
A Customizable Middleware Framework

for Accessing Mobile Sensors

� ����������	� �
����� �
����	�����

����������� ����

��������� ��� ��� ����� �!�"��!�� ��#�� $ �%�����$

��! �& &���$ �����'���� $ �(������� �������

��� ���

���� ������

)$ &"��$ �)� ���*��+��)� ,�� �� � -� ��!

����������	.� ���/0���.� ���1 �/�
.2.
�	�

�� �
����	����3 ��./.�����	� ���������

.��+����$ 4556

��������

���� ��������	
���
 �����
 ��� ���
��� Randolph Carter..

Acknowledgments

I would like to thank my supervisor Ioannis Fudos, Assistant Professor at the Computer

Science Department of the University of Ioannina, for his time, support and patience, during

the elaboration of this thesis. I would also like to thank Associate Professor Evaggelia Pi-

toura and Dr. Apostolos Zarras for their help and valuable comments. I am grateful for the

opportunities, the experiences and the knowledge that I gained from my collaboration with

the members of the The Distributed Management of Data Laboratory. Last but not least,

I would like to thank my friends and colleagues: Xenia, Antreas, Toula, Giorgos, Nikoleta,

Kostas, Marina and Irini, for their help all these years; and the girl with the strange name.

Zissis K. Plitsis

Contents

Contents i

List of Figures iii

List of Tables v

1 Introduction 1

2 Wireless Sensors and Sensor Networks: An Overview 4

2.1 Wireless Sensor Networks . 4

2.1.1 Applications Issues in Wireless Sensor Networks 6

2.1.2 Hardware Technology of Wireless Sensors Networks 8

2.1.3 Networking and Query-Processing in Wireless Sensors Networks . . . 10

2.1.4 Security and Privacy in Wireless Sensors Networks 12

2.2 Commercial Mobile Sensors . 13

2.2.1 Nokia Observation Camera . 16

2.2.2 IRIDA GSM . 17

2.2.3 GSM/SMS Remote Control Module BieneRemote16GM 19

2.2.4 TCS-AWS: GSM Autonomous Weather Station 20

2.3 Middleware, Web Services and Messaging 24

3 A Middleware Framework for Accessing Mobile Sensors 28

3.1 Introduction and System Architecture . 28

3.2 Mobile Sensor Customizer . 32

3.3 Server and WEB Page Proxies . 36

3.4 Implementation Issues . 37

4 Use Cases 42

4.1 A Framework Instance for a GSM-enabled Autonomous Weather Station . . 42

i

4.1.1 Interface and Implementation Details 45

4.2 A Framework Instance for a Mobile Observation Camera 46

4.2.1 Interface and Implementation Details 47

4.2.2 Protocols . 49

5 Performance Evaluation 56

5.1 Customization Overhead . 56

5.2 Middleware Overhead in the Weather Station Use Case 59

5.3 Middleware Overhead in the Camera Use Case 67

6 Conclusions and Future Work 73

Bibliography 76

Appendix 80

Author’s Publications 84

Short CV 86

ii

List of Figures

2.1 GSM Remote Monitoring and Alarm System, XR5 Data Logger for pressure,

temperature, level, flow, weather, power, vibration, etc with the use of GSM

Modem (Wavecom WCOD2 GSM modem). 13

2.2 Nokia Observation Camera sending MMS or e-mail messages with image and

temperature data. 15

2.3 Nokia Observation Camera. 15

2.4 IRIDA GSM from Autotech . 17

2.5 GSM/SMS Remote Control Module BieneRemote16GM 20

2.6 Installed GSM Autonomous Weather Stations 23

3.1 Architecture Layers . 30

3.2 System Architecture . 32

3.3 The XML schema for MSCDs. 33

3.4 Example of a MSCD specification for a mobile camera. 34

3.5 Web-based Interface for the Autonomous Weather Station, part of the initia-

tion commands. 35

3.6 Web-based Interface for the Nokia Observation Camera, some of the commands

of the mobile camera that be selected. 36

3.7 “End-user” case for mobile camera. 37

4.1 Web-based Interface for the Autonomous Weather Station. 44

4.2 Web-based Interface for the Autonomous Weather Station, after submitting

one command to the sensor. 45

4.3 Autonomous Weather Station. 46

4.4 Web-based Interface for the Nokia Observation Camera, in the “End-user”

(simple) case. 48

4.5 Filling delivery information. 49

4.6 Setting up delivery destination. 49

iii

4.7 Popup window. 51

4.8 Results page. 51

4.9 Using the WAP interface in the forth scenario. 52

4.10 Query protocols for the two scenarios. 54

5.1 Customization Process of different description files 58

5.2 Middleware Overhead Measurements, for 10 Commands description file . . . 65

5.3 Middleware Overhead Measurements, for 50 Commands description file . . . 67

5.4 Breakdown of overall response time for experiment (i) 70

5.5 Breakdown of overall response time for experiment (ii) and (iii) 70

1 Part of the GSM Autonomous Weather Station description file. 82

iv

List of Tables

2.1 Sensors hierarchy in wireless sensor networks, each platform class handles dif-

ferent types of sensing. 9

2.2 An example of Nokia Observation Camera instructions; note: the underline

character () is used for space in the SMS message. 16

2.3 Some of Irida GSM instructions. 18

2.4 An example of GSM/SMS Remote Control Module BieneRemote16 (standard

version) control commands. 21

2.5 TCS-AWS: GSM Autonomous Weather Station, some of the commands in

SMS messages. 22

2.6 Classification of the above four sensors. 24

5.1 Customization time for the middleware framework in four cases, according to

the size of the sensor description file in number of commands described. . . . 57

5.2 Parameters that effect Middleware overhead in the Weather Station use case

and description of the following sets of experiments. 60

5.3 Middleware overhead measurements in the case of one command in one SMS

message, in the Weather Station use case . 61

5.4 Middleware overhead measurements in different case of requests, in the Weather

Station use case (for the first type of our implementation). 62

5.5 Middleware overhead measurements in different case of requests, in the Weather

Station use case (for the second type of our implementation). 63

5.6 Middleware overhead measurements in different case of requests, in the Weather

Station use case, for our implementations with different sizes of description files

(10 commands and 50 commands). 64

5.7 Response time and middleware overhead for experiment (i). 68

5.8 Response time and middleware overhead for experiment (ii). 69

5.9 Response time and middleware overhead for experiment (iii). 69

v

Abstract

Plitsis, Zissis, ZP. MSc Computer Science Department, University of Ioannina, Greece. Oc-

tober, 2006. A Customizable Middleware Framework for Accessing Mobile Sensors. Thesis

Supervisor: Ioannis Fudos.

Sensing, monitoring and controlling devices have been used in industry for many years.

The evolution of microcomputers and the increasing needs for sensing and controlling have

led to new sensing devices being smaller, cheaper, capable of new applications and con-

nected in wireless networks. This new area of research and development is known as sensor

networks or Wireless Sensor Networks (WSN). WSN consist of hundreds of self-contained,

battery-powered sensing devices that measure and communicate wirelessly environmental

data. They are embedded in the environment, can act proactively, and can be presented as a

new “tier in the Information Technology ecosystem”. A global computing environment built

on top of the Word-Wide Web can integrate sensors and provide the appropriate applications

and interfaces to utilize different kinds of sensors. To handle such distributed, heterogeneous

and oblique systems we shall adopt the approach of a “Middleware Framework”, as the soft-

ware layer between the operating system and the applications on each side of the system.

Our goal is to integrate a specific kind of sensor devices in a global computing envi-

ronment. These are GSM-enabled sensor devices, that can communicate and be instructed

through the GSM network, the network of cell phones. Specifically, we focus on sensors

controlled by SMS messages that exchange information through SMS or MMS messages.

We provide the means to integrate different mobile sensors in our computing environment

by using the proprietary communication protocols (usually SMS messages) and the specific

characteristics of the mobile sensor. Starting from GSM enabled devices we automate the

process of integrating these devices in a global computing environment with the use of XML-

based sensor descriptions. To this end we proposed a customizable middleware framework

was proposed.

vi

����	�
�

��
�
 ����
�
 ��� ���
�������� ��� ��
 ��������
� MSc ����� �����������
	 ������
�����

���������� ��� !���
	 "##$� A Customizable Middleware Framework for Accessing Mobile

Sensors. %��!�&���' ��(���
)�*���
�

+ �,&��,� ��� �����-������
� � ��� �� ��,��&��
 ��(���
 ��� �&���
� ��� &���.� �/���
��

� ��
������
 ��� ����� ��� ������	 ������	 ������ ��� �&�
 �������&
 ��� �
*�����
*�/�
��

0��� � �&� �����.� &�����
 ��� ��(���,�
 ����� ���
�� �
 1����� 0
���(��� 0�
�������

2Wireless Sensor Networks, WSN). �� /����� ���(�������*���� ��3 �������(/�
 ���3�����
	

�����/���*�����
 �� �������� ��
������
 ��� �����*� ���
�&����� �
*����� /�/��&�� ���

����!(������
� %���� ��
������&���
�� ����!(����	 �����*� �� /���� �������!����(���

.��������4����� �
 �&� �����/�
�� 5����
*
����6 ��
 ��.�������
 ��
 ����������
 2a new

“tier of IT ecosystem”). 7%�� ����3
��� �������
���3 ����!(���� 2global computing en-

vironment) ������ �� ��
����
�� �
*������
 ��
������
 �(�� ��3 �� ����3
��� /�����	

���&.����
 ��
 ���(�����
 �������&
 ��� /�����&
 ��� ��� .��
� ���
� ��� �� .����
��*�� ���

��������&���� ��� � ��� ���������&���
�
���(��� .����43��
�� ��� ���/��� ��/�(��
��

����
����*	 ��� �� ����� ��
�� �� ����
����* ��(��
�
�� ����������3
*
���� ���
��

�������&

� �(�� �����(�

�
���3
 ����� �� ��
����
���� &�� ��/��3 �*�� ��3 ��
������

� &�� ����3
���

�������
���3 ����!(����� 0�����3��
��
� ��
������
 ��� ���������*� �� �� /����� ���

����� � ����� ���	 �� ���
�3 GSM. ���� ����
�� ���� ����������3��
��
� ��
������
 ���

��&�.����� ��3 �����(���*���� 2SMS ���*����8 ��� �����&���� ���������� �&
� ����� �

�����(��� � �����(��� �����&
�� 2SMS � MMS ���*����8� ���&.���� �� �&
� ��� ���

��
��(��
� /��������� � GSM ��
�������
��
*
����� ����� ���
 ��3 �� ��/��(����3���9

�� ��� �� .��������
���(�(�� ��
������ ������������*�� ��� /��/���
�� ��/������ ���
 ���

��������� ���

� ��.��� �����&��
� XML ��� ����������� ��� ���
���3
��� ���/��� %�/�(9

��
�� :���
����* ��� GSM ��
������
�

�� ������� ��� ��������� ����������� ��3 $ ���(����� ;&�� ��3 ���
*����� ��
�����	

�� "� ���(���� �����
�(4����� ���
�&��
���.��� ��� �� /����� �
���(��� ��
������� ���

�(���� ��3 �� �&���� ��� �������� ����� �� ��/���&���'
.����(�� ��
 �������&
 ��� /���*��	

� ��.�������
��� ����� !�
�4����� 9
� �����/� �����* ���
�
��� �	 �� /��/���
��
 /���*�
�

��� ���,����
��
 ��� �����
��� ��� ��� �,����� /�/��&��� (query-processing)
�� /�����

���(��� �(���� �&���� �
�(����
� �� �&���� ��� �
���(��� /���*�� ��������!(������� ��

��� ����
�� ��
 �(��
�� ��/�(��
� ����
���3 (middleware) ��� ���
 GSM ��
������
� ��

"� ���(����
���.�4�� �� �����
��
� ���
�&��� GSM ��
������
 ��� ������ �����
 �� �����9

������ ��� ����� ��� ��
���.��� ��� ��/�(��
� ����
���3	 �����
��
 /��/���*�� (Web Services)

��� �����(��� ��� .��
�������*���� ��� ����� .��
��� ���
�� /���(��
 ����
��� ��� <�

���(���� �����
�(4���� �� ��/�(��
� ����
���3 ��� ���
 GSM ��
������
	 ����*����� � ��9

.���������� ���	 3��
 ����� �� ����� ��
 ���
������
 (customization)
��� �(�� ��
������

��� �� /�(����� �,��������&
 ���
�
������
	 ��� ����&������ ���
�&��
���.��� ��
 �������
�
�

��� =� ���(���� /*� ��3 ���
 ��
������
 ��� �����
�(
�����
�� "� ���(���� .��
�9

������*���� ��� �� /�����
��� ��
*
����� �� ��
������
 ��� /����(4����� ����� ��� �
*�����

�(����	 ��� ���3
 ��3 ��>� ���3���	 ����(��������
�� ��� &.�� ���.����� ����
�
 ��� &��

GSM ������������3

����3
� ���
��&.���
�� ?� ���(���� ��
�
������ ��� ��� �(����

��� ��� ������������3
����3 �,������*���� ��� &.���� ��
 �����
��

�� /�(���� ����(����

��� &�����
��
*
����� �&��
	 ��������*� ���
�&��
�����(
���(��� ������ ����������

����
��
�� $� ���(�����

Chapter 1

Introduction

This work addresses the issue of accessing transparently mobile sensors through a customiz-

able middleware framework.

