Extraction and classification of phases in schema evolution
histories

A Thesis

submitted to the designated
by the General Assembly of Special Composition
of the Department of Computer Science and Engineering

Examination Committee

by

Maria Zerva

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE
WITH SPECIALIZATION
IN SOFTWARE

University of loannina

January 2018

Examining Committee:

e Panos Vassiliadis, Associate Professor, Department of Computer Science and
Engineering, University of Ioannina (Supervisor)

e Aristidis Likas, Professor, Department of Computer Science and Engineering,
University of Ioannina

e Apostolos Zarras, Associate Professor, Department of Computer Science and
Engineering, University of Ioannina

DEDICATION

To my beloved grandfather.

ACKNOWLEDGMENTS

To my family, that raised me and believed in me all these years, my friends that
supported all my efforts and finally my supervisor Panos Vassiliadis, for the huge
inspiration and support in both my undergraduate and postgraduate studies. Thank
you all very much.

TABLE OF CONTENTS

Dedication v
Acknowledgments
Table of Contents
List of Figures iii
Abstract vii
Extetapévn IegiAnyn ota EAAnvika
CHAPTER 1. Introduction
1.1 Scope
1.2 Roadmap
CHAPTER 2. Related Work
2.1 Case studies of Schema Evolution
2.2 Comparison to the state of the art
CHAPTER 3. Birth and Death In Schema Evolution
3.1 Experimental Setup
3.2 Births, Deaths and Updates
3.3 Special Topics

3.3.1 Zombie tables : death and rebirth

3.3.2 Period of attribute injections and ejections

3.3.3 Foreign Key birth and death

1

vii

ix

11

11

14

15

15

20

21

22

22

40

40

44

46

3.4 Conclusions
CHAPTER 4. Phase Extraction & Classification
4.1 Release Characterization

4.1.1 Activity Characterization

412 Intensity of Activity Characterization

4.1.3 Change Families
414 Intensity of Change Family
42 Release Clustering
43 Clustering Evaluation
4.4 Phase Classification
4.4.1 Histogram Computation
442 Classification
45 Top Phase Extractions

4.6 Conclusions

CHAPTER 5. CONCLUSIONS AND FUTURE WORK

5.1 Conclusions
5.2 Future work
Bibliography 103

Short CV 105

ii

59

61

63

64

66

67

68

72

73

80

80

82

85

98

101

101

102

LIST OF FIGURES

Figure 1 Table with statistics for all datasets.

Figure 2 Table of the phases of all datasets.

Figure 3 Biosql :Heartbeat of change in time.

Figure 4 Biosql : Heartbeat of change per release.
Figure 5 Ensembl : Heartbeat of change in time.
Figure 6 Ensembl : Heartbeat of change per release.
Figure 7 Mediawiki : Heartbeat of change in time.
Figure 8 Mediawiki : Heartbeat of change per release.
Figure 9 Opencart : Heartbeat of change in time.
Figure 10 Opencart : Heartbeat of change per release.
Figure 11 Phpbb : Heartbeat of change in time.
Figure 12 Phpbb : Heartbeat of change per release.
Figure 13 Typo3 : Heartbeat of change in time.

Figure 14 Typo3 : Heartbeat of change per release.
Figure 15 Percentages of zombie/not zombie tables for each dataset.

Figure 16 Percentages of dead/survivor zombie tables for each dataset.

Figure 17 Percentages of zombies in groups/not in groups for each dataset.

Figure 18 General statistics of zombie tables in absolute numbers.
Figure 19 General Statistics of zombie tables in percentages.
Figure 20 Death duration statistics of zombie tables in absolute numbers.

Figure 21 Group statistics of zombie tables in absolute numbers.

iii

22

26

28

29

30

31

32

33

34

35

36

37

38

39

41

42

42

43

43

43

44

Figure 22 Percentages of attribute injections to existing tables.

Figure 23 Percentages of attribute ejections from tables.

Figure 24 Statistics of attribute injections and ejections in absolute numbers.
Figure 25 Statistics of attribute injections and ejections in percentages.
Figure 26 Foreign key changes in the 85 versions of Atlas.

Figure 27 Foreign key type of changes in Atlas.

Figure 28 Foreign key changes in the 47 versions of Biosql.

Figure 29 Foreign key type of changes in Biosql.

Figure 30 Foreign key changes in the 194 versions of Castor.

Figure 31 Foreign key type of changes in Castor.

Figure 32 Foreign key changes in the 17 versions of Egee.

Figure 33 Foreign key type of changes in Egee.

Figure 34 Foreign key changes in the 399 versions of Slashcode.
Figure 35 Foreign key type of changes in Slashcode.

Figure 36 Foreign key changes in the 160 versions of Zabbix.

Figure 37 Foreign key type of changes in Zabbix.

Figure 38 Tables with foreign key statistics for all the studied datasets.
Figure 39 Phase Extraction and Classification Algorithm

Figure 40 Intensity Levels of Change Families

Figure 41 Normalized Growth and Maintenance scatter charts for all
datasets

Figure 42 Release Characterization Rules

Figure 43 Algorithm : Candidate Phase Extraction via Agglomerative
Clustering

Figure 44 Silhouette values for each merging step of the Agglomerative
algorithm and Silhouette distances for every transition of merging
steps.

iv

45

45

46

46

48

48

49

50

51

51

52

53

55

55

56

57

58

63

70

71

72

73

75

Figure 45 Normalized Cohesion-Separation values for each Agglomerative
iteration step for all datasets

Figure 46 Sum of Normalized Cohesion and Normalized Separation values
for each Agglomerative iteration step for all datasets. The critical
area of candidate final clusterings is depicted in the orange box
for each data set.

Figure 47 Top candidate algorithmically produced solutions per dataset
Figure 48 Agglomerative clustering example of Mediawiki with 4 clusters

Figure 49 Growth and Maintenance histograms of the clusters of Mediawiki
shown in Figure 48

Figure 50 Growth/Maintenance intensity percentages

Figure 51 Mapping of Phase Characterization Rules

Figure 52 Phase Extraction and Classification of Biosql with 3 phases
Figure 53 Phase Extraction and Classification of Ensembl with 7 phases
Figure 54 Phase Extraction and Classification of Ensembl with 9 phases
Figure 55 Phase Extraction and Classification of Ensembl with 11 phases
Figure 56 Phase Extraction and Classification of Ensembl with 13 phases
Figure 57 Phase Extraction and Classification of Mediawiki with 5 phases
Figure 58 Phase extraction and Classification of Mediawiki with 12 phases
Figure 59 Phase Extraction and Classification of Opencart with 4 phases
Figure 60 Phase Extraction and Classification of Opencart with 7 phases
Figure 61 Phase Extraction and Classification of Opencart with 11 phases
Figure 62 Phase Extraction and Classification of Phpbb with 5 phases
Figure 63 Phase Extraction and Classification of Phpbb with 3 phases
Figure 64 Phase Extraction and Classification of Phpbb with 7 phases
Figure 65 Phase Extraction and Classification of Typo3 with 4 phases
Figure 66 Phase Extraction and Classification of Typo3 with 6 phases
Figure 67 Phase Extraction and Classification of Typo3 with 7 phases

A%

78

79

79

81

82

83

85

86

87

88

89

90

95

95

96

97

97

98

Figure 68 Phase Extraction and Classification of Top Algorithmically
Produced Solutions 99

vi

ABSTRACT

Maria Zerva. MSc in Computer Science, Department of Computer Science and
Engineering, University of Joannina, Greece, January 2018.

Extraction and classification of phases in schema evolution histories

Advisor: Panos Vassiliadis, Associate Professor.

Software projects that are built on top of relational databases evolve over time just
like any other software project. Bugs occur and user requirements change and in
order to keep the users satistied and provide consistent services, software projects
have to adapt to the new requirements. The information capacity of a software
project also needs to be aligned with these requirements resulting in the need to
evolve the database schema along with the software. Schema evolution affects the
surrounding applications in both a syntactic and semantic manner, thus making its
understanding a topic of significance.

Our fundamental research question is of investigative nature: are there phases in the
lives of relational schemata? To support our study towards answering the above
question, we have used 6 free open source software projects that include relational
databases, whose evolution we have tracked and for which, we have identified the
changes that took place in each committed version. Based on these data, this Thesis is
structured along two parts: the first part is of explorative nature, and studies the
collected data to manually extract phases and patterns in the tables’ lives, whereas the
second part, proposes an automated method to algorithmically extract these phases.

The first part of this Thesis addresses the following question: when are tables, attributes
and foreign keys born and evicted in the life of a schema? Based on the information on
table and attribute births, deaths and updates, along with the timeline of schema size,
we have manually derived phases in the life of our 6 database schemata. Our
characterizations are based on the demonstrated growth (increase of information
capacity) or maintenance (containing deletions and updates in order to improve the
quality of the schema). The most interesting finding in our study is that, with a single
exception, the history of a database schema comes in two mega-phases: (a) a “hot”
expansion mega-phase at the start of its life demonstrating growth of information

Vil

capacity, along with the necessary maintenance, and, (b) a “cooling” housekeeping
mega-phase at its middle and later life where either maintenance actions or stillness
dominate the update activity. We call this phenomenon progressive cooling of the
schema heartbeat. Several observations support this finding.

The second part of the Thesis addresses the following question: given the history and
heartbeat of a schema, can we automatically extract phases in its evolution? Our algorithmic
method includes four steps. The first step of our method, involves the
characterization of the releases in terms of the two aforementioned change families,
growth and maintenance. Based on these characterizations, the second step of the
method splits the timeline of the schema’s life in phases, by applying a hierarchical
agglomerative clustering, that clusters together consecutive releases. In the third step
of our method, we use several measures of clustering quality, such as Silhouette,
Cohesion and Separation to characterize the discriminating quality of each of the
derived clusterings. Finally, the fourth step of the method classifies clusters, i.e.
phases in the life of a schema, in terms of their nature, on the basis of a taxonomy of
change profiles (e.g., Minor Activity, Restructuring, Intense Evolution, among others).

The phase extraction and classification method introduced in the second part of this
Thesis was evaluated with respect to clustering oriented measures and quality
measures based on our golden standard. The findings of this evaluation show that
our method performs fairly, having a small error rate and the solutions it produces
are of significant quality.

viii

EKTETAMENH IIEPIAHWH XTA EAAHNIKA

Maola ZéoPa, MAE otnv IIAngogopowkr), Tunua Mnxavikov H/Y xat
ITAnoogoopwxr|g, Iavemiomuio Iwavvivwv, Iavovaglog 2018.

Efaywyn xkat xatnyoplomoinon @doewv otnv otogia e eEEALENG oxnuUdTwy
Baoewv dedouévwv

ErBAénwv: [avayuwwng Baoideixdng, AvanAnowtrc Kabnynmc.

To Aoywopwd mov etvar oxedxopévo Paoiopévo oe pla oxeowaxn Pdaon
egeAlooetal pe v mAEodo TOL XOOVOUL OTWS OTIOLOONTIOTE AAAO AOYLOULKO.
Luxva mpokvTttovv AaO1 1) oL xe1oteg avakaAvmtovy s Oa 10eAav emunAéov
AELTOVEYIKOTNTES ATO TO AOYIOUIKO KAL YIX VA €lvaL OL XQT)OTES LKAVOTIOLTLEVOL
KAL v TaQéXOVTal OULVETElC vmneeoteg, T0 Aoywouwd Oa mEémel va
mEooaQuoCetatl otig véeg anawtnioes. H yxwontkomta g mAnoogpootac Oa
TEEMeL v oLUPadICeL He TIG VEEG ATIALTIOELS KAL YU auTtd TO AOYO 1] avAyKn Y
eEEALEN TOL OoXNUATOC PBAONG O OLYXQEOVIOUO pe TNV eEEALEN TOL AOYLOULKOU
etvat CNmnua peyaAng onuaocioag. H e£€ALEN tov oxrjuatog emnoedlel onuavTika
TIC EPAQUOYES TOL PacilovTal oe avTtd KAl 0& eMimedo OLVTAKTIKO AAAX KAl O
eimedo ONUACTIOAOYIKO. LUVETIWCS, 1 KATAVONON TG e£EALENC TOL OXTUATOS

xonlet pey&Ang mooooxmg.

To Baowd epwtnua oL B€AOVHE VA AMAVTCOVE OTNV TIrROvoR eQyaoia elivatl
dLEQELVTTIKTIC PUOEWG: VTIAPXOVY PaceLs 0T Cwn Twv oxeotakwy facewy; I tnv
dlekmeQaiwon NG €pevvag He OTOXO TNV ATIAVTIOTN TOL &V A0Yw €QWTIUATOG,
xonowonomoape €EL ocvoTNUATA AOYLOHUIKOU aVOIKTOU KWOKA T omoia
EUTEQLEXOVY OXeolakés Paoelg dedopévwv. IlapakoAovOnoape v eéAlln
AVTWV TV PAdEwV Kal eviomioape TG aAAayéc mov éAaPav xwoa oe kabOe
dNUOoX KaTtaxwENUéVT €kdoon Tov Aoyiopkov. Me Bdorn avta ta dedouéva, 1
nagovoa eQyaoia elvat dopnuévn oe dVO MHEEN: TO TEWTO MEQOC elvat
OLEQELVNTIKIG PLOEWS KAl HEAETA T OLAAgypéva dedouéva ple OTOXO TNV
Xewokivnn efaywyr @ATEWV Kol TQOTUTIWV OUUTEQUPOQAS 0TS Cwéc Twv
TIUVAKWYV, EVQ TO 0eVTEQO HEQOG, TEOTELVEL P AVTOUATOTIOMHEVT] LEOODO Y TNV
eEAYWYT) TWV PACEWV UE T XOTOT] €VOS AAYO0QRIO OV OV TEOTEIVOVE.
ix

To mowto pépog g epyaoiag aoxoAeltat pe v akoAovOn epwtnomn: 7moTe
yevvovvtal kat meQaivovy ot mivakec, ta media kar ta Eéva kAedi ot Cwrn evog
oxnuatoc;, Baowopévolr otic mMANQogoples yix TG yevvnoels, OavAatouvg kat
EVIUEQWOELS TUVAKWVY Kat mediwv, pall pe v eE€AEn tov peyébovg tov
oxnuatog, eEayape xewpokivnta @acels g Cwng Twv €EL oLVOAWY dedopévay. Ot
xapaxtnowuol pag PaociCovrar oty VMAEEN avamtuEng (av&nong g
XWONTIKOTNTAS TNG TANEOPOEIAG) 1) CLVTNENONG (TTEQLEKTIKOTITAG O& dXYQAPES
KAL EVNHEQWOELS pe okomo T BeAtiwon tov oxnuatog g Paong). To mo
EVOLAPEQOV €VONHA TNG €QEVVAG HAG elval, OTL He pia pepovwpévn e€alpeon, 1
lotoplar Tov oxNUatog G Paong amoteAesitar and dVo VTEQ-PATElS: () pia
ETEKTATIKI] VTIEP-PAON oTnv apx1n tne Cwne tov oxnuUatog, 1 omola eTdekvLeL
avénon oTn XwENTIKOTNTA TNG TANPOoPOOLag, Kat, (B) ula vép-paon ovvTnpnons
oTn péon 1 oto téAoc ¢ Cwnc Tov oXNUATOS, OTIOL KLQLXQXOVV <e eQyaoieg
oLvVTNENONG elte NEepia otV doaoTNEOTNTA eviuéowons. Ovopdlovpe avto T0
powvoupevo Pabuiaia Pvén tov maAuov tov oxnuatos. IToAAég mapatnoroelg
vrtootnEiCovv To ev Adyw evpnUA.

To devtepo pépog g egyaoiag aoxoAeital pe v akoAovOn eowtnon: dobeione
TN)C LOTOPLAC KL TOV MAAUOV EVOC OXTIUATOG, UTIOPOVUE v eEXYOVUE PAOELS TN
eCéMENC tov pe avtouatoromuévo tpomo? H aAyoolOuwr) pag péBodog
amoteAeltar ano téooepa Priuata. To mEwto pégog g peOddov pag
TEQLAAUPBAVEL TO XAQAKTNOLOUO TwV dNuociwv releases Tov Aoylouikov oe oxéon
He TIc OVO mEoavapeQeioes owoyéveles aAAaywv, avantvén Kat ovvTnpnon.
Baolwopévol oe autois Toug xagakTnELopovs, To deUTeo Pripa tng pebodov omdet
TO XQOVOOLAYQaUHa NG Cwng Tov OXNHATOS 0& PAoElS, epaguolovtac pia
LeQax k1) abpototikny néBodo cLOTAdOTOINOTC, 1] OTIOIX CLOTIELRWVEL DLADOXIKES
releases. Y10 10(tO0 Prjnar TG HEOOdOL HAC, XONOLUOTIOLOVUE HETOIKES TNG
TOLOTNTAG ovotadomoldnong, onws Silhouette, Cohesion kat Separation yix va
xapaxktnoloovpe v mowot)tax k&Be mbavrc ovotadomoinone. To Tétagto kat
TeAO Pripa NG peBOdOL, KATATACTEL TIG OLOTADES, dNAADTY] TIC PATELS TG Cwng
TOV OXTHATOG, 08 OX£0T e TN pUOoN TOvg, pe BAoT TNV Ta&lvounon Twv TEoQiA
aAdaywv. (ONAadn Aorjuavtn Apaotnolotnta, AvadihpBowor), Evtovn EEEALED,
HETAEL AAAWV).

H pébodog efaywyns kal XapaKTnOOHOU QACEWV TIOU TIQOVOLAXOTNKE OTO
devteQo HEQOG TG eoyaoiag, afloAoynOnke pe petokéc Paciopéves otnv
TIOLOTNTA TNG CLOTADOTOMN OGS, AAAX KL OTNV AVAUEVOUEVT] eEXYWYT] PATEWV.
Ta evonuata g alloAdynong £detéav OtL 11 HEDODOC HAG €XEL LKOVOTIOU)TLKT)
amoddooT), éxoviag éva pkEd mooooTd AaBwv kal oL AVOEIS oL TtaRAYEL etvat
ONHAVTUCX TIOLOTIKEG.

CHAPTER 1.

INTRODUCTION

1.1 Scope

1.2 Roadmap

1.1 Scope

It is well-known that software projects evolve as the time passes. It is common
for software developers to face the need to modify a project, because the
specifications changed, an error was found, or simply because they want to
add more functionalities to an existing project. Just like every software project
evolves over time, so do data intensive software projects that are built on top
of relational databases.

When a database has an application built around it, it needs to follow the
evolution of the software in order to be consistent and fully functional. The
information capacity needs to be aligned with the user requirements. When
the schema evolution is not in sync with the software evolution there is a high
risk of errors, as both the syntactic correctness and the semantic validity of all
the surrounding applications can be significantly affected. In the former case,
due the syntactic incorrectness the queries as well as their host code crash. In
the latter case, the applications can suffer from loss of information, or even
incorrect answers, risking the possibilities of producing results that may be
misleading and inconsistent.

To understand and study schema evolution is of great importance, because

exploring patterns that apply for databases can help us predict future

changes. These predictions can be great help both for (a) the database design

part, as we can design schemata that minimize the impact on the surrounding
11

software, and, (b) for the software development, as we can locate parts that
need more attention by predicting future maintaining problems. It is well
known that the majority of a project’s resources is spend in maintenance and
any knowledge that can help make this difficult procedure easier by taking
the right precautions from the start is very important.

Our fundamental research question is of investigative nature and asks: “are
there phases in the lives of relational schemata?”

To support our study towards answering the above question, we have
basically used 6 free open source software projects that included relational
databases. We have tracked the change history of these schemata from their
public repositories, and collected information that concerns the public
releases of the projects” schemata as well as their heartbeat. The heartbeat of
change is a vector with information about addition and deletions in tables and
attributes and type or key participation updates for each release.

The rest of the study is mainly based on this information and concerns two
parts: the first part is of explorative nature, and studies the collected data to
manually extract phases and patterns in the tables’ lives, whereas the second
part, proposed an automated method to algorithmically extract these phases.

The first part of this Thesis addresses the following question: “When are
tables, attributes and foreign keys born, updated and evicted in the life of a
schema?”

