activity), two different kinds of plots. We refer to

74

intra_table_change + #attributes updated as number of total intra changes for the
intra table update category and to table_change as number of total births and deaths
for the table activity category.

#𝑡𝑜𝑡𝑎𝑙 𝑖𝑛𝑡𝑟𝑎 𝑐ℎ𝑎𝑛𝑔𝑒𝑠 = #𝑖𝑛𝑡𝑟𝑎_𝑡𝑎𝑏𝑙𝑒_𝑐ℎ𝑎𝑛𝑔𝑒 + #𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠 𝑢𝑝𝑑𝑎𝑡𝑒𝑑

𝑡𝑎𝑏𝑙𝑒_𝑐ℎ𝑎𝑛𝑔𝑒 = #𝑡𝑎𝑏𝑙𝑒_𝑏𝑖𝑟𝑡ℎ𝑠 + #𝑡𝑎𝑏𝑙𝑒_𝑑𝑒𝑎𝑡ℎ𝑠

Moreover, the first kind of plot refers to the discretization of commits based
on total amount of updates and the second kind refers to the discretization of
releases based on total amount of updates. A subset of those plots is
presented in Figure 30 and Figure 31 and refers to the discretization of intra
table updates for releases. Specifically:

- The horizontal axis represents the releases which are sorted in asceding
order based on the volume of change (number of total intra changes or
number of total births and deaths).

- The left vertical axis represents the number of number of total intra-table
changes or the number of total births and deaths.

- The vertical red lines represent the thresholds for the discretization
into three categories. These thresholds are set to a percentage of the
release population based on the observation on the volume change
distribution.

Although all plots look strikingly similar, the exact thresholds differ.
Therefore, based on the exact numbers we extracted Table 3 which presents
the ranges for each discretization category for the two different modification
types including all datasets.

75

 Total table births & deaths Total Intra table changes

 Low
(lower 80%)

Medium
(80% - 95%)

High
(higher 90%)

 Low
(lower 80%)

Medium
(80% - 95%)

High
(higher 95%)

Biosql < 3 4-10 > 10 < 11 12 - 47 > 47

Ensembl < 4 4-7 > 7 < 8 9-25 > 25

Mediawiki < 3 3-5 > 5 < 7 8-19 > 19

Opencart < 4 4-9 > 9 < 12 12-27 > 27

Phpbb < 3 3-20 > 20 < 36 36-107 > 107

Typo3 < 2 2-4 > 4 < 9 9-17 >17

#Releases: 308 40 22 296 53 21

Table 3 Discretization thresholds for releases, including the two different
modification types.

76

Figure 30 Distribution of total intra table updates for releases for Biosql,

Ensembl and Mediawiki.

77

Figure 31 Distribution of total intra table updates for releases for Opencart,
Phpbb and Typo3.

78

(b) Commits

Concerning commits, we use the same process of discretization using again
two major modification types (intra table updates and table activity) and
creating similar plots which are presented in Appendix 2.

Although all plots look strikingly similar, the exact thresholds differ.
Therefore, based on these plots we extracted Table 4 which presents the
ranges for each discretization category for the two different modification
types and including all datasets.

 Total table births & deaths Intra table total updates

 Low
(lower 80%)

Medium
(80% - 95%)

High
(higher 95%)

 Low
(lower 80%)

Medium
(80% - 95%)

High
(higher 95%)

Biosql < 2 2-5 > 5 < 5 5-18 > 18

Ensembl < 2 2 > 2 < 3 3-6 > 6

Mediawiki < 2 2 > 2 < 3 3-6 > 6

Opencart < 1 1-2 > 2 < 2 2-5 > 5

Phpbb < 2 2-4 > 4 < 7 7-24 > 24

Typo3 < 2 2 > 2 < 4 4-11 > 11

#Commits 1536 122 62 1433 210 77

Table 4 Discretization thresholds for commits, including the two different
modification types.

6.3.7 Summarizing the labeling possibilities

In this section we summarize our rule-based classification technique as
follows. We consider three different types of modification changes for each
version: (a) table activity, (b) intra table growth and (c) intra table updates. A
version can have more than one type of modification change because
developers can make different kind of changes in each version. For example, a
developer can add new tables in the schema and remove attributes from
tables that continue to exist in the same time. Therefore, a version can have
more than one label assigned to it. More specifically, at most one label for

79

each type of modification change can be assigned to a version. For this reason,
the number of labels that can be assigned to each version ranges between 1
and 3.

Each of these three categories consists of different cases that handle the nature
of the activity.

Table activity. A version is assigned (a) Growth: table expansion, (b) Maintenance:
table shrinking, or, (c) Maintenance: table restructuring label, based on the nature
of table activity. If there is not table activity, then no label is assigned to a
specific version.

Intra table growth. A version is assigned (a) Growth: intra table expansion, (b)
Maintenance: intra table shrinking, or, (c) Maintenance: intra table restructuring
label, based on the nature of *jected attributes. If there are not *jected attributes,
then no label is assigned to a specific version.

Attribute updates. A version is assigned Maintenance: intra table amendment label
in the case where there are attributes that undergo a data type or attributes
that participate in a primary key change. If there are not updated attributes,
then no label is assigned to a specific version.

Based on the above, we discriminate each of the aforementioned labels into
two parts that can be summarized as follows: <meta-label:> <activity-nature>.
For example, in the above labels Growth and Maintenance at the beginning of
the label are considered as meta-labels. Beyond that, one additional label that
measures the intensity of the activity (low, medium, high) must be assigned at the
start of each of those labels.

Overall, we can summarize the format of the labels as follows:

- Absence of any kind of activity. Zero Logical Change label is assigned to the
specific version.

- Existence of any kind of activity. In this case, we used the two
aforementioned discretization techniques to assign the suitable labels
to each version. The format of these labels can be summarized as
follows:

<intensity> <meta-label>:<activity-nature>

where <intensity> can be low, medium or high, <meta-label> can be either
Growth or Maintenance and <activity-nature> can take all the possible
characterizations based on type of change from each category.