Sensing, monitoring and controlling devices and techniques have been used in industry

for many years. The evolution of microcomputers along with Moore’s law and the increas-

ing needs for sensing and controlling in our complex environment have led to new sensing

devices being smaller, cheaper and capable of applications that it was impossible to realize

ten years ago. This new area of research and development is known as sensor networks or

Wireless Sensor Networks (WSN), because is more useful and frequent to communicate with

hundreds of those sensing devices wirelessly. Wireless sensor networks consist of hundreds

of self-contained, battery-powered computers that measure and communicate wirelessly en-

vironmental data, They are embedded in the environment, can act proactively, and can be

presented as a new “tier in the Information Technology ecosystem”. Those abilities im-

prove the “proactive computing” and “pervasive computing” (or “ubiquitous computing”)

paradigms. In proactive computing computers anticipate human needs and act on human’s

behalf. Pervasive computing refers to the next generation computing environments with in-

formation and communication technology everywhere, for everyone, at all times.

A global computing environment built on top of the Word-Wide Web can integrate sensing

devices. A global computing environment should provide the appropriate applications and

interfaces to utilize different kinds of sensors. This is the concept of embedded Internet,

embedded deeper in any real environment using wireless sensor networks. Developing such

1

distributed, extreme heterogeneous and embedded systems is a challenge. To handle such

distributed, heterogeneous and oblique systems we shall adopt the approach of a “Middleware

Framework”. The ObjectWeb consortium gives the following definition of middleware:

“In a distributed computing system, middleware is defined as the software layer that lies

between the operating system and the applications on each side of the system.”

(middleware.objectweb.org, [1])

Thus, the term middleware is used to describe web servers, application servers, content man-

agement systems, proxies, wrappers and similar tools supporting the application development

and delivery process. The middleware is central to modern information systems based on

XML, SOAP, Web services, and service-oriented architectures.

Our goal is to integrate a specific kind of sensor devices in a global computing environ-

ment. These are GSM-enabled sensors, that can communicate and be instructed through the

GSM network, the network that any cell phone uses. The term “mobile phone” is identical to

the term “cell-phone”, so the term “GSM-enabled sensor” is used alternatively with the term

“mobile sensor”, meaning the sensing device that wirelessly transfer data through the GSM

network. Specifically, we focus on GSM-enabled sensor devices, controlled by SMS messages

that exchange information through SMS or MMS messages. Besides using the proprietary

communication protocols (usually SMS messages) and the specific characteristics of the mo-

bile sensor, we provide the means to integrate different mobile sensors in our computing

environment.

The work presented in this thesis proposes a middleware framework that enables uniform

access to mobile sensors. We introduce a mobile sensor description that is used to configure

the middleware according to the sensor specifications and to provide the interface for access-

ing the mobile sensor.

The remaining of this thesis is structured as follows. Chapter 2 provides a brief overview

of Wireless Sensor Networks, a survey of mobile sensors for industrial and commercial use

and discusses similarity to our work, from the middleware prespective. Chapter 3 describes

our middleware framework, discusses the process of customization based on a proposed sen-

sor description standard, the system architecture and finally presents implementation issues.

Chapter 4 details the use cases of mobile sensors, Chapter 5 presents performance evaluation

results and finally, Chapter 6 offers conclusions.

2

Chapter 2

Wireless Sensors and Sensor

Networks: An Overview

2.1 Wireless Sensor Networks

2.1.1 Applications Issues in Wireless Sensor Networks

2.1.2 Hardware Technology of Wireless Sensor Networks

2.1.3 Networking and Query-Processing in Wireless Sensor Networks

2.1.4 Security and Privacy in Wireless Sensor Networks

2.2 Commercial Mobile Sensors

2.2.1 Nokia Observation Camera

2.2.2 IRIDA GSM

2.2.3 BieneRemote16GM

2.2.4 TCS-AWS: GSM autonomous weather station

2.3 Middleware, Web Services and Messaging

2.1 Wireless Sensor Networks

Technology that is commercially available today gives rise to engineering efforts that have

produced complete devices with processing, storage, sensing and communication functions,

4

devices that are smaller and cost less. The last 50 years, a new class of computers has

appeared about once a decade, modern computing is progressing through mainframes, mi-

crocomputers, personal computers and mobile computers. Each successive model relies upon

technical advantages, to make computing available in a way not previously possible. Each

has introduced new uses for computer technology and each succeeding generation is smaller,

more plentiful and more intimately associated with personal activity than the generation that

proceeded it. Wireless Sensor Networks (WSN) appear as a new class, they follow the same

trends of size, number, and cost; but rather than being devoted to personal productivity

tasks, they make it possible to perceive what takes place in the physical world in ways not

previously possible. One can consider Wireless Sensor Networks as:

“Thousands of tiny low-power devices spread over large physical spaces collaboratively

monitoring the environment, guide vehicles and predict potential faults in buildings,

bridges, roads and rails.”

Communications of ACM, June 2004/vol. 47, no. 6 [2]

Wireless Sensor Networks are new important tier in the IT ecosystem and a emerging

domain of active research and development involving issues in hardware and system design,

networking, distributed algorithms, programming models, data management, security and

social factors. Through the use of Wireless Sensor Networks the vision of an Embedded In-

ternet becomes reality; in this vision networks of interconnected computing devices deeply

embedded into the physical environment transform whole fields of science, engineering and

manufacturing by providing detailed instrumentation of many points over large spaces, both

natural and artificial. As an example: the Global System for Mobile Communications (GSM),

the most popular standard for mobile phones in the world, can be used in connecting obser-

vation cameras, weather stations and other kinds of sensors to transmit images, temperature

information and other data. By doing so we implemented an embedded wireless sensor net-

work over the common network of cellural phones.

The pervasive instrumentation that wireless sensors networks provide will be of great value

in many applications, including understanding ecosystems dynamics, setting land-use policy,

protecting property, efficiently operating and managing machinery and vehicles, establish-

ing perimeter and building security, protecting packages and containers, monitoring supply

chain management and helping deliver health care. Sensors networks can extend to moni-

toring interactions among many objects within these domains, ensuring asset management,

ubiquitous computing environments and emergency response. Moreover, those networks help

5

feed information to autonomous distributed control devices. They may help in applications

used for road safety, fire prevention, temperature control, precision agriculture systems and

much more. By using a middleware framework to improve the communication and proactive

capabilities those networks can have.

Realizing important aspects of the embedded Internet vision includes the design and de-

velopment of applications, hardware needed to collect physical data, algorithms for gathering

and analyzing this information and methods for robust and secure operation. These issues

are discussed in the remainder of this section.

2.1.1 Applications Issues in Wireless Sensor Networks

The first aspect of the embedded Internet vision, as described before, has to do with the

applications of Wireless Sensor Networks that have been designed and developed. There

are several real-world deployments of environmental monitoring such as habitat monitoring

with sensors networks which deliver to ecologists data on localized environmental conditions,

about animals, plants and people. This is an example of the applications that make use of

sensors networks. Nowadays the scale of the nodes in these sensor networks can be compared

to the scale of the organisms under study, and these networks are ranging in size from tens

to thousands of different sensors (nodes) within a habitat patch.

Several real-word deployments of “habitat monitoring applications” in the US and all over

the world have leaded the development of a network architecture, that is flexible enough and

multilevel. They make use of different kind of sensors grouped in patches networks involving

nodes with heterogeneous sensing capabilities, processing power and storage.

Habitat monitoring applications require ways to specify and deliver data of interest, so

they need routing and tasking service. The data of interest can be either streaming or triggers

and the task service has to cope with a dynamic topology of poor-quality links, potentially

arbitrary termini (sinks) of data form nodes with minimal resources. The low-power mode of

the system is needed for the long-term operation and the current solution is duty cycling, or

changing the amount of time the subsystem is active during any given period, at several levels.

The percentage of time each node is awake is known as the node’s duty cycle, and a variety

of approaches are available for achieving low-duty-cycle operation. Finally networks health

monitoring and management are necessary for networks users to both trust the incoming

6

measurements and ensure the network’s performance and longevity. The health-monitoring

system relies on explicit and implicit signals. Explicit signal can be the battery voltage of a

sensor which provides information about the remaining capacity and implicit signal can be,

for instance, out of range readings in the humidity that indicate a fault.

There are also many examples of environmental monitoring systems such as systems

developed by Harvey Mudd College Harvey Mudd College Center for Environmental Stud-

ies with embedded networks that study issues in the relationship between human life and

both natural and human-built environments [3] and [4] with distributing remote sensors that

would provide habitat monitoring via a wireless network grid to understand how local con-

ditions as temperature, light intensity, and noise affects lizard habitats. Other examples are

NASA’s Volcano ‘sensorweb’ project [5] and other autonomous observing sensorwebs ([6] and

[7]) and UC Berkeley’s habitat modeling at Great Duck Island, Maine ([8] and [9]). On a

much larger scale there are Environmental Observations and Forecasting Systems, such as the

EOFS project studying Oregon’s Columbia River estuary (CORIE system) [10] and FloodNet

intelligent sensor network, which is included in EOFS of the University of Southampton’s

Envisense Center [11], a Center for Pervasive Computing in the Environment, and is de-

signed to provide more accurate flood warnings. Future projects include NASA’s sensorwebs

in New Mexico deserts and in Antarctica, and sensors networks on both Mars and Jupiter’s

moon, Europa as mentioned in [12] about sensrowebs. In addition researchers working on di-

verse projects have developed novel applications for sensor networks technology and projects.

Projects like GlacsWeb, about sub-glacial bed deformation [12]; sensor networks for detecting

vehicles transporting radioactive isotopes [13] and detecting location of a sniper in a complex

urban terrain [14]; and “The Flock” in the core of the computer engineering curriculum in

which “mote sensors sing” [15], are examples of this diversity of applications. Our work pro-

vides a complementary middleware solution for integrating different GSM-enabled sensors in

a computing environment with heterogeneous components and distribution.

The long-term outdoor deployment of such environmental monitoring systems with Wire-

less Sensors Networks stress reliability, low-power operation, network protocols, data quality

and new experimental processes. The future habitat monitoring networks and wireless sen-

sor networks applications in general would be enhanced with robust localization, calibration,

clock synchronization and data processing.

7

2.1.2 Hardware Technology of Wireless Sensors Networks

The second aspect is the hardware technology. The underlying hardware technology for wire-

less sensors networks, consisting of perhaps thousands of integrated devices, with built-in

processing, storage and sensor with RF transceiver, energy storage and antenna, is evolv-

ing quickly and a signature style of design is formulated. Wireless sensor networks combine

processing, sensing and communications into tiny embedded devices. Peer-to-peer commu-

nication protocols then combine the individual devices into an interconnected mesh network

where data is seamlessly routed among all the nodes. These networks require no external

infrastructure and can scale to hundreds or even thousands of nodes. Critical to the opera-

tion of any sensor network device is the ability to satisfy harsh always-on power requirements

and the periodic recharging is not possible for most cases. Special purpose sensor nodes are

purposely designed to satisfy flexibility in order to be as small and inexpensive as possi-

ble. High-bandwidth sensors contain the built-in processing and communication capabilities

needed to deal with complex sensor streams, including video and voice processing. Traditional

network abstractions are generally not suitable for wireless sensors networks, for instance,

unlike traditional operating systems, operating systems for wireless sensors networks must

tightly integrate wireless connectivity, while gate-way-class and high-bandwidth nodes use

more traditional operating systems.

There are four main platform classes that have emerged recently in wireless sensor net-

works, as Table 2.1 shows, which is mentioned in [2]. Initial deployment experience has

show that sensor network systems require a hierarchy of nodes starting at low-level sensors

and continuing up through high level data aggregation, analysis and storage nodes. This

tiered architecture is common in virtually all sensors networks, it starts with the head, or

gateway nodes, which provide an interface into many existing types of networks and then

includes: acoustic, video or chemical sensors as examples of high-bandwidth nodes requiring

more computational resources and communication, sensors placed on windows and doors for

instruction detection as examples of generic sensing devices and finally “mini-motes” like

low-cost security tags, attached and tiny for tracking mobile assets, as well as personnel.

Moreover, the data produced by the sensor network gain scientific validity through a verifica-

tion process and collaboration, in other words there is the need for frequent calibration and

the data have to be compared to independent calibrated instruments. A verification network

is the application component responsible for collecting these independent readings and has

often fewer but more-established sensing devices, of the upper rows of Table 2.1. It needs

to provide the data quickly so the function of a sensor patch can be adjusted, faulty sensors

8

Table 2.1: Sensors hierarchy in wireless sensor networks, each platform class handles different

types of sensing.

Class / Level # of Nodes Examples

First A few gateway nodes Web interfaces, databases

Second Dozens of high- Cameras, microphones

bandwidth sensors

Third Hundreds of generic Door, window,

sensor nodes motion sensors

Forth Thousands of special- Asset tags

purpose sensors

can be eliminated and help the maintenance of the network. In our middleware framework

the sensors that we use are of the class of high bandwidth sensors and gateway nodes.

Once again, the operating system running on a particular platform must be matched to

the platform’s underlying hardware capabilities. For special-purposes and generic-sensor-class

devices, a special operating system called TinyOS (developed at the University of California,

Berkeley [16]) is designed to run on platforms with limited CPU power and memory space.