For each data set, and for each release, we have measured (a) the births and
deaths of tables, (b) the injection of attributes to existing tables and the
ejection of attributes from tables that continue to exist after the ejection and (c)
the update of attribute data types and keys. We combined this information
with the timeline of schema size, as it evolves over the different releases.
Based on all this data, we manually derive phases in the life of our 6 database
schemata. Our characterizations are based on the demonstrated growth
(increase of information capacity) or maintenance (containing deletions and
updates in order to improve the quality of the schema). Along with them, we
highlight spikes, single releases of high change intensity, which are
idiosyncratic characteristic of how schemata seem to evolve.

e The most interesting finding in our study is that, with the single
exception of Typo3, the history of a database schema comes in two
mega-phases: (a) a “hot” expansion mega-phase at the start of its life
demonstrating growth of information capacity, along with the
necessary maintenance and (b) a “cooling” housekeeping mega-phase at

12

its middle and later life where either maintenance actions or stillness
dominate the update activity. We call this phenomenon progressive
cooling of the schema heartbeat.

e In the same spirit, we can also observe that Growth mainly takes place
at the beginning of a schema’s life and can be either the main focus of
the developers’ activity, or combined with maintenance. Maintenance,
at the same time, takes place in all stages of the schema’s life and is
frequently combined with phases of minor activity, either preceding or
following it.

e A third testimony of progressive cooling, comes with the observation
that minor (or even zero) activity periods frequently take up long
periods in time, especially at the end of the schema history

Apart from this main topic of research, we have also studied side problems.
The first problem studied has to do with zombie tables, i.e., tables that are
deleted at some point and later re-instated in the schema. Interestingly, after
that, we observe that the majority of zombie tables tend to survive. A second
question studied has to do with the period of a table’s life during which
injections and ejections of attributes take place. As a demonstration of the
progressive cooling phenomenon, we observe that injections and ejections of
attributes mostly happen at the start or mid of a table’s life and rarely in the
end. Moreover, we have studied how foreign keys evolve during schema
evolution. Typically, the individual changes of the foreign keys are small in
volume. Yet, one can observe two modes operandi for the overall treatment of
tforeign keys by developers, specifically, (a) foreign keys are treated as integral
parts of the schema and they get born and evicted along with their tables, or
(b) frequently, foreign keys are treated as second-class add-ons with small
table participation in foreign keys and ad hoc foreign key births and deaths.
We have witnessed the extreme case of total removal of foreign keys in two
CMSs.

The second part of the Thesis addresses the following question: “given the
history and heartbeat of a schema, can we automatically extract phases in its
evolution?”

Our algorithmic method of Phase Extraction and Classification is structured

along four steps. We start with the heartbeat of a schema summarized at the

release level and containing the sum of births and deaths of tables and

attributes as well as any data type or key alterations. The first step of our

method, involves the characterization of the releases in terms of two change

families: growth and maintenance. Each release is characterized with respect to
13

the extent that the information capacity of the schema grows (growth) and to
the extent that the internal quality of the schema is maintained (maintenance).
A quantitative assessment of the amount of change per family is also
produced. Based on these characterizations, the second step of the method
splits the timeline of the schema’s life in phases, by applying a hierarchical
agglomerative clustering, that clusters together consecutive releases. As the
split is done in a hierarchical fashion, it is clear that the quality of each of the
produced clusterings has to be assessed in order to be able to pick the best, or
the set of top-k such clusterings. In the third step of our method, we use several
measures of clustering quality, such as Silhouette, Cohesion and Separation to
characterize the discriminating quality of each of the derived clusterings. The fourth
step of the method classifies clusters, i.e. phases in the life of a schema, in terms of
their nature. We provide a taxonomy of change profiles, based on the intensity
of the growth and maintenance that a phase demonstrates. Then, each phase
can be characterized with respect to our taxonomy. The classification is based
on producing the histogram of the different intensities per family {zero, low,
medium, high} x {growth, maintenance}. In order to classify a phase, we apply a
set of rules, that annotate the phase with a label from our taxonomy (e.g.,
Minor Activity, Restructuring, Intense Evolution, among others).

We have assessed our method over our test bed data sets. The results show
that the top solutions produced by our algorithm are fairly similar to those of
our golden standard, having an average misclassified release value smaller
than 2. Considering the fact that we did not use any heuristics and the quality
of our solutions, the method of phase extraction and classification introduced
in this thesis performs well for its purpose.

To facilitate this effort, we also designed a tool that allows the collection of
information, the extraction of phases and the computation and visualization

of the results.

1.2 Roadmap

This thesis is structured as follows. In chapter 2, we present related work that
focuses on schema evolution. In chapter 3, we analyze the first part of this
study that concerns the nature of births and deaths that occur in the evolution
of a database schema. Chapter 4 describes the method of phase extraction and
classification we propose. Chapter 5 concludes this thesis by summarizing our

findings and presents potential future work.

14

CHAPTER 2.

RELATED WORK

2.1 Case Studies of Schema Evolution

2.2 Comparison to the State of the Art

In this Chapter, we present the state of the art in the related literature on the
topic of this Thesis. First we present case studies previously published in the
tield of schema evolution and then we compare our work to the
aforementioned studies.

2.1 Case studies of Schema Evolution

[Sjob93] was the first to publish the findings of a study concerning the
changes of a database schema over time and how those changes affect any
software built around it. The author presents a method for measuring the
modifications of database schemata and their consequences by using a
thesaurus tool. The main findings of this study are:

e Additions in databases are the most common change
e Deletions are also quite common
e Renamings do not happen that much

e The automation of the handling of problems related to deletion is
teasible

15

e The automation of the handling of problems related to additions is not
that easy, as there are too many changes that need to be done by hand

In 2008, C. Curino, H.J. Moon, L. Tanca and C. Zaniolo[CMTZ08] published a
study aboutMediawiki, the content management system (CMS) of Wikipedia.
The problem of evolving a database schema in web information systems can
be very difficult as it has a large group of contributors. The authors provide a
conceptual representation for complex schema changes and software tools
that help automating the analysis process. Curino et al. came to the conclusion
that there is great need for better developing methods and tools to achieve
schema changes with the minimum loss. The main findings of this study are:

e In Mediawiki only a small percentage (order of 20%) of the queries,
that were constructed depending on the old database schema, are still
valid after schema evolution.

e The tables and attributes are divided into two categories:

o Tables of small duration, which is a result of their recent
creation

o Tables of long duration, as the cores of the schema tend to be
stable throughout the whole history of the database

In 2009, Dien-Yen Lin and IulianNeamtiu [LiNe09] published the findings of a
study of the co-evolution of applications and databases. The authors shed
light to the well-known problem that the separation of the evolution of
software and its corresponding data can lead to collateral damage. This
damage may include information loss, system failure or decreasing efficiency.
The main findings of this study include the following:

e The applications used to be designed based on a stable schema,
something that nowadays does not happen

e The biggest problem when a system depends on a database is that it
usually is considered that the version of the software is the same as the
version of the database schema, while in reality the two versions are
not in sync

e If the evolution of the software is not in sync with the evolution of the
database schema, this will lead on an untrustworthy system

In [WuNell], an effort to understand how dynamic updating solutions can
support changes to embedded database schemas is presented. The authors

16

automatically extracted the schemas from software projects and also
automatically computed how these schemas evolve as the applications evolve.
During this study, the tool SCVD was developed, that takes the source code of
all the releases, extracts their schemas, compares them and presents the
results in a way that is easy to understand. The main findings include:

e Frequently, after an update has been made, the queries refer to the old
schema, so we have loss of information and runtime errors

e Embedded databases have significantly less changes than large,
enterprise-class databases and significantly more deletion occurrences

e Database schemas tend to change more in the initial stages of the
application and progressively become stable over time

In 2012, G. Papastefanatos, P. Vassiliadis, A. Simitsis and Y. Vassiliou
[PVSV12] published the findings of their study about the impact that
evolution has on ETL ecosystems. The authors presented graph-theoretic
metrics that help predict the effort of the ETL workflow and techniques that
assess the quality of their design in terms of evolution. The software tool
Hecateus was developed, that allows the monitoring of the evolution in
database related environments. Since 60% of the resources of a data
warehouse project is spent on maintenance, the significance of creating
systems that are easy to maintain is quite obvious. The main findings of this
study include:

e The size of the schema and the complexity of its parts are factors that
make the system vulnerable to changes

e A good design pattern is one with tables of a small schema with few
attributes, because the more the attributes the more the levels of
vulnerability

e If these metrics are applied by the ETL designers the maintaining
process will become significantly easier

D. Qiu, B. Li and Z. Su in [QiLS13] study the co-evolution of database
schemas and code in ten open-source database applications. One of the main
research questions of this study concerned the frequency and extent of
database schema evolution. By examining the occurrences of schema changes
the authors concluded that schemas evolve frequently. The authors also
studied the nature of database schema evolution and to do so they
categorized the atomic schema changes. They found that the main high-level
schema changes are transformations, structure refactorings and data quality

17

refactorings, while architectural refactorings took place relatively
infrequently. The low-level most frequent atomic change types were add table,
add column and change column datatype. The authors also observed that
referential integrity constraints and procedures are rarely used in practice,
while additions and changes were the most common cases of schema
evolution. Finally, an additional research question that the authors answer,
investigates how the code co-changes with a schema change. The
corresponding findings show that more than 70% of all valid DB revisions
contained effective co-change information, schema changes impact code
greatly and the changes that show more significant impact on application
code are transformations and structure refactorings.

L.Skoulis, P. Vassiliadis and A. V. Zarras in 2014 [SkVZ14] published their
findings of an open-source relational database evolution study. The authors
performed a thorough study on the evolution of database schemas of publicly
available projects and used Lehman’s Laws of software evolution as a
guideline for the schema evolution. Even though Lehman’s laws cannot be
entirely matched to databases, their significance is of the same importance
and they are very helpful in monitoring schema evolution. The main findings
of this study are:

e Schemas evolve in bursts, in grouped periods of evolving activities and
not in a continuous process, which means that the first law of Lehman
can be partly applied to databases

e The second law of increasing complexity seems to be quite applicable
to databases too

e The third law of self-regulation also applies for databases, except for
the fact that changes do not follow a smooth evolution pattern, but the
presence of feedback is obvious

e Evolution of databases, even in phases, is not stable so the law of
conservation of organizational stability does not apply to databases

e Even though the conservation of familiarity is significant, it does not
guarantee incremental growth, so this law is possible but not
confirmed

e The law of continuing growth, when it is adapted to the particularities
of database schemas, applies to databases

e The law of declining quality is uncertain

18

e The law of feedback system applies, as the evolution of a schema obeys
the behavior of such a mechanism

P. Vassiliadis, A. V. Zarras and I. Skoulis in 2015 [SkVZ15] performed a study
that focuses on the behavior of tables during the evolution of a database
schema. The authors studied whether table characteristics, like number of
attributes or time of birth can be related to chances of deletion, amount of
changes etc. The main findings of this study include:

e Thin tables with small schema size have unspecified life duration
e Wide tables with larger schema size tend to live longer

e The tables that are removed are mostly newborns, that get deleted
quickly, with few or no updates

e Tables of medium or big duration do not get deleted that often
e The rest of the tables live a quite calm life

P. Vassiliadis, A. V. Zarras and I.Skoulis in [VaZal7] published their findings
on the categories of tables that evolve as the schema evolves and the nature of
this evolution. The authors’ findings relate to the relevance of table properties
to evolution related ones. More specifically they categorized the tables
according to their survival or death in three main categories. The first one is
“wide survivors”, that includes tables with large size that tend to live longer
and survive. This behavior was introduced by the authors as the I' pattern,
that concerns the relation of schema size with duration. The second category
is “entry level removals”, that includes newly born tables, quickly removed,
or/and with no or few updates. The last category is “old timers”, which
includes the tables with long duration that rarely are deleted. The relation of
duration and birth can be described by the "Empty triancle” pattern, which
means that there are very few cases of tables not born from the start that do
not survive or have a long duration. As far as the tables that are prone to
updates are concerned, the authors observed two different patterns. The first
one is called the “inverse I'"” pattern and states that the duration of the lifetime
of a table is not proportional to the amount of updates that the table endures.
The second one, the “Comet” pattern was revealed due to the correlation of
schema size at the birth of a table with its update profile and states that most
small-sized tables have few to none changes, some medium-sized tables have
many changes and wide tables have medium amount of updates. Finally, the
main finding of this study was the gravitation to rigidity in database schemas,
which is a tendency to avoid change and evolution.

19

P.Vassiliadis et al., in [VKZZ17], published the findings of a schema evolution
study focused on foreign key evolution, in the broader context of schema
evolution for relational databases. The authors explored the nature of growth
and heartbeat of foreign keys and designed a software tool that represents,
visualizes and measures the foreign key evolution. The findings of this study
show that foreign keys are in some cases an integral part of the system, at
least in the cases of scientific nature projects, where they use to be born and
removed along with their tables. The authors also observed cases of projects
with foreign keys that seem to be unwanted and removed mostly not in the
same time with their corresponding tables. The datasets collected for this
study contained two cases of Content Management Systems and in both of
these cases the foreign keys were completely removed from them in the last
known to the authors’ version of the schema. This behavior seems to be a
result of difficulty of managing technical issues with foreign keys. Finally the
authors observed that changes in foreign keys are not so common and when
they do exist, they are mostly small in volume.

2.2 Comparison to the state of the art

Despite the achievements of the previous efforts, currently, we have no
structured and well-founded knowledge of integration and organization of
the heartbeat of a database schema in a principled way. To the best of our
knowledge no other study has explored thoroughly the nature of births and
deaths of tables and attributes in the life of a relational database schema.
Furthermore, the organization of a schema’s life into phases that are based on
the changes the schema undergoes has not been studied in the literature.

20

CHAPTER 3.

BIRTH AND DEATH IN SCHEMA EVOLUTION

3.1 Experimental Setup

3.2 Births, Deaths and Updates

3.3 Special Topics

3.4 Conclusions

In this chapter, we present the first part of this study that explores the births
and deaths that occur in a database schema. In the first section we describe
the experimental setup in which this study has taken place. The second
section explores the nature of births, deaths and updates that occur in a
schema’s life. In the third section we present some special topics and more
specifically) the results that concern the tables that get deleted sometime in
the evolution and later on they get reborn, b) the time period in a table’s life
when most attributes get injected or ejected and finally, c) a study of the
commit histories of six open source projects that contain foreign keys and
explores their nature and behavior. The last section presents the conclusions
of this part of the study.

21

3.1 Experimental Setup

In this study twelve different open source projects were used. These datasets
are: Atlas, Biosql, Castor, Coppermine, Egee, Ensembl, Mediawiki, Opencart,
Phpbb, Slashcode, Typo3 and Zabbix. Three of the databases, Atlas, Castor
and Egee are hosted by CERN, the European Organization for Nuclear
Research based on Geneva. Biosql and Ensembl contain medical information,
while all the others are part of a Content Management System (CMS). Each
part of the study uses the datasets that have the needed features. For example,
of all the datasets Castor, Ensembl, Opencart, Slashcode and Phpbb were the
only ones that had over 10 tables that get deleted and reborn, so the respective
section describes the behavior of these datasets. The last part of this chapter
that studies the foreign keys takes place for the six datasets that contain
foreign keys. When it is feasible, in terms of the nature of the study, we take
all datasets into consideration (for example attribute injections and ejections
in time).Several basic statistics for each dataset are shown in Figure 1.

All the statistics and numbers we use concerning releases/commits, we got by
the differences in the schemas between every two consecutive
commits/releases.

Dataset #tables@start #Htables@end #attributes@start #attributes@end #commits Hreleases

Atlas 56 73 709 858 84 N/A
Biosq| 21 28 74 129 46 12
Castor 62 74 632 838 194 N/A

Coppermine 8 22 87 169 117 N/A
Egee 6 10 34 71 17 N/A
Ensembl 17 75 75 486 528 122
Mediawiki 17 50 100 318 322 112
Opencart 46 114 292 731 164 27
Phpbb 61 65 611 565 133 45
Slashcode 42 87 259 610 399 N/A
Typo3 10 23 122 414 97 52
Zabbix 15 48 81 306 160 N/A

Figure 1 Table with statistics for all datasets.

3.2 Births, Deaths and Updates

In this section we explore the nature of births, deaths and updates that occur
during the evolution of the schema of six open source software projects. In
this specific part of the study we use the information that concerns the public
releases of the projects” schemata collected in [Papp17].

22

To explore the nature of the evolution we study the heartbeat of change of
each dataset. The heartbeat of change is a vector with information about
addition and deletions in tables and attributes and type or key participation
updates for each release. In the following charts we visualize the heartbeat via
a combination of barchart, linechart and scatterchart that depicts the amount
of births, deaths and alternations in schema size that a schema’s releases
undergo through time.

Figures 3-14 show the heartbeat of change in terms of table birth and death,
attribute injection and ejection, type and key participation updates and
schema size in number of tables and attributes for each one of the studied
datasets. The x-axis of the figures represents the name of the schema’s release
or the date of the last commit of the corresponding release.

Terminology. Studying these figures we try to observe the phases that each
dataset undergoes. We characterize these phases with the following
terminology.

- A phase of growth shows increase in the schema size and its heartbeat
mainly concerns additions to information capacity.

- A phase of maintenance contains deletions and updates and does not
really increase information capacity.

- We characterize a phase as a minor activity phase when there is zero or
low activity and there are no significant increases or decreases in
schema size in tables and attributes.

- The combination of growth and maintenance concerns the demonstration
of both kinds of activity in a phase, and sometimes it comes with a
renaming or restructuring manner.

- A phase of intense evolution is actually a growth + maintenance phase
with very high volume of change in number of attributes.

- Finally, it should be noted that when we refer to the notion spike we
mean a phase that contains mostly one single release of very high
volume of change, which could be considered a phase by itself.

As mentioned above, the main purpose of this study is to explore the nature
of evolution of the studied schemata. We proceed in detailing the
observations around the evolution of each data set.

23

Biosql. As we can see from Figures 3 and 4 Biosql, in the 10 years that we
have available for study, seems to have a very quiet and almost non-existent
evolution. Studying the changes Biosql undergoes in terms of table birth and
death, attribute injections and ejections and attribute type or key participation
updates, we assume that the history of Biosql could be divided in three
phases. There is the first phase of maintenance, where the administrators
deleted tables and injected attributes and altered others. Then there is the
second phase that could be considered as a single spike where there was clear
effort from the administrator’s/developer’s point where we have all kinds of
changes in a single release and in significant volume, thus we have a phase of
intense evolution. Finally, in the last phase, which is almost ten years nothing
happens except from some attribute type update and the phase is
characterized as minor activity.

Ensembl. For Ensemb], this is clearly not the case. Ensembl], in the 17 years of
evolution that we have available, is clearly a more vivid and intense dataset in
terms of evolution. As we can see from Figures 5 and 6, taking into
consideration all the kinds of changes depicted in the aforementioned charts,
we assume that a possible segmentation of Ensembl’s history in phases could
consist of eight discrete phases. The first phase is clearly a case of growth with
maintenance, as it shows high growth effort both in tables and attributes, while
it also contains a few deletions and a significant amount of updates. The
second phase shows intense evolution with significant additions and deletions.
Then, we notice a short period of minor to none activity, which is followed by
an intense evolution phase with attribute deletions and updates and high
growth in tables and attributes. The fifth phase is considered as a medium
growth period with some deletions of maintenance, while the sixth phase only
shows minor activity. Then, we notice a period of maintenance with medium
volume with some deletions and updates and finally the last phase shows
quiet behavior with very few updates and is quite long in time and is
characterized as minor activity.

Mediawiki. The next dataset, Mediawiki, has an evolution of 13 years and is
also quite intense with no significant periods of calmness. As seen in Figures 7
and 8, we assume that Mediawiki’s history could be divided in seven phases.
First we have a period of growth, which is quite common in the start of
projects, both in terms of tables and attributes. The second phase is a period of
maintenance with a significant amount of both additions and deletions. Then,
we notice a long period of slow growth with some spikes of updates. The
fourth phase shows intense maintenance with a lot of additions and deletions
depicted by the spikes in the aforementioned figures. After this intense

24

maintaining period, there is a period of minor activity where nothing
significant occurs and right after that, a phase of maintenance appears. Finally,
there is a period of minor activity, with very few changes in the schema.

Opencart. For Opencart we have less than 4 years of releases available and it
is one of the quietest of our datasets. As it is depicted in Figures 9 and 10,
Opencart’s history can be divided in 4 phases. The first phase is considered
the first release alone, which contains a huge amount of births deaths and
updates and it is the only one with this kind of volume in the whole life of
Opencart and it is characterized as maintenance. The second phase is a minor
activity phase and it is quite short period, where almost nothing happens and
right after that we have a maintenance phase with a quite significant amount of
additions and some deletions. Finally, the last phase is of minor activity and is
very long in terms of time and number of releases and it consists of only
minor updates.

Phpbb. The next dataset, Phpbb, in the 11 years of releases available to us,
seems to be a calm dataset with a significant amount of spikes. In Figures 11
and 12, we see that its history can be divided in five phases. The releases of
the first phase are considered as minor activity and have zero activity and in
the second phase we have a spike with all kinds of changes and the phase is
characterized as growth with maintenance. The third period has a maintenance
nature and contains two intense spikes of additions and deletions and quite a
few spikes of updates. In the fourth minor activity phase we notice only a few
changes, it is a three year period of calmness and right after that, we have a
period of maintenance with significant amount of all possible updates.