80

6.3.8 Overall stats

One of our initial research goals on version classification was to answer the
following question: what are the most used modification types in the
evolution history of a database schema?

For this reason, the first thing we measure is the percentage of each label in
the entire life of the schema for all datasets. We separate our study in two
different parts: (a) commits and (b) releases.

(a) Commits

For this part of the investigation, we measure the percentage of commits
where each label appears and we present the results in Table 7 for all datasets.
Beyond that, we sort the labels based on the arithmetic mean over all datasets
and we show the top-5 ranked labels and bottom-5 ranked labels at Table 5
and Table 6 respectively.

We observe that the top-5 ranked labels based on the arithmetic mean of
releases is (1) Zero Logical Change which ranges between 17% - 57% with an
average of 36% over all datasets, (2) Low maintenance: intra table amendment
which ranges between 6% - 33% with an average of 20%, (3) Low Growth: intra
table expansion which ranges between 7% - 26% with an average of 16%, (4)
Low Growth: table expansion which ranges between 0% - 11% with an average
of 6% and (5) Medium Growth: table expansion 2% - 10% with an average of 6%.

It is worth mentioning that in all datasets except PhpBB the zero logical change
label exists in more than 1 out of 4 commits. In addition, we observe that all
but one of the top-5 ranked labels gather low activity. Beyond that, we can
observe in Table 6 that the majority of bottom-5 labels gather high activity.
Based on these observations, we conclude that the changes introduced by
commits are quite often of zero (in 4 out 6 data sets the largest category) or
low volume while high volume of activity are really infrequent.

To forestall the criticism that this should be expected based on the definition
of high and low, we refer to the reader to Figure 30, Figure 31and the figures
of the Appendix where it is evident that the definition was adapted to the
scarcity of intense updates and the predominance of zero updates and not
vice-versa.

81

Characterizations Mean
Standard
deviation

Max Min

Zero Logical Change 36% 14% 57% 17%

Low Maintenance: intra table amendment 20% 11% 33% 6%

Low Growth: intra table expansion 16% 8% 26% 7%

Low Growth: table expansion 6% 5% 11% 0%

Medium Growth: table expansion 6% 3% 10% 2%

Table 5 Top-5 ranked characterizations of commits based on the average of
percentages over all datasets.

Characterizations Mean
Standard
deviation Max Min

High Maintenance: table restructuring 0% 1% 1% 0%

High Maintenance: intra table shrinking 1% 2% 4% 0%

High Growth: table expansion 1% 1% 2% 0%

High Maintenance: intra table restructuring 1% 1% 2% 0%

Medium Maintenance: intra table shrinking 2% 2% 4% 0%

Table 6 Bottom-5 ranked characterizations of commits based on the average
percentages over all datasets

82

Characterization Biosql Ensembl Mwiki Ocart PhpBB Typo Mean
Mean
w/o

outliers

Zero Logical Change 37% 44% 40% 57% 17% 24% 37% 36%

Low Growth: intra table expansion 26% 10% 13% 7% 25% 18% 17% 17%

Low Growth: table expansion 11% 0% 11% 0% 5% 10% 6% 7%

Low Maintenance: intra table amendment 20% 22% 6% 8% 33% 30% 20% 20%

Low Maintenance: intra table
restructuring

7% 2% 0% 0% 10% 0% 3% 2%

Low Maintenance: intra table shrinking 7% 4% 5% 2% 10% 3% 5% 5%

Low Maintenance: table shrinking 7% 0% 4% 0% 3% 4% 3% 3%

Medium Growth: intra table expansion 0% 3% 0% 4% 3% 7% 3% 3%

Medium Growth: table expansion 4% 10% 2% 8% 6% 3% 6% 5%

Medium Maintenance: intra table
amendment

4% 4% 0% 2% 4% 2% 3% 3%

Medium Maintenance: intra table
restructuring

13% 1% 0% 6% 3% 3% 4% 3%

Medium Maintenance: intra table
shrinking

0% 1% 0% 2% 3% 4% 2% 2%

Medium Maintenance: table restructuring 11% 2% 0% 1% 2% 0% 3% 1%

Medium Maintenance: table shrinking 0% 4% 2% 4% 6% 3% 3% 3%

High Growth: intra table expansion 0% 1% 9% 1% 1% 1% 2% 1%

High Growth: table expansion 0% 2% 1% 2% 1% 2% 1% 2%

High Maintenance: intra table
amendment

2% 1% 10% 2% 2% 2% 3% 2%

High Maintenance: intra table
restructuring

2% 2% 2% 1% 2% 0% 2% 2%

High Maintenance: intra table shrinking 0% 0% 4% 0% 0% 0% 1% 0%

High Maintenance: table restructuring 0% 1% 0% 1% 0% 0% 0% 0%

Table 7 Overall percentages for commit characterization

83

 (b) Releases

Our study on releases is similar to the study on the commits. We first measure
the extent of each characterization over all datasets by measuring the
percentage of releases that a specific label appears over the entire life of each
dataset. Again, a release can be characterized by more than one label,
depending on the nature and heterogeneity of its commits. The information
presented in Table 8 clearly shows that the evolution of schemata is
dominated by periods of no logical activity. This means that other types of
changes take place, such as index maintenance or updates in the comments of
the source code.

Another interesting fact, as we already mentioned in previous section, is the
large extent of attribute updates (attributes that undergo a data type change
or participate in a key change). If someone examines Table 10 she will notice
the large percentage ranges on Low Maintenance: intra table amendment and
Medium Maintenance: intra table amendment. Low Maintenance: intra table
amendment appears to all datasets and ranges between 25% - 58% with an
average of 39% and Medium Maintenance: intra table amendment also appears in
all datasets and ranges between 2% - 17%. In addition, it is worth mentioning
that the label Low Maintenance: intra table amendment is the most used
label on releases over all datasets as presented in Table 8.