Unlike many embedded operating systems, it provides tight integration between wireless con-

nectivity and networking functions. However, as platform capabilities improve, for example

in the case of the Stargate platform (a type of gateway node), more advanced operating sys-

tem support is required to meet the demands of more complex applications. Multiprocessing,

preemptive tasks switching and even virtual memory support become desirable when man-

aging multiple system functions. The Stargate node runs an embedded version of Linux

operating system and in addition to provide a range of system capabilities, Linux provides a

suite of device drivers for enabling gateway nodes to bridge to legacy networks.

Despite significant differences in device capabilities, the overall architecture for the classes

of sensor-networks platforms is remarkably similar. This similarity follows from the require-

ment that they seamlessly follow from the integrate wireless networking. Network support

9

must be transparent and self-configuring to allow sensor networks to scale in size and com-

plexity. The engineering decisions about the amount of on-board memory, the amount of

CPU processing power, the type and bandwidth of wireless link determine the cost and

power consumption which influence the final design of any given sensor node. Additionally,

Moore’s law and the development of advanced wireless sensor-networking platforms influence

the age of ubiquitous sensing and actuation, and as capabilities are improving these systems

will be able to automatically act on sensor data to manage our environment, for years at a

time in potentially hostile environment without hope of human intervention.

Our work is orthogonal to communication and power considerations. The mobile sensors,

in our work, are at an upper level to the typical micronodes, as those of the third and forth

level of Table 2.1, according to their capabilities and they have additional computing power

and storage capacity. They have specific functions and usually custom made operating sys-

tems, with the use of control SMS messages or with a serial port connection. There is no

need for configuring duty cycle, as there have no power issues. Those are things that will be

detailed later, when some mobile sensors will be presented.

2.1.3 Networking and Query-Processing in Wireless Sensors Net-

works

Moreover, networking and query-processing issues become deeply intertwined, as queries are

continuously processed within the network, and this is the third aspect of the embedded Inter-

net vision. Network and query processing must be co-designed to allow data self-organization

for flexible but efficient in-network storage, access and processing. In fact sensors networks

have the potential to support applications ranging from habitat and structural monitoring, to

home and building automation, to supply chain management. Users are typically interested

in continuous streams of information representing the evolving status of systems, combined

with periodic statistical reports about specific phenomena and even, when some thresholds

are used or alarm systems are triggered, those alarm messages and the data reports. Query

processing systems, provide high-level interfaces that allow users to collect and process such

continuous streams.

Speaking of stream data management, the Aurora system [17] is an experimental data

stream management system with a fully functional prototype including both a graphical de-

velopment environment and a runtime system. In the future plants of the Aurora system

10

there is a distributed stream processing system, called Borealis. Apart from dynamic revi-

sion of query results and dynamic query modification, the ability of Distributed Optimization

makes Borealis useful in application of wireless sensor technology [18]. Moreover, Stanford

Data Stream Management [19] (and [20]) is another system with a first version of prototype

even available for public use.

Researchers are beginning to formulate languages and enumerate the type of queries

needed by users of sensor networks. Distributed query processing is also needed as the data

is stored and retrieved from nodes within the network. Several in-network query systems

have been built for sensors networks. Diffusion is the pioneering work, developed by the

Information Sciences Institute at the University of Southern California and presented in [21]

as the directed diffusion paradigm for Wireless Sensor Networking and in [22] as the TinyDif-

fusion API implementation in TinyOS [16]. There is no specific query language in Diffusion;

instead it allows application writers to choose a domain-specific query language, and focuses

on query rooting mechanisms and flexible in-network processing. A family of routing algo-

rithms is provided and queries in the network are described by interest messages. There

is also TinyDB [23] which uses declarative queries that reflect their data processing needs,

specifying the types of data, as well as the subset of nodes of interest, along with simple

transformation over the data. Queries are written in a SQL-like language, they are the input

on a PC that sends the query into the sensor network and a number of optimizations are

might applied by the query processor. Common ground between TinyDB and Diffusion is a

query language interface for network processing and in some cases tend to give users more

control over the types of network topology and patterns of communication.

In our work, there two different networks involved the GSM network of the mobile sen-

sors, including GPRS for communication based on packet switching, and the Internet, with

the web interfaces and the servers of our customizable middleware. This middleware frame-

work is responsible for the execution of any information request and the utilization of those

different networks.

However, future systems will be more sophisticated than any of today’s prototypes, and

will involve many novel network requirements. The basic dimensions of design in terms

of networking mechanisms are: scope, concerning the nodes involved in a query; volume,

i.e. communication cost per unit time; complexity, concerning multiple concurrent queries;

timeliness, having to do with delays between events and quality of the query response. The

11

fact is that network aware for query processing is in its infancy, multiple complex queries

must be supported beyond the basic tree-based data collection, more sophisticated topology-

construction algorithms and facilities are needed for storage and correlation than the available

in nowadays.

2.1.4 Security and Privacy in Wireless Sensors Networks

Finally, effective security and meaningful privacy is an other important aspect of the sensors

networks, the technical aspects of these issues must be addressed from the start of any sys-

tem’s design process in the context and the applications. Sensors networks are susceptible to

a variety of attacks, including node capture, physical tampering and denial of service, while

prompting a range of fundamental research challenges.

Sensor network security should be properly addressed from the start because there are

unique new challenges in the network of limited in energy, computational and communica-

tional capabilities sensor devices. They are also deployed in accessible areas, presenting the

added risk of physical attack and interact closely with their physical environment and with

people, posing new security problems. It is crucial that security pervade every aspect of

system design and be integrated into the system and every component of it. In this case of

wireless sensor networks, for instance, the cryptographic key establishment of the network

is very different than the well-studied same problem in previous networks that proposed a

variety of protocols and solutions. We need a secure and efficient key-distribution mecha-

nism allowing simple key establishment for large-scale sensor networks. Better random-key

predistribution schemes and investigation of hardware support for public-key cryptography

are useful. Protection against eavesdropping, injections and modification of packets are also

important and recent research shows that software-only cryptography is indeed practical

with today’s sensor technology. Further research is needed is matters as privacy, robustness

to communication denial of service attacks and resilience to node capture. And finally im-

portant network secure services such as secure group management, intrusion detection and

secure data aggregation need improvement.

In our work again, we combine web-based interfaces and protocols with GSM-GPRS.

When it cames to security and privacy the middleware can give the solutions, as those issues

have been studied in the context of the World-wide web (e.g. the https with additional en-

cryption/authentication layer between HTTP and TCP). In our work we don’t treat security

12

issues, but there are implementations and ideas integrated into the mobile sensors and their

functions that can be activated. The mobile sensors can distinguish among administrators

and common users and assign privileges according to the access group they belong. Some

examples will be detailed later on when some mobile sensors instances are presented.

2.2 Commercial Mobile Sensors

There are many examples of commercial mobile sensors or GSM-enabled sensors which are

available and widely used today. These sensors are part of monitoring and alarm systems and

they are useful in environmental measuring and logging. It is also common for the mobile

sensors to have the communicational capacities in order to transmit data to different kind of

networks and even to send alarm signals to the appropriate users.

Figure 2.1: GSM Remote Monitoring and Alarm System, XR5 Data Logger for pressure, tem-

perature, level, flow, weather, power, vibration, etc with the use of GSM Modem (Wavecom

WCOD2 GSM modem).

In Figure 2.1 different parts of a remote monitoring system are shown. There are some

sensors measuring environmental parameters like pressure, temperature, level, flow, weather,

power, vibration etc, from the power system shown on the left. Those measurements are

collected by a data logger and through a GSM modem are communicated to the administra-

13

tor. These systems should be programmed remotely using any Windows terminal emulator

and send data to mobile phone using SMS text messages. This is a typical example of the

implementation of a monitoring system combining sensors, loggers, modems and terminals

using their functionality and properties.

The power, storage, bandwidth, communication or other capacities of the devices used

can lead to a variety of monitoring systems implementation. There are devices which in-

clude some or even all the capacities needed for this kind of systems in order to be used

stand-alone and devices specifically designed for only one function needed in the system.

There are, for example, mobile sensors that have also communication capacities, like mobile

GSM thermometer and camera sensors, and data loggers with communication capacities that

can store and send the data from connected sensors through GSM or computer networks.

Of course the example of specifically designed devices-parts of the monitoring system is the

above figure (Figure 2.1).

There is a vast variety of mobile sensors used in any kind of monitoring systems form

industrial use to commercial use and of course in house monitoring. In addition to mea-

suring and monitoring environmental parameters they should also communicate the data

collected and sometimes set alarms. The sensors are designed in order to be connected and

communicate their data and status, informing about their measurements and their normal

or not normal functionality. There are sensors which need other communication devices,

like any kind of modems or data loggers; and other sensors which include communication

capacities and can be connected to many networks. For this kind of design, which integrate a

monitoring and a communication system, typical examples are some mobile cameras: GTM

module network and dedicated PC based software management from AxelProd [24], GSM

alarm monitoring system and GPS vehicle locating system like the Patriot unit from Spy

Equipment, Law Enforcement Systems [25], the TCS-CAM developed by DPS-Promatic, a

reliable GSM digital camera for stand alone applications, which is used to take a pictures

and send it over a GSM network [26], and Nokia Observation Camera (Figure 2.2) used to

take pictures and more [27].

In addition, Data loggers have digital and analog inputs for the connection of devices with

analog outputs (temperature sensors, pressure sensors etc) or digital outputs and signals from

alarms. There are also data loggers with independents outputs of activation and deactivation

of devices that are connected; and their communication capabilities might include commu-

14

nication ports (RS-485 or RS-232 ports are common) or/and GSM - GPRS connection with

included modems. These loggers have of course different methods of control, in a remote

manner, used for activation and deactivation of the individual devices that are connected to

them. These are some examples of the latter data loggers: AUTOTECH Irida/GSM, which

offer remote control through GSM network [28], Ekopower Complete Data-Logger System

EKO21[29] and GuardMagic SCT, GuardMagic SC2x2, GuardMagic SC4x4 devices [30].

Figure 2.2: Nokia Observation Camera sending MMS or e-mail messages with image and

temperature data.

Continuing, some examples of mobile sensors, their specifications and capabilities will

be presented, sensors that will be use in our middleware framework. Hence, details about

Nokia Observation Camera, IRIDA, BieneRemote16 and Weather Station will conclude this

introduction to commercial mobile sensors.

Figure 2.3: Nokia Observation Camera.

15

2.2.1 Nokia Observation Camera

Nokia Observation Camera is shown in Figure 2.2 and Figure 2.3. This camera is a remote

imaging stand alone device with a motion detector, thermometer and microphone. Images

can be captured and sent to any multimedia messaging (MMS) enable mobile phone with

color display, or to an e-mail address. Temperature can be sent, after user request, or if the

temperature goes out of a set range; the camera can be also programmable to take images

automatically at a designated time interval, or when the motion detector is triggered. Finally,

the microphone can be used to listen to the environment that the camera is installed into.

The site for the Observation Camera Support is [27] and the user manual can be found there.

Table 2.2: An example of Nokia Observation Camera instructions; note: the underline char-

acter () is used for space in the SMS message.

Task SMS Command

Set a name for the camera 25 camera name

Capture an image and send it to your 1 or image

mobile phone

Capture an image and send it to another 1 phone number/e-mail address or

phone number or e-mail address image phone number/e-mail address

Set the image resolution to high (1), 11 number

normal (2), or compact (3)

Set motion detector off 2 off or detection off

Request the current temperature 3 or temp

Set temperature alarm off 15 off

Set the sending of current 13 on/off

temperature with images on or off

Set the user name for the connection 41 user name

Set connection security on or off 45 on/off

Define the master user. 8 security code user name phone

The e-mail address is mandatory number e-mail address or

master security code user

name phone number e-mail address

Add a new use, and give the right to 5 security code user name user’s

capture images and/or phone number on on or

use the audio connection add security code user name user’s

phone number on on

Remove a use. 6 security code user name/

The user can be removed phone number or

based on either the user name remove security code user name/

or the phone number phone number

Set the PIN code request on or off 22 PIN code on/off

Someone can control and configure the camera with short messages (SMS), and the PC

Suite for Nokia Observation Camera software is provided for more advanced functions. This

camera is approved for use on the GSM 900/1800 network and besides GSM network cover-

age, a GPRS enabled mobile subscription with a SIM card and MMS service will be needed

for its function. As mentioned above an MMS and SMS enable mobile phone with color

16

display can be used to control the device and deliver the data. In our work we make use of

a GSM modem for control and an e-mail address for receiving images. Some of the specific

instructions and requests with SMS messages to the camera are gathered in Table 2.2 and

through that table more camera specifications can be discussed. Please note that in the SMS

Command column of Table 2.2 the underline character () is used for spaces and that those

commands can be sent in one SMS separated by a comma. There are commands about get-

ting information (image or/and temperature), setting the camera parameters, the automatic

imaging and the connection, and finally, user and security commands.

2.2.2 IRIDA GSM

Figure 2.4: IRIDA GSM from Autotech

Irida GSM logger from Autotech is shown in Figure 2.4. This logger allows wireless re-

mote control through cell phone and can be useful in remote paging, telemetry and alarm

applications. It has been programmed on a “user friendly” philosophy, by SMS messages or

by a PC through a serial port.

IRIDA GSM has :

• 4 independent outputs for activation or deactivation (with or without time delay) of

devices that have been connected to these outputs either at home or in the factory.

Examples of such devices are: various household electric or electronic devices.

17

• 4 digital inputs for the connection of devices with N.O. - N.C. outputs or signals coming

from alarms or directly from gas, motion, fire detectors etc.