Typo3. Our last dataset, Typo3, has an evolution of circa ten years. As seen in
Figures 13 and 14, we assume a segmentation of its history that consists of six
phases. As usual, the first phase contains releases with growth nature in tables
and attributes and releases with a lot of updates. The second phase is a minor
activity phase and it is a quite long period of calmness. Then, we notice a short
growth period and right after that a period of minor activity again. The fifth
phase consists of releases with intense maintenance behavior with a lot of
deletions and a few updates. Finally, we notice a period of intense evolution
with a lot of additions and deletions both in terms of tables and attributes and
also a few updates.

25

BioSQL Ensembl Mediawiki Opencart Phpbb Typo3
G th+ Mainte ce| Mi
Maintenance rc?w Growth a'ln nan HTOT Growth
Maintenance (spike) Activity
Intense Growth+
. Intense . Minor . Minor
Evolution Evolution Maintenance Activit Maintenance Activit
spike volutio ctivity (s ctivity
Minor Minor Maintenance .
. . Growth . Maintenance &)1}
Activity Activity (spike)
Intense . Minor Minor Minor
] Maintenance
Evolution Activity Activity Activity
Growth+ Minor . .
. .. Maintenance | Maintenance
Maintenance | Activity
Minor . Intense
. Maintenance .
Activity Evolution
Mi
7 Maintenance 1r}0¥'
Activity
Minor
8 ..
Activity

Figure 2 Table of the phases of all datasets.

As discussed above and seen in Figure 2, common patterns are noticeable and
seem to occur for most of the datasets. Those patterns are:

e Growth(colored green in Figure 2) mainly happens in the start of a
dataset’s life for most of the cases (with the single exception of
Ensembl, having a growth phase in its mid-life).Growth can come
wither solo (as the main content of update activity — colored as solid
green background in Figure 2) or it can also be accompanied by
maintenance.

e Maintenance (denoted as text in blue font in Figure 2) can be found in
all possible stages of schema’s life, in practically all data sets.

e Maintenance followed or preceded by minor activity (the combination
coming as mid-intensity blue background in Figure 2) seems to be the
most common pattern, whose occurrences are overwhelmingly located

26

in the end of a schema’s life and accompanied with low or zero growth
in information capacity.

e Practically, with the single exception of Typo3, we can safely argue that
the history of a database schema comes in two mega-phases: (a) a “hot”
expansion mega-phase at the start of its life demonstrating growth of
information capacity, along with the necessary maintenance and (b) a
“cooling” housekeeping mega-phase at its middle and later life where either
maintenance actions or stillness dominate the update activity.

e For the majority of the datasets, minor (or even zero) activity periods
frequently take up long periods in time, especially at the end of their
history

e A few datasets though, have intense evolution with changes of
significant volume

27

— Biosgl : Table Births & Deaths

20 - ‘ 5 o - 30
I e >
15 4 ! 3
—— - 20
10 4
- - 10
5
a { 1 0
-5 4
- -10
=10
I bl Birthe EahleDeath
- =20
-15 -
u RokascTimcpoints —dhmasioe ftabikes)
=20 - - =30

Feb-02 Feb-03 Feb-04 Feb-05 Feb-06 Feb-07 Feb-08 Feb-09 Feb-10 Feb-11 Feb-12

Biosgl : Attribute Injections & Ejections

100 r 150
a0 -
- 100
60 1
40 L en
=1
20 A
a +H—4 o
=20
-40 F
-6 1 I o it cinjecticne I ot E ectione L 100
-80
» BrbcascTimepoints — schomafioe iattributes)
100 - - -150

Feb-02 Feb-03 Feb-04 Feb-05 Feb-06 Feb-07 Feb-08 Feb-09 Feb-10 Feb-11 Feb-12

N Biosgl: Updates

W lkcylipd
B typelipd
I = RelcaseTimopoints

ﬂ 2 l T T T T T I T T T T

-5
Feb-02 Feb-03 Feb-04 Feb-05 Feb-06 Feb-07 Feb-08 Feb-09 Feb-10 Feb-11 Feb-12

Figure 3 Biosql :Heartbeat of change in time.

28

. Biosgl : Table Elrths& Deaths B

I zbkcBirths I tablkeDeaths

= ReleascTimepoints — schemafioe ftabkes]

'QP
Fﬁ o
& g

& & F
&

F w#“- o ﬁ'& e 'PF' ?ﬂj ﬁuﬂ p:\-

Q,P" L. ~

& & FF

.
o o

&

"':' p;'p
I_F. - IP #
-{.‘:‘-

100 r

. ribeneinjectihone

. ribncEpections

100 7w pelkaseTimepoints —schemasize fattributes) B

) B . A o ﬁf b P a .
ég%d- ;F‘? x;;'_-,:::" ;F:- -F# ¥ ;p? .*F'? B '&'ﬁ "‘rﬁ
SNV S S S
& o = e & oy @é’
.g.‘é' qf x":b 5
4 ‘#,_,& &

3

Biosgl: Updates

m keylipd
W rypelipd

= ReleascTimepoints
! T 1

Figure 4 Biosql : Heartbeat of change per release.

29

Ensembl : Table Births & Deaths

20) - 100
— £—¥ { 7 8 . a0
541 2T, 5 & I
o L 60
10 s
P - a0
.l"._
51 L 20
0 =
=] L 20
- 40
.iﬂ -
L .60
-15 - bk Biriths Il bl Deaits L _an
=20 - s ReleaseTimepoints —— schemaSize (tabbes) - -104d
I}_. L]] i e h:p
453' S &S S
& e?-wepwﬂ*ﬂ*ﬂ* ePePeP-eP“"“*“*
Ensembl : Attribute Injections & Ejections
0 4 — - 500
— S— — - T]
o0 S L a00
1 L
40 -
L 200
20 L 100
a b 0
a0 | -100
- -200
-4 A
N attributelnjetions N attributeEjections - -30d
-6 - | 400
§ ReleaseTimepoints — sohomaSine artribues)
-3 - L 500
= qp -».
'D}]
R g
140 - bl:
Ensembl: Updates
120 -
100 -
B ecylipd
a0 4 W vypelind
&0 | u RelcaseTimepaoints
40
20 - |
ﬂ o
-20

“’ﬁ’?ﬁﬁ.ﬁ‘ S &~ ¥
ww#ww+-ﬁg+ﬂ“+ﬂ*£¢°w+?+?ffd’d‘

Figure 5 Ensembl : Heartbeat of change in time.
30

ik
a0
el
1]
(i)

eI

&

meRbemE
e —— ‘Tk e
L.

Ensembl : Table Births & Deaths

—_—
T
| ||| |

o

P

2
H

3

| PR
1
et _‘--.J-
i M

—— mchesmadie b

I el

i

2

5

1k A
5

i}

A0 4
-5 1
-2 -

5

E {5 s
[T Ty T AT AR T]

Rl

RO e

Bo-E 1w wousl querus

ESD1 ol uerus

T Lou [usrue

BE-RS il [L

B s
R e

1-hke i,

TU LB L - L

E kv iied

Er/uere

B L
T T T T LTI e s U

B[isipiang

1-TE il

RS umsun

-8 il

B

AR L

pipusd

il

B [

Hpuarvarg

frullpang

aiEC L LIPS TNt Py T E L]

R L e]
e

-2 00
- 300
-2 O
- 100
=L 00
=300
=200
b=tk

.

I il Hom

et

-
o
I st g tam

—

—t

[R
T L LD LT

R RLE

Fo-a o U | e
S5 EL Lo [uene
EEROT o [e
Tor s e
BE- Rl quesus
FES e
wapain e ||

T-E vl

U e U L [U
E i vl

FE R

TP LU

s X Eyas e jun et w
Bl usipug

T-TE vl

RIS ueue

1-aten

Ao iy

| Ensembl : Attribute Injections & Ejections

- "
i EE
01 et
B/ s
sy
srullminng

= = WO U el W s

sl e L
T

Ensembl: Updates

1403
120

s
LCTIT Ty S T VRS T

R |

BE-1 e [e
o E e e
EorOT i uesue
T Rt e e e
BB] e
KES R
e

T-hie it

-8 R L - [L
Elrinnp et

Trf e
BT LW LR

SRR TR T oy LT e T

Etrthuripung
-1 v

B R

1-ng v,

g sy
FLIEYL DR L L LD
T RE|w
o v
S
Ry
Fullmang

= g ueile” L e

L]
e

Figure 6 Ensembl : Heartbeat of change per release.
31

=
=

L o PR = T T O

-2

o
%ﬁi

160
1ag
120
104
80
60
40
20
0

-20

,QF'

=

Mediawiki: Table Births & Deaths
EF ey
3 n 5 & T

P —

I tabicBirths bl Deaths

= ReleaseTimepoints — ——sohomaSioe ftahbiles)

5? FE’“:' o al ﬁ :_El Ay ak P h"h- .:,:':: :_'h
& e@"‘g -ﬁP +"’§. R

Mediawiki: Attribute Injections & Ejections _

I okt cdnjeotons I s tribut e peotions

" ReleascTimepoints — schemasioe fartributes)

& g0 @ b R -
++"*+§D‘\°‘P+‘f‘ I R e e

Mediawiki: Updates

B eylind
B vypelind

Ls] a ' - L. L‘LzLo,J—ﬁl—f—q-
M Y T T T -

S AR - A T e
. . .

Figure 7 Mediawiki : Heartbeat of change in time.
32

5]
[=]

i
400

300

200

100

P
-1100

-2100

P
-0

-
400

" ReleascTimespoints

Mediawiki: Table Births & Deaths

10 S > a a—H" < Ii‘
g | — 3 [.
| 1 ——
[—
4 4 ___—' Tt
—
g | II|| |II | |I |I I|II |III 1 |I | 1|
I| | |III INBLL | T T
-3
-4
4 1 mmsesns . ranleDeaths
&
» ReleaseTimepoints —— sohematize ftabibes)
-1q
il P M g e gg g n - T L T T L O L L (O}
ﬁmgmﬂquw'\qmaﬂmﬂm%wh'k'-:rl-:l-:lh"'!"!h'ln
- [R L e - = " - e - e R e |
= = = - = Bl
EI il e - —
- -
IEI -
Mediawiki: Attribute Injections & Ejections
20 A
15 e
10 .~
5-._.-__]- | | | | |
B Y T 1 WY T Ll
Y | I.I || i || T .|.|.||
-5
-10 b e . ottt
15
= ReleascTimepoints —— schemasize aatributes|
__Eﬂ_
s 4 - = A - B - R e R s e =
iﬂ%mﬂﬂﬂﬂﬂqmaﬂmﬂm%wh'k'-:n-:l-:lh"'!"!wn
- I I I e e e - B B T - O B B = B B
- (=] (=] - P [
:5' bl - - —
— H
i)
160 -
1a0 Mediawiki: Updates
120 +
100 w keUpd
80 o N typeUpd
&0 = RelkaseTimepoins
40
20
Eﬂ
vl e - - T N - - I~ I R T I B BT B =
iﬂ%m"quwwqmaﬂmﬂwgwﬁﬁmaa e B Y
— B S I I s B s = 9 9 A NS mom NN
- o
! ™ = - - -
& . =
IEI -

Figure 8 Mediawiki :

33

Heartbeat of change per release.

-5
-1
-150

Table Births & Deaths

Opencart
-
N tablcDeaths
— sohomatiee qabke=|

Fa

—

| belia
= RoleaccTimopoints

250 -
200 -
150 4
100 4
50
0
50
-100 4
=150 A
=200 A
-250 -

H1-tes
ST

ST-Aepy
5Ty
5T -ue
ST-AEN
51-tes
ST

ST-AEp
STy
5T-ue
FT-mEN
F1-tes
FT-AM

FT-Aepy
FT-
FT-ue
ET-EN
E1-tesg
ET-N

ET-4rpy
ET-4

r 900
- 700
- 300
- 100
-100
-300
-700
- -900

T

I 2t tribut e Ejeathorns
— schemafiee rbributes]

Attribute Injections & Ejections

Opencart
Reodoasc Timepoints

I it cinjeoons

150 -
100 -
50
50
100
-150 -

G-t
BTN
G1-AE
G-y
5w
512N
g1t
5T
ST-AEp
ST
51wy
F1-#0H
P
FT-AnT
FI-AEw
FT-
1oL
ET-#0H
£1-ts
ET-n
ET-Arpy
ET-py

= ReleaseTimepaints

W lcyUnd
B typelind

Updates

Opencart

160 -
140 A
120 -
100 -
a0 4
60 4
a0 4
20 4
=20 -

G-t
STAN
G-y
G-
G -ue
H._" ..__.n_I
51-ts
ST4n
ST-AE
5T
51-ue
FT-~EH
-t
FTAn
FT-AEw
T
F1-ue
ET-EN
£1-tas
ET4n
ET-Ar
ET-y

Figure 9 Opencart : Heartbeat of change in time.
34

- 150

i
ALh

T

i
Lk

ET

-1510

Table Births & Deaths

Opencart

i hleDeaths

kBt

—schemaSioe (tahilkes)

3 RedeaseTimepoints

300 --‘!—}_r_i,";* <
|

200 4

100 4

a
-100 4

=200 4

-300 -

TOER
e
W owee
e
O
e
rTe
T2 T
TEr:E
FEXE
rewe
rree
T
e
AV VS
TUE
TUre
v
ERININE
TRONNE
FEET
E9ET
TR
et
¥
TEeT
1l oug Tp0 TR

& Ejections

ons

Attribute Injecti

Opencart

L b it e e

. o tribeeinjeoTone

—— srhemasize jartributes]

Roleace Timopoints

150 A

50 -

-100 A

-150 -

TOER
e

T8 OmEe
L A
T
TOTe
vl o
THTE
TENE
FEXE
FEme
TTe
rree
e
EQNe
LTV Vi
TUre
FEO e
ER[r{rire
TENNE
FEET
E9ST
TR
et
L
TesT
a0 TS

Updates

Opencart

B keylind

B vypelind

= RoleaceThimopolnts

G

140

120

100

80 4

60 4

40 4

20 4

-20 -

TIEE
e
0 rree
e
TOTE
TTe
e

| ST e
TEWE
FEE
WEwe
TTwe
il oV
Ve
EQOrOroe
TUE
TN e
FELOrE
BRI
TR E
FEET
EWET
TEET
TweT
L
Test
eloag) Lels

Figure 10 Opencart : Heartbeat of change per release.

35

40 A

L

20

10 A

&

100
a0
60
40

20

=20

<= Phpbb: Table Births & Deaths .

1 — - 60

-
-

I tabicBirthe I b Deathe

= ReleascTimepoints —— sohemaSine (tabikes]

i -a('# o _r":'ﬂ £ i ey P el
& F ﬁﬁ#““ <+ +ﬁ~9"ﬁ P

Phpbb: Attribute Injections & Ejections - 700

—_—
e | —

L 1nm
1040

"

L
—

L

T

.

P
——
-

-

——

L -100

L -300

I atiributelinjections Il iiributcEjections - =00

2 ReleaseTimepoints — sohemaSioe attributes)

| i
-100

A)

o o i L A sl o i = P
- ef’x@pqn"* $£f+f & & @ @
Phpbhb: Updates

ey lipd

Erypelind
o Roleasc Thmenoints

‘ﬁ“ﬁﬁfﬁﬁé‘&ﬁﬁ’&#‘éf
& o o & & & & 8

Figure 11 Phpbb : Heartbeat of change in time.
36

&
@f‘ﬁf

200
150
100

Phpbb: Table Births & Deaths — — 5

Phphbb: Attribute Injections & Ejections

JE—

O f‘f

3 L | T
et 1 “%
- N tabkcEirthe N tahleDeaths i
: = ReleascTimepoints —— schemasize {tables) |
'b Boa q;p q’h- '.'_,." Lﬁl N T T ,;:_‘p - ,-_.'\- P ..;I.- .-ﬂ-'i'
'; a 'a ,;;: & .;}"P a._:? e 1-;3 ,E:»ﬁq. o ;js: W3 & a-.,-“EJnﬁ* o

g @y ak o
e"i' @'*:" G"u.*é §i’;§’g fﬁ
i
ﬁ

L Pl LT T

u RolbocaseTimopaoints

'h
q..*}ﬁr'b“"’"}';:

EFFE IS *fx"ﬁ S, &“” ﬁf"’“@”" SIS

L

80

[y

40

20

<

t"g: {.'*ql_;_. -1."-".;‘}{"’0

. i CET NG

— schomaSine fatbribubes|

"-':l "':-

SN e
‘?! ragis o ‘-7:-';5
..:P) J‘.""i-'

Fo ol
y

i Phpbb: Updates = keyupd
B rypelind
T = Release THTERINS
L il Bl Bl | IJIJI T T™T=T I"I T™T=T T T | Ill IJI TEToT T ™1 I.IJI |‘|.|J|_|| T | T III
Wy]

. 'b B Wk "'|.- A 'h S Wk
é‘;ﬂs} 'Q"l;. h ‘\- .5;.:' .51 .15? '“.‘!:"'l .‘ E;
M

w"ﬁ S, «“’

Figure 12 Phpbb : Heartbeat of change per release.

37

g - Typo3: Table Births & Deaths -
— — — ——— e e . N
6 1] 3 q 5
4 7] — —
2 1 I I - 1 -
NEY | Lt L
3 L
4 - mEmtableBirths B tableDeaths
£ - » ReleazeTimepoints —— schemasize [tables)
_E - .
Oct03 Oct04 Oct05 Oct06 Oct07 Oct08 Oct09 Oct-10 Oct-11 Oct-12
40 - Typo3: Attribute Injections & Ejections -
.|
20 T
; BN |
20 - - — ——

20 A

I attributel njsctions

= RelzazeTimepoints

4{' B

Q02 Oct-04

E LT

30

25 4

20

15

10

Q05 Oct-06 Oct07 Oct-08 Oct-09

s tribute Ejections

—— zrhemasize [attributes)

Qct-10 Oet-11

Typo3: Updates

Wkeyupd
W typeUpd
» ReleazeTimepoints

0 N N

Oct-03 Oct-04

Qct-05 Oct-06 Oct-07

Oct-08 Oct-09 Oct-10 Oct-11

Figure 13 Typo3 : Heartbeat of change in time.

38

Cct-12

Cct-12

5D

40

30

20

10

450

350

250

150

50

-150

-250

-350

- 30
10

|1

&

Table Births & Deaths
L

.l Deatihs
—— schomasios ftables)

Typo3

5 ReleascTimepoints

. ol Birthe

L-LF EDdAL
TERG0-0-% E0dAL
EFUE D05 EDdAL
IREEED-0-5 EDdAL
5-5-F EDdAL

ZT-F-F EDdAL
TERE0-G-F EOdAL
EPUE -G EDdAL
Z-5-F ECdAL

5-F-F EQdAL

B-E-F EQdAL

ST-T-F ECdAL
TT-2-F ECdAL
TERG0-E-F EOdAL
5-2-F EDdAL

Z-2-F EDdAL

5-1-F EQdAL

0-1-F ECdAL
TIHO-T-F EDdAL
E-0-F EDdAL

T-0-F ECdAL

0-B-E ECdAL
TE0-F-E EOdAL
Z-5-E EDdAL
IIHD-9-E ECdAL
e

Il

. it e Epthone
—schematize iattributes)

Attribute Injections & Ejections

Typo3
..l

it ednjeotione
= RelcaseTimepaints

L

40 -
30
20
1o 4
0
-10
-20 -
-30
-40 -

L-iF EDdAL
TE2G0-0-5 ECdAL
EPYED-0-5 EDdAL
ZEUUE0-0-% EDdAL
5-B-F EDdAL

ZT-b-F EDdAL
TERG0-5-F EDdAL
EPUURD-G-F EDdAL
Z-5-F ECdAL

5-f-F EQdAL

B-E-F ECdAL

ST-T-F ECdAL
TT-2-F ECdAL
TEIRG0-E-F EDdAL
5-2-F EDdAL

Z-2-F EDdAL

5-1-F ECdAL

0-1-F ECdAL
TIHO-T-F EDdAL
E-DF ECdAL

T-D-F ECdAL

0-B-E ECdAL
TERG0-B-E EDdAL
Z-B-E EDdAL
IIUD-9-E ECdAL

g

W ey lind
Erypelind

Updates

Typo3

J

= RelezseTimepoints

3 =dd 1 lJ|J ‘ | JJ daddldsdd Il N |

il bl bl o ol ol bt il il il b ol el bl b el el bl b nd bl el el b el bl bl sl b el el bl bl el bl b bl bt ol ol o b el el bl bl o ol |

EH
ELEE
25
20 -

5
0
5
a

LoL-F EDdAL
TERG0-0-% EDdAL
EPYEED-0-5 EDdAL
ZPYEED-0-5 EDdAL
5-5-F EQdAL
ZT-FF EDdAL
TERG0-5-F EDdAL
EFYEED-5-F EDdAL
Z-5-F EDdAL
5-F-F EQdAL
B-E-F EDdAL
5T-T-F EQdAL
TT-2-F EDdAL
TERGO-E-F EDdAL
G-Z-F EOdAL

Z-2°F EDdAL

G-T-F EDdAL

0-T-F EQdAL
TIHD-T-F EDdAL
E-0-F EDdAL

T-0-F ECdAL

D-B-E EDdAL
TEG0-E-£ EOdAL
Z-5-F EDdAL
IIHD-9-E EDdAL
s

Figure 14 Typo3 : Heartbeat of change per release.
39

3.3 Special Topics

In this section, we explore three special topics in the context of studying the
occurrence of birth and death in evolution of database schemata of open
source software projects. Specifically, the first subsection presents the results
of our study considering zombie tables that are originally deleted and later
reborn in a different version. In the second subsection, we try to understand
how injections and ejections of attributes are spread in the different periods of
a table’s life. Finally, in the last subsection, we present a study of the commit
histories of six open source projects that contain foreign keys and study their
nature and behavior.