Moreover, the Maintenance: intra table shrinking label appears in smaller
percentages than Maintenance: table shrinking label and both of them appear
less frequent with respect to the other labels. This means that table deletions
are more frequent than the attribute deletions from surviving tables but they
appear in small numbers. In addition, the presence of intra table restructuring
is significant and it ranges between 4% - 25% in Low label with an average of
14%, between 2% - 8% in Medium label with an average of 5% and between 0%
- 8% in High label with an average of 4%. These percentages may hide
attribute renames and must be examined in the future.

Based on the above observations we can conclude that the attribute updates
take place more often than someone would expect with two same labels with
different intensity belonging in the top-5 of labels used. In addition, the
presence of Zero Logical Change label is very frequent in the releases as well.
One more conclusion that arises by looking Table 6 and Table 9 is that in
both commits and releases table shrinking label gathers very small
percentages. This means that shrinking is less frequent than expansion.

84

Characterizations Mean
Standard
deviation

Max Min

Low Maintenance: intra table amendment 39% 12% 58% 25%

Low Growth: intra table expansion 22% 10% 34% 8%

Zero Logical Change 22% 7% 33% 15%

Low Maintenance: intra table restructuring 15% 9% 25% 4%

Low Growth: table expansion 14% 6% 22% 8%

Table 8 Top-5 ranked labels of releases based on the average of percentages
over all datasets.

Characterizations Mean
Standard
deviation Max Min

High Maintenance: intra table shrink 0% 0% 1% 0%

High Growth: intra table expansion 1% 1% 2% 0%

Medium Maintenance: intra table shrink 1% 2% 4% 0%

High Maintenance: intra table amendment 2% 2% 4% 0%

Medium Growth: intra table expansion 2% 3% 8% 0%

Table 9 Botom-5 ranked labels of releases based on the average of percentages
over all datasets.

85

Characterizations Biosql Ensembl Mwiki Ocart Phpbb Typo

Mean
Mean

without
outliers

 Zero Logical Change 33% 17% 23% 26% 18% 15%

22% 21%

Low Growth: intra table expansion 8% 32% 34% 15% 24% 21%

22% 23%

Low Growth: table expansion 8% 20% 17% 22% 9% 10%

14% 14%

Low Maintenance: intra table amendment 25% 43% 26% 37% 58% 42%

39% 37%

Low Maintenance: intra table
restructuring

25% 7% 9% 22% 20% 4%

15% 15%

Low Maintenance: intra table shrink 0% 6% 7% 7% 0% 6%

4% 5%

Low Maintenance: table restructuring 8% 2% 6% 0% 0% 0%

3% 2%

Low Maintenance: table shrinking 0% 5% 5% 4% 2% 4%

3% 4%

Medium Growth: intra table expansion 0% 3% 2% 0% 0% 8%

2% 1%

Medium Growth: table expansion 0% 8% 4% 7% 0% 10%

5% 5%

Medium Maintenance: intra table
amendment

17% 9% 4% 4% 9% 2%

8% 7%

Medium Maintenance: intra table
restructuring

8% 5% 5% 7% 4% 2%

5% 5%

Medium Maintenance: intra table shrink 0% 0% 0% 0% 2% 4%

1% 1%

Medium Maintenance: table
restructuring

8% 4% 5% 7% 13% 0%

6% 6%

Medium Maintenance: table shrinking 8% 4% 2% 0% 0% 6%

3% 3%

High Growth: intra table expansion 0% 1% 1% 0% 2% 2%

1% 1%

High Growth: table expansion 8% 0% 0% 0% 2% 4%

2% 2%

High Maintenance: intra table
amendment

0% 1% 3% 4% 0% 2%

2% 2%

High Maintenance: intra table
restructuring

8% 2% 1% 7% 4% 0%

4% 4%

High Maintenance: intra table shrink 0% 1% 0% 0% 0% 0%

0% 0%

 Table 10 Overall percentages for release characterization

86

6.3.9 The extent of tangled changes

In this section we are going to answer some of our initial research goals but
before we go further we need to define some terminology.

A tangled change corresponds to a set of unrelated modification types that take
place in a specific version. We consider that a version contains tangled changes if it
is characterized with more than one label (i.e., a triplet <intensity><meta-
label><activity-nature>). In fact, this means that in the specific version different
types of modifications changes are grouped together into a single version. For
example, assume that a developer may have added new tables in the schema
of the database and removed some attributes from tables that continue to exist
in the same version. These two different types of changes belong to different
modification categories and we consider the union of them as a tangled change.

Monothematic change. A version that does contain tangled changes consists
only of one modification type that takes place in the specific version. We
consider that a version contains monothematic changes if it characterized with only
one label.

We examine the extent of tangled changes because we observed that
developers commit more than one changes of different kind in the same
commit. Tangled changes can threaten any analysis of the corresponding
history and make the classification harder. We separate our examination on
the extent of tangled changes in (a) commits and (b) in releases.

(a) Commits

In Table 11 we present the number of tangled changes along with the
corresponding percentages for commits.

The extent of tangled changes. The extent of tangled changes does not seem to
follow a specific pattern. Tangled changes range between 7% - 35% with an
average of 18% over all datasets. We conclude that the extent of tangled
changes depends on the development style of each project. With the exception
of Biosql and PhpBB, we can say that for the rest of the projects, tangled
commits constitute a small minority.

87

 #Commits #Tangled
Changes

#Monothematic
Changes

% Tangled
Commits

%Monothematic
Changes

Biosql 46 16 30 35% 65%

Ensembl 526 56 470 11% 89%

Mediawiki 410 28 382 7% 93%

Opencart 411 37 374 9% 91%

Phpbb 229 74 155 32% 68%

Typo 97 12 85 12% 88%

Table 11 Number of tangled and monothematic changes along with their
percentages per dataset.

(b) Releases

For releases we measure (a) the extent of releases that contain tangled changes
and (b) the extent of releases that contain commits with tangled changes.

The extent of tangled changes. The extent of tangled changes does not seem to
follow a specific pattern. Releases with tangled changes range between 29% -
51% with an average of 41% over all datasets. These percentages are way
larger than the respective on commits. Of course, this is expected because
inside a release the existence of commits with different change categories is
very possible. The worth mentioning fact here is that on average 41% of
releases contain more than one development goals.