Table 2.3: Some of Irida GSM instructions.

Task Description SMS Command Syntax/Examples

Programming Commands

Enter access code PASS PASS=1111#

Store the Supervisor phone SUPERVISOR SUPERVISION=6970333330#

number in memory PASS=1111# (the 1st time)

Replace the current code (default: 1111) CHPASS CHPASS=1111.1234 #

with a new one

Store the phone number from which the SETCALLx SETCALL1=6970333330 OUT=ON-

system will receive commands and the MIN052 OUT2=OFF OUT3=XOR OUT4

sequence of commands to be executed =OFF-SEC035 CALLBACK1 REPORT#

Store a keyword and the sequence SETMACROx SETMACRO1=*IRIDA* OUT1=ON-

of tasks to be executed MIN052 OUT2=OFF OUT3=XOR OUT4

=OFF-SEC035 CALLBACK1 REPORT#

Store programming values for SETMALARMx SETALARM1=6977763000 IN1=ON

alarms 1 to 4 IN2=OFF AN1>80 AN2>55 AN2<35

AN3<10 OUT1=0N-MIN052 OUT2=OFF

CALLBACK1 REPORT #

Store in one of the memory locations SETSMSx SETSMS1=<A BURGLARY IS

the predefined SMS that the user CURRENTLY IN PROGRESS AT THE

will receive in case of alarm SHOP IN 34 AEOLOY ST.> #

Set and store the time and date SETDATE SETDATE#

in the GSM module

Indicates if a notification SMS REPORT

will be sent to the user’s phone

Indicates if a user-defined SMS message SMS

will be sent to the phone number that

has been programmed in memory SETCALL1=6970333330 OUT1=ON-

Output Functions MIN052 OUT2=OFF OUT3=XOR

Output activation and deactivation ON and OFF OUT4=OFF-SEC060 REPORT #

Output activation for the time ON-MINxxx and or

indicated by parameter xxx ON-SECxxx SETALARM1=6557763000 IN1=ON

(000 to 999 minutes or seconds) AN1>80 AN3<10 OUT1=ON-MIN052

Then the output is deactivated SMS CALLBACK1 REPORT #

Output deactivation for the time OFF-MINxxx and

indicated by parameter xxx (min. or OFF-SECxxx

sec.) Then the output is activated

Remote Control Commands

Direct outputs management COMMAND or COM COMMAND OUT1=ON

OUT3=XOR OUT4=ON-SEC035 #

Request for a notification SMS STATUS STATUS #

to supervisor phone number

• 4 analog inputs for the connection of temperature sensors, pressure sensors, humid-

ity sensors etc., or any other system that provides readings through analog outputs

(Alternatively, the analog inputs may be used as additional digital inputs).

• 4 independent timers for each Relay output with time function. (1sec - 999min)

18

• RS-485 & RS-232 ports communication.

• And additionally the capability to expand the outputs and inputs by multiplying their

number is provided.

The activation or deactivation of all individual devices that are connected can be remotely

controlled by:

1 commands through SMS that the device receives from a predefined telephone number

(supervisor) or from any telephone number with a password.

2 non-answered, toll-free calls to the device (utilizing the calling number identification

service)

3 keywords sent by the user in an SMS (the user can program up to 8 different keywords).

There are also 8 different programmable combinations of alarm signals, the device can

provide information in regular time intervals about the inputs-outputs status or information

regarding the overall status of the device by an SMS or even by a non-answered call.

More information can be found at the site for the Irida GSM [28] and the user manual

can be downloaded there. This logger is approved for use on the GSM 900/1800 network and

besides GSM network coverage, communicate/transfer data with the use of GPRS service.

Some of the specific instructions and requests with SMS messages to Irida are gathered in

Table 2.3. Those commands must always be terminated with the sharp character (#), and

there are commands about programming, remote control, and output functions.

2.2.3 GSM/SMS Remote Control Module BieneRemote16GM

BieneRemote16GM logger, from Biene Electronics, is shown in Figure 2.5, it’s a GSM/SMS

remote control module that can be applicable in cases of remote monitoring in different kind

of stations, as transformer and wastewater; remote control and alarm systems. There are

four different versions of this module: BieneRemote16GM-S for digital signal monitoring and

alarming, BieneRemote16GM-2A, BieneRemote16GM-4A both for analog and digital signal

monitoring, and BieneRemote16GM-2SMT for temperature monitoring. The user can re-

ceive an SMS message at occurrence of a certain event, send a SMS message for managing of

various equipment, or requesting information about the target system status. Independent

monitoring up to 14 inputs and local control up to 6 outputs is possible. The site for the

19

Figure 2.5: GSM/SMS Remote Control Module BieneRemote16GM

GSM/SMS Remote Control Module BieneRemote16GM is [31] and the user manual, demos

and other information can be found there.

Someone can control, be informed and configure this remote control module with short

messages (SMS). It has a built-in two-band (900/1800) or tri-band (900/1800/1900) Telit

GM862 GSM Modem, programmable via SMS embedded software and on board power supply

voltage regulator in a small size package. Some of the specific controls commands for the

standard version (BieneRemote16GM-S) are shown in Table 2.4. The user can get the current

status, set or reset the outputs and the notification, set the logger ON-LINE, and enable or

disable switch active /passive answer SMS.

2.2.4 TCS-AWS: GSM Autonomous Weather Station

In the case of the TCS-AWS weather stations, from Telecom Control Systems, we have a

reliable GSM based autonomous Weather stations, and there are available various versions

to measure parameters like wind speed and direction, temperature, relative humidity, pre-

cipitation. Figure 2.6 illustrates installed weather stations. Real time data can be requested

with an SMS or listened through a voice synthesizer, placing a call to the unit; data can be

logged on a 4 Mbit logger or can be sent directly to a server via GPRS UDP packets.

20

Table 2.4: An example of GSM/SMS Remote Control Module BieneRemote16 (standard

version) control commands.

Task SMS Command Description

Get input state, output state, charge status and

Get Status jjjj0 reference source (for ADC)

for instance: I=111111111111 O=10000000 CH=100%

Set Output 1 jjjj1 Set Output 1 to ‘1’ (to ‘0’ on terminal block)

Set Output 2 jjjj2 Set Output 2 to ‘1’ (to ‘0’ on terminal block)

... ...

Set Output 7 jjjj7 Set Output 7 to ‘1’

Event notification enable jjjj8 Set active mode -

Event notification enable

Set ON-LINE jjjj9 Set ON-LINE (BieneRemote dial to first in

phone book number)

Reset Output 1 Nnnn1 Set Output 1 to ‘0’ (to ‘1’ on terminal block)

Reset Output 2 Nnnn2 Set Output 1 to ‘0’ (to ‘1’ on terminal block)

... ...

Reset Output 7 Nnnn7 Set Output 1 to ‘0’

Event notification disable Nnnn8 Set passive mode -

Event notification disable

Enable/Disable answer SMS Nnnn9 Enable /disable switch active /passive answer

SMS (for alarm mode only). Default - disable

TCS-AWS (Telecom Control Systems for Autonomous Weather Station) control electron-

ics has the following features:

• Built in Dual Band modem model Siemens TC35

• Wide power supply range: 12VDC to 35VDC or 12VAC to 24VAC and a lead battery

constant voltage charger on board

• Solar panel power management on board

• Speech synthesizer to speak weather data upon call

• SMS handling to receive commands and send Weather status and alarms

• Alarms: wind speed and temperature with programmable thresholds. Rainfall alarm

available on versions with rain collector.

• Automatic message every 30 or 60 minutes in CSV format

• Optional

– DTMF decoder to allow access only upon touch tone password

21

Table 2.5: TCS-AWS: GSM Autonomous Weather Station, some of the commands in SMS

messages.

Task SMS Command

Enable or disable the generation of an ALeRt SMS #ALR

Store and read text for programmable Alarm MeSsages #AMS

Auto Reset gsm Modem daily at 3:00 am #ARM

Change Admin Password #CAP

CalL Back the tel data number indicated #CLB

Check gsm rf Signal Quality (0-32) #CSQ

Change User Password #CUP

DeBuG: send a copy of all incoming messages #DBG

to TELephone Nr.8

Get LoG: read a LOG string by SMS with #GLG?

comma separated variables

Request an SMS with weather data #GTM

INItialize: Initialize all parameters to the INIT #INI

default value

Set LoGtoGPRS parameters #LGG

Define period for weather data sampling and averaging #LGV

NO Acknowledgment: inhibit SMS acknowledgment #NOA

Set PIN for the SIM card #PIN

Set PPP parameters for GPRS connection #PPP

Give PassWorD to enable any following command by SMS #PWD

Read/Write PoWeR variables #PWR

Software RESet the board #RES

Read/write Real Time Clock in YYYYMMDD HHMMSS format #RTC

Read/Write the Service Center Address #SCA

Receive and sent SMs Counters: read/write sms counters #SMC

Set Rain alarm #SRA

Set Rain Units #SRU

Set low Temperature Alarm #STA

Set Temperature Units #STU

Set strong Wind Alarm #SWA

Set Wind speed Units #SWU

Set the GSM TELephone numbers (up to 8) to #TEL

which alarms will be sent

Voice Call Functions #VCF

Software Version #VER

Read Wind direction (to align wind vane) #WDC

22

Figure 2.6: Installed GSM Autonomous Weather Stations

– GPRS modem and PPP software to send UDP packets to a WEB server (special

skills required to be able to use this option)

• Operating temperature range (inside the box) : 0-50 degrees centigrade

The station can be managed with the TCS OS (Telecom Control Systems Operating Sys-

tem) with system commands given via SMS or via Command Line, when a terminal utility

(i.e. Hyperterminal) is used or a PC with a serial cable to RS232 port (for specific products)

is connected. More details can be found in [32] and some of the commands for this weather

station are in Table 2.5.

In Table 2.6 details and characteristics of the above four sensors are combined. Firstly,

this table provides information about the type and the appropriate network for those sensors.

Nokia Observation Camera is a GSM/GPRS sensor, Irida and BieneRemote16GT are GSM

data loggers and TCS Autonomous Weather Station supporting GPRS optionally. Software

and connection need for programming the devices with a computer is custom made for the

devices, with serial port connection, except from the BieneRemote16GT which supports only

SMS programming. The sensing types that the devices can measure are depending on the

devices, the mobile camera can capture images and get current temperature, the data loggers

have analog and digital inputs and the weather station can measure wind direction and

speed, temperature, humidity and rainfall. Of course, the number of outputs for activation

23

Table 2.6: Classification of the above four sensors.

Observation Camera IRIDA GSM BieneRemote16GM TCS-AWS

sensor or sensor data logger data logger full system: sensors

data logger and data logger

networks GSM-GPRS GSM-GPRS GSM (SMS) GSM (GPRS opt.)

PC - connection Custom-made software Custom-made software only SMS PC Software

and programming serial port serial port and programmable TCS-OS (RS-232)

SMS programmable

sensing types image and temperature analog/digital analog/digital signals weather measure-

signals and temperature (for ments (wind,

16GM-2SMT ver.) temp., rainfall etc)

alarm motion detection, alarm messages event notification wind, temperature,

temperature alarm rainfall alarms

and alarm messages

users master user, users supervisor, users - administrator

with privileges and access code and users - use

and security code of passwords

power external power supply external power supply external power supply wide power supply

range and battery

(on board)

or deactivation of the data loggers is an other specification characteristic depending on the

logger, and this was mentioned in the earlier descriptions of Irida and BieneRemote16GT.

Finally, those devices have specific alarming, user management and power capabilities. For

instance, BieneRemote16GT does not support different user, privileges or access code in its

programming and use; and the autonomous weather station supports a wide power supply

range (12V to 35V DC or 12V to 24V AC), an external solar power supply or a lead battery

on board.

2.3 Middleware, Web Services and Messaging

The work presented here generally relates to the integration of devices that communicate

through SMS and MMS in a global computing environment. Short Messaging Services or

Short Message Sending (SMS) [33] is widely supported in mobile phones in most countries.

It allows users to compose short textual messages using the telephone handset, and transmit

them asynchronously. Thus, it is natural to bind together the pertinent telephony and com-

puting protocols so that computers can originate and perhaps receive such messages. In that

respect Short Messaging Services are offered by various cellular telephony providers through

WEB interfaces.

In general, XML has been used for sending SMS messages over HTTP [34]. However,

24

each vendor created its own implementation leading to interoperability problems. To solve

such problems the SMS Forum [35] developed two relating standards: Short Messaging Ap-

plication Part (SMAP), an XML format for the messages themselves, and Mobile Messaging

Access Protocol (MMAP), a SOAP-based protocol for sending those messages. Simple Ob-

ject Access Protocol (SOAP) is a simple XML protocol for exchanging structured information

over the Internet and is amongst the core standards that formulate the overall Web Services

architecture [36]. SOAP lies on top of a variety of transport protocols such as HTTP and

SMTP.

The aforementioned standards constitute a foundation for communicating with mobile

sensors using SOAP. An approach that actually realizes such communication capabilities is

detailed in [37]. In particular, the authors propose a bi-directional SOAP/SMS gateway ser-

vice. This approach bears some similarity with our framework. The gateway service gets

SOAP requests from the client application, makes use of a database and a GSM modem to

access mobile sensors and sends SOAP responses. The service described in this context runs

as a common gateway interface (CGI) script on an Apache WEB server. Implementation-wise

there are several common points between this approach and our framework. However, a ma-

jor difference is that our approach unifies access to different types of mobile sensors through

WEB-based interfaces generated automatically. The implementations of these interfaces

translate client requests to sensor-specific sequences of SMS control messages. Our system

further provides compatibility with approaches for accessing mobile devices through WAP

[38]. WAP allows low-end devices with limited CPU power, memory and storage to access the

wireless WEB, which further suffers from frequent outages, high latency and low bandwidth.