3.3.1 Zombie tables : death and rebirth

This part of the study focuses on the existence and behavior of zombie tables in
the evolution of a database schema. A zombie table is defined as the table that
at some version of the schema gets deleted and later on another version gets
recreated.

A zombie table is considered as a part of a group, when it is born, gets deleted,
or both at the exact same versions as one or more other zombie tables. This
notion is important, as it helps us realize with more ease if there exists a mass
deletion and re-addition as a part of maintenance procedure, or if the deletion
and re-addition is an individual and more explicit occurrence.

In order to explore the existence and behavior of zombie tables there was a
need for information like specific periods of life for each table, death duration,
survival until the last known version and many more. This information was
retrieved using the output file of Hecate containing information about the life
and size of each table, as input. From the twelve initial datasets, four had no
zombie tables, three had below six and five had over ten zombie tables. This
study took place for the five abovementioned datasets, each of them having
more than ten zombies.

As we can see in Figure 15, over 25% of three datasets’ tables were zombies
(one even had 70% zombie tables) and the other two contained a little less than
20% zombies.

40

Percentages of Zombie/Not Zombie Tables
90 -

80 -
70 -
60 -
50 - M not_zombies(%)

40 - H zombies(%)

30

percentage

20

10 -

Castor Ensembl Opencart Slashcode Phpbb
dataset

Figure 15 Percentages of zombie/not zombie tables for each dataset.

Apart from the existence of zombie tables, the survival of these tables until the
last known schema version was studied. Figure 16 shows the percentages of
dead and survivor zombies. The findings concerning the survival of the zombie
tables, show that the majority of zombies finally survive, which is an indication of
deletions due to maintenance or perfective procedures. This is the case for four out
of five datasets, with Opencart having slightly more dead zombies than
survivors.

As previously mentioned, a zombie table can be a part of a group depending
on the versions it died or was born. Figure 17 shows the percentages of zombie
tables that belong (or do not belong) to groups, for each dataset. For most of
the datasets, four out of five, the vast majority of zombie tables are part of
groups. This probably means that, their deletions and re-additions were part
of a larger, coordinated maintenance activity. Though phpbb has equal
number of zombie tables in groups and zombie tables not in groups, due to its
small amount of zombies (12), phpbb is probably not quite representative.

41

Percentages of Dead/Survivor Zombie Tables

90

80

70

60
o 50 4
o H survivor_zombies(%)
i
5 40 | B dead_zombies(%)
b
o
o 30

20 +

10 -

0 T T

Castor Ensembl Opencart Slashcode Phpbb
dataset

Figure 16 Percentages of dead/survivor zombie tables for each dataset.

Percentages of Zombie Tables in/not in groups
120 -

100 +
80

60 - W not_in_groups(%)

min_groups(%)

a0 -

percentage

20

Castor Ensembl Opencart Slashcode Phpbb

dataset

Figure 17 Percentages of zombies in groups/not in groups for each dataset.

42

Figures 18 and 19 show general statistics of zombie tables in absolute numbers

and percentages respectively.

Dataset

Castor 91 64
Ensembl 155 42
Opencart 236 95
Slashcode 126 21
Phpbb 70 12

#tables #zombie_tables #survivor_zombies #in_groups

Figure 18 General statistics of zombie tables in absolute numbers.

Dataset zombies(%) survivor_zombies(%)

Castor 70
Ensembl 27
Opencart 40
Slashcode 17
Phpbb 17

77
57
46
67
58

49 61
24 31
44 93
14 18
7 6

in_groups(%)

95

74

98

86

50

Figure 19 General Statistics of zombie tables in percentages.

Figures 20 contains statistics of death duration in terms of number of schema

versions in which the tables were dead in absolute numbers and percentages

3,26
7,25
5
2

respectively.

Dataset avg_death_duration dead_avg_death_duration survivor_avg_death_duration
Castor 3 3,6

Ensembl 15 24,83

Opencart 3 1,23

Slashcode 9 224

Phpbb 16 13,8

Figure 20 Death duration statistics of zombie tables in absolute numbers.

17,4

Figure 21 shows statistics of occurrences of birth and death of ”“zombie” tables
in groups. The number of birth groups represents the occurrences of “zombie”
tables being reborn in the same schema version, while death groups the
occurrences of “zombie” tables being removed in the same schema version.
Finally both groups are occurrences of “zombie” tables being both reborn and

43

removed in the same schema versions. These statistics imply large
coordinated activities and not intentional targeted table removals.

Dataset #birth_groups #death_groups #both_groups

Castor 7 7 9
Ensembl 28 18 28
Opencart 5 6 7
Slashcode 19 7 19
Phpbb 10 9 10

Figure 21 Group statistics of zombie tables in absolute numbers.

3.3.2 Period of attribute injections and ejections

This part of the study focuses on the injections and ejections of attributes in a
table and more specifically, the period of the corresponding table’s lifetime,
that these actions took place. We treat that the lifetime of a table as a list that
contains the schema versions, in which the specific table exists, in ascending
chronological order. This ordered set of versions is equally divided in three
parts. In the rest of the study when we refer to an attribute as added@start or
deleted@start, we mean that this injection or ejection took place in the first of
the three parts of the table’s lifetime. Added/Deleted@mid and added/deleted@end
mean injection or ejection at the second and third part of a table’s lifetime
respectively.

It should be noted that we do not focus on the attributes that are born along with their
table or die with it, but we focus on the attributes that are added later on the table’s
life. The same applies for attribute deletions.

To explore the attribute injections and find when these actions take place, we
retrieved the number of attributes added@start, mid or end of each table by
using information about the attribute additions per table and per version
retrieved by Hecate. As we can see in Figure 22 the injections of attributes
took place mainly at the start or mid of a table’s life for the majority of the
datasets. This means that any attribute injections that may occur are rarely
during the end of a table’s life. There are datasets that have these injections
divided almost equally into the three parts of the lifetime though. Those three
datasets are Slashcode, Typo3 and Zabbix.

44

As far as the attribute ejections are concerned, we used a similar procedure as
before with the information about attribute deletions per table and per
version retrieved with Hecate. As we can see from Figure 23 the ejections of
attributes also happen mostly at the start or mid of a table’s lifetime for the
majority of the datasets. Similarly to injections, Slashcode, Typo3 and Zabbix
have deviant behaviors and the ejections there happen mainly at the end of a
table’s lifetime.

a0 4

70 +

percentage of attribute additions

1

percentage of attribute deletions

60

50 A

40 +

30 A

20 4

10 +

]

90

&0

70

60

50

40

30

20

10

Attribute Injections

#added@start
m #added@mid
m #added@end

3 N <
& &) < o N 3 + & B &
¥ &° & QS@ & & &F ¢ Q‘Q ;’(\‘9 <& A2
& <N o $°
<
dataset

Figure 22 Percentages of attribute injections to existing tables.

Attribute Ejections

7 #deleted@start

. B #deleted@mid
m#deleted@end

dataset

Figure 23 Percentages of attribute ejections from tables.

45

Figures 24 and 25 contain the statistics of attribute ejections and injections for
all twelve datasets in absolute numbers and percentages respectively. It
should be noted that the absolute numbers are the aggregations of the
corresponding numbers of all the tables of each dataset.

Dataset #added@start #added@mid #added@end #deleted@start #deleted@mid #deleted@end
Atlas 30 104 20 18 88 10
Biosgl 30 64 10 20 54 8
Castor 62 62 3 52 13 15
Coppermine 27 13 3 14 1 6
Egee 16 1 1 2 10 0
Ensembl 319 157 63 72 110 8
Mediawiki 63 50 16 19 14 7
Opencart 106 27 7 73 12 7
Phpbb 19 65 36 6 142 3
Typo3 29 47 35 1 a 3
Zabbix a8 50 a7 12 8 27
slashcode 134 162 136 59 22 114

Figure 24 Statistics of attribute injections and ejections in absolute numbers.

Dataset #added@start #Hadded@mid #added@end #deleted@start #deleted®mid #deleted@end

Atlas 19,5 67,5 13 15,5 75,9 8,6
Biosql 28,9 61,5 96 24,4 65,9 9,7
Castor 40,5 40,5 19 65 16,25 18,75
Coppermine 62,8 30,2 7 66,7 4,8 28,5
Egee 571 39,3 36 16,7 83,3 0
Ensembl 59,2 29,1 11,7 64,8 26,2 9
Mediawiki 48,3 38,8 12,4 47,5 35 17,5
Opencart 75,7 19,3 5 79,4 13 7.6
Phpbb 15,8 54,2 30 3,3 78,5 18,2
Typo3 26,1 42,3 31,6 26 10,5 36,9
Zabbix 33,1 34,5 32,4 25,5 17 57,5
Slashcode 31 37,5 21,5 23,1 32,2 24,7

Figure 25 Statistics of attribute injections and ejections in percentages.

3.3.3 Foreign Key birth and death

This part of the study focuses on the way that foreign keys are added or
deleted during the evolution of a schema. At first we analyze the behavior of
foreign keys for each dataset and in the end we present all the statistics
gathered.

46

Terminology

The additions and deletions of the foreign keys were categorized into “born
with table”, “explicit addition”, “died with table” or ”explicit deletion”. An
addition of a foreign key is considered as “born with table”, when either the
source or the target table is born along with the foreign key, while an ”explicit
addition” happens, when a foreign key is added to existing tables.
Respectively, in the case of deletions, a deletion of a foreign key is considered
as ”died with table”, when either the source or the target table is removed
along with the foreign key, while an ”explicit deletion” happens when neither
of the source or target table gets deleted and only the foreign key is removed.

This study took place for six different datasets. Three of the databases, Atlas,
Castor and Egee are hosted by CERN, the European Organization for Nuclear
Research based on Geneva. Two databases, Slashcode and Zabbix are content
management systems (CMS), while the last database, Biosql, stores genomic
data.

Atlas

Atlas has the highest number of foreign keys among the studied datasets.
Over the 85 versions of Atlas’ schema there were numerous events of both
additions and deletions of foreign keys. In version 1177518923, an entire
"neighborhood” of 8 tables was deleted, along with their foreign keys and in
version 1215283813, an entire “neighborhood” of 6 tables was added with
foreign keys among them. Also, in versions 1207729000 and 1217322513, both
additions and deletions of foreign keys of previous versions, were reversed.
In Figure 26 we can see the changes that happened over the versions in terms
of foreign key additions and deletions in Atlas’ schema. The horizontal axis
represents the schema’s version id, while the vertical axis represents the
number of foreign keys, additions, or deletions of foreign keys respectively.

During the evolution of Atlas’ schema, the additions of foreign keys took
place mostly along with a table addition and not to existing tables (for over
90% of the time). The deletions of the foreign keys took also place along with
a table change (here the deletion of the table) for the majority (almost 70% of
the time). Figure 27 depicts the way that foreign keys are added or removed.
The horizontal axis represents the name of the schema’s version, while the
vertical axis represents the number of the corresponding foreign key change.

47

70

&0

50

40

30

20

10

Atlas:

-10

=20

#FK's

versien

Figure 26 Foreign key changes in the 85 versions of Atlas.

Atlas: FK change breakdown

version

M explicit_deletion M died with _table O explicit addition M born_with_table

Figure 27 Foreign key type of changes in Atlas.

Biosql
Over the 47 versions of Biosql’s schema, there were 127 additions and
deletions of foreign keys. Biosql’s evolution contained 4 renaming cases in

48

Foreign Keys

M tks_added
i fks_removed
#fks

versions 1031817528, 1045618809, 1047465289 and 1047466335 respectively. A
renaming case is considered as the action of deleting a table with its foreign
keys and recreating it in the same version, to change the table’s or table’s
attribute’s name. Figure 28 shows the foreign key additions and deletions that
took place in the evolution of Biosql’s schema. The horizontal axis represents
the schema’s version id, while the vertical axis represents the number of
foreign keys, additions, or deletions of foreign keys respectively.

The additions of foreign keys in Biosql follow the same behavior as Atlas.
Almost 90% of the time, the additions happened along with the addition of a
table. The deletions of foreign keys, also for over 90% of the time, happened
when a table was deleted and not as an explicit deletion of the foreign key. In
Figure 29, we can see the type of foreign key changes that took place in the
evolution of Biosql. The horizontal axis represents the name of the schema’s
version, while the vertical axis represents the number of the corresponding

foreign key change.

&0

50

40

Biosql: Foreign Keys

30

20 mm fks_added

mmfks_removed

10 #fks

. I l. L a 1l ||| | | .l
! .
123455

w
78 % 10 ZlI 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 2 2| 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

-10

-20

20 version

Figure 28 Foreign key changes in the 47 versions of Biosql.

49

Biosql: FKchange breakdown
50

45
40
35 -
30 -

25 A

#FK's

20 4

15 A

10 ~

m 1M =
T 1 T T 1T 71 LI
. -,
L S L T - N R L R L L
BT T & " AT a7 AT AT AT o AT AT o oF o ¥ w" o
N S R i P N A, AR S LN AR N LR L, L LR
A L S s L - I I - U R - s i
RO SR S L S St O V- - L g A
&2 g\ g0 gy AR)7 Al Y Y S 0T g BT AR
N N N P P T TS FFFFF PSS TGS
'\E:I '\Q '\?} '\Q '\Sj '\Q '\-1:-:'.I '\E:I ,»'(} '@ Py '\Q. '\rﬁ Y '»Q' \Q‘ '@ '\E:I ,»'(}
version

O explicit_deletion Mdied_with_table [Dexplicit_addition M born_with_table

Figure 29 Foreign key type of changes in Biosq].

Castor

For the study of Castor, 194 versions of its schema were available. During
those 194 versions though, there were very few changes, under 10 additions
and under 10 deletions of foreign keys, while in the level of tables the changes
were significantly more. This probably happened, because the dataset itself
had very few foreign keys to begin with. Among these few changes, in
version rev 1.051 a foreign key is added, then this action is reversed in version
rev 1.103 and then the same foreign key is re-added in version rev 1.104.
Figure 30 shows the additions and deletions of foreign keys that happened
during the 194 versions of Castor’s schema. The horizontal axis represents the
schema’s version id, while the vertical axis represents the number of foreign
keys, additions, or deletions of foreign keys respectively.

Because of the small number of foreign key changes that happened during the
evolution of Castor, the percentages of the causes of additions and deletions
are not very similar to the previous ones. Most of the additions here

50

happened to existing tables, while the deletions are equally divided into
removal of foreign key along with the table deletion, and removal of foreign
key with no table deletion. Figure 31 depicts the type of foreign key changes
that took place in Castor. The horizontal axis represents the name of the
schema’s version, while the vertical axis represents the number of the
corresponding foreign key change.

12

10

Castor: Foreign Keys

mmfks_added
mmtks_removed
#fks

" version

Figure 30 Foreign key changes in the 194 versions of Castor.

Castor: FK change breakdown

#FK's
(%]

v e & Sy > &
'\59 A g N > g
A A 4 Y
@ & © & © <
version

W explicit_deletion Mdied_with_table [Oexplicit_addition Mborn_with_table

Figure 31 Foreign key type of changes in Castor.

51

Egee

During the study of Egee’s evolution, there were only 17 versions of its
schema available. This database has very few foreign keys, very few changes
happened and none of those was quite interesting. In Figure 32 we can see the
foreign key changes that took place during the evolution of Egee. The
horizontal axis represents the schema’s version id, while the vertical axis
represents the number of foreign keys, additions, or deletions of foreign keys
respectively.

5 -
5
4

Egee: Foreign Keys

2 1 mmfks_added

mm fks_removed

B I #fks
0

3 version

Figure 32 Foreign key changes in the 17 versions of Egee.

Similarly with Castor, Egee’s percentages of additions” and deletions’ causes
cannot be representative, because of the small amount of changes that took
place. Most of the additions happened with a table addition, while all of the
deletions happened along with the table deletion. Figure 33 depicts the type
of foreign key changes that took place in Egee. The horizontal axis represents
the name of the schema’s version, while the vertical axis represents the
number of the corresponding foreign key change.

52

Egee: FK change breakdown

3,5

2,5

#FK's

1,5 -

0,5

rev_1.02.sqgl rev_1.03.sgl rev_1.08.sgl
version

O explicit_deletion B died_with_table Oexplicit_addition B born_with_table

Figure 33 Foreign key type of changes in Egee.

Slashcode

Slashcode’s schema evolution consists of 399 different versions. Slashcode has
a lot of foreign key changes, both additions and deletions and a lot of
interesting cases. There were two cases where the actions were reversed in the
next versions and also a renaming case. The most interesting part of
Slashcode’s evolution though, is that after a certain version all its foreign keys
are gradually deleted. In the first occurrence of massive foreign key removals
(at version rev 1.120), 23 foreign keys were deleted. This mass removal took
place due to a problem with the compatibility of the attribute types that the
foreign keys referred to. The Data Definition file contains an explanatory
comment for this removal:

"Commented-out foreign keys are ones which currently cannot be used because they
refer to a primary key which is NOT NULL AUTO INCREMENT and the child’s
key either has a default value which would be invalid for an aut increment field,
typically NOT NULL DEFAULT ’0’. Or, in some cases, the primary key is e.g.
VARCHAR(20) NOT NULL and the child’s key will be VARCHAR(20). The
possibility of NULLs negates the ability to add a foreign key. < That’s my current
theory, but it doesn’t explain why discussions.topic SMALLINT UNSIGNED NOT
NULL DEFAULT 0" is able to be foreign-keyed to topics.tid SMALLINT
UNSIGNED NOT NULL AUTO NCREMENT".

In the second deletion (at version rev 1.151), 12 foreign keys were removed,
because some tables changed their storage engine to Innodb from Myisam.
There was also an explanatory comment inside the corresponding sql file:

"Stories is now InnoDB and these other tables are still MyISAM, so no foreign keys
between them.”.
53

The rest of the deletions happened because the foreign keys caused too many
problems to the system that could not debugged, resulting in the decision to
leave the schema without any foreign keys. We have retrieved several
comments for these removals. At version re 1.174, where 3 foreign keys were
deleted the following comment was found:

"This doesn’t work, makes createStory die. These don’t work, should check why...”
At version’s rev 1.189 file the comments mention:

"This doesn’t work, since in the install pollquestions is populated before users,
alphabetically”

Finally, at version rev 1.201 the following comment was found:
“This doesn’t work, since discussion may be 0.”

At the end of this process, the schema is left with zero foreign keys.
Interestingly enough, the schema also contained no foreign keys at its start.

Figure 34 shows the foreign key changes that took place during the evolution
of Slashcode. The horizontal axis represents the schema’s version id, while the
vertical axis represents the number of foreign keys, additions, or deletions of
foreign keys respectively.

As it was mentioned above, Slashcode had a huge amount of deletions,
caused by system problems and in those deletions the foreign keys were
deleted explicitly, without any of the tables being removed. Slashcode has a
behavior different than all the other studied datasets. It is the dataset, that the
additions and the deletions happened mostly explicitly. Figure 35 depicts the
type of foreign key changes that took place. The horizontal axis represents the
name of the schema’s version, while the vertical axis represents the number of
the corresponding foreign key change.

54

Slashcode: Foreign Keys

mmfks_added

mm fks_removed

—#tks

E6E
a8
GLE
ZLE
598
858
. T5E
TrE
LEE
OEE
EZE
- arE
GOE
“E Z0E
56T
287
T8l
riT
£8%

FET
LIT
£ 0ZT
ETT
ant
GG
6

TL
ra
L5
05
£r
q9E
T4
iz
ST

version

50+

30 4

-10 A

-20

-20

Figure 34 Foreign key changes in the 399 versions of Slashcode.