The extent of releases that contain commits with tangled changes. As we have
already mentioned, a release contains a list of commits. The aggregate
measures from commits that belong to the same release can provide more
than one modification types resulting to a tangled change for a specific
release. For this reason, we also measure the percentage of releases that
contain at least one commit with tangled changes. The percentage of releases
that contain commits with tangled changes ranges between 16% - 41% over all
datasets. We cannot identify any pattern on these percentages. Maybe the
extent of commits that contain tangled changes inside releases depends on the
development style of each project.

88

 #Releases #Releases
with tangled

changes

Releases
with tangled

commits

#Releases with
monothematic

changes

%Releases with
monothematic

changes

% Releases
with tangled

changes

% Releases
with tangled

commits

Biosql 12 4 4 8 67% 33% 33%

Ensembl 122 57 39 65 53% 47% 32%

Mediawiki 112 44 18 68 61% 39% 16%

Opencart 27 13 11 14 52% 48% 41%

Phpbb 45 23 19 22 49% 51% 40%

Typo3 52 15 10 37 71% 29% 19%

Table 12 Number of releases that contain tangled and unique changes along
with their percentages per dataset.

With the minor exception of Phpbb, it is encouraging to see that the
(sometimes vast) majority of releases. These percentages on monothematic
changes of releases are larger than one would expect.

6.3.10 The extent of unique label

A unique label corresponds to a characterization or to a set of different
characterizations that appear only once in a single version of the entire
lifetime of the database schema. For example, let us consider that a version vi

is characterized with the labels l1 and l2 (again, a label is triplet
<intensity><meta-label><activity-nature>). If this set of labels <l1,l2> does not
appear on any of the other releases, then we consider it as unique label.

This examination is similar to the one made for the extent of tangled changes
in the previous section. Again, we separate our examination on the extent of
unique labels in (a) commits and (b) in releases.

 (a) Commits

In Table 12 we present the number of unique labels over the entire schema
lifetime along with the corresponding percentages for all datasets.

89

The extent of unique labels. Unique labels range below 26% with only one
exception (Biosql gathers 41%). It is possible that unique labels hide
interesting insights because they may contain useful information and the
changes that appear there may be prone to bugs. This would require,
however, a dedicated study that fall outside the scope of this thesis; and thus,
we list it as a topic of future work.

 #Commits #Unique Labels %Unique Labels

Biosql 46 19 41%

Ensembl 526 51 10%

Mediawiki 410 38 9%

Opencart 411 43 10%

Phpbb 229 59 26%

Typo 97 25 26%

Table 13 Number of unique changes along with their percentages per dataset

(b) Releases

The extent of unique labels. Releases with unique labels range between 35% -
67%. These large percentages spring up from the fact that the extent of tanged
changes on releases is large. Tangled changes on a release means that the
specific release is characterized with more than one different labels.
Therefore, if there are releases with more than one label there are a lot of
combinations that may be unique in the entire lifetime of a schema.

The extent of releases that contain commits with unique labels. We measure the
extent of releases that contain commits with unique labels for the same reason
we measured the percentage of releases that contain at least one commit with
tangled changes before. Table 14 presents the number of releases that contain
commits with unique labels along with their percentages. The percentage of
releases that contain at least one commit with unique label ranges between
40% and 59% with an average of 48% over all datasets. This means that almost
the half of the releases contain commits with unique labels.

90

 #Releases # Releases with
unique labels

Releases with
unique commits

% Releases with
unique labels

% Releases with
unique commits

Biosql 12 8 7 67% 58%

Ensembl 122 52 57 43% 47%

Mediawiki 112 39 39 35% 35%

Opencart 27 17 16 63% 59%

Phpbb 45 19 24 42% 51%

Typo3 52 26 21 50% 40%

Table 14 Number of releases that contain unique labels and number of release
that contain commits with unique changes along with their percentages per

dataset.

91

CHAPTER 7.

CONCLUSION AND FUTURE WORK

7.1 Conclusions

7.2 Future work

In this final chapter, we will first start with a summary of our findings and
answer on our initial research questions and then we will discuss issues of
future work.

7.1 Conclusions

The goal of this thesis was to combine all the various, heterogeneous,
dissimilar sources of information for the history of a schema in one reference
model which represents all the aspects of repository-based information. To
achieve this goal, we created a reference model that combines all these
different sources of information in one representation. Then, we used the
defined reference model to create a system that supports both an interactive
and a traditional way to exploratory analytics using the integrated contextual
information about the schema histories. Beyond that, we used the same meta-
model in order to group the entire lifetime of a database into phases, to which
we refer to the term release, and performed a study on how these phases are
related to changes affecting the schema of the database.

Moreover, given the multitude of information on the behavior of the size of
the schema per release, as well as the way the changes have occurred we
presented a rule-based technique that characterizes the nature of a release by

92

inspecting these characteristics. Then within the same context, we measured
the extent of each characterization over the whole history of database
schemata. Based on our findings, we can argue that change is mostly absent
or kept in small numbers in contrast with few releases collecting a large
percentage of the changes.

7.2 Future work

In this thesis, we make a first step towards understanding the schema
evolution using the external contextual information that exists in open source
code repositories. In this section we present a list of interesting research
extensions that need to be examined.

One of the open issues is the automation of the extraction and transformation
process of data from the public repositories. In this thesis the process of
extracting, transforming and loading the data is semi-automatic. Specifically,
the extraction process needs manually inspection of the open source software
repository to detect the location of the file with the schema definition as well
as the location of different external systems. An automated process would
save the researcher enough time and would also make the examination of
software repositories easier.

In this thesis, we do not study how the bugs are related to commits. In
another line of future work, a more sophisticated way to link bugs with
commits is needed. The methodology that we propose in this thesis is naive
because it requires a dedicated study that fall outside the scope of this thesis.
Linking bugs with commits can provide useful insights on the reasons and
motivations of a change event. Moreover, in the same context one question
that arises is whether the message from commit text or the message from bug
report is informative for understanding what has changed and the reason of
the change.