In addition to dealing with these constraints, WAP was designed as an open standard (like

HTTP), which significantly reduces compatibility problems across different vendor’s imple-

mentations. Besides being operating-system independent, WAP is also network-independent

and thus capable of operating seamlessly on top of any wireless transmission protocol.

The middleware framework developed in this work is reflective as it self-customizes its

interfaces with respect to constraints imposed by each particular sensor. A middleware is

said to support reflection if it is capable of (1) reasoning about both the application’s re-

quirements over the middleware and (2) self-customizing its properties or functionality to

cope with the application’s requirements. This follows the very first definition of reflection

given by Smith in [39]. There are several middleware frameworks that expose the properties

provided by the middleware services for introspection and change. An example of such a

25

framework is Flexinet, presented in [40]. In Flexinet, it is possible to modify the behavior of

the middleware by adding and removing the reified request processing layers of the commu-

nication infrastructure, defined by the framework. Other examples are reflective frameworks

presented in [41, 42, 43]. To our knowledge, none of the aforementioned particularly deals

with the provision of WEB-based access transparency over mobile sensors.

26

Chapter 3

A Middleware Framework for

Accessing Mobile Sensors

3.1 Introduction and System Architecture

3.2 Mobile Sensor Customizer

3.3 Server and WEB Page Proxies

3.4 Implementation Issues

In this chapter, we propose a middleware framework that unifies access to GSM-enabled

sensor devices in a global computing environment. Typically, communication with mobile

sensors relies on their own protocols, involving the exchange of SMS and MMS messages.

In the proposed framework we use XML-based control descriptions that abstractly specify

these protocols to generate proxies and corresponding WEB-based (HTML, WAP and WEB

services) interfaces that realize them. Thus, we provide WEB-based access transparency over

different kinds of mobile sensors. This chapter is structured as follows: after the introduction

and the detailed system architecture in Section 3.1, mobile sensor customizer, and server

and WEB page proxies will be described in Section 3.2 and 3.3 and finally Section 3.4

implementation issues of the middleware will be discussed.

3.1 Introduction and System Architecture

The World-Wide Web has evolved into the major data structure for providing and access-

ing computer applications and other resources though well defined WEB-enabled interfaces.

28

Several emerging technologies exist for the development of such interfaces. In practice, in

our work, we meet HTML-based interfaces that facilitate the communication between devices

like personal computers and laptops and WAP-based interfaces that support the communi-

cation in environments involving hand-held devices like PDAs and pocket PCs. Nowadays,

we further have the ability to use programmable interfaces, such as the CGI scripts, and rely

on the standard Web Services architecture [36, 44].

In this chapter, we specifically focus on incorporating in such global computing environ-

ments (as in [45]) small GSM-enabled sensor devices, controlled by SMS messages. Typically,

information gathering from mobile sensors is performed through either SMS messages (e.g.

temperature, atmospheric pressure or humidity) or MMS messages (e.g. images, video or

time varying signals of seismic or electromagnetic activity). SMS messages are traditionally

used as means not only for controlling GSM-enabled devices and logging data regarding their

operation (e.g. the status), but also for requesting information (e.g. temperature or wind

speed). A sensor-specific proxy server collects client requests for control, logging or informa-

tion and submits them to the sensor. Then, it collects the specified response and information

and makes it available in client-compatible formats. The interaction between the proxy server

and the mobile sensor is determined by the manufacturer’s specifications regarding command

sequences for initializing the sensor and for selecting amongst alternative delivery methods

and data contents.

The framework that is introduced is the Middleware Framework layer (as shown in Figure

3.1) between different kind of GSM-enabled sensors and data loggers, which communicate

data, and the user interfaces. From the variety of sensors and data loggers in front of sensors,

our middleware framework uses GSM/GPRS technology to communicate with those GSM-

enabled devices. This framework can be based on Web Services, simple CGI scripts from

html pages, e-mail servers or other proxy servers and in the implementation one of the above

architectures or a combination between them can be chosen. For instance, we may use Web

Services and an e-mail server in cooperation. The middleware will control and access the

sensors/loggers through the GSM/GPRS network, as shown at the bottom of Figure 3.1 and

the interfaces of the users, based in WEB or WAP, in the top of that figure, will access the

middleware through the API that is provided. Of course, other applications industrial and

domestic can access the GSM-enable sensors through the user interface or the API of the

middleware framework, as an example: with SOAP messages when a Web Services architec-

ture was selected for the implementation of the middleware framework.

29

Figure 3.1: Architecture Layers

Hence, the initialization and the gathering of information provided by mobile sensors

varies depending on the type of the sensor. In principle, a global computing environment,

such as the ones we examine [45], shall comprise many different types of sensors. Conse-

quently, the aim of this work is to propose a middleware framework that enables a uniform

WEB-based access to mobile sensors. To this end, each mobile sensor is accompanied by a

description called Mobile Sensor Control Description (MSCD) that serves as input to the

proposed framework and will be discussed later. Based on the MSCD, we generate sensor-

specific proxy servers and corresponding WEB interfaces. The generated proxy servers realize

the necessary procedures for the sensor initialization and the gathering of information accord-

30

ing to several sensor-specific parameters that can be customized by the clients through the

WEB interfaces. The clients may use different devices such as personal computers, laptops

or PDAs with Internet access.

Depending on the client preferences, the sensor-acquired information may be delivered to

an e-mail address, to a mobile phone or to a WEB page, because, in the case of a Web page,

when we know the format of the delivered information we can automatically generate this

page. In a sense the proposed middleware framework is reflective [46] since it self-customizes

its interfaces with respect to constraints imposed by each particular sensor that participates

in the global computing environment.

An overview of our architecture is illustrated in Figure 3.2. Figure 3.2 intoduces the

concept of middleware customization with a mobile sensor description, shown in the right

side. The global computing environment we consider comprises clients, using different WEB-

enabled devices such as personal computers, laptops and PDAs to access available resources.

Mobile sensors communicating through GSM and GPRS are a particular kind of such re-

sources. Our framework consists of three main components, namely a mobile sensor cus-

tomizer, and different kinds of server and WEB page proxies. The server and the WEB page

proxies are sensor-specific and establish communication between the clients and the sensors.

On the other hand, the mobile sensor customizer serves for generating the aforementioned

sensor-specific components, given the specification of Mobile Sensor Control Descriptions

(MSCDs). The rest of this chapter further discusses the main responsibilities of the compo-

nents that constitute the proposed framework.

To demonstrate our overall approach for unifying access to mobile sensors in global com-

puting environments, we provide a specific instances of our architecture that allows accessing

a mobile camera, described in Section 2.2.1, through multiple WEB-based interfaces and the

GSM autonomous weather station, as described in Section 2.2.4. Those are the use cases

that will be described and evaluated in the next chapters. First we present in details the

different parts of our framework.

31

Figure 3.2: System Architecture

3.2 Mobile Sensor Customizer

As we discussed in Section 3.1, the interaction between clients and mobile sensors is deter-

mined by the manufacturers’ specifications regarding command sequences for initializing a

sensor, and for selecting delivery methods and data contents. Unifying the communication

between clients and mobile sensors by providing appropriate WEB-based interfaces is a major

issue in this context. Addressing this issue is the main responsibility of the mobile sensor

customizer. The customizer accepts as input a MSCD, provided by means of an XML file.

Roughly, the Mobile Sensor Control Description (MSCD) specifies, besides control messages

as for instance initiation commands for installing the sensor, the type of information that

can be delivered by the sensor and alternative delivery methods.

Following, the customizer generates appropriate WEB-based interfaces and correspond-

ing implementations of server and WEB page proxies that mediate the interaction between

clients and mobile servers. Different kinds of sensors have different descriptions and capa-

bilities and so the behavior of the server and the WEB page specific proxies can vary. For

instance, let us assume that a mobile sensor can send image, temperature or both, and this

information can be delivered with an SMS or an MMS. The SMS control sequences that

32

Figure 3.3: The XML schema for MSCDs.

perform these operations on the mobile sensor is the information that the customizer wants

to acquire from the MSCD, to generate a server proxy that actually realizes the operations

which are exported by the server proxy in terms of a well-defined WEB interface. Specifically,

the mobile sensor customizer supports the generation of two different types of server prox-

ies: (1) servlets providing HTML or WAP based interfaces, and (2) Web Services, providing

WSDL compliant interfaces.

Figure 3.3 gives the XML schema for the MSCDs used by the mobile sensor customizer.

In detail, the MSCD of a mobile sensor consists of the following elements:

33

Figure 3.4: Example of a MSCD specification for a mobile camera.

• Initialization information (initialization tag in Figure 3.3), consisting of a set of

alternative initialization protocols for the mobile sensor. An initialization protocol

specifies an ordered collection of request and response messages that must be exchanged

between the proxy server and the sensor toward the sensor’s initialization.

• Query delivery information (infoRequest tag in Figure 3.3), comprising a set of al-

ternative query protocols for the mobile sensor. Those query protocol prescribes an

ordered collection of request and response messages that must be exchanged between

the proxy server and the sensor to obtain the information provided by the sensor. The

query protocols represent possible user requests and use case in general, when someone

can chose what, where and how information will be delivered. It is also possible those

protocols to involve the exchange of more that one commands or SMS messages to the

sensor configuring the selected parameters.

The initialization and the query protocols customize the content type provided by the mo-

bile sensor and several other content-dependent quality attributes that specify characteristics

of the data type that will be delivered (infoRequest tag in Figure 3.3). For instance, the

content types may be image, video or text and the attributes may specify characteristics such

34

Figure 3.5: Web-based Interface for the Autonomous Weather Station, part of the initiation

commands.

as image resolution, video compression or image format. The WEB interfaces generated by

the customizer facilitate the selection between alternative initialization and query protocols,

as they allow the clients to set their preferences regarding the various content types and at-

tributes either graphically through HTML or WAP based pages, or though a programmable

WSDL interface. Then, the client preferences are properly handled by the corresponding

proxy servers. Finally, there are also common and useful interactions with the sensors.

Those interactions are consisting of a number of initiation and information query requests

(of SMS messages) described in case of the “end-user” protocols (end-user description tag

in Figure 3.3) and can provide different and simple interfaces. What is why those protocols

are called “end-user protocols” and provide “end-user interfaces”.

Hence, to integrate a mobile sensor in our global computing environment we define an

XML scheme that describes the structure of MSCDs. We can then describe all mobile sensors

by providing MSCDs that comply to this scheme. A representative MSCD example is given

in Figure 3.4, which is further detailed later in Section 3.4 and in the use cases given in detail

in next Chapter.

35

3.3 Server and WEB Page Proxies

The behavior of proxy servers is rather typical as it materializes the alternative initialization

and query protocols, specified in the MSCDs that were used for generating the servers. In

particular, a proxy server collects requests for information issued by clients and translates

them into sequences of sensor-specific requests such as SMS messages. For the requests to

the proxy there are the appropriate interfaces customized according to the MSCD of the

sensor. The interfaces include the forms of choices that are available, in the case of initiation

and requesting information as shown in Figure 3.5, for the initiation process of the weather

station, and in Figure 3.6 for the observation camera. Following, the proxy server receives

the specified information and makes it available in client-compatible formats. The proxy

server uses GSM to communicate with the mobile sensor and the mobile sensor responds by

submitting appropriate SMS or MMS messages using GSM or GPRS, respectively.

Figure 3.6: Web-based Interface for the Nokia Observation Camera, some of the commands

of the mobile camera that be selected.

The construction of this WEB page, when it is requested, is a responsibility of the WEB

page proxy component, which receives the MMS sent by the sensor in place of the client.

The result page has a unique id assigned incrementally by the framework. The WEB page is

created upon the arrival of the email message that contains the MMS built by the sensor, as

in the instance that Figure 3.7(b) shows. Synchronizing the client and the WEB page proxy

is an issue, tackled by the proxy server. During the processing of a client request the proxy

36

server waits for the creation of the result page at the WEB page proxy and then notifies the

client. The proxy server uses polling to realize the previous task. While the client request is

being processed a popup window is open at the client’s browser, highlighting the progress of

the client’s request; as in Figure 3.7(a) for the case of the observation camera.

(a) Popup window. (b) Results page.

Figure 3.7: “End-user” case for mobile camera.

Finally, it worths discussing a very common scenario where a client executes on a low-end

device with limited power, processing and storage capabilities. This is the case for the use

of WAP-based interfaces and if such kind of devices do not support the reception of MMS

messages efficiently the option of building a WEB page that contains the results obtained by

the sensor is the solution. And those WAP-based interfaces are generated by the customizer

as well.

3.4 Implementation Issues

Speaking of our prototype implementation we can focus on three basic matters: the XML

Schema, the proxy server and the GSM/GPRS communication.