FK change breakdown

Slashcode

30

25

20

15

Sd%

10

\&,q,n..

g an.\ . W._
£ T o
o o .T__

2 s
«...._.?h . o ..-ml

-

&,ur kr..» b w_
-
.&.ﬁ. N -m
P, T, W
7 & =
G, » g
m.._.umu_ @, =
\&f__r Fals o
. e 5
<5 .m__“___] » o
%, “2s !
%, T 2
) [=%
“, \....w E
,.uwu atm w
B, o @ o
& T a
b, 8
\&. & o]
. p i
T , I
=3 =
- aS =
ﬂ»ﬁ T, W_
,ﬂnunv_ % S
-]

=
fay mvn_u L > m
\&._.. & _G_G =
%, Yoy 2
4, oy Y
Zo B,
[s PN
G, T, Ay B
0. @, "R
nb Au. P e
.".—.@... 4&‘ il
> B

)

Figure 35 Foreign key type of changes in Slashcode.

55

Zabbix

During the study of Zabbix, 160 versions of its schema were available. Like
Slashcode, Zabbix is also a CMS and has a lot of changes to its foreign key
state and a lot of interesting cases. There were two cases of renaming, in
versions 1.041 and 1.135, but the most interesting case of all, is that in version
1.151 all but two of the foreign keys are commented out of the schema. We
could not find an explanation as to why this removal took place inside the
mysql Data Definition files. Figure 36 depicts the foreign key changes that
took place in Zabbix. The horizontal axis represents the schema’s version id,
while the vertical axis represents the number of foreign keys, additions, or
deletions of foreign keys respectively.

The addition of foreign keys in Zabbix, follows the behavior of most of the
datasets. Circa 85% of the additions of foreign keys happened along with a
table addition. Because of the abrupt removal of foreign keys that was
described above most of the deletions took place explicitly, without any table
removal. In figure 37 we can see the types of foreign key changes that took
place in Zabbix. The horizontal axis represents the name of the schema’s
version, while the vertical axis represents the number of the corresponding
foreign key change.

40
30

20

Zabbix: Foreign Keys

10
mmtks_added
mm fks_removed
a | || L 1 I L L1 | || | | I #ﬂ(s
H S mwa N PR N BT Mo mWwa N L= -] W =S om oo T D
mmmmmmmmmmmmmmmmmmmm MMM o o000 o AN MM MM S S S Ui W
ﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁ EHE
-10
-20
30 version

Figure 36 Foreign key changes in the 160 versions of Zabbix.

56

Zabbix: FK change breakdown

30

25 -

20 -

" 15 -

v

L.

10 -

N M.LJ

SN N N N N il
T T o v v v v v v o o o oo o o v T T T T T
L I ¥ N ¥ O O I ¥ I " O B O ¥ I s L ¥ O ¥ T ¥ I ¥ I T I I ¥ |
[I -~ T T T 5 R O o TN o TN - TR X i N T i SN NN -5~ TN ¥ SN I TR I B TR s T U TR
- T B e IR 5 T~ N I TN e N o S e S 1o s o TR 1 T - N T TS T . VI i TR 5 T~ N
2o 9 a9 9 o a9 s 2 @9 9 2 F A o A A A A
HI HI
> > > » > » I » >» » »® » » » » » » I» » » »m Im
o @ Q@ 1 @ @ @4 o @ o o4 e @ @ o@u @ Q@ o @ @ Q
L&_LLLLLL&_LL‘L&_LL&_LLLLLL

version

M explicit_deletion Mdied with_table [Oexplicit_addition Mborn_with_table

Figure 37 Foreign key type of changes in Zabbix.

The main findings of this study are summarized as follows. Foreign keys are
sometimes treated as an integral part of the system, mainly in scientific
projects. In those cases the foreign keys are born and evicted along with table
birth and eviction. There are cases though, that foreign keys seem to be a
second-class add-on, where the foreign keys seem to be removed mostly not
along with their table. The two cases of CMSs, that were available to us, show
a disinclination towards having foreign keys as part of the schema. Both of
these cases ended up, to the best of our knowledge, with no foreign keys in
their schema. These removals seem to be a result of difficulty of managing
technical issues with foreign keys. In the studied data sets, the mere existence
of foreign keys is too scarce. The foreign key changes found in this study are

mainly small in volume.

Figure 38 shows the total numbers and percentages of foreign key statistics

for all the studied databases.

57

Diachronic Graph

Dataset TablesDG FK'sDG FKs@start FKs@end

Atlas 88 88 61 65
Biosqgl 45 79 17 52
Castor 91 13 6 10
Egee 12 6 3 5
Slashcode 126 47 0 0
Zabbix 58 38 10 2
#FKs_added
Born w/ Born w/ Born w/
source target both Explicit
Dataset Total table table tables Addition
Atlas 41 26 2 9 4
Biosgl 81 43 23 5 10
Castor 8 1 0 1 6
Egee il 1 0 2 1
Slashcode 77 21 0 0 56
Zabbix 28 17 4 3 4
(%)Born wf (%)Bornw/ (%)Bornw/
source target both (%)Explicit
Dataset table table tables Addition
Atlas 63% 5% 22% 10%
Biosqgl 53% 29% 6% 12%
Castor 12,50% 0% 12,50% 75%
Egee 25% 0% 50% 25%
Slashcode 27% 0% 0% 73%
Zabbix 61% 14% 11% 14%
#FKs_removed
Died w/ Died w/ Died w/
source target both Explicit
Dataset Total table table tables Deletion
Atlas 37 15 1 9 12
Biosgl 46 20 18 4 4
Castor 0 0 2 2
Egee 2 2 0 0 0
Slashcode 77 9 3 4 61
Zabbix 36 2 5 1 28
(%)Died w/ (%)Died w/ (%)Died w/
source target both (%)Explicit
Dataset table table tables Deletion
Atlas 41% 3% 24% 32%
Biosgl 43% 39% 9% 9%
Castor 0% 0% 50% 50%
Egee 100% 0% 0% 0%
Slashcode 12% 4% 5% 79%
Zabbix 5% 14% 3% 78%

Figure 38 Tables with foreign key statistics for all the studied datasets.

58

3.4 Conclusions

The purpose of this part of the study was to explore the nature of births and
deaths in schema evolution and to search for possible representative
segmentations of the schema that can characterize the nature of change of
their evolution. The conclusions we reached during this study are as follows.

e The most interesting finding in our study is that, with the single
exception of Typo3, the history of a database schema comes in two
mega-phases: (a) a “hot” expansion mega-phase at the start of its life
demonstrating growth of information capacity, along with the
necessary maintenance and (b) a “cooling” housekeeping mega-phase at
its middle and later life where either maintenance actions or stillness
dominate the update activity.

e Growth in schemata is mainly located in the start of their life, either
alone or accompanied by maintenance

e Maintenance can be found in all the possible stages of a schema’s life

e Maintenance is frequently followed or preceded by minor activity
periods with occurrences of this combination overwhelmingly found
towards the end of the schema’s life

e For the majority of the datasets, minor (or even zero) activity periods
frequently take up long periods in time, especially at the end of their
history

e A few datasets though, have intense evolution with changes of
significant volume

To study in detail all the changes that schemata undergo during their
evolution and extract phases that are representative and can fairly be
characterized by their nature is a manual, and potentially exhaustive and
difficult procedure. Naturally, then, the question arises is: Is there a way we can
fully automate the segmentation of the history of a schema in phases that represent the
essence of the changes that it undergoes in a meaningful manner? In the next
chapter, we propose such a method that aims to fully automate the phase
extraction and classification of a schema’s life.

The study of the special topics left us with a few auxiliary conclusions that are
as follows.

e The majority of zombie tables tend to survive

59

Injections and ejections of attributes mostly happen at the start or mid
of a table’s life and rarely in the end

Foreign keys, come in two fashions (a)foreign keys are treated as
integral parts of the schema and they get born and evicted along with
their tables, mostly in scientific projects, and (b) foreign keys are
treated as second-class add-ons, that get removed not along with their
table, especially in CMSs

Foreign key changes for the studied datasets are small in volume

60

CHAPTER 4.

PHASE EXTRACTION & CLASSIFICATION

41 Release Characterization

4.2 Release Clustering

4.3 Clustering Evaluation

4.4 Phase Classification

In this chapter, we present the second part of this thesis that aims in
extracting patterns and motifs that apply to database evolution in order to
generate a model of evolution.

To do so we apply an algorithmic procedure that uses the history of schema
releases and their characteristics as input and gives a set of phases, with each
phase labeled with respect to its evolution profile as output. Each subsection
of this chapter analyzes a step of this procedure.

The first step of our Phase Extraction & Classification method is the
characterization of the releases in terms of a concise vocabulary of
characterizations for the nature of the maintenance process that took place
during the release. We introduce the notion of change family and restrict the
vocabulary of change families to two members: (a) growth, meaning that
during the release under consideration, the aim of the maintainers was to
augment the information capacity of the schema and (b) maintenance,
meaning that the maintainers” aim was to improve the internal quality of the

61

existing schema structures rather than augment its information capacity.
Apart from deriving a characterization for each release with respect to the
aforementioned change families, we also measure the intensity of change for
that family, too. The change family of a release is computed by the taking into
consideration all types of change that took place during the release (table and
attribute additions and deletions, data type changes, etc.), all measured in
attributes as units. More details about this step of our method can be found in
subsection 4.1.

The second step iteratively groups consecutive releases in clusters via
hierarchical cluster analysis using an Agglomerative algorithm we
implemented. Each such cluster of consecutive releases is considered as a
phase of the schema’s evolution. More details about this step can be found in
4.2.

The third step aims in evaluating the clustering procedure of the previous
step. Since we are employing a hierarchical agglomerative clustering
algorithm, the algorithm produces a sequence of solutions, i.e., segmentation
of the history of the schema in phases, that starts from the most detailed
solution with each release as a different cluster and ends with all the lifetime
of the schema being considered one, single phase. Assuming we want to fully
automate the segmentation of the schema history in phases, which of the
produced solutions is the “best”? To address this problem, we need to
evaluate the quality of the clustering and select the best —or the top-k- solution
in terms of clustering quality. For each iteration of the clustering algorithm,
we use a set of methods that evaluate the consistency within our clusters.
Using these methods we pick the optimal clustering sets as our sets of phases.
This procedure will be described in more detail in subsection 4.3.

The fourth and final step classifies each phase of the schema’s evolution.
Practically, the question answered in this step is: “assume any segmentation
of the history in phases; can we characterize each phase with respect to the
contents and aim of its updates?” The goal is different from the one of the first
step, because we characterize the evolution of an entire phase and not each
release separately. To achieve the final characterization, we calculate two
histograms based on the change families” metrics of each phase’s releases and
compute the winner of each histogram. Then, based on the two histogram
winners we use a set of rules based, and produce a classification that is
representative of each phase’s nature of evolution. This process is analyzed in
subsection 4.4.

The entire process is presented as an algorithm in Figure 39.

62

Algorithm : Phase Extraction and Classification

Input: A list R={ry,...,r,} of n releases and for each r; a list A={ #table_born,
Hitable_gone, #injected, #ejected, #data_type_updated, #key_updated}
Output: a set P={py,...,pm} of m classified phases

1. foreachr;
characterizeit and compute its change family metrics

2. given the pre-computed change family metrics execute hierarchical

Agglomerative clustering for R
foreach merging step of the Agglomerative algorithm
compute clustering evaluation metrics

3. Evaluate each merging step of Agglomerative based on the pre-computed
clustering evaluation metrics and choose the top clustering set P

4. Compute histograms for P and classify it based on the histogram winners
5. ReturnP

Figure 39 Phase Extraction and Classification Algorithm

41 Release Characterization

In order to study the releases we reuse information about their database
schema gathered by [Papp17]. This information, which is used as the input for
our method consists of a list of releases for each dataset and for each release a
vector that contains information about the following measurements:

- attribute births

- attribute deaths

- attribute injections

- attribute ejections

- attribute data type updates

- attribute key participation updates

Our goal is to translate this numbers into a characterization that represents
the evolution profile of each release and a corresponding metric that will be
used for the following step’s clustering procedure.

63

We aim to use this input data to characterize each release in terms of (a) the
nature of the changes performed and (b) the intensity of the evolution
activity. To achieve this, we proceed as follows:

1. First, we organize the aforementioned input in three -categories
depending on whether they modify (a) the information capacity of the
schema (in terms of new or deleted tables), (b) the information capacity of
tables (in terms of new or deleted attributes inside tables), or, (c) the
typing constraints of the attributes themselves. We discuss this labeling in
Sections 4.1.1 and 4.1.2.

2. Second, we use this labeling to label the releases in more coarse grained
categories, which we call change families and we also measure the extent
that the evolution effort within each release aimed to provide Growth of
information capacity of the schema, or Maintenance of the structure of the
database. We discuss this labeling and measuring in Section 4.1.3. In
Section 4.1.4, we also discuss how we quantize the intensity measurement
in a small vocabulary of values for each change family that will also allow
us to provide classifications later.

The final outcome of the entire process is two two-dimensional vectors for
each release. The first vector contains the intensity label of the two change
tamilies Growth and Maintenance , while the second one represents the metrics
of the abovementioned families.

4.1.1 Activity Characterization

The activity characterization of a release works at three levels. The first one is
the inter table change level that concerns table births and deaths and is
measured by the number of attributes that are born with or die with their
tables (we use attributes as the unit of measurement for uniformity with the
other categories). The second level refers to intra table change concerning the
number of attribute injections (attributes that are added after the birth of their
table) and ejections (attributes removed while their table survives). Finally,
the last activity level is amendment that measures updates to the attribute data
type and key participation of attributes. For all the levels, the activity is
measured by the number of attributes involved in the respective type of
change.

It should be noted that from now on attributes born with their table will be
referred as table_born, attributes removed with the death of their table as

64

table_gone, while attributes that are added after the birth of their table or
removed while their table survives will be referred to as injected and ejected
respectively.

The following cases are counted in number of attributes and we use a
threshold set to 0.3.The purpose of this threshold was to avoid cases where
we have both births and deaths in the same release that indicate a renaming
or restructuring case, rather than expansion or shrinking.

Inter-Table Change

e Characterization: Table Expansion
Condition:
#table_born - #table_gone> threshold+(#table_born + #table_gone)

Metric (in number of attributes):

#table_born - #table_gone
e Characterization: Table Shrinking
Condition:
#table_gone - #table_born> threshold*(#table_born + #table_gone)

Metric (in number of attributes):

#table_gone - #table_born
e Characterization: Table Restructuring
Condition:
Both table expansion and table shrinking checks fail

Metric (in number of attributes):

| #table_born - #table_gone |l

Intra-Table Change

e Characterization: Intra Table Expansion
Condition:

#injected - #ejected > threshold*(#injected + #ejected)

65

Metric (in number of attributes):

#injected - #ejected

e Characterization: Intra Table Shrinking
Condition:
#ejected - #injected > threshold*(#injected + #ejected)

Metric (in number of attributes):

#ejected - #injected
e Characterization: Intra Table Restructuring
Condition:
Both intra table expansion and intra table shrinking checks fail

Metric (in number of attributes):

| #injected - #ejected |

Amendments

e Characterization: Intra Table Amendment
Condition:
#data_type_updated + #key_updated>0

Metric (in number of attributes):

#data_type_updated + #key_updated

Each release can have at most one activity characterization per level. When a
release does not have any of the activity characterizations above, its activity

characterization is No Change.

4.1.2 Intensity of Activity Characterization

Each characterization (except for No Change)is defined by its metric and is
given an intensity characterization according to it. We assume three intensity

levels: Low, Medium and High. We also assume that each characterization has a

66

list, containing the values that the releases have for its corresponding metric,

in ascending order.

A release’s activity characterization intensity is characterized as

Low:

If its value for the characterization’s metric is lower than the value of
the same metric of the release indexed in the 80% of the corresponding
list.

Medium:

If its value for the characterization’s metric is equal or higher than the
value of the same metric of the release indexed in the 80% and lower
than the 95% of the corresponding list.

High:

If its value for the characterization’s metric is equal or higher than the
value of the same metric of the release indexed in the 95% of the
corresponding list.

4.1.3 Change Families

The first levels of characterizations provide a fairly detailed labeling of
releases, with a vocabulary that is quite voluminous for being able to
automatically derive classifications in the sequel. Thus, we have resorted to
reducing this labeling vocabulary by grouping activity characterizations to
two change families. The first family refers to the cases of inter or intra table
expansion, where clearly the nature of the changes of the schema were related
to its Growth, since the number of attribute additions in those cases is
significant. The second family refers to inter or intra table shrinking,

restructuring or intra table amendment, which indicate a Maintenance nature.

Maintenance

Case:
Table Shrinking or Table Restructuring

Metric (in number of attributes):

#table_born + #table_gone

67

e Case:
Intra-Table Shrinking or Intra-Table Restructuring

Metric (in number of attributes):

#injected + #ejected
e (ase:
Intra-Table Amendment

Metric (in number of attributes):

#data_type_updated + #key_updated
Growth
o Case:
Table Expansion

Metric (in number of attributes):

#table_born - #table_gone
e Case:
Intra-Table Expansion

Metric (in number of attributes):

#injected - #ejected

We assume that a release is characterized with respect to both the Growth and
Maintenance families. The value of the family metric of a release is the
aggregation of the metrics of the activity characterizations it has (analyzed in
4.1.1).

4.1.4 Intensity of Change Family

Each release’s growth and maintenance can be labeled with its intensity level.
So, each of the two families can also be labeled as Zero, Low, Medium or High.
Of course, the problem is how to compute the thresholds that differentiate
subsequent intensity levels — e.g., at which amount of change do we stop
labeling activity as Low and start labeling it Medium?

68

Our approach to the problem is based on the distribution of the values for the
entire list of releases, for each of the two families. Take for example, the
Growth family. We take all the values of the Growth family for all the releases
of the data set and sort them in ascending order. Then, we cut this series in
two places, one for the border between Low and Medium and another for the
border between Medium and High. Figure 40 depicts the intensity levels for
both Growth and Maintenance based on the index of the sorted release list for
all the datasets. Observe the universality of the pattern of the lines; thus, we
can uniformly apply the same rules for all data sets. Specifically, a release’s
family intensity is characterized by the following rules:

e Zero:
The value for the family’s metric is zero.
e Low:

The value for the family’s metric is lower than the value of the same
metric of the release indexed in the 80% of the corresponding list.

e Medium:

The value for the family’s metric is equal or higher than the value of
the same metric of the release indexed in the 80% and lower than the
95% of the corresponding list.

e High:

The value for the family’s metric is equal or higher than the value of
the same metric of the release indexed in the 95% of the corresponding
list.

We normalize the Growth and Maintenance metric values with respect to the
max value of each metric in order to use these normalized values in the next
step of the release clustering. Figure 41 depicts via scatter charts the values of
normalized Growth and Maintenance metrics for all datasets. For the largest
datasets we provide zoomed-in areas of these scatter charts.

69

Py
Biosql: Growth
. 80% | 95%
Low |Mediun Hig!
=
i
= 1
s
o
f 2] B s s ’ . s n n u
reeases sorted by growth metrc
0
Ensembl: Growth 0% o
Lew | Medium | Hi
0

95%

Medium

r

owth matric
[
—

Biosql: Maintenance 80%

Mediu

05%
M Hij

releases sorted by maintenance metsic

Ensembl: Maintenance 0%

Medium

Mediawiki: Maintenance

I
?

ST RNIRARAAMRARAGNSSIFRARLSNECIEIRIARNIIINAAG
releases sorted by gramth metric.

BU%

Medium| High

AMERAIRER

PARRGEHETEE
raleases soriad by maimtanancs matric

a
Opencart: Growth 0% % Opencart : Maintenance 80% 95%
: ot | ediam | igh o Low | Medium| Hph
"
om0
G
i i
i H
15 g
0 i
1900 1
u
w |
' — - ZA
L4 4 s et 4 amu 2w osp 4w oEroamoanx © 1 3 s 4 s e 7 8 5 o®ouom B oMol oU W oLHnB DB
ot g ralsssos sortad by matiic
a0 o
- PhpBB: Growth bl PhpBB: Maintenance 20% —
Low | Medium | Iigh
| Low | Medium| High

o

Wediom

prowth metric

releases sorted by maintenance metric

-
Typo3: Maintenance o
| Low
|
|
w |

95%

Medium | High

relessas serted by growth metre.