In this thesis we used the metrics of each version in order to characterize it,
without taking into consideration the text message from the commits. One
question that arises from this is whether the text message from commits will
improve the classification of releases or commits. Therefore, a future study
could apply text mining in the commit messages to classify each commit. In
the same context, sequence pattern mining algorithms can be applied on the
characterizations of versions in order to discover frequent sequential pattern
of modification changes. In addition, using the characterizations for each

93

version someone can apply phasic analysis by merging sequential versions
together to create more general phases from these characterizations.

Related literature studies, beyond others, the social aspect of developers that
are involved in a software project and how they affect the development
process. Software development is human-intensive and the study of people
that are involved in the development process can help the research
community to understand better the evolution process.

As we mentioned before, we handle several types of durations for releases in
our data. Based on this information one resulting question is whether there is
a relation between duration of a release and the nature of the changes that
take place inside a release. Useful insights may arise from the study on
durations of releases in the evolution of schemata and we believe that it is
worth studying.

In another line of future work, a clear target of research involves detecting
renames, both at the table and the attribute level. We insist that our method is
fully automated, and thus, the identification of renames (that would either
require a manual intervention, or, results that are not 100% certain) is a future
task and out of the context of this study. A rename involves both an ejection
and an injection of a renamed table or attribute, respectively.

94

95

 BIBLIOGRAPHY

[BBAD09] C. Bird, A. Bachmann, E. Aune1, J. Duffy, A. Bernstein, V. Filkov, P. Devanbu.
Fair and Balanced? Bias in Bug-Fix Datasets. Proceeding ESEC/FSE '09. pp 121-
130, Amsterdam, The Netherlands, August 2009

[BBRD10] A. Bachmann, C. Bird, F. Rahman, P. Devanbu, A. Bernstein1. The missing
links: bugs and bug-fix commits. SIGSOFT FSE 2010. pp 97-106, Santa Fe, New
Mexico, USA — November 2010

[CMTZ08]

Carlo A. Curino, Hyun J. Moon, Letizia Tanca, Carlo Zaniolo. Schema
Evolution In Wikipedia toward a Web Information System
Benchmark. International Conference on Enterprise Information Systems
(ICEIS ‘08), pp. 323-332, 2008

[DoBZ13] Q. Dong, L.Bixin, S. Zhendong. An Empirical Analysis of the Co-evolution of
Schema and Code in Database Applications. Proceeding ESEC/FSE 2013, pp.
125-135

[GoSp12] G. Gousios, D. Spinellis. GHTorrent: Github’s Data from a Firehose.
Proceeding MSR '12 Proceedings of the 9th IEEE Working Conference on
Mining Software repositories, pp. 12-2, Zurich, Switzerland, 2012

[GVSZ14] G. Gousios, B. Vasilescu, A. Serebrenik, A. Zaidman. Lean GHTorrent: GitHub
Data on Demand. MSR 2014, pp. 384-387, Hyderabad, India, 2014

[HeZe13] K. Herzig, A. Zeller. The impact of tangled code changes. MSR '13 Proceedings
of the 10th Working Conference on Mining Software Repositories

[HGGH09] A. Hindle, D.M. German, M.W. Godfrey, R.C. Holt. Automatic Classification
of Large Changes into Maintenance Categories. Program Comprehension, 2009
ICPC 09. IEEE 17th International Conference, pp.30-39, May 2009

[HGPS13] M.J Howard, S. Gupta, L. Pollock, K. Vijay-Shanker. Automatically Mining
Software-Based, Semantically-Similar Words from Comment-Code Mappings.
MSR 2013, San Francisco, CA, USA

[HiGH08] A. Hindle, D.M. German, R.C. Holt. What Do Large Commits Tell Us? A
taxonomical study of large commits. MSR 2008, pp. 99-108, Leipzig, Germany,

96

May 10-11, 2008

[KaMS07] H. Kagdi, J.I. Maletic, B.Sharif. Mining Software Repositories for Traceability
Links. 15th IEEE International Conference on Program Comprehension, 2007.
ICPC '07.

[KeFr14] K. Kevic, T. Fritz. A Dictionary to Translate Change Tasks to Source Code.
MSR 2014 Proceedings of the 11th Working Conference on Mining Software
Repositories, pp. 320-323, Hyderabad, India, May 31 - June 07 2014

[KGBS14] E. Kalliamvakou, G. Gousios, K. Blincoe, L. Singer, D. M.German, D. Damian.
The promises and perils of mining Github. Proceedings of the 11th Working
Conference on Mining Software Repositories. pp. 92 – 101, May 2014,
Hyderbad, India

[KiWZ08] S. Kim, E. James Whitehead Jr., Yi Zhang. Classifying Software Changes: Clean
or Buggy?. IEEE Transactions on software engineering, vol. 34, no. 2,
March/April 2008

[LMRW97] Lehman, M.M., Ramil, J.F, Wernick, P., Perry, D.E., Turski, W.M. Metrics and
laws of software evolution - the nineties view. Fourth International, Software
Metrics Symposium. pp. 20 - 32 November 1997

[RNBN15] B. Ray, M. Nagappan, C. Bird, N. Nagappan, T. Zimmerman. The uniqueness
of changes: characteristics and applications. Proceedings of the 12th Working
Conference on Mining Software Repositories. pp 34-44, May 2015, Florence,
Italy

[Shne96] B. Shneiderman. The Eyes Have It: A Task by Data Type Taxonomy for
Information Visualizations. Proceedings of the 1996 IEEE Symposium on
Visual Languages. pp.336-343, September 3-6, 1996, Boulder, Colorado, USA

[SiMG12] V. S.Sinha, S. Mani, M. Gupta. MINCE: MINing ChangE History of Android
Project. MSR 2012, Zurich, Switzerland, 2012

[Sjøb91]

Dag Sjøberg. Quantifying Schema Evolution. Information and Software
Technology, Vol. 35, No. 1, pp. 35-44, January 1993