Firstly, any MSCD file about a mobile sensor is base on the XML Schema mentioned

above. So the description of a mobile sensor has mandatory an optional fields of data. Name

37

and phone number for this senor are optional but useful when they are known, then any

specific function - command of the sensor must be detailed. Some functions can be executed

alone, sending only the command messages for those and not with any other in the same

SMS messages, and some other can be sent together in the same SMS messages. That’s why

it is specified for every function if this command would be sent in one SMS. Those function

- commands are collected in groups of initiation, requesting information protocols and “end

user” description in the xml file (in different tags as initialization and infoRequest),

and some of the functions can be in more than one of those groups. Apart from the name

and the description of those functions there must be specified the variables or parameters of

the commands for the functions. A parameter can be, for instance, the ‘on’, ‘off’ or question

mark (‘?’) (usually when the status is requested) and a variable can be an e-mail address

or a mobile phone number for delivering information, and so on. The commands are SMS

messages with a generic message body and then the variables or and the parameters, those

are things specified for any function in the description. The XML Schema that is used in

our work is shown in Figure 3.3, some instances of the MCSD XML files for the Nokia Ob-

servation Camera and the Autonomous Weather Station are in Figure 3.4 and Figure 4.3(a).

In the later the instances of functions that require parameters or variables are detailed. For

any function there is also the information about the delivery, the request can be a control

SMS message but the response from the sensor can vary. In the description of the function

can included the type of the response (e.g. SMS, or MMS message), the sender and receiver

for those messages can be specified (when it is needed) and maybe a description of the body

of those messages can be helpful, in the case of unpacking the messages for receive the infor-

mation.

Moreover, there are functions (or commands) that can be used together, in the sense that

one function can change a parameter, a mode in the sensor and effect somehow an other

function. For instance, a function can change the delivery parameters of the sensor, e.g.

change the resolution of the images delivered or that temperature will not be sent along with

image, and when an other function will have different effect when it will be executed, maybe

the delivered information will be different and in the case of resolution the delivered image

will not be in default resolution. This example is for the case of the observation camera but

can easy lead to many interaction protocols in the use of the sensors for delivering data, after

modifying the delivery with changes as above. This case is further detailed in the use case

of the camera and is shown in the camera description file (Figure 3.4). Of course, for the

same sensor there can be different description files when some one can add those interaction

38

protocols, with the additional functions that can be used together. Despite the formal de-

scription of the sensor that will be just like the manual of the function - commands in an

XML file, those interaction protocols can be add a user perspective. This fact will give a user

friendly interface that will group together the functions and request form the sensor, along

with the use of popup windows in case of user requests, as shown in Figure 3.7(a), with links

to the result pages, as in Figure 3.7(b). This part of the MSCD is called (simple) “end-user

description” and will be discussed in details again in the next Chapter.

Finally, for every mobile sensor that will be used a web server is customized. This is the

server proxy that uses the Web Service of the sensor. In the parsing process every function,

that the sensor has, was mapped in a method of the .jws file, which is in fact a Java file and

those methods send the SMS messages to the sensor and wait the response when needed. In

the case of many commands in the same SMS there are two different types of implementation.

These implementations are different in the inner communication of the proxy server. The

Web Service caller (WS-Caller) is the part of the proxy that communicates with the Web

Service for the commands and gets the response. When multiple commands are selected to

be sent, the number of commands that can be submitted from the WS-Caller can be one by

one or all of them. The ‘first type’ of implementation is the simple type that the customizer

creates. The WS-Caller is connected to the GSM modem and the commands have to be

submitted to the Web Service proxy only to be translated to SMS messages. In that case

we selected that the caller will send one command at the time, and therefore there will be

multiple calls of web services. Then this program, the WS-Caller, will collect the response

and send the SMS message with all the requested commands. As mentioned the ‘first type’

of implementation is given by the customizer by default. When the Web Service proxy is

connected to the GMS modem and has the responsibility to send the SMS messages, the

WS-Caller will sent all the requested commands and their variables. We call this the ‘second

type’ of implementation and it is easy for the ‘first type’ to transformed to the ‘second type’

of implementation. This fact leads to different choices in the final architecture of the mid-

dleware and the middleware framework can even be distributed; as the components of the

frameworks, such as the proxy server or the GSM modem and the connection with that, can

be, for instance, in different servers in a local network.

In Chapter 5 we evaluated those different implementations for the cases of the com-

mands that can be submitted through the user interface (the Web page with the Html form),

connected locally or through an Internet connection; and with Web Service calls, with the

39

WS-Caller in command prompt mode. Moreover, we make use of a mobile phone for the GMS

modem connected in the USB port of the PC, for sending and receiving messages through

the COM port that it was dedicated. There is also an other server, the Web page server,

that makes use of an e-mail account and with unpacking the e-mail messages (in fact the

MMS messages to e-mail addresses) with the information can generate the new Web page

that includes the requested information.

In next chapter, use cases will be examined before the evaluation of our prototype. Those

use cases have to do with accessing the mobile camera and the GSM autonomous weather

station through WEB-based and WAP-based interfaces.

40

Chapter 4

Use Cases

4.1 A Framework Instance for a GSM-enabled Autonomous Weather Station

4.1.1 Interface and Implementation Details

4.2 A Framework Instance for a Mobile Observation Camera

4.2.1 Interface and Implementation Details

4.2.2 Protocols

In this chapter, the proposed middleware framework is used for two mobile sensors that

were described earlier. First the middleware framework instance for an Autonomous Weather

Station is presented; the resulting architecture is discussed along with the specific implemen-

tation issues of the servers and the interfaces that this middleware uses. This GSM based

Autonomous Weather Station was presented in Section 2.2.4. In Section 4.1 we outline the

customization of the middleware framework to utilize its functions of sensing, controlling

and submitting data in general. And in Section 2.2.1 a mobile camera was described. In

Section 4.2 we describe the resulting architecture, the interaction protocols for this camera,

the Web-based and WAP-based interfaces.

4.1 A Framework Instance for a GSM-enabled Autonomous Weather

Station

In the case of the TCS-AWS weather station from Telecom Control Systems the GSM based

autonomous Weather station there are various parameters: wind speed and direction, tem-

42

perature, relative humidity, precipitation. Real time information can be requested with an

SMS or listened through a voice synthesizer by placing a call to the unit. The Weather

Station is supported by the TCS OS (Telecom Control Systems Operating System) with

system commands given via SMS or via Command Line for managing the station; some of

the commands and the corresponding SMS messages for this weather station are in Table

2.5. For instance, we present three TCS OS commands of the Weather station:

• For enabling or disabling the generation of an alert SMS someone can use #ALR<status>,

where <status> is ON or OFF for enable or disable. In this case the body of the message

is #ALR and has the parameter <status>. Some examples of use are: “#ALRON”,

“#ALR OFF” (space between ALR and value is optional), or “#ALR?” (requesting

the status for alert messages).

• For setting telephone numbers to weather station there is #TEL command. Sets the

GSM Telephone numbers (up to 8) to which alarms will be sent. There are three

types of syntax for this command “#TEL?” returns all Telephone numbers (up to

8), “#TEL<xx>?” returns the <xx> Telephone number, with <xx> the Telephone

position (from 01 to 08), and #TEL<xx>[=]<tttttttttttttt> sets <xx> telephone

number to <ttttttttttttttt>, with <tttttttttttttt> the telephone number (maximum

15 digits including a ‘+’) and ‘=’ is optional equal sign, to improve readability. Using a

V in front of the number, example: #TEL01=V34822334xxx, will cause the TCS unit

to place a call (for 20 seconds) and not send an SMS. This is a command that has a

parameter for the position of the telephone number with values form 01 to 08 and a

variable that is the telephone number, as mentioned above with or with out V. Note

that the ‘V’ can also be a parameter, an option given to the user in the case of placing

a call (for 20 seconds).

• A command that can be the end of a SMS command string is #NOA, meaning “NO

Acknowledgment”, and with using this there will be no return SMS acknowledgment.

In the case of #NOA there are no parameters or variables.

Those examples will help us understand the customization of the middleware in the case

of the autonomous weather station, and the process that will map the described commands

of a sensor in the MSCD file to the corresponding user interface options and server functions.

43

Figure 4.1: Web-based Interface for the Autonomous Weather Station.

44

Figure 4.2: Web-based Interface for the Autonomous Weather Station, after submitting one

command to the sensor.

4.1.1 Interface and Implementation Details

The Web-based interface that includes those functions is shown in Figure 4.1 where the func-

tions can be selected and the parameters or variables of the functions can be specified. In

this case those functions can be executed alone in one SMS, that’s why there option buttons

in type of “radio”, and the user can choose only one of the functions. In other case check-

boxes will be useful for multiple selections. This Web-based interface is an HTML Form with

a “Submit” and a “Reset” push buttons and any submission through this form executes a

servlet that informs about our selection (Figure 4.2) and calls the appropriate method of the

Web service.

Those three functions in the case of the weather stations have led to three different meth-

ods in the proxy server that can be called. The methods in the Java file (.jws, Figure 4.3(b)1)

have as input the parameters or /and variables for the function and combine the SMS mes-

sage body that have to be sent, they use the GSM modem to send the SMS messages for

the requests. When a function is selected and submitted the servlet calls the appropriate

1Details for the XML file of the sensor description (MCSD file) can be found in the Appendix.

45

(a) XML. (b) JWS.

Figure 4.3: Autonomous Weather Station.

method with the parameters or variables specified and waits the response when there is one.

4.2 A Framework Instance for a Mobile Observation Camera

The Nokia Observation Camera will be showed in a different way. We make use of a simple

end-user interface that can be described in the general MSCD file and has only some of the

functions of the mobile sensor.

The MSCD file in the case of that camera is showed in Figure 3.4. But there is a part of

this description that has some common and more useful commands, e.g. for the camera the

request for image and temperature are frequent. This part of the description is simple and

called “(simple) end-user description”, and includes three or four commands and the delivery

options (to phone number, to e-mail and maybe to a new web page). There is also possible

46

to add additional options-commands determining information type and mode, image resolu-

tion, enabling or disabling the additional delivery of temperature information when someone

requests image and so on.

To take a look in some commands of Nokia Observation Camera (the full list of commands

is in Table 2.2), let’s examine four of the commands that will be in the simple end-user

interface:

• image or 1 and image phone number/e-mail address or 1 phone number/e-mail address,

captures an image and send it the phone number requesting or to another phone number

or to an e-mail address, if phone number/e-mail address is added in the command (e.g.

1 6900123xxx, sends image and temperature in an MMS message to the phone number

6900123xxx).

• 13 on/off enables (on) or disables (off) sending current temperature with images, e.g.

when an image is requested by the “image” SMS.

• 3 requests the current temperature with an SMS message to the phone that send this

message.

• 11 1, 11 2 , and 11 3 changes image resolution to compact, normal or high. This is

the case of changing resolution mode that was mentioned earlier.

4.2.1 Interface and Implementation Details

In the case of customizing the middleware for the observation camera the process is as de-

scribed for the weather station and the WEB-Based interface is shown in Figure 3.6, for some

of the camera functions-commands. Every function lead to different method in the proxy

server and the interface is used for selecting and submitting the user requests. But there is

also the “(simple) end-user description” of the sensor that has a different approach (as shown

in Figure 4.4). In the case of this description only frequently used functions are described

and there are additional functions. So the interface has the HTML Form for selecting the

function, the additional specification functions and then the delivery options (Figure 4.4).

There are, in other words, two parts in the interface the first includes the functions that the

user has to select and the additional functions selecting, for instance, different resolution in

the delivered images (Figure 4.5); and the second part about the delivery information, where

the user selects the method of delivery, with an e-mail, to a mobile phone (Figure 4.6), and so

on. The customization process gather the functions for the first part and uses the standard

47

Figure 4.4: Web-based Interface for the Nokia Observation Camera, in the “End-user” (sim-

ple) case.

second part deactivated, and has to activate the appropriate methods of delivery when a

function is selected because some functions many not use all the given delivery methods.

The basic idea in creating the WAP-based interface is the use of the first WAP card for

choosing the function that the user want and then every function has its own different card

for setting the appropriate parameters and or variables that this function needs. Some ex-

amples are shown in Figures 4.9, about the Nokia Observation Camera in the case of simple

end-user interface, the same that was described above for the Web-based interface.

The behavior of proxy servers is rather typical as it materializes the alternative initializa-

tion and query protocols, specified in the MSCDs that were used for generating the servers.

In particular, the proxy server collects requests for information issued by clients and trans-

lates them into sequences of sensor-specific requests such as SMS messages. Following, the

proxy server receives the specified information and makes it available in client-compatible

formats. At this point it worths discussing a very common scenario, the client has the option

of building a WEB page that contains the results obtained by the sensor. The construction

of this WEB page is a responsibility of the WEB page proxy component, which receives the

48

Figure 4.5: Filling delivery information.

Figure 4.6: Setting up delivery destination.

MMS sent by the sensor in place of the client. The result page has a unique id assigned

incrementally by the framework. The WEB page is created upon the arrival of the email

message that contains the MMS built by the sensor. Synchronizing the client and the WEB

page proxy is an issue, tackled by the proxy server. During the processing of a client request

the proxy server waits for the creation of the result page at the WEB page proxy and then

notifies the client. The proxy server uses polling to realize the previous task. While the

client request is being processed a popup window is open at the client’s browser (Figure 4.7),

highlighting the progress of the client’s request.

4.2.2 Protocols

The clients of our application may then execute several query scenarios involving information

provided by the mobile camera simply through the use of the generated interfaces and with-

out any particular knowledge of technicalities that relate to the particular camera. All the

required expertise on using the mobile camera is encapsulated in the logic of the server and

the WEB page proxies, generated by the mobile sensor customizer. Following we examine

49

possible scenarios which are further evaluated in next Chapter.