1134567 a00unIRsEY 2 sun

leases sorted by maintenance metric

Figure 40 Intensity Levels of Change Families

70

Biosql
1
°
g
g 08
-
£
£ 06
=
o
S04 4
s
E ?
5 02
2
o
0 02 04 06 08 1 12
Normalized Growth
12 Ensembl 025 Ensembl:ZoomIn
°
2 b o024
5 5
1 <
& %2 PR,
E Eois
-] 1
S os s
° | T o1
ERTR 5
2 s
E go,os 7
27 z " * $
POV Z VDU - &= 0 g 2
0 02 04 06 08 1 12 0 0,02 004 0,06 0,08 01 0,12
Normalized Growth Normalized Growth
. Mediawiki - Mediawiki: ZoomIn
g g
g1 € 024
2 2
s s
Eos £
£ = 015 %
N s b
S 06 ° 3
3 ol
i 04 = b 4
E E oo
S0, S
2 ‘ 2
o8 3 %15 5o PUNDUEPUS SEPUN 0 E . .
0 02 04 06 08 1 12 0 005 01 015 02 025 03
Normalized Growth Normalized Growth
12 Opencart
o
o
€ 1
c
]
£ o8
s
E 06
°
i
T 04
E
]
Z o2
048 *
0 02 04 06 08 1 12
Normalized Growth
12
. Phpbb 027 Phpbb : ZoomIn
g M
] 2 022
g g
2 o8 [}
s £ 017 °
2 o6 } °
K E 012
£ o i
T 007
Z 002 2 *
* e . o
0.2 04 06 08 1 12 0,03 (L 0,005 0,01 0,015 0,02 0,025 0,03
Normalized Growth Normalized Growth
Typo3:ZoomIn
12 Typo3 02 YP
@
g 14 5
5 80,15
§ 08 E s
E £
B 06 £ 01
2 o
§ 04 E *
3 2005 N
£ o2 4 5
g . °] R . - .
5 0 - 0% % o
02 04 06 08 N 13 0 0,02 0,04 0,06 0,08 01 0,12

Normalized Growth

Figure 41 Normalized Growth and Maintenance scatter charts for all datasets

71

Normalized Growth

The characterization rules can be summarized as shown in Figure 42.

Activity Condition Metric Family
Table Expansion #table_born-#table_gone>0.3(#table_born+#table_gone] #table born-#table_gone Growth
Table Shrinking #table_gone-#table_born>0.3(#table_born+#table_gone) #table_born+#table_gone Maintenance
Table Restructuring else #table_born+#table_gone Maintenance
Intra Table Expansion #injected-#ejected>0.3(#injected+#ejected) #injected-#ejected Growth
Intra Table Shrinking #ejected-Hinjected>0.3(#injected+#ejected) #injected+iejected Maintenance
Intra Table Restructuring else #injected+itejected Maintenance
Intra Table Amendment #data_type updated+#key_updated>0 #data_type_updated+ikey updated Maintenance

Figure 42 Release Characterization Rules

4.2 Release Clustering

The second step of our algorithm performs hierarchical agglomerative
clustering using the vectors produced by the previous step. The main goal of
this step is to merge similar consecutive releases to clusters in order to create
candidate phases and calculate evaluation measures for each candidate
segmentation of the schema, which are needed for the next step of our
method.

We implemented a Hierarchical Agglomerative Clustering algorithm that
takes as input the releases of the schema and their Change Family metrics’
values [4.1.3]. As it is known, an agglomerative clustering algorithm starts
with each point (here a release) as a different cluster and, progressively, at
each step, merges the two closest clusters until only one cluster (or k clusters
if accordingly set) remains. In our setting, the proximity matrix of the
Agglomerative algorithm is updated in each step using the average-linkage
distance method.

To calculate the distance that two releases have with each other we use the
Maintenance and Growth metrics described in 4.1.3. For each release we
normalize the values of the maintenance and growth metric with respect to
the maximum value of the corresponding metric. We define the distance
between two releases as the Euclidean distance of the normalized growth and
maintenance values.

Notation: we denote the normalized maintenance score of a release Riwith M/,
the normalized growth score with G;" and the distance of two releases via &.

§(Ri,Ry) =N (M} —M3)2 + (Gf —G3)?

72

Type of Change
Inter-Table
Inter-Table
Inter-Table
Intra-Table
Intra-Table
Intra-Table
Amendment

One of the distinctive characteristics of our method is the need to customize
the agglomerative clustering algorithm to our setting. Our intention is to
cluster together adjacent releases, so as to construct contiguous phases. Thus,
there is no need to attempt assessing the distance (and thus, to possibly
merge) phases that are not adjacent. Thus, our implementation only merges
clusters/releases that are consecutive in time.

The entire process is presented as an algorithm in Figure 43.

Algorithm : Candidate Phase Extraction via Agglomerative

Hierarchical Clustering

Input: A list R={ry,...,r,} of n releases and for each r; a normalized_growth value
and a normalized_maintenance value

Output: a set C={cy,...,cn} of m cluster sets (each one being a merging step of the
algorithm) and for each ¢; the silhouette, cohesion and separation values

1. Startwith each release r; as a separate cluster

Foreach pairr;, r; , where r; is adjacent to r;, compute the Euclidean

distance of their normalized_growth value and the
normalized_maintenance value
a. Mergethe two closest adjacent releases
b. Computethe silhouette, cohesion and separation values of the
current cluster set ¢; and add itto C
3. ReturnC

Figure 43 Algorithm : Candidate Phase Extraction via Agglomerative
Clustering

4.3 Clustering Evaluation

After the clustering procedure of each dataset is done, we need to evaluate
each step of the agglomerative algorithm in order to decide which clustering
step is the best and should be used as a guide to extract phases of the
schema’s life. In order to decide which solution should be considered as the
best one, we need to ensure the quality of the solution both based on
clustering evaluating measures and the similarity with our ground truth. Both
types of measures used will be described in this subsection.

73

Silhouette. The first of these methods is Silhouette[Rous87], a method of
interpretation and validation of consistency within clusters of data. This
method shows how well a point (here a release) is matched with its cluster. It
uses the average dissimilarity that a certain point has with every point in the
same cluster and the average dissimilarity it has with every point in every
cluster it is not a part of. The original Silhouette type for a data point piis as
follows:

b(p;) —a(p;)

—_—t ith
max (b)) at}

s(p) =
b(pi) the lowest average dissimilarity of pi to any other clusters to which
it does not belong to, and

a(pi) the average dissimilarity of pi to the rest of the points within the
cluster to which pi currently belongs to

The lowest value Silhouette can have is -1, while the highest is 1. In order to
say that we have a well clustered dataset we want a Silhouette value that is
very close to 1. Typically, Silhouette values in the range of 0.2 to 0.5 are
considered to be fair.

Because our clustering implementation only considers merging consecutive
clusters in time, for our purposes we modified the original Silhouette type so
that the lowest average dissimilarity (b(i)) is computed only for adjacent

clusters.

Assume a cluster set C = {Cy, ...,Co} which is a possible clustering of the
history of a schema in phases. Then, we define the adjacency clustering
silhouette value, denoted as s*¥ for an arbitrary release Ri is defined as

b% (R;) —a(R;)

adj) =
s (R;) max {b*Y (R ,a(R)}’

with

badi(Ri) the lowest average dissimilarity of Ri to the clusters adjacent to
the one Ri currently belongs to, and

a(Ri) the average dissimilarity of Ri to the rest of the releases in the
cluster to which Ri currently belongs to

Finally, the adjacency clustering silhouette value for a cluster set is the average
value of the respective adjacency clustering silhouette values of all the
clusters belonging to the cluster set.

s*4(C) = avg{s*i(C), ..., s*(Cn)}

74

Figure 44 shows the Silhouette value of each merging step of the
Agglomerative algorithm, for every dataset.

Biosql : Silhouette . Ensembl : Silhouette

04 %
04
02 02
0)

6 7

12 15 9 1317 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 B1 85 89 93 97 101105109 113}117121

04 Agglomerative Step

06 Agglomerative Step 08

o¢ | Mediawiki : Silhouette o Opemcary: Sllhoustte

2/1 2 3 4 5 6 7 8 9 1011 121314151617 18 19 20 21 22 23 24 b5 2

Agglomerative Step 04

Agglomerative Step

°**" Phpbb : Silhouette ° Typo3 : Silhouette

04

02

12345678 910111213141516171819202122232425262728293031323334 3 363738394041 42434445 Baat] = SRR B SUHSNSEI I0IAGIIANRIARATIINGAS aAEALIES SraTisen

04 Agglomerative Step 04 Agglomerative Step

Figure 44 Silhouette values for each merging step of the Agglomerative
algorithm and Silhouette distances for every transition of merging steps.

Cohesion and Separation. The second set of evaluation methods we use
includes the combination of two metrics, namely cohesion and separation.
Cohesion and separation in [TaSKO05] are defined as the following two
formulae:

Cohesion(C;) = zxea proximity(x,y)
yeCi

separation(C;, G;) = era proximity(x,y)
yeCj

We decided to intervene in the definition of the two measures. The reason lies

in the fact that our clustering implementation is a modification of the original

Agglomerative algorithm (it only considers consecutive clusters for merging),

so we modified the two formulae in an appropriate manner with respect to

out implementation. We define the cohesion value of a cluster as the opposite
75

of the average distance that every release has with all releases in the same
cluster.

We assume a schema history including 7 releases and a cluster set C = {c;,
...,cm} containing m possible segmentations of the schema history. We also
define dist(r;j) the distance that two of those releases have with each other.
Assume a release ri belonging to cluster c. We define the ClusterFitness of rias
follows:

ClusterFitness(ri) = - avg{ dist(r, 1) }, r#rj and rirj€ c

We assume a cluster set C over {r1, ...,r} with n releases. The cohesion value of
C is defined as follows:

Cohesion(C) = avg{ ClusterFitness(ri) }, foreach ri € C

The lowest value cohesion can have is the opposite of the largest distance
there is for each dataset, while the highest is 0, where all releases in the same
cluster have 0 distance. The higher the cohesion value, the better the
clustering step, as we want each point to have the smallest distance possible
with all the other points in the same cluster.

We define the separation of a cluster as the average distance that every release
has with all releases in adjacent clusters.

We define a cluster set C = {Cy, ...,Cn} with n clusters, a cluster C= {r1, ...,I'm}
with m releases and dist(r; ;) the distance that two of those releases have with
each other. Each release ri has a separation value as follows:

Separation(ri) = avg{ dist(ri 1)) }, r#rj ,ri€ Ci,rj€ Cijwith Ci# Cjand Ciand Cjare
adjacent

We assume a cluster set C = {ry, ..., 1n} with n releases. The separation value of C
is defined as follows:

Separation(C) = avg{ Separation(ri) }, foreach ri € C

The lowest value separation can have is0, while the highest is the largest
distance there is for each dataset. The higher the separation value, the better
the clustering step, as we want each point of each cluster to have the highest
distance possible with all points from other clusters.

We normalize the average separation and cohesion values of each cluster set
with respect to the min and max corresponding values as follows:

76

NormalizedCohesion:

cohesion(C;) - minCohesion

normalizedCohesion(C;) = - - -
() maxCohesion - minCohesion

NormalizedSeparation:

separation(C;) - minSeparation

normalizedSeparation(C;) = - : -
maxSeparation - minSeparation

We can combine these two values in a single metric Normalized Clustering
Quality (NCQ)

NCQ(G) = normalizedSeparation(G) + normalizedCohesion(Gi)

Figure 45 depicts the normalized cohesion and normalized separation values,
while Figure 46 depicts the sum of the two normalized metrics. Both figures
show the corresponding values for each Agglomerative step and for each
dataset.

In order to extract the best phases, we considered all the possible evaluation
metrics presented in figures 44, 45 and 46. The Silhouette metric for the
majority of the datasets has its highest values for cluster sets with quite high
number of clusters in the orders of half the number of releases (practically,
average cluster size is about 2 in these solutions). Having empirically
evaluated the phases of each dataset in Section 3.2, we consider such solutions
not desired.

When considering the sum of Normalized Cohesion and Normalized
Separation, however (Figure 46), we observe that there is a critical area of
approximately 10 or less clusters (practically the area of solutions at the
rightmost part of the respective plots in Figure 46) where (a) the combination
of the two measures gives a satisfactory compromise, (b) the number of
clusters is close to the golden standard of Section 3.2, (c) the sum is
maximized, and (d) the value of the measure reaches fairly higher values than
the rest of the plot, for several points in this critical area.

Our analysis is thus, restricted to this critical area of potential solutions; as we
shall see, the most compatible solution with respect to the golden standard is
also found in it. We have also observed that this area has the second best (or
even best for Typo3) silhouette values.

77

& 1 1 F} 1 1
2 z =
3 g 3
< o8 o83 Sos ~a—Norms 08
g o —a—NormSeparation 83 §o jormSeparation :
s g ¥
E g B
s 2 35
2 ~=—NormCohesion
gos —s—NormCohesion 062 3§08 of
3 FA
H s 8
H g =2
3 04 043 HOA 04
E £ 3
H £ 2
02 02
02 | o, 02 Ensembl .
Biosql
[0 o [
- " 147101316 1922 25 28 3134 37 40 43 46 49 52 55 58 61 64 6770 73 76 79 82 85 88 31 94 97 100103061091 12115118121
Agglomerative Iteration Step Agglomerative Iteration Step
12 1,2
12 12

°
®
4
®
(4
®

°
13
anjeA uoisayo) paziewion

~=—NormSeparation —s—NormSeparation

—=—NormCohesion
~=—NormCohesion

°
»

°
C3
anjeA UoISaYO) PazIEULION
°
Y

Normalized Separation Value
y
B3

Normalized Separation Value
° °
=

o2 Mediawiki 2 02
Opencart
[] ° ° o
5255 58 61 64 67 70 75 76 79 82 95 88 S1 54 97 100103106109112)% -
Agglomerative Iteration Step Agglomerative Iteration Step
12 12
1,2 1.2
1 1

H z 1 it
2 s T -
2 3 3 2
so8 —a—NormSeparation osk T ., il
5 g 8" —&—NormSoporation]
" B H
206 ~=—NormCohesion 068 Fac o
s FI —=—NormCohesion 3
H § 3 £
2 H 5
s048 08 2 04 043
E £ E s
2 -] -4

02 oz =iad 02

Typo3 eniiae
0 o 0 leeeansseaawes o
1203 4% 678 510011213 541515 1748192021 22 1320 25 3627 2633 30 1132 33 34 35 36 3738 38 4041 4243 &4 45 12345678 510011203 14 151617101920 21222004 2536 27 192930 31323 14 3536 373030 40 414243 84484 783508152
Agglomerative Iteration Step Agglomerative Iteration Step

Figure 45 Normalized Cohesion-Separation values for each Agglomerative
iteration step for all datasets

A final evaluation procedure we considered was to compare the differences
(in phases) of our golden standard with the phase extraction of the top points
of NCQ (seen in Figure 46). To do so, we calculated a new measure, Lag, that
is defined as follows. We assume a set H = {r, ...,7.} with n releases. We label
each release with a schema history including the phase to which it belongs
and denote this labeling as phase(ri) € N. Each phase(ri) is a number with the
phase ri belongs to, e.g., if phase(rs) =1, this means that rs belongs to phase 1.
Assume now two different segmentations of the history, for example a
manual golden standard T={phase’(r1),...., phase’(t:)} and an algorithmically
produced segmentation A={phase(r1),...., phase’(t:)}. Then the Lag between the
two clusterings is the average difference of phase id, over all releases, for the
two labeling. Lag is defined as follows:

" abs(phase?(r;) — phase’ (7))
n

Lag(A,T) =

78

anjeA uoIsaYOD pazIRWION

- Biosql: » Ensembl:
' Sum of Normalized Cohesion and Normalized Separation 4| Sum of Normalized Cohesion and Normalized Separation
22
v 0
1 2 3 4 5 6 § 8 Y 10 11 TN 2N RNRERRNRS TS INNACIORRRREBBEI5ESEENASR
Agglomerative Iteration Step Agglomerative Iteration Step

16
:]

14

) M 1

1 ® W

08 1 /
08

06

. L1, 06 .
i Mediawiki: _ Opancart: . .
Sum of Normalized Cohesion and Normalized 94 sum of Normalized Cohesion and Normalized Separation
0, 02
0 o
1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88 91 94 97 100103106109 1 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
Agglomerative Iteration Step Agglomerative Iteration Step

18
16
15 14
M e
1
1

0s X

os Phpbb: Typo3:
04 adcakac oad :

N iood Coheci oad :
Sum of Nor C and Nor paration Sum of Nor G and Nor p 1

02

o 0

12345678 0910111213141516171819202122232425 262728293031 32 3334 35 3637 38 39 4041 42 43 4 1234567 8910111213141516171810202122232425 262728293031 323334 35 36373839 40414243 4445 46 47 48495051
Agglomerative Iteration Step Agglomerative Iteration Step

Figure 46 Sum of Normalized Cohesion and Normalized Separation values
for each Agglomerative iteration step for all datasets. The critical area of
candidate final clusterings is depicted in the orange box for each data set.

Figure 47 depicts the top candidate algorithmically produced solution per
dataset. We examine the top solutions based on NCQ, find the Lag value of
misclassified releases per solution and rank them with respect to both Lag and
NCQ.

Biosql (#clusters@goldenStandard=3) Ensembl (#clusters@goldenStandard=8) Mediawiki (#clusters@goldenStandard=7)

#iclusters Lag Rank wrt Lag Rank wrt NCQ, ‘#clusters ” Lag ‘|Rank wrt Lag HRank \""s 4\ [6o] #clusters Lag Rank wrt Lag Rank wrt NCQ
Solution 1 3 0 1 1 7 1,17 1 1 5 0,93 1 2
Solution 2 9 1,2 2 4 12 3,75 3 3
Solution 3 11 1,55 3 2
Solution 4 13 2,13 4 3

Opencart (#clusters@goldenStandard=4) Phpbb (#clusters@goldenStandard=5) Typo3 (#clusters@goldenStandard=6)

H#clusters H Lag ‘|Rank wrt Lag ||Rank \'sd 6o} #clusters Lag Rank wrt Lag Rank wrt NCQ ‘#clusters H Lag ‘|Rank wrt Lag HRank wrt NCQH
Solution 1 4 1,7 2 1 3 1,02 3 2 4 2,15 3 1
Solution 2 7 0,96 1 2 5 0,78 2 1 6 1,83 2 2
Solution 3 11 2,56 3 3 7 0,71 1 3 7 1,33 1 3

Solution 4

Figure 47 Top candidate algorithmically produced solutions per dataset
79

We observe that the value of misclassified releases for the top NCQ solutions
mainly ranges from 0 to 2. This means that our algorithm performs well, as
the top solutions of NCQ that our method produces, are very similar with
those of Section’s 3.2 golden standard. We additionally see that, the solution
with the minimum Lag value, for every single one of the studied datasets, lies
within the top-3 solutions with respect to NCQ, thus making NCQ the best
possible measure for evaluating the solutions.

The details of the algorithmically produced best solutions, along with the
classification of their phases, are presented in 4.5. Before that, though, in
Section 4.4, we present the method that produces these classifications.

4.4 Phase Classification

Once the third step of clustering evaluation and phase extraction is completed
and we have the winner solution for each dataset, we now must classify each
release with respect to its evolution profile. The release characterizations we
produced during the first step of our method are not enough, as we want the
characterization of a phase to be representative of the evolution activity as a
group and not based on each release’s individual evolution. For this reason,
we continue with the next step of phase classification. The procedure of phase
classification consists of two steps.

The first step is the computation of histograms for each phase of the schema’s
life. We compute one histogram for the intensity of Growth and another for
the intensity of Maintenance, for each phase (i.e., cluster of contiguous
releases) of a candidate segmentation of the history of a schema. The second
step is a rule-based classification method based on these histograms and
ultimately labeling a phase with respect to the nature and intensity of the
changes it performs.

4.4.1 Histogram Computation

Each phase is a set of consecutive releases of a schema’s life. Each release as
mentioned above has been labeled with change families and the intensity of
these families.

A release has a measure for the Growth family, and another for the
Maintenance family. This means that each release is considered as a two

80

dimensional (Growth, Maintenance) vector. Based on this measure, each of
these families is labeled with a Zero, Low, Medium, or High intensity.

For each phase of the schema, which is ultimately a list of adjacent releases,
we compute the histogram for Growth and Maintenance. For each of these
two dimensions we count how many releases had a Zero, Low, Medium, and
High value, thus producing four buckets for the histogram. Then, the
histogram of the corresponding phase for the corresponding change family is
computed as the percentage of releases in the phase that have the
corresponding dimension value.