[SkVa13] I. Skoulis, P. Vassiliadis. Analysis of Schema Evolution for Databases in Open-
Source Software. MSc, Department of Computer Science and Engineering.
September 2013, Ioannina, Greece

[SkVZ14] I. Skoulis, P. Vassiliadis, A. Zarras. Open-Source Databases: Within, Outside,
or Beyond Lehman's Laws of Software Evolution?. 26th International
Conference on Advanced Information Systems Engineering (CAiSE 2014). 16-
20 June 2014, Thessaloniki, Hellas

[SkVZ15] I. Skoulis, P. Vassiliadis, A. Zarras. Growing up with stability: How open-
source relational databases evolve. Information Systems, Volume 53, pp 363 -

97

385 October - November 2015

[VaZa17] P. Vassiliadis, A. Zarras. Survival in Schema Evolution: Putting the Lives of
Survivor and Dead Tables in Counterpoint. 29th International Conference on
Advanced Information Systems Engineering (CAiSE 2017), 12-16 June 2017,
Essen, Germany

[VaZS15] I. Skoulis, P. Vassiliadis, A. Zarras. How is Life for a Table in an Evolving
Relational Schema? Birth, Death & Everything in Between. 34th International
Conference on Conceptual Modeling (ER 2015). 19-22 October 2015,
Stockholm, Sweden.

[ZWDZ04] T. Zimmermann, P. Weisgerber, S. Diehl, A. Zeller. Mining Version Histories
to Guide Software Changes. Proceedings of the 26th International Conference
on Software Engineering, pp 563-572, May 23 - 28, 2004

98

99

APPENDICES

Appendix 1. Dataset urls and sources

In this section we describe in detail (a) the locations of the different sources
from where we extract useful information, (b) the specific date and (c) the
way we gathered it. All this information is represented in a table for each
dataset but before we show the tables we define some taxonomy for the types
of different sources:

- SQL History: SQL file which holds all the information about the schema
of the database.

- Commit: file that contains commit text and information regarding the
developer who made the commit.

- Releases: Github page that contains all the information for the releases
as a free text.

- Source Comments: newly added comments from source code inside SQL
files.

- Issues: source which keeps information for reported issues. These issues
can be tasks or bugs and they contain free text which may contains
information for database schema modifications and additional
changes.

- Builds: contains information about the builds of a project.

- Changes Spec: a single file in the repository which contains free text
with information about modifications and additional changes.

- CodeReview: an external system which helps the examination of a
project’s source code through the process of software development.

- History: a file which contains useful information about the history of a
project in a free text format.

100

- Upgrades: file which provides an overview of the upgrade process.

- Mailing List: a forum or website which lets users add threads and
communicate. In general, it is a system which helps the development
group to communicate for the development process.

- ChangeLogs: contains information about the builds of a project

- Git Message guidelines: a file which contains suggestions about the
format of commits in the version control system.

101

BioSQL

Repository location: https://github.com/biosql/biosql/blob/master/sql/biosqldb-mysql.sql

Source Where? Where? When? How processed?

SQL History Github https://github.com/biosql/biosql/blob/master/sql/biosqld
b-mysql.sql

2017/03/02 Using git commands

Commit Github https://github.com/biosql/biosql/blob/master/sql/biosqld
b-mysql.sql

2017/03/02 Using git commands

Releases Github https://github.com/biosql/biosql.github.io/blob/master/w
iki/releases.md

2017/03/02 Using git commands

Source
Comments

Github SQL
files

https://github.com/biosql/biosql/blob/master/sql/biosqld
b-mysql.sql

2017/03/02 Using git commands

Issues Redmine https://redmine.open-bio.org/projects/biosql/issues 2017/03/02 Manually exported a csv output.

https://github.com/biosql/biosql/blob/master/sql/biosqldb-mysql.sql�
https://github.com/biosql/biosql/blob/master/sql/biosqldb-mysql.sql�
https://github.com/biosql/biosql/blob/master/sql/biosqldb-mysql.sql�
https://github.com/biosql/biosql/blob/master/sql/biosqldb-mysql.sql�
https://github.com/biosql/biosql/blob/master/sql/biosqldb-mysql.sql�
https://github.com/biosql/biosql.github.io/blob/master/wiki/Releases.md�
https://github.com/biosql/biosql.github.io/blob/master/wiki/Releases.md�
https://github.com/biosql/biosql/blob/master/sql/biosqldb-mysql.sql�
https://github.com/biosql/biosql/blob/master/sql/biosqldb-mysql.sql�
https://redmine.open-bio.org/projects/biosql/issues�

102

Ensembl

Repository location: https://github.com/Ensembl/ensembl

Source Where? Where? When? How processed?

SQL History Github https://github.com/ensembl/ensembl/commits/c74bc67fc6aca5e
864d7bb072373dc3251bf01b1/sql/table.sql

2017/02/03 Using git commands

Commit Github https://github.com/ensembl/ensembl/commits/c74bc67fc6aca5e
864d7bb072373dc3251bf01b1/sql/table.sql

2017/02/03 Using git commands

Releases Github https://github.com/ensembl/ensembl/releases 2017/02/03 Using git commands

Source
Comments

Github SQL
files

https://github.com/ensembl/ensembl/commits/c74bc67fc6aca5e
864d7bb072373dc3251bf01b1/sql/table.sql

2017/02/03 Using git commands

Builds -Travis CI
-Coveralls

- https://travis-ci.org/ensembl/ensembl/builds
- https://coveralls.io/github/ensembl/ensembl

2017/02/03 Using TravisCI API

Changes Spec Github https://github.com/ensembl/ensembl/blob/release/86/docs/ense
mbl_changes_spec.txt