1. A client uses the HTML interface of the camera to obtain image and temperature,

delivered through a new page.

2. A client uses the HTML interface of the camera to obtain image and temperature,

delivered to an e-mail address. Changing the image resolution mode to high or compact.

3. A client uses the HTML interface of the camera to obtain temperature, delivered to a

mobile phone.

4. A client uses the WAP interface to acquire image and temperature, delivered through

an e-mail message.

To realize the first scenario, the client has to fill up the options of the HTML forms given

in Figure 4.5 and Figure 4.6.

In particular, the scenario proceeds as follows:

a The client selects “Image and Temperature”, a resolution (in this case default resolution

mode) and “To web page” in the delivery options (Figure 4.5, Figure 4.6).

b After submitting the query a popup window appears and displays date and time asking

the user to wait. At the same time the server proxy sends the client request to the

camera and waits until the results web page is created (Figure 4.7).

c The camera receives the SMS message that encapsulates the client request and sends

image and temperature data to the WEB page proxy through an MMS message.

d Upon the reception of the MMS, the WEB page proxy uses a script to extract the data

and creates the results page (Figure 4.8).

e After polling the WEB page proxy, the server proxy gets the notification that the results

page is ready. Following, the server updates the popup window with the final form that

displays the link to the results page (Figure 4.7).

Similarly, to realize the second scenario the client has to use the HTML forms (as above:

Figure 4.5 and Figure 4.6). Specifically, the scenario executes as detailed below:

50

Figure 4.7: Popup window.

Figure 4.8: Results page.

51

a The client selects “Image and Temperature”, a resolution, in this case the client changes

the default resolution mode to high or compact, and “To E-mail” in the delivery op-

tions. This textfield is activated and instead of “set e-mail” the client has to white the

necessary e-mail address (Figure 4.6).

b After submitting the query a popup window appears and displays date and time asking

the user to wait. At the same time the server proxy sends the client request to the

camera and waits until the results are delivered, and

c The camera receives the SMS message that encapsulates the client request and sends

image and temperature data to the e-mail address specified through an MMS message.

(a) Filling delivery options. (b) Setting up the delivery email address.

Figure 4.9: Using the WAP interface in the forth scenario.

In the third case, to realize this scenario the client has to use the HTML forms and then:

a The client selects “Temperature Only” and “To mobile phone” in the delivery options.

This textfield is activated and instead of “set phone number” the client has to white

the necessary phone number (e.g. +306907937xxx) (Figure 4.6).

b After submitting the query a popup window appears and displays date and time asking

the user to wait. At the same time the server proxy sends the client request to the

camera and waits until the results are delivered,

c The camera receives the SMS message with the client request and sends image and

temperature data to the e-mail address specified through an MMS message.

52

d Upon the reception of the MMS, the WEB page proxy uses a script to extract the data

and creates the results page (Figure 4.8), and then the current temperature has to be

delivered.

e After polling the WEB page proxy, the server proxy gets the notification that the results

page is ready. Following, the temperature from this page is extracted and delivered to

the specified phone number.

Finally, to realize the last scenario the client has to use the WAP interface given in

Figure 4.9. Specifically, the scenario executes as detailed below:

a The client selects “Image and Temperature” and the preferred resolution (Figure 4.9(a)).

b Then, the client selects “To E-mail” as as delivery mode and fills in the e-mail address

field (Figure 4.9(b)).

c After receiving the query, the proxy server sends a control SMS message to the camera.

d Upon the reception of this message, the camera sends image and temperature as mail

attachment to the specified e-mail address.

This last scenario combined with the first three scenarios can give the other use cases for

the WAP interface. Figure 4.10, about the first and last scenarios. The above interfaces can

be tested for the HTML-based interface at: http://sensor-proxy.cs.uoi.gr/index ds.htm,

and for the WAP-based interface at: http://sensor-proxy.cs.uoi.gr/index ds.wml. The

last created page, with image and temperature information is stored in the Web Page

Proxy, at: http://apollonium.cs.uoi.gr/CAMERA/camera.html and another page may

be: http://apollonium.cs.uoi.gr/CAMERA/mms166/.

53

Proxy Server ClientWeb page proxy

Application Server

Fill the html
form

Camera CGI – Get

Control SMS Popup Window
(opening)Messages

Wait until
information
is delivered
at the web

page

Wait for the
request to be

processed

MMS message
 (To e-mail) Communication

Popup Window
(completing)

Information
delivered

and posted

Visit the web page with
the results

Web Browsing

Proxy serverWeb page proxy
Client

Application Server

Fill the html or
WAP form

Camera CGI – Get

Control SMS
Messages Popup Window

(opening)

Wait until
information
is delivered

Wait for the
request to be

processed

Popup Window
(completing)

MMS or SMS message

(a) Scenario 1. (b) Scenario 4.

From the client:

Web Browsing and the CGI – Get from client
to application server
From the server or the sensor:

SMS or MMS Messages

Popup Window events (opening, completing)

Communication within the application server,
while the request is being processed

Process completion.

Query protocol notation.

Figure 4.10: Query protocols for the two scenarios.

54

Chapter 5

Performance Evaluation

5.1 Customization Overhead

5.2 Middleware Overhead in the Weather Station Use Case

5.3 Middleware Overhead in the Camera Use Case

In this chapter we evaluate the prototype middleware framework that accesses GSM-

enabled sensors. In Section 5.1 we measure the middleware customization time. In Section

5.2 we evaluate the time overhead that the middleware introduces in the case of a mobile

weather station. Finally, in Section 5.3 we evaluate the middleware time overhead in the case

of the mobile camera.

5.1 Customization Overhead

The customization process is performed once for each sensor type, according to the cus-

tomization (MSCD) file. Every subsequent change in this description file leads to different

services and interfaces. The process of customization has two parts: the creation of the proxy

server and the creation of the corresponding user interfaces. Every different command of the

sensor results in a different method in the server that can be invoked by the client. The cus-

tomization file describes three different user interfaces: initialization, information exchange

and end-user interface. The proxy server in all these cases is the same.

In the evaluation we used three different files of sensor descriptions, files with small,

medium and large number of commands in the cases of the initialization and information

56

Table 5.1: Customization time for the middleware framework in four cases, according to the

size of the sensor description file in number of commands described.

Customization 5 Commands 10 Commands 20 Commands 50 Commands
process (in sec) Description File Description File Description File Description File
Proxy Server:

(i) Web service proxy 0.39 0.55 0.65 0.98
(ii) Calling Interface

creation 0.4 0.56 0.65 1.03
User Interface

Web page and Servlet 0.6 0.84 1.03 1.62
Total time of

creation 1.39 1.95 2.33 3.63

exchange interfaces. We used descriptions with 10, 20 and 50 commands. The correspond-

ing proxy server is the same for these interfaces. In addition, a selection of the most used

commands leads to end user descriptions with 5 commands. We have measured the time for

the customization of the server. Table 5.1 includes all the customization measurement in

the cases of the different description files. The first row in the Table 5.1 has the results for

the case of the server customization and the second row of this table has the results for the

interfaces customization.The average time, of course, is affected not only by the number of

commands described, but also by the complexity of these commands, concerning the parame-

ters and variables that they might have. The selection of the commands in the descriptions

used was not random, but the different kinds of commands had the same ratio in the cases

of the descriptions with small, medium and large number of commands. The ‘test set’ in the

evaluation of 10 commands description file included three commands without any parameter

or variable, two commands with a parameter, three commands with a variable and two com-

mands with a parameter and a variable. The same ratio was used in the other cases of the

sensor description files.

The average times for the creation are: 1.95 sec for the ‘10-commands description file’,

2.33 sec for the ‘20-commands description file’ and 3.63 sec ‘50-commands description file’.

For the creation of the interfaces (initialization and information exchange) the average time

is: 0.56 sec for the ‘10-commands description file’, 0.65 sec for the ‘20-commands description

file’ and 1.03 sec ‘50-commands description file’. In the case of the 5-function end user we

measure 0.39 sec, in average, and in ‘5-commands description file’ the initialization interface

57

Figure 5.1: Customization Process of different description files

was created in 0.41 sec, in average. The third row of the Table 5.1 has the time for the

customization of the Java files needed for the proxy server (the Web Service caller Java file)

and the interfaces (the servlet file). Those measurements were added to total creation time.

Figure 5.1 also shows the customization process for four cases according to the size of the

sensor description file in number of commands. In this figure the process time is divided

into three parts, the time for creation of: the proxy server, the web interface and both the

WS-Caller and the servlet.

Summarizing, as it is shown in the related table and figure (Table 5.1 and Figure 5.1),

someone can provide the interfaces and the proxy server within some seconds, depending on

the number commands, which are described in the MSCD file. The files created can be used

after compilation and copy in the directories of the server that is used. Tomcat server for the

servlets and Axis for the Web Services need some configurations and then service and user

interface will be ready.

58

5.2 Middleware Overhead in the Weather Station Use Case

After customizing the middleware for the case of the autonomous weather station, we can

measure the time overhead that the middleware introduces in different cases of accessing this

sensor. This overhead depends on:

• The complexity of the requested commands, as there are commands without parameters

or variables, commands with parameters or variables and commands with parameters

and variables. For instance, there are:

– commands without parameters or variables e.g. #GTM or #NOA (as in Section

4.1);

– commands with one parameter, e.g. #ALR, to enable or disable the generation

of an alert SMS, with the parameter status to be: enable, disable or ?;

– commands with one variable, e.g. #CUP, for changing a user password, with the

password as a variable; and

– commands with a parameter and a variable, e.g. #TEL as described in Section

4.1.

• The number of requested commands to sent in the same SMS message to the sensor.

• The means that will be used to select and translate the commands to SMS message(s),

as it is possible that the user can utilize the middleware with Web Services calls or

through the Web Interface. Moreover there are two different implementations, that

were detailed in Section 3.4, and each of them introduces different delays in the system.

• The number of commands described in the MSCD file for the middleware customiza-

tion, as it will be detailed in the last set of experiments.

The overhead form the above parameters has to do with latency depending on the CPU

time needed, e.g. in one of the server of the system, and network communication time be-

tween different parts of the system. Table 5.2 summarizes those latencies according to the

parameter of the system that we can chose and shows the parameters that will be used in

the experiments.

Specifically, for the first set of experiments (Table 5.3):

59

Table 5.2: Parameters that effect Middleware overhead in the Weather Station use case and

description of the following sets of experiments.

Parameter name Latency First set of Second set of Third set of

introduced by: experiments. experiments. experiments.

Complexity of CPU time Different types Different types Different types

the Command and Network time of Commands of Commands of Commands

Number of Commands One Command One, two, three One, two, three

in the same Network time in one SMS or four Comm. or five Comm.

SMS message message in one SMS mes. in one SMS mes.

Two implementation Network time Different Different Different

types implementations implementations implementations

The means used CPU time (server Different means Different means Different means

for request and client) are used are used are used

Number of Commands 25 Commands 25 Commands 10 and 50 Comm.

described in CPU time (server) described in described in described in

the MSCD file the MSCD file the MSCD file the MSCD file

i The number of requested commands is the same in all the experiments of this set, we

requested one command in one SMS message.

ii The complexity of the command varies as described. There are four types of commands

and in our measurements we included these different types of commands.

iii For this configuration of commands the two implementations have the same results, as

in both ones there is only one Web Service call.

iv We make use Web Services calls, the Web Interface locally and the Web Interface

through Internet connection.

v The MSCD file that were used described 25 commands.

For the second set of experiments (Table 5.4 and Table 5.5):

i The number of requested commands in one SMS message varies as follows:

– Requesting a simple command to be sent in one SMS message, with leads to four

cases according to the commands complexity.

– Requesting two commands to be sent in one SMS message, which leads to 16 cases

(four cases for the first command combined with four for the second one).

– Requesting three commands to be sent in one SMS message, which leads to 64

cases.

60

Table 5.3: Middleware overhead measurements in the case of one command in one SMS

message, in the Weather Station use case .

1st set of Web Service calls Web Interface, Web Interface,
Experiments locally Web page - locally Internet connection

Average time in sec Average time in sec Average time in sec
Command without
parameter or variable 1.05 1.57 1.58

Command with
a variable. 1.06 1.59 1.59

Command with
a parameter. 1.07 1.6 1.6

Commands with
a parameter and 1.07 1.62 1.63

a variable.

– Requesting four commands to be sent in one SMS message, which leads to 256

cases.

Selecting only commands of a different type in the same SMS, is a decision that leads

to more simple experiments (4, 6, 4 and one cases). This decision will not effect the

general idea of the selection of multiple commands in one SMS message.

ii The complexity of the command varies as in the first set and in our measurement we

have the average time.

iii We used both the two implementations.

iv Finally, same as in the first set of experiments: we make use Web Services calls, the

Web Interface (locally and through Internet connection) and the MSCD file described

25 commands.

We performed the experiments with two different types of implementation, that were dif-

ferent in the inner communication of the proxy server. The Web Service caller (WS-Caller)

is the part of the proxy that communicates with the Web Service for the commands and gets

the response. When multiple commands are selected to be sent, the number of commands

that can be submitted from the WS-Caller can be one by one or all of them. The ‘first type’

of implementation is the simple type that the customizer creates. In that implementation

61

Table 5.4: Middleware overhead measurements in different case of requests, in the Weather

Station use case (for the first type of our implementation).