Figure 48 shows an example of the Agglomerative clustering of Mediawiki
with 5 clusters. Each color represents a cluster. The x axis represents the date
of the latest commit of each release; the positive numbers of the y axis show
the normalized growth and the negative numbers the normalized
maintenance. It should be noted that the chart of Figure 48 has an offset of
0.05 for both the normalized Growth and Maintenance values in order to be
able to visually depict the Zero values in a distinctive way. Figure 49 shows
the growth and maintenance histograms computed for each cluster shown in
Figure 48.

Mediawiki : 5 phases

1,0000

0,5000 ‘ ‘ |
0.0000 |1 THrT

(1T 1 1 | I (W] 1] L
| m 1 I | | | | I ‘ L1} 1
0,5000

normalized growth

-1,0000

normalized maintenance

-1,5000

11-2003

date of the latest commit of each release

Figure 48 Agglomerative clustering example of Mediawiki with 4 clusters

81

growth_cluster: 0 maintenance_cluster: 0 growth_cluster: 3 maintenance_cluster: 3

Low Mediu High Zero Low Mediur High Zero Low Medium High Zero Low

Wz Low [l Medium [l High Wz Low [l Medium [l High W z=c Low [l Medium [l High W z=c Low

Medium

W Medivm [l High
growth_cluster: 1 maintenance_cluster: 1 growth_cluster: 4 maintenance_cluster: 4
S &0
I |
Zero Low Medium High Zero Low Medium High Zero Low Medium High Zero Low Medium
Wz Low [l Medium [l High Wz Low [l Medium [l High W z=c Low [l Medium [l High W z=c Low [l Medium [l High
growth_cluster: 2 maintenance_cluster: 2
60 4
1 . : I I
Zero Low Medium High Zero Low Medium High
Wzeo tow [l Medium [l High Wz Low [l Medium i High

Figure 49 Growth and Maintenance histograms of the clusters of Mediawiki
shown in Figure 48

4.4.2 Classification

After having computed the Growth and Maintenance histograms of the
corresponding phases, the remaining step is their classification. For the
classification process we follow a rule-based procedure with respect to the
possible values of the two dimensions of the winner release. As already
mentioned each phase consists of a list of adjacent releases and has two
histograms, one for each of the two change families.

A phase will be characterized according to the value of the winner of each histogram.
The Zero and Low intensities dominate the histograms most of the times as the
calmness seems to be the default state of the schema. Figure 50 depicts the
detailed percentages of Growth and Maintenance intensity percentages for all
6 datasets. More specifically, the percentage of releases that have Zero or Low
Growth for our datasets is between 83% and 89% and the percentage of
releases that have Zero or Low Maintenance is between 82% and 87%. Thus,
the importance of having Zero or Low intensity is small and the occurrences of
Medium or High intensities have greater significance.

82

High

High

On the contrary, High intensities are very infrequent and are the most
important ones. High Growth and High Maintenance percentages both range
from 4% to 8%. Medium intensities, although not so rare as High, are also quite
infrequent. Medium Growth percentages are between 7% and 12% for our
datasets, and Medium Maintenance between 8% and 13%.

Keeping these facts in mind, higher intensities take precedence on lower ones.
This does not mean that if we have a phase of several Low intensity releases
and only one High intensity release the entire phase will be characterized by a
single release. We consider the duration of a phase in number of releases. A
set of high intensity releases of a phase will characterize it only if it is at least
the one quarter of the phase’s population. The rules of the winner selection
for both histograms are as follows:

— If High%>threshold then winner=High
— Else if Medium%>threshold then winner=Medium

— Else if Low%>threshold then winner=Low

— Else winner=Zero

The threshold is empirically set to 0.25 to honor the one quarter of the
population rule we discussed above. Different thresholds were tested and due
to this empirical study we consider the 0.25 threshold as the best possible.

Growth

dataset %Zero %low %Zero+%low %Medium %High

Biosql 75% 8% 83% 8% 8%
Ensembl 45,9% 37,7% 83,6% 11,5% 4,9%
Mediawiki 51,8% 33% 84,8% 10,7% 4,5%
Opencart 63% 25,9% 88,9% 7,4% 3,7%
Phpbb 64,4% 20% 84,4% 11,1% 4,4%
Typo3 53,8% 28,8% 82,6% 11,5% 5,8%

Maintenance
dataset %Zero %low %Zero+%low %Medium %High

Biosql 33,3% 50% 83,3% 8,3% 8,3%
Ensembl 20,5% 62,3% 82,8% 12,3% 4,9%
Mediawiki 29,5% 55,4% 84,9% 10,7% 4,5%
Opencart 29,6% 55,6% 85,2% 11,1% 3,7%
Phpbb 17,8% 64,4% 82,2% 13,3% 4,4%
Typo3 19,2% 67,3% 86,5% 7,7% 5,8%

Figure 50 Growth/Maintenance intensity percentages
83

Based on the winner values of each dimension and each phase we define the
following phase classification rules:

1. Class:

Minor Activity (with growth/maintenance spike(s))

Condition:

{(Low or Zero) Growth, (Low or Zero) Maintenance}
2. Class:

(Medium or High) Maintenance

Condition:

{(Low or Zero) Growth, (Medium or High) Maintenance}
3. Class:

(Medium or High) Growth

Condition:

{(Medium or High) Growth, (Low or Zero) Maintenance}
4. Class:

High Maintenance — Medium Growth

Condition:

{Medium Growth, High Maintenance}
5. Class:

High Growth — Medium Maintenance

Condition:

{High Growth, Medium Maintenance}
6. Class:

Restructuring

84

Condition:

{Medium Growth, Medium Maintenance}
7. Class:

Intense Evolution

Condition:

{High Growth, High Maintenance}

Figure 51 depicts a mapping of the aforementioned phase classification rules.

MAINTENANCE

L M H
a
G 1 2
R
0
W'm 3 1
T 3
H
H 5 7

Figure 51 Mapping of Phase Characterization Rules

4.5 Top Phase Extractions

As described in 4.3 and seen in Figures 46, 47 we present the best phase
extractions for the studied datasets along with their classification based on the
rules of 4.4.2

All the Figures of this subsection show a table with the basic statistics of each
phase extraction solution (growth, maintenance winners, percentages of each
intensity, classification etc.) and each phase is colored the same color as it is
shown in the chart below the statistics table. All charts’ x-axis’ points
represent the date the last commit of each release was made. Y-axis” positive
numbers represent the normalized growth value of each release and Y-axis’
negative numbers represent the normalized maintenance values. It should be
noted that each release point has an offset of 0.05.

85

Biosql. Biosql is a set with a small number of releases (12) and an easy
dataset to perform phase extraction to. Our golden standard totally agrees
with the top solution our method produced. There are zero misclassified
releases and the phase extraction and classification of Biosql consists of 3
phases and is presented in Figure 52.

0 0,80 0,00 0,20 0,00 0,00 0,80 0,20 0,00 Zero Low Minor Activity with growth and maintenance spike(s)
1 0,00 0,00 0,00 1,00 0,00 0,00 0,00 1,00 High High Intense Evolution
2 0,8 017 0,00 0,00 0,67 0,33 0,00 0,00 Zero Low Minor Activity

1,5000

1,0000

o
[=]
=]
=1
=]
—
—
—
R
—
=——
—
—

-1,0000
Bphl Wph2 Mph3

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

Figure 52 Phase Extraction and Classification of Biosql with 3 phases

For Biosql there was a phase of Minor Activity with some growth and
maintenance spikes then a huge spike of Intense Evolution and then finally a
long period of Minor Activity.

Ensembl. Ensembl is the dataset with the largest amount of releases and
based on the best possible phase extraction of our method contains 7 phases
and is presented in Figure 53. Other possible extractions based on our
evaluation are presented in Figures 54, 55 and 56 with 9, 11 and 13 phases
respectively.

Ensembl’s first phase is classified as a period of Medium Maintenance followed
by a spike of High Growth — Medium Maintenance. The third phase is classified
as a Medium Growth period and then a spike of High Maintenance appears.
Then we have a phase of Medium Growth again followed by a spike of High

86

9T0T-1T STOT-IT PTIOC-IT ET0Z-TT ZTOT-TT TIOZ-TT OQTOZ-TT GOOT-TT BOOZ-IT L00T-TT 900T-IT SO0Z-IT WOOT-TT €O0OC-TT TOOT-IT TOOZ-TT QO0Z-IT 6G66T-TT
00057

ydm aydm sydm pyd m eydm ydm ydm

0000°T-

- 000S'0-

_____________: _________ | ___ ___________ I _J______ _:;__— __ _A__— _

——

- 0000'T
- 00057
(s)@xi1ds soueuaUIEW PUE YIMOIE YIIM AR JOUIIN Mol Mol Z0’'0 60'0 <00 €0 zo'D 900 w0 sv'o o
3oueuslUEA YBIH ydiH 018Z 00T 00°0 000 000 000 000 000 00T S
Y1MoID WnIpapy mo1 wnipa 00°0 €10 080 L0'0 £0D €E0 0z'o or'o ¥
2oueuaIURA UBIH yBiH 019Z 00T 00°0 000 000 000 000 000 00T €
LMOID WNIP3IN Mol Wnips €T°0 £T°0 050 ST €TI0 STO T 80 T
SOUBUSUIEIN WNIPSIA - YIMoID YyBIH wnipa ydiH 00'0 00'T 000 000 00T 000 000 000 T
30UBUSIUIBN WNIP2A wnipan Mol 000 00'T 000 000 000 000 050 0s'c o0

UOPEIYISSE[D JBUUIMBIUBUIIUIEW 1Buuimyineld IWwySiy wwnipaw | jumo] ez oysly ownipaw ome| oosez geseyd

Maintenance. Finally, again we have a last long phase of Minor Activity with

several growth and maintenance spikes.

Figure 53 Phase Extraction and Classification of Ensembl with 7 phases
87

9T0Z-TT STOZT-TT #IOZ-TIT ETOL-TT ZTOL-TT TIOZ-TT OTOZ-TIT 6O0T-TT 800T-IT L007-TT 900711 SOOZ-TT #OOZ-TT €00Z-1T Z00C-TT TOOZ-IT OO00Z-TT 666T-1T

0005'T-
Guyd | gudm ydm gudm sudm rydm sydm udm ydm
| 0000'T-
- po0s'er
_*___________ I _________ | :_ _______;_ I _;___7___, _‘_: - : -
I 00050
0000'T
0005'T
[slay1ds cueuauIew pue YmouE yim AJAIDY Jounn ma mol $0'0 60°0 st'0 &0 o00'0 to0'0 sE'0 190 8
ywnean yEIg Mol ysiH 00'0 000 00'T 000 00T 000 o00'oc 000 £
[s)=ids 3auBUSUIBW PUE YIMOJE L AIAIIY JoUIN mal maol zo'o 0T0 €0 910 00 90’0 80 t¥r'o 9
aoueuauIEl YEIH YSiH 0J3Z 00T 000 000 000 o000 000 000 00T S
LIMoaD wnipagy Mol wnipay 00'0 €10 080 L00 (0D €£0 0z'0 o¥'o ¥
aoueuauIEl YEIH YSiH 0337 00'T 000 000 000 o000 000 000 00T €
LIMoAD wnipagy ma wnipa €10 €10 05’0 sg'0 ET0 ST sZ'0 880 T
3JUBUIUIBK WNIP3IN - YIMOID YEIH wnipaw ysiH 000 00T 000 000 00T 000 000 000 T
3IUBLSUIE WNIP3W wnipap Mol 000 00T 000 000 000 000 0s'0 0s'0 O

UOIEIYISSE]] | JIUULWAIOUBUSIUIEW JSUULMYIMOIE INYSIY | INWNp3W INMO] IN0J3Z DYS1y Dwnipaw omo] posaz geseyd

Figure 54 Phase Extraction and Classification of Ensembl with 9 phases
88

9T0L-TT STOZ-IT ¢T0Z-TT ET0Z-TT ET0Z-TT TIO0Z-TT OTOZ-IT 6GO0OZ-TT 80011 L00Z-TT 900Z-1T SO0T-IT tOOZ-TT €00¢-TT Z002-1T TOOZ-TIT O0002-TT 66e6l-1T

0005'T-
TTydm oTydm Gydm sydm Lydm aydm sydm rydm eyl m ydm dm
- 00001
- o00s'er
______* _ _A__ I _7___ HHH _ N __ _________3 __7_ _;__ __, ___; ___7 _A 7 _ 7 _7 -
- 00050
- 0000t
000s'T
(s)@q1ds ueuzuIRW YA AJIAIY JOUIN o mol 500 S00 gr'0 E¥0 000 000 g0 790 o1
Bunnanasay wnipaw wnipaw 000 00°T o0'c 000 000 00T 000 000 6
Ayanay Jounw ouag 3z 000 000 o0'c 00T 000 000 o0'c 00T ®
Ypmoan YysiH mal ysiH 000 000 00T 000 00T 000 000 000 ¢
{s)aqids 3aueusiuiew pue yImoJd LpIm AjaRdY Jouin Mol mol 20’0 OT'o €40 910 o' 900 8r'0 t¥0 9
FueuaguIep YEIH CE] 037 00T 000 00'0 000 000 000 000 00T S
YInoUg Wnip3ajy mal wnipaw 00'0 £T0 080 00 L0'0 EED 0Z'0 oOF0 ¢
FueUIUIEW YEIH UEIH 037 00T 000 o00'c 000 000 000 000 00T €
YImous wnipagy o wnip3y 10 ET0 05’0 ST0 ET0 STO ST0 880 T
SIUBUIUIE WNIP3Y - YmodD YEIH wnipap YFIH 000 00T 00'c 000 00T 000 000 000 T
ITuBUAUIEW WP wnipaw mol 000 00T oo'c 000 000 000 0so oso o

JIULIANROUBUSIWEW | Uy IMolE ySy wwnipaw | mo] otz oyiiy owmpaw omo] gos2z gRseyd

Figure 55 Phase Extraction and Classification of Ensembl with 11 phases
89

9102-1T STOZ-1T $TOZ-IT ETOZ-TT ZTOZ-TT TTOZ-IT OIOZ-TT &00C-TT 800211 LO0Z-1T 900Z-IT SO0OZ-TT wOOI-TT E00C-TT Z002-1T T0O0Z-T1 O00T-TT 666111

0005'T-
£Iydm Tydm Tydm oTydm Gydm sydm Mem Gydm sydm wydm eyl i m Twm
0000'T-
00050
____________ I ___:; | ___ _______;_ ___ | ___ [*:: K 7 : _7 f {] oo
00050
0000t
0005'T
[s)a¥1ds a3ueuaILIEW U1M ALIAIY JOULY Mo Mo 500 S00 g0 £¥0 000 000 8E0 790D IT
Bunnpnnsay wnipapy wnipaw go'c 00T 000 000 o000 007 000 000 TT
Ay jouny 01z 0437 000 000 000 00T 000 000 00'0 00T OT
y1mols ysiy Mo YsiH 000 00D 00T 000 00T 00D 000 000 6
(s)ay1ds a3ueuaILIEW Y1M ALIALIY JOULY Mo Mol 000 600 €0 8T0 000 000 9e'0 #9390 8§
LaMoIg yEiH Mo ysiH 000 000 00T 000 00T 000 000 000 £
(s)=¥1ds aaueuaiuiew pue YIMoLE yim Ay Jouly Mo Mo 700 01O L0 910 o000 =00 S0 ov0 9
a3ueuaiuiey Ysiy UEIH 0137 00'T 000 00'0 000 o000 000 000 00T S
MO Wnipagy Mmo wnipa 000 £T0 080 £000 00 €£0 0z'o oo ¢
a3ueuIIUIER YEIH CEI] 0137 00T 000 000 000 o000 000 000 00T €
LIMOIT WnIpaiy Mol wnipaw €10 £T0 0S0 SC0 €10 SED sT'0 8E0 T
SIUBUSIUIEIY WRIPSIN - YIMOIT YSIH wripay ysIH 000 00T 00'0 000 00T 000 00'0 000 T
SIUBLSIUIELY WNIP3Y wnipagy Mol 000 007 000 000 o000 000 0s0 0s0 0

UONEIYSSE]]) | JSULIAAIUBUIINIEW | ISUUIAIMOLE | (NUSIY | (NWnipaw | Wmo] 0437 US| Dwinipaw | Do)

Figure 56 Phase Extraction and Classification of Ensembl with 13 phases
90

Mediawiki. Mediawiki also consists of a large number of releases and the top
solution our method produces consists of 5 phases and is presented in Figure
57. Another fair possible extraction is presented in Figure 58 and consists of 12

phases.

Mediawiki’s first phase is a long period that is mostly Minor Activity but
contains a lot of big growth and maintenance spikes. Then we have a phase
(spike) of Medium Growth — High Maintenance followed by a long phase of
Minor Activity that contains spikes of growth and maintenance. The fourth
phase of Mediawiki is a spike of High Growth — Medium Maintenance followed
by a long period of Minor Activity with some maintenance spikes.

0,39
0,00
0,50
0,00
0,75

Bow oo

1,5000

1,0000

0,5000

-0,5000

-1,0000

-1,5000
11-2003

0,36
0,00
0,38
0,00
0,25

11-2004

0,18
1,00
0,09
0,00
0,00

‘ Llllm ol

Wphl

11-2005

0,07
0,00
0,03
1,00
0,00

0,36
0,00
0,21
0,00
0,31

11-2006

0,57
0,00
0,59
0,00
0,53

Wph2

11-2007

0,07
0,00
0,12
1,00
0,13

0,00 Low
1,00 Medium
0,09 Low
0,00 High
0,03 Low

Wph3

11-2008 11-2009

Low Minor Activity with growth and maintenance spike(s)
High Medium Growth - High Maintenance

Low Minor Activity with growth and maintenance spike(s)
Medium High Growth - Medium Maintenance

Low Minor Activity with maintenance spike(s)

‘ I‘ |[|l ‘I'I‘ II ll”llillll |r| |||p‘ H—H | il

pha Wphs

11-2010 11-2011 11-2012 11-2013 11-2014 11-2015 11-2016

Figure 57 Phase Extraction and Classification of Mediawiki with 5 phases

91

0,42
0,00
0,50
0,00
0,25
0,00
0,40
0,00
1,00
0,67

L= I R L R =]

11 075

10000

00,5000

-0,5000

-1.0000

-1,5000
11-2003

0,39 0,19
0,00 0,00
0,50 0,00
0,00 0,00
0,25 0,25
0,00 1,00
0,50 0,10
0,00 0,00
0,00 0,00
0,25 0,08
0,00 0,00
0,25 0,00

ll}lﬁ b

Ephl Wph2

0,00
1,00
0,00
1,00
0,25
0,00
0,00
1,00
0,00
0,00
1,00
0,00

0,39
0,00
0,50
1,00
0,00
0,00
0,25
0,00
0,00
0,17
0,00
031

Ephi

11-2004 11-2005

11-2006

0,53 0,08
1,00 0,00
0,50 0,00
0,00 0,00
1,00 0,00
0,00 0,00
0,55 0,20
1,00 0,00
0,00 0,00
0,67 0,00
0,00 1,00
0,53 0,13

phd Hph5

11-2007 11-2008

0,00 Low
0,00 High
0,00 Low
0,00 High
0,00 High
1,00 Medium
0,00 Low
0,00 High
1,00 Zero
0,17 Low
0,00 High
0,05 Low

| ‘ |‘| ’I”I || M

Ephé

11-2009

Low Minor Activity with growth and maintenance spike(s)
Low High Growth

Low Minor Activity

Zero High Growth

Low High Growth

High Medium Growth - High Maintenance

Low Minor Activity with growth and maintenance spike(s)
Low High Growth

High High Maintenance

Low Minor Activity with growth and maintenance spike(s)
Medium High Growth - Medium Maintenance

Low Minor Activity with maintenance spike(s)

Wph?

11-2010

—_

|H |||||| |r| ||’|‘ Ml | ||H

Wph& Wphd Ephl0 Wphll Wph12

11-2011 11-2012 11-2013 11-2014 11-2015 11-2016

Figure 58 Phase extraction and Classification of Mediawiki with 12 phases

Opencart. Opencart is the second smallest dataset and the top solution
produced by our method consists of 4 phases and is presented in Figure 59.
Other fair possible phase extractions of Opencart are depicted in Figures 60
and 61 and consist of 7 and 11 phases respectively.

Opencart’s first phase is a spike of High Maintenance and then it is followed by
a long period of Minor Activity with some spikes of growth and maintenance
nature. Then there is a phase of High Growth followed by a last Minor Activity

phase.