2017/02/09 Manually download

https://github.com/Ensembl/ensembl�
https://github.com/Ensembl/ensembl/commits/c74bc67fc6aca5e864d7bb072373dc3251bf01b1/sql/table.sql�
https://github.com/Ensembl/ensembl/commits/c74bc67fc6aca5e864d7bb072373dc3251bf01b1/sql/table.sql�
https://github.com/Ensembl/ensembl/commits/c74bc67fc6aca5e864d7bb072373dc3251bf01b1/sql/table.sql�
https://github.com/Ensembl/ensembl/commits/c74bc67fc6aca5e864d7bb072373dc3251bf01b1/sql/table.sql�
https://github.com/Ensembl/ensembl/releases�
https://github.com/Ensembl/ensembl/commits/c74bc67fc6aca5e864d7bb072373dc3251bf01b1/sql/table.sql�
https://github.com/Ensembl/ensembl/commits/c74bc67fc6aca5e864d7bb072373dc3251bf01b1/sql/table.sql�
https://travis-ci.org/Ensembl/ensembl/builds�
https://coveralls.io/github/Ensembl/ensembl�
https://github.com/Ensembl/ensembl/blob/release/86/docs/ensembl_changes_spec.txt�
https://github.com/Ensembl/ensembl/blob/release/86/docs/ensembl_changes_spec.txt�

103

Mediawiki

Repository location: https://github.com/wikimedia/mediawiki

Source Where? Where? When? How processed?

SQL History Github https://github.com/wikimedia/mediawiki/commits/master/m
aintenance/tables.sql

2017/03/02 Using git commands

Commit Github https://github.com/wikimedia/mediawiki/commits/master/m
aintenance/tables.sql

2017/03/02 Using git commands

Releases Github https://github.com/wikimedia/mediawiki/releases 2017/03/02 Using git commands

Source
Comments

Github SQL
files

https://github.com/wikimedia/mediawiki/commits/master/m
aintenance/tables.sql

2017/03/02 Using git commands

Builds Travis CI https://travis-ci.org/wikimedia/mediawiki/builds 2017/03/02 Using TravisCI API

Issues Phabricator https://phabricator.wikimedia.org/ - -

CodeReview Gerrit https://gerrit.wikimedia.org/r/#/q/status:open - Not retrieved

History Github https://github.com/wikimedia/mediawiki/blob/master/HISTO
RY

2017/02/09 Manually download.

Upgrades Github https://github.com/wikimedia/mediawiki/blob/master/UPGR
ADE

2017/02/09 Manually download.

Mailing List - https://lists.wikimedia.org/pipermail/mediawiki-l/ - Not retrieved

https://github.com/wikimedia/mediawiki�
https://github.com/wikimedia/mediawiki/commits/master/maintenance/tables.sql�
https://github.com/wikimedia/mediawiki/commits/master/maintenance/tables.sql�
https://github.com/wikimedia/mediawiki/commits/master/maintenance/tables.sql�
https://github.com/wikimedia/mediawiki/commits/master/maintenance/tables.sql�
https://github.com/wikimedia/mediawiki/releases�
https://github.com/wikimedia/mediawiki/commits/master/maintenance/tables.sql�
https://github.com/wikimedia/mediawiki/commits/master/maintenance/tables.sql�
https://travis-ci.org/wikimedia/mediawiki/builds�
https://phabricator.wikimedia.org/�
https://gerrit.wikimedia.org/r/#/q/status:open�
https://github.com/wikimedia/mediawiki/blob/master/HISTORY�
https://github.com/wikimedia/mediawiki/blob/master/HISTORY�
https://github.com/wikimedia/mediawiki/blob/master/UPGRADE�
https://github.com/wikimedia/mediawiki/blob/master/UPGRADE�
https://lists.wikimedia.org/pipermail/mediawiki-l/�

104

Opencart

Repository location: https://github.com/opencart/opencart

Source Where? Where? When? How processed?

SQL History Github https://github.com/opencart/opencart/commits/mas
ter/upload/install/opencart.sql

2017/03/02 Using git commands

Commit Github https://github.com/opencart/opencart/commits/mas
ter/upload/install/opencart.sql

2017/03/02 Using git commands

Releases Github https://github.com/opencart/opencart/releases 2017/03/02 Using git commands

Source Comments Github SQL files https://github.com/opencart/opencart/commits/mas
ter/upload/install/opencart.sql

2017/03/02 Using git commands

ChangeLogs Github https://github.com/opencart/opencart/blob/master/
CHANGELOG_AUTO.md

https://github.com/opencart/opencart/blob/master/
changelog.md

2017/02/09 Manually download

Issues Github https://github.com/opencart/opencart/issues 2017/03/02 Using GitHub API.

https://github.com/opencart/opencart�
https://github.com/opencart/opencart/commits/master/upload/install/opencart.sql�
https://github.com/opencart/opencart/commits/master/upload/install/opencart.sql�
https://github.com/opencart/opencart/commits/master/upload/install/opencart.sql�
https://github.com/opencart/opencart/commits/master/upload/install/opencart.sql�
https://github.com/opencart/opencart/releases�
https://github.com/opencart/opencart/commits/master/upload/install/opencart.sql�
https://github.com/opencart/opencart/commits/master/upload/install/opencart.sql�
https://github.com/opencart/opencart/blob/master/CHANGELOG_AUTO.md�
https://github.com/opencart/opencart/blob/master/CHANGELOG_AUTO.md�
https://github.com/opencart/opencart/blob/master/changelog.md�
https://github.com/opencart/opencart/blob/master/changelog.md�
https://github.com/opencart/opencart/issues�

105

phpBB

Repository location: https://github.com/opencart/opencart

Source Where? Where? When? How processed?

SQL History Github https://github.com/phpbb/phpbb/commits/3.1.x/phpBB/ins
tall/schemas/oracle_schema.sql

2017/02/03 Using git commands.

Commit Github https://github.com/phpbb/phpbb/commits/3.1.x/phpBB/ins
tall/schemas/oracle_schema.sql

2017/02/03 Using git commands.

Releases Github https://github.com/phpbb/phpbb/releases 2017/02/03 Using git commands.

Source
Comments

Github SQL
files

https://github.com/phpbb/phpbb/commits/3.1.x/phpBB/ins
tall/schemas/oracle_schema.sql

2017/02/03 Using git commands.

ChangeLogs Github https://github.com/phpbb/phpbb/blob/master/phpBB/docs/
CHANGELOG.html

2017/02/09 Manually download.

Issues Github https://tracker.phpbb.com/browse/PHPBB3-15078?filter=-4 2017/02/03 Manually download.

Builds Travis CI https://travis-ci.org/phpbb/phpbb/builds 2017/02/03 Using TravisCI API.

Version 2.0: https://github.com/phpbb/phpbb/blob/2.0.x/phpBB/install/schemas/mysql_schema.sql

Version 3.0: https://github.com/phpbb/phpbb/blob/3.0.x/phpBB/install/schemas/mysql_41_schema.sql

https://github.com/opencart/opencart�
https://github.com/phpbb/phpbb/commits/3.1.x/phpBB/install/schemas/oracle_schema.sql�
https://github.com/phpbb/phpbb/commits/3.1.x/phpBB/install/schemas/oracle_schema.sql�
https://github.com/phpbb/phpbb/commits/3.1.x/phpBB/install/schemas/oracle_schema.sql�
https://github.com/phpbb/phpbb/commits/3.1.x/phpBB/install/schemas/oracle_schema.sql�
https://github.com/phpbb/phpbb/releases�
https://github.com/phpbb/phpbb/commits/3.1.x/phpBB/install/schemas/oracle_schema.sql�
https://github.com/phpbb/phpbb/commits/3.1.x/phpBB/install/schemas/oracle_schema.sql�
https://github.com/phpbb/phpbb/blob/master/phpBB/docs/CHANGELOG.html�
https://github.com/phpbb/phpbb/blob/master/phpBB/docs/CHANGELOG.html�
https://tracker.phpbb.com/browse/PHPBB3-15078?filter=-4�
https://travis-ci.org/phpbb/phpbb/builds�
https://github.com/phpbb/phpbb/blob/2.0.x/phpBB/install/schemas/mysql_schema.sql�
https://github.com/phpbb/phpbb/blob/3.0.x/phpBB/install/schemas/mysql_41_schema.sql�

106

Typo3

Repository location: https://github.com/opencart/opencart

Source Where? Where? When? How processed?

SQL History Github https://github.com/TYPO3/TYPO3.CMS/blob/TYPO3_6-
0/t3lib/stddb/tables.sql

2017/02/03 Using git commands.

Commit Github https://github.com/TYPO3/TYPO3.CMS/blob/TYPO3_6-
0/t3lib/stddb/tables.sql

2017/02/03 Using git commands.

Releases Github https://github.com/TYPO3/TYPO3.CMS/releases 2017/02/03 Using git commands.

Source
Comments

Github SQL
files

https://github.com/TYPO3/TYPO3.CMS/blob/TYPO3_6-
0/t3lib/stddb/tables.sql

2017/02/03 Using git commands.

ChangeLogs Github https://docs.typo3.org/typo3cms/extensions/core/ - -

CodeReview https://review.typo3.org/#/q/status:open - Not retrieved

Git Message
guidelines

 https://docs.typo3.org/typo3cms/ContributionWorkflowGuide/
GitSetup/CommitMessageFormat.html

- -

Issues Github https://forge.typo3.org/projects/team-docteam/issues Manually exported a csv
output.

Builds Travis CI https://travis-ci.org/TYPO3/TYPO3.CMS/builds/11237834 2017/02/03 Using TravisCI API.

https://github.com/opencart/opencart�
https://github.com/TYPO3/TYPO3.CMS/blob/TYPO3_6-0/t3lib/stddb/tables.sql�
https://github.com/TYPO3/TYPO3.CMS/blob/TYPO3_6-0/t3lib/stddb/tables.sql�
https://github.com/TYPO3/TYPO3.CMS/blob/TYPO3_6-0/t3lib/stddb/tables.sql�
https://github.com/TYPO3/TYPO3.CMS/blob/TYPO3_6-0/t3lib/stddb/tables.sql�
https://github.com/TYPO3/TYPO3.CMS/releases�
https://github.com/TYPO3/TYPO3.CMS/blob/TYPO3_6-0/t3lib/stddb/tables.sql�
https://github.com/TYPO3/TYPO3.CMS/blob/TYPO3_6-0/t3lib/stddb/tables.sql�
https://docs.typo3.org/typo3cms/extensions/core/�
https://review.typo3.org/#/q/status:open�
https://docs.typo3.org/typo3cms/ContributionWorkflowGuide/GitSetup/CommitMessageFormat.html�
https://docs.typo3.org/typo3cms/ContributionWorkflowGuide/GitSetup/CommitMessageFormat.html�
https://forge.typo3.org/projects/team-docteam/issues�
https://travis-ci.org/TYPO3/TYPO3.CMS/builds/11237834�

107

Appendix 2. Discretization based on the intensity the activity.

108

Figure 32 Distribution of total intra table updates for releases for Biosql,

Ensembl and Mediawiki.

109

Figure 33 Distribution of total intra table updates for releases for Opencart,
Phpbb and Typo3.

110

Figure 34 Distribution of total table births and deaths for releases for Biosql,
Mediawiki and Ensembl.

111

Figure 35 Distribution of total table births and deaths for releases for
Opencart, Phpbb and Typo3.

112

Figure 36 Distribution of intra table total updates for commits for Biosql,

Ensembl and Mediawiki.

113

Figure 37 Distribution of intra table total updates for commits for Opencart,

Phpbb and Typo3.

114

Figure 38 Distribution of total table births and deaths for commits for Biosql,

Ensembl and Mediawiki.

115

Figure 39 Distribution of total table births and deaths for commits for
Opencart, Phpbb and Typo3.

116

117

SHORT CV

Athanasios Pappas was born in Ioannina in 1992. He received his BSc degree
from the Department of Computer Science & Engineering of University of
Ioannina at 2015. In 2015 he became an MSc student in the same institution
under the supervision of Panos Vassiliadis. As a member of the DAINTINESS
group, his academic interests include Software Engineering and Relational
Database Evolution.