92

phaselD zeroG lowG mediumG

0 1,00 0,00 0,00 0,00 0,00 1,00 Zero High High Maintenance
1 063 029 0,08 0,00 0,33 054 0,13 0,00 Low Low Minor Activity with growth and maintenance spike(s)
2 0,00 0,00 000 1,00 0,00 1,00 0,00 0,00 High Low High Growth
3 1,00 000 000 0,00 000 1,00 0,00 0,00 Zero Low Minor Activity
1,5000
1,0000
0,5000
0,0000 | M el oo B e
-0,5000
-1,0000

0 1,00 0,00 0,00 0,00 0,00 0,00 0,00 1,00 Zero High High Maintenance
1 000 000 1,00 0,00 1,00 0,00 0,00 0,00 Medium Zero Medium Growth
2 0,64 0,36 0,00 0,00 0,18 0,64 0,18 0,00 Low Low Minor Activity with maintenance spike(s)
3 0,00 0,00 1,00 000 0,00 1,00 0,00 0,00 Medium Low Medium Growth
4 0,73 0,27 0,00 0,00 045 0,45 0,09 0,00 Low Low Minor Activity with maintenance spike(s)
5 0,00 0,00 0,00 1,00 0,00 100 0,00 0,00 High Low High Growth
6 1,00 0,00 0,00 o000 0,00 1,00 0,00 0,00 Zero Low Minor Activity

1,5000

1,0000 -

0,5000 -

00000 | | Ill F— - i HH - |

-0,5000

-1,0000

mphl mph2 mph3 mpha Wphs mphé mph7

-1,5000
B T T T T O s T T T T A . A . . L e O A A Y T T O T Y O T - O - - - -)
AEf 282230 C20232322232 3222223230 20200200 0002222828222 232323%8232232
o0 o 0000000 0000 0C0 000000000000 C 00000 0C0CO0O0C o000 oCo
LI R I R B I I B e B B e R B T B B B I e T B B e R s T B I
D T - - - R B - T ST~ B - A G R - ST Y-S S~ G)
S 3883833882 -neEs8d8sc888Rnna8s8338s8888"rnanaa8888s8s8388=2n

Figure 60 Phase Extraction and Classification of Opencart with 7 phases

93

0 100 000 000 000 000 000 0,00 1,00 Zero High High Maintenance
1 0,00 000 1,00 000 1,00 0,00 0,00 0,00 Medium Zero Medium Growth
2 1,00 000 0,00 000 000 0,00 1,00 0,00 Zero Medium Medium Maintenance
3 000 1,00 000 000 000 1,00 0,00 0,00 Low Low Minor Activity
4 0,67 033 000 000 022 067 0,11 0,00 Low Low Minor Activity with maintenance spike(s)
5 0,00 0,00 1,00 000 000 100 0,00 0,00 Medium Low Medium Growth
6 1,00 0,00 000 000 075 000 0,25 0,00 Zero Medium Medium Maintenance
7 000 1,00 0,00 000 000 1,00 0,00 0,00 Low Low Minor Activity
8 0,80 0,20 0,00 000 040 0,60 0,00 0,00 Zero Low Minor Activity
9 000 000 0,00 1,00 000 1,00 0,00 0,00 High Low High Growth
10 1,00 0,00 000 000 000 1,00 0,00 0,00 Zero Low Minor Activity
1.5000
1.0000
0,5000
0.0000 | H ll } \ F [| HH
-0,5000
-1,0000
mphl mph2 Wph3 pha Wphs Wphé Wph7 mphs Wphd Wphlo mphil
-1.5000
mom oM om oM oM omom o omom o w oW ow T oW oW T T T W OW T N MM M W W N W M W M W W@ @ D W D D D @ S @ @
5 8 S s sS55Soo8oosBsboBocoS80O0c0BSB080000O00GSO0GSES0O0DO0oo0DB80B8680 8600
S8R ISRRBRRRABRERI/EERRSR S8 S RERREERERAEESESEEERSEERES SRR TRE
T T T R R 1
o Q Qo Q Q O 0 = = = 0 0 Q0 Q0 Q0 0 0 = =~ ~Qoo0ooc o o S QO = = o=-0 2 20 0 0 Q9 O O = -

Figure 61 Phase Extraction and Classification of Opencart with 11 phases

Phpbb. Phpbb is one of the medium sized datasets in terms of releases and
our top solution consists of 5 phases and is depicted in Figure 62. Figures 63
and 64 represent two alternative fair solutions of phase extraction and consist
of 3 and 7 phases respectively.

Phpbb’s first phase is quite long in time consists of only 2 releases and is
classified as Minor Activity. The second phase is a spike of High Growth
followed by a very long Minor Activity phase containing some spikes. The
next phase is a spike of High Maintenance that is followed by a Minor Activity
phase with small volume spikes.

94

phaselD zeroG lowG mediumG highG zeroM lowM mediumM highM growthWinner maintenanceWinner Classification

0 1,00 0,00
1 0,00 0,00
2 061 025
3 1,00 0,00
4 0,80 0,00

1,5000

1,0000

10,5000 -+

00000 | |

0,5000

-1,0000

-1,5000
N B oD oD
& o

SEFEEE

0,00
0,00
0,11
0,00
0,20

mphl

&

i
&

0,00
1,00
0,03
0,00
0,00

1,00 0,00 0,00 0,00 Zero Zero
0,00 1,00 0,00 0,00 High Low
017 064 0,17 0,03 Low Low
0,00 0,00 0,00 1,00 Zero High
0,00 1,00 0,00 0,00 Zero Low
mph2 mph3
FFEPS S TS
PEF P F o"%’ai”e W

mphd

Minor Activity

High Growth

Minor Activity with growth and maintenance spike(s)
High Maintenance

Minor Activity with growth spike(s)

mphs

»

DD DD DD
S G
il e

s

TE Y S F S I F S

Figure 62 Phase Extraction and Classification of Phpbb with 5 phases

phaselD zeroG lowG mediumG highG zeroM lowM mediumM highM growthWinner maintenanceWinner Classification

0 1,00 0,00 0,00 0,00 1,00 0,00 0,00 0,00 Zero Zero Minor Activity
1 0,00 0,00 0,00 1,00 0,00 1,00 0,00 0,00 High Low High Growth
2 064 021 0,12 0,02 0,14 0,67 0,14 0,05 Zero Low Minor Activity with growth and maintenance spike(s)
1,5000 -
1,0000 -
0,5000 -
ooooo | I|||,|| ,II r"HIIIII - | | |‘ 1
-0,5000 -
-1,0000 -
Wphl Wph2 Wph3
-1,5000
11-2002 11-2003 11-2004 11-2005 11-2006 11-2007 11-2008 11-2009 11-2010 11-2011 11-2012 11-2013

Figure 63 Phase Extraction and Classification of Phpbb with 3 phases

95

0 1,00 0,00 0,00 000 1,00 0,00 0,00 0,00 Zero Zero Minor Activity
1 0,00 0,00 0,00 1,00 0,00 1,00 0,00 0,00 High Low High Growth
2 063 025 013 o000 000 075 0,25 0,00 Low Medium Medium Maintenance
3 1,00 0,00 0,00 0,00 000 0,00 0,00 1,00 Zero High High Maintenance
4 059 0,26 011 004 0,22 0,63 0,15 0,00 Low Low Minor Activity with growth and maintenance spike(s)
5 100 0,00 0,00 000 000 0,00 0,00 1,00 Zero High High Maintenance
6 0,80 0,00 0,20 0,00 0,00 1,00 0,00 0,00 Zero Low Minor Activity with growth spike(s)
1,5000
1,0000
0,5000
00000 || I|||'” ‘HI |£|||||||\| H-—H | [| | |‘ -1
-0,5000
-1,0000
Ephl Mph2 Mph3 pha Wphs W phé mph7
-1,5000
P EEEEEEEEE R EEE R E R EEE- R R R o om o om
Q O O O @ @ © 0 C © O O O 9O 0 Q0 Q9 Q 9 0 Q0 Q0 0 Q0 0 Q0 0 0 QO = o @ @ =@ @ @ = " =@ =@ @ = A A A =
E 88 8 8688686808866 6o08t6060600b0060006006060000C0O0CO0COOCQO0OOOOoOoSOSSSOCOGo D
L I I B - I L L B - R R B B I I B B R - B I O B B I
T I - T I Y L T T T IO SO - = S o Yo - - T I Y Y B T ot B o S - < O N ST B - < T R BT s B - T T ST - - B T o B o S - B I o B - - B R)
- o 0 0O - 0 0 © - 0 0o 0 - 0 o - o0 ¢ - 000 - 000 - 000000 - 000 -~~00oc -0

Figure 64 Phase Extraction and Classification of Phpbb with 7 phases

Typo3. Typo3 is also a medium sized dataset in terms of releases and the top
algorithmically produced solution consists of 4 phases and is presented in
Figure 65. In Figures 66 and 67 we can see additional fair alternatives of the
phase extraction of Figure 65 consisting of 6 and 7 phases respectively.

Typo3’s first phase is a very long period of Minor Activity with growth and
maintenance spikes. The phase that follows is a spike of High Maintenance
tollowed by a phase (spike) of High Growth — Medium Maintenance. Finally, the
last phase of Typo3 is a period of calmness, thus classified as Minor Activity.

96

phaselD zeroG lowG mediumG highG zeroM lowM medi

mM highM growthWinner maintenanceWinner Classi

0 054 028 013 004 0,22 0,67 0,07 0,04 Low Low Minor Activity with growth and maintenance spike(s)
1 1,00 0,00 0,00 000 0,00 0,00 0,00 1,00 Zero High High Maintenance
2 0,00 0,00 0,00 1,00 0,00 0,00 1,00 0,00 High Medium High Growth - Medium Maintenance
3 050 0,50 000 000 000 1,00 0,00 0,00 Low Low Minor Activity
1,5000
1,0000 -
0,5000
00000 | ||| I ||]||||| e R B ,||| 1+ |||||||."||,I.|| |H 1
-0,5000 -
-1,0000
Wphl Wph2 Wph3 m ph4
-1,5000 -
8333 3888888885555 8888338882g 8322233349323
A - A - - - -E-E-E-E-E-E-E-E-EE-EEEEEEEEEEEEEEEREEEEER
L L L L L R B T L L R L L L T L W L B L L L L S N B LT LT B R
2835283352825 23533528 5352883523352 8535=282357¢82 38

Figure 65 Phase Extraction and Classification of Typo3 with 4 phases

phaselD zeroG lowG mediumG highG zeroM lowM mediumM highM growthWinner maintenanceWinner Classification

0 056 030 0,12 002 023 065 0,07 0,05 Low Low Minor Activity with growth and maintenance spike(s)
1 000 000 000 100 000 1,00 0,00 0,00 High Low High Growth
2 0,50 0,00 050 000 000 100 0,00 0,00 Medium Low Medium Growth
3 1,00 0,00 0,00 000 000 000 0,00 1,00 Zero High High Maintenance
4 0,00 0,00 0,00 100 000 000 1,00 0,00 High Medium High Growth - Medium Maintenance
5 0,50 050 0,00 000 000 1,00 0,00 0,00 Low Low Minor Activity
15
14
0,5
o bttt -|-| I|1|| I R T TV |;| ' ||n-] -
05 4
-1
Wphl Wph2 mph3 mpha Wphs Wph6:
15 -
e - A O T B B T R N - - R == B B B I
g 88888838883 88888¢c8c88s8s8888c¢c0ooo0b008005805B0508 0
B R R o R I A N S G N S L N B o R L SR L R L L S T (R
E - - - - - - - - - - - - - -
#~ 0 &6 6 % & o0 & 400 @S A0 S 0 28 06 806 86 c 8 oS a0 0 S A0

Figure 66 Phase Extraction and Classification of Typo3 with 6 phases

97

0 063 025 0,13 o000 038 0,63 0,00 0,00 Low Low Minor Activity with growth spike(s)
1 054 0,31 011 003 0,20 0,66 0,09 0,06 Low Low Minor Activity with growth and maintenance spike(s)
2 0,00 0,00 000 1,00 0,00 1,00 0,00 0,00 High Low High Growth
3 050 0,00 0,50 0,00 0,00 1,00 0,00 0,00 Medium Low Medium Growth
4 1,00 0,00 0,00 0,00 0,00 0,00 0,00 1,00 Zero High High Maintenance
5 0,00 0,00 0,00 100 000 0,00 1,00 0,00 High Medium High Growth - Medium Maintenance
6 050 0,50 000 000 0,00 1,00 0,00 0,00 Low Low Minor Activity
1.5
1
05
ol ‘ Il I||||| | IR TRE TRY 1|||||| |||1|| Rt (T
-0.5
-1
Ephl Wph2 Bph3 phd Wphs Hphé Wph?

Figure 67 Phase Extraction and Classification of Typo3 with 7 phases

4.6 Conclusions

The goal of this part of the study was to introduce a new method that
automatically extracts phases of a schema’s life and classifies each one of
them with respect to their evolution profile.

We evaluated our method via a set of measures that take into consideration
both the quality of the clustering procedure based on the distance of the
releases, but also the resemblance of the algorithmically produced top
solutions with our golden standard. The top solutions of our NCQ metric
(which we consider as winners) have a Lag value of misclassified releases that
is typically less than 2. This means that our algorithm shows a fair
performance with a small error rate and that for the purpose it serves,
considering no heuristics were used, is a significantly decent method for
automatically extracting and classifying schema releases.

Figure 68 depicts the phases of the top algorithmically produced solutions
along with their classifications. We observe several similarities with Figure 2

98

of Section 3.2, where our golden standard was depicted and a similar amount
of phases for each dataset. Furthermore, the cooling period in the end of each
schema’s life with a domination of Maintenance - Minor Activity ending phases
is also present for this set of solutions. Additionally, Maintenance is still
observed to be located anywhere in the history of a schema and finally, Minor

Activity phases are still usually long periods of calmness.

The main difference that our algorithmically produced solution has with the
golden standard is the relocation of Growth classified phases to slightly
posterior phases than before. We address this issue to the fact that an
Agglomerative implementation for the purposes of our problem, tends to
isolate spikes as single phases and not merge them with their adjacent

releases.

BioSQL Ensembl Mediawiki Opencart Phpbb Typo3
Minor Minor Maint Mi Minor

1 | Activity Maintenance | Activity s aillr:eenance Acliz?lft Activity
(w/ spikes) (w/ spikes) bopibuy y (w/ spikes)
Int i
n enS(? Growth+ Growth+ erTOT Growth .

2 | Evolution . . Activity Maintenance

. Maintenance | Maintenance .

(spike) (w/ spikes)

Minor Minor

3 | Minor (ST N Activity Jy—— "
Activity . . Maintenance
(w/ spikes) (w/ spikes)
Growth+ Mi Mi
4 Maintenance ro.w lr}OF Maintenance lr}OF
Maintenance | Activity Activity
Minor Minor
5 Growth Activity Activity
(w/ spikes) (w/ spikes)
6 Maintenance
Minor
7 Activity
(w/ spikes)

Figure 68 Phase Extraction and Classification of Top Algorithmically

Produced Solutions

99

100

CHAPTER 5.

CONCLUSIONS AND FUTURE WORK

5.1 Conclusions

5.2 Future work

In this final chapter, we will first start with a summary of our findings and
answer on our initial research questions and then we will discuss issues of
future work.

5.1 Conclusions

The main goal of this thesis was to research the existence of phases in the lives
of relational databases. To do so, we first studied the periods when tables,
attributes and foreign keys are born, updated or evicted in a schema’s life by
studying the heartbeat of changes.

The most interesting finding in our study was that, with the single exception
of one dataset, the history of a database schema comes in two mega-phases: (a)
a “hot” expansion mega-phase at the start of its life demonstrating growth of
information capacity, along with the necessary maintenance and (b) a
“cooling” housekeeping mega-phase at its middle and later life where either
maintenance actions or stillness dominate the update activity. We called this
phenomenon progressive cooling of the heartbeat.

Some additional findings concerning the first part of this study showed that
the majority of zombie tables tend to survive and injections and ejections of

101

attributes mostly happen at the start or mid of a table’s life and rarely in the
end.

As long as the foreign keys are concerned, we found that they come in two
fashions (a) they are either treated as integral parts of the schema and get
born and evicted along with their tables, mostly in scientific projects and (b)
they are treated as second-class add-ons that get removed not along with their
table, especially in CMSs.

The second part of this Thesis presented an automatic method for phase
extraction and classification, given the history and the heartbeat of a schema,
that consists of four main steps. The evaluation procedure we followed,
showed that our method has a significantly decent performance in terms of
misclassified releases, especially considering the fact that we did not use any
heuristics.

5.2 Future work

More research can be done in the phase extraction and classification field. The
clustering procedure could be implemented with another -clustering
algorithm, other than Agglomerative. In our implementation we used the
Euclidean distance function, but one can try a different definition of distance
between releases. Furthermore, the distance was calculated via our Growth —
Maintenance metric values, but another direction would be to use the labels
we produced with our release characterization step. Another possible
modification would be to change the way we evaluate the clustering
procedure by removing spikes considering them as noise.

A different direction of the one we followed during our phase extraction and
classification algorithm, would be to treat the data as sets and not timeseries.
In this direction one could cluster the points as sets and then label them with
the cluster they belong to. This would result in a timeseries of clustering
labels and one can treat this problem as a change detection problem.

102

[CMTZ08]

[LiNe09]

[Pappl7]

[PVSV12]

[QILS13]

[Rous87]

[Sjeb93]

[SkVZ14]

BIBLIOGRAPHY

Carlo A. Curino, Hyun J. Moon, Letizia Tanca, Carlo Zaniolo. Schema
Evolution In Wikipedia toward a Web Information System
Benchmark. International Conference on Enterprise Information Systems
(ICEIS 08), pp. 323-332, 2008

Dien-Yen Lin and Iulian Neamtiu. Collateral Evolution of Applications and
Databases. In Proceedings of the Joint International and Annual ERCIM
Workshops on Principles of Software Evolution and Software Evolution
Workshops (IWPSE), pages 31-40, 2009.

Athanasios Pappas. Supporting exploratory analytics on repository-extracted
schema histories by integrating external contextual information. Master
Thesis University of Ioannina, June 2017.

George Papastefanatos, Panos Vassiliadis, Alkis Simitsis, and Yannis
Vassiliou. Metrics for the Prediction of Evolution Impact in ETL Ecosystems:
A Case Study. Journal on Data Semantics, 1(2):75-97, 2012.

Dong Qiu, Bixin Li, and Zhendong Su. An Empirical Analysis of the Co-
evolution of Schema and Code in Database Applications. In Proceedings of
the 9th Joint Meeting of the European Software Engineering Conference and
the ACM SIGSOFT Symposium on the Foundations of Software Engineering
(ESEC/FSE), pages 125-135, 2013.

Peter J. Rousseeuw. Silhouettes: A graphical aid to the interpretation and
validation of cluster analysis. In Journal of Computational and Applied
Mathematics, Volume 20, 1987, Pages 53-65

Dag Sjoberg. Quantifying Schema Evolution. Information and Software
Technology, Vol. 35, No. 1, pp. 35-44, January 1993

Ioannis Skoulis, Panos Vassiliadis, Apostolos Zarras. Open-Source
Databases: Within, Outside, or Beyond Lehman's Laws of Software
Evolution?. 26th International Conference on Advanced Information Systems
Engineering (CAiSE 2014), 16-20 June 2014, Thessaloniki, Hellas.

103

[SkVZ15]

[TaSKO05]

[VaZal7]

[VKZZ17]

[WuNel1]

Ioannis Skoulis, Panos Vassiliadis, Apostolos Zarras. How is Life for a Table
in an Evolving Relational Schema? Birth, Death; Everything in Between. 34th
International Conference on Conceptual Modeling (ER 2015), 19-22 October
2015, Stockholm, Sweden.

Pang-Ning Tan, Michael Steinbach, Vipin Kumar. Introduction to Data
Mining. Addison-Wesley 2005, ISBN 0-321-32136-7Section 8.5.2.

Panos Vassiliadis, Apostolos Zarras. Survival in Schema Evolution: Putting
the Lives of Survivor and Dead Tables in Counterpoint. 29th International
Conference on Advanced Information Systems Engineering (CAiSE 2017),
12-16 June 2017, Essen, Germany.

Panos Vassiliadis, Michail-Romanos Kolozoff, Maria Zerva, Apostolos V.
Zarras. Schema Evolution and Foreign Keys: Birth, Eviction, Change and
Absence. 36th International Conference on Conceptual Modeling (ER 2017),
pp- 106-119, Nov. 6th-9th, 2017, Valencia Spain.

Shengfeng Wu and Iulian Neamtiu. Schema evolution analysis for
embedded databases. In Proceedings of the 27th IEEE International
Conference on Data Engineering Workshops (ICDEW), pages 151-156, 2011.

104

SHORT CV

Maria Zerva was born in Ioannina in 1992. She received her Bachelor’s degree
from the Department of Computer Science and Engineering of University of
Ioannina in 2016. At the same year she became a MSc student in the same
institution under the supervision of Associate Professor Panos Vassiliadis.
Her main interests are software development and relational databases.

105