2nd set of Web Service calls Web Interface, Web Interface,
Experiments locally Web page - locally Internet connection

(first implementation) Average time in sec Average time in sec Average time in sec
Simple Command in
one SMS message 1.06 1.59 1.59
Two Commands in

one SMS mess. 2.12 3.1 3.3
Three Commands in

one SMS mess. 3.30 4.7 4.8
Four Commands in

one SMS mess. 4.28 6.4 6.6

we selected that the caller will send one command at the time, and therefore there will be

multiple calls of web services. Then this program, the WS-Caller, will collect the responses

and send the SMS message with all the requested commands. As mentioned the ‘first type’

of implementation is given by the customizer by default, and this type of customization was

measured in Table 5.4. In the ‘second type’ of implementation the Web Service proxy has

the responsibility to send the SMS messages. The WS-Caller will sent all the requested com-

mands and their variables to the Web Service proxy and then waits. We also evaluated this

implementation for the same cases with the first implementation and the measurements are

shown in Table 5.5.

Without having installed the weather station, the evaluation of the framework was based

on the time needed from submitting the selected command(s) to be sent to the station, until

the indication that the commands were translated into SMS messages and were ready to be

sent. When the web service caller was used the total time of all the calls needed to the web

service was measured. If the Web interfaces, the Html Form, was used, the page with the

information about the submitted command(s) has that indication of completion. This was

shown in Figure 4.1, but in our measurement we omitted getting all the Html Form again,

as in Figure 4.2.

The average time of the middleware overhead in the different kinds of commands when

we choose one command in one SMS message is given in Table 5.3. The average time in the

cases of one, two, three and four commands in one SMS message to the sensor is given in

62

Table 5.5: Middleware overhead measurements in different case of requests, in the Weather

Station use case (for the second type of our implementation).

2nd set of Web Service calls Web Interface, Web Interface,
Experiments locally Web page - locally Internet connection

(second implementation) Average time in sec Average time in sec Average time in sec
Simple Command in
one SMS message 1.06 1.59 1.6
Two Commands in

one SMS mess. 1.1 1.63 1.64
Three Commands in

one SMS mess. 1.12 1.66 1.68
Four Commands in

one SMS mess. 1.13 1.69 1.71

Table 5.4, for the first implementation. Moreover, there is the distinction in two columns in

order to measure the total time when the user interfaces were used. These interfaces can be

used though the Web page and the use of the servlet calling the Web Service or when the

middleware was accessed without the interface. Without the interface means through com-

mand prompt, using a Java file that has the role of a client that calls the Web Service (the

WS-Caller). So, there are two columns of the average time in the Table 5.3 and Table 5.4 for

the cases of accessing through the user interface and simple Web Service call and also a third

column with the measurements of the overhead when the use of the user interface is made

through a different client - computer connecting the proxy server via an Internet connection.

These are the measurements in our first implementation type and those multiple web service

calls lead to interaction time from 1 to 4.3 seconds, in simple web service calls; and 1.5 to 6.5

seconds, through the Web User interface (locally). Using the second implementation type

the average time in the different case are summarized in Table 5.5. The average time for web

service call, in this implementation, is 1.1 seconds; and through the Web User interface from

1.59 to 1.72 seconds are needed.

For the third set of experiments (Table 5.6):

i The number of requested commands in one SMS message varies as follows:

– Requesting a simple command to be sent in one SMS message.

– Requesting two commands to be sent in one SMS message.

63

Table 5.6: Middleware overhead measurements in different case of requests, in the Weather

Station use case, for our implementations with different sizes of description files (10 commands

and 50 commands).

3rd set of Web Service call User Interface, locally

Experiments Average time in sec Average time in sec
1st / 2nd implementation 1st / 2nd implementation

Simple Command in
one SMS message
10 Comm. Description: 1.12 / 1.13 1.64 / 1.64
50 Comm. Description: 1.15 / 1.16 1.67 / 1.68
Two Commands in
one SMS message
10 Comm. Description: 2.23 / 1.16 3.3 / 1.65
50 Comm. Description: 2.29 / 1.16 3.25 / 1.70
Three Commands in
one SMS message
10 Comm. Description: 3.35 / 1.18 4.93 / 1.67
50 Comm. Description: 3.4 / 1.19 4.9 / 1.73
Five Commands in
one SMS message
10 Comm. Description: 5.6 / 1.2 8.14 / 1.72
50 Comm. Description: 5.61 / 1.22 8.1 / 1.79

– Requesting three commands to be sent in one SMS message.

– Requesting five commands to be sent in one SMS message.

ii The complexity of the command varies as in the first set and in our measurement we

have the average time of the different cases.

iii Same as in the second set of experiments: we used both the two implementations, we

make use Web Services calls, the Web Interface (locally).

iv We used two MSCD files, one with 10 commands and one with 50 commands described.

In the last set of experiments we compare our two implementations with the number of

commands described in the MSCD file. Table 5.6 shows the average times. In this table four

cases of experiments in our implementations are measured for the 10-commands description

64

file and the 50-commands description file. The different approach in the types of implementa-

tion, as described, is mapped in the code of the WS-Caller as cases of ‘if’ statements. In the

first type of implementation it is one ‘if else-if’ case that stops when the suitable command

is found, then the web service call can be made. In the second type there are many ‘if’ cases

checking each command in the set of commands that was requested. In both implementa-

tions there are 10 or 50 clauses (if cases) for the 10-command or 50-command descriptions

given. When the requested command is found in the first type of implementation one call is

made and the execution continues. In the second implementation, where a set of commands

is requested, we have to pass through all of them and call the web service when we have a

match. That’s why in the first type of implementation we have many calls with preparation

time that varies for call to call (finding one case) and in the second type we have one call

with preparation time that is about the same (checking all the cases).

Figure 5.2: Middleware Overhead Measurements, for 10 Commands description file

Table 5.6 shows how parameters like the type of implementation, the number of commands

in the description file, the number of requested commands in the same SMS message and the

use of Web Service call or the user interface affects the measured middleware overhead. In

particular, the Web interfaces costs half a second for every web service call, approximately.

In the case of simple commands it is the same for the implementations and in the other cases

65

the first type of implementation has two, tree and five web service calls which add 1, 1.5 and

2.5 seconds, in average, to the user interface overhead. In the second implementation, with

only one web service call, there is only half a second additional overhead time. This amount

of time can be increased in cases of slower connects, when for instance, we measured the time

through an Internet connection. Moreover, between the first and the second implementation

the cases of two, tree and five commands in one SMS message the needed time doubles, triples

and is almost multiplied by five in the first implementation. In the second one some addi-

tional milliseconds are added. The amount of these milliseconds depends on the connection

of the machine running the web service caller and the proxy server. In our measurements,

this amount is 20 to 30 msec because they are running in the same computer. The case of

50 commands description file follows the same rule, doubles, triples and multiples by five (in

average, in the first type) and has some additional milliseconds (in the second type). There

is also additional time between 10 commands description and 50 commands description case

and hence, the time that is multiplied in the first type is increased. Finally, we can assume

the differences in the overhead in the two types of implementation would become smaller as

the number of commands described in the customization file increases and the commands

became more complex. In other words, as the number of commands and the complexity of

them increases the overhead for the second type of implementation will be similar with the

overhead for the first one. A faster connection will decrease the overhead of the web service

calls, needed in the first implementation, even more. This is shown in Table 5.6 comparing 10

to 50 commands description files and would be even clear in 10 to 100 commands comparison

and more complex in terms of parameters and variables.

Figure 5.2 shows the middleware overhead measurements for 10 command description

file when web service calls are used. In the figure we measure the first and second imple-

mentation in the cases of different number of commands in one SMS message. Figure 5.3

shows the same measurements for 50 command description file when the Web interface is used.

To conclude, in the case of the Autonomous Weather Station, someone can use the web

interface or just call a web service requesting data or changing a sensor parameter (e.g. the

wind speed measuring units) with a control message. The time for this use case and the over-

head in the user requests was measured and detailed in the related tables and figures (from

Table 5.3 to Table 5.6 and in Figure 5.2 and Figure 5.3) for two different implementations.

Cases of different kind and number of commands requested was also measured. A couple of

seconds are enough for the translation of the user requests into SMS messages. The overhead

66

Figure 5.3: Middleware Overhead Measurements, for 50 Commands description file

increases only with less than a second, approximately, for a Web Service call when the user

interface is used, with the web page and the servlet. In addition, the two implementations

can lead to different overhead when multiple commands are sent to the station. Future work

with distribution in the middleware would lead to the use of the first implementation, because

of the great overhead in the tested system architecture.

5.3 Middleware Overhead in the Camera Use Case

We performed experiments for determining the average response time for the framework

instance of Section 4.2 for common query requests in various configurations. The query

experiments performed were the following:

(i) Requesting image and temperature with image resolution (a) default (b) high and

(c) compact. The request is issued through the WEB-based interface and the results

are delivered on a Web page. Those are the first two protocols that were described

in Section 4.2.2, with the only difference that in the second one, with change of the

resolution mode, an e-mail address was used for delivery. In this case for the evaluation

67

Table 5.7: Response time and middleware overhead for experiment (i).

Type of experiment Average preparation time for Overall response

sending message(s) (in sec) time average (in sec)
Image with default resolution
and temperature at web page 15.6 66.1

Image with high resolution and
temperature at web page 13.3 (1st SMS) 22.7 (2nd SMS) 150.6

(two SMS messages)
Image with compact resolution
and temperature at web page 14 (1st SMS) 25.4 (2nd SMS) 77.2

(two SMS messages)

an e-mail address is also used, but then the message is unpacked and a new page is

created, as requested.

(ii) Requesting temperature only through the WEB-based interface. The results are deliv-

ered by SMS to a mobile phone (note that even in that case a WEB page is created).

This is the third protocol of the Section 4.2.2.

(iii) The queries of experiment (i) and (ii) submitted through the WAP-based interface.

Here the request of image and temperature as in (i) though the Wap interfaces is

similar to the forth scenario of Section 4.2.2.

Specifically, for the above scenarios we measured the average preparation time required by

the server proxy for sending the SMS messages to the camera and the overall response time

(measured from the moment that the user presses the submit button in the HTML or the

WAP form, until the moment that he/she receives the corresponding results). Roughly, the

average preparation time is the overhead introduced by the proposed middleware framework.

For the first experiment the results are shown in Table 5.7. For the default resolution the

query protocol comprises a single SMS request message. The average response time was 66.1

sec with a standard deviation of 18 sec. When the resolution is set to high or compact an

additional SMS request message is required in the query protocol so as to appropriately set

up the corresponding quality attribute of the mobile camera. The need for this additional

message almost doubles the overall response time. For the second experiment the results are

illustrated in Table 5.8. In this case, a results page is created with image and temperature

info. Subsequently, the temperature info is extracted from the page and an SMS message is

68

Table 5.8: Response time and middleware overhead for experiment (ii).

Type of experiment Average preparation time for Overall response
message sending (in sec) time average (in sec)

Getting temperature at
the mobile phone 14.2 107.6

sent to the user’s mobile phone with the temperature info only. The average time is 107.6 sec

with 15 sec standard deviation. Here, it is important to mention a detail in the middleware

that affects the overhead and the above deviation, this detail has to do with a log file that

is accessed and update when a request is submitted. This is an add-on feature in the mid-

dleware and the size of this file can vary as it is updated or deleted manually. The deviation

can be effected not only by the load on the server, but also from keeping this log file updated.

Table 5.9: Response time and middleware overhead for experiment (iii).

Type of experiments Average response time for

WAP access (in sec)
Getting image and temperature

at the web page 42.5
Getting temperature at a mobile

phone 71

Getting temperature at the same
mobile phone (in the Wap Browser) 68

Finally, Table 5.9 presents the results for the last experiment, i.e. accessing the camera

from the WAP interface to get (a) image and temperature (with default resolution), delivered

in a WEB page, (b) just temperature, delivered to a mobile phone and an extra experiment

(c) get temperature to the same Wap Browser.

Figure 5.4 and Figure 5.5 summarize our results. Specifically, the overall response time is

divided into the time required for the preparation of the SMS request messages at the proxy

server (vertical lines)and the time required for the preparation and the delivery of the MMS

reply from the camera to the client or to the WEB page proxy (gray). Observe that the

processing time introduced by our framework at the proxy server is almost the same in every

experiment. The remaining overhead depends on the network latency. The large standard

69

Figure 5.4: Breakdown of overall response time for experiment (i)

deviation is due to the GSM/GPRS network traffic and communication parameters. In the

case of multiple user requests at the same proxy server the response time could increase

significantly. To resolve this bottleneck we may use more than one proxy servers and/or

multiple sensors at the same point.

Figure 5.5: Breakdown of overall response time for experiment (ii) and (iii)

To conclude, the mobile camera can deliver the requested data to an e-mail address, a

mobile phone number or to a new web page, created for this case. The overhead that was

70

measured from 15 to 25 seconds depending on the number of control SMS messages needed

for user request (in our case one or two messages were needed). The information was deliv-

ered after a little more that a minute after the submission of a request with the exception of

the request of a high resolution image that could double the time.

71

Chapter 6

Conclusions and Future Work

Wireless Sensor Networks is a new area of research and development. Wireless sensor net-

works consist of hundreds of sensing devices embedded into the environment that measure

and communicate wirelessly environmental data. Through the use of Wireless Sensor Net-

works the vision of Embedded Internet becomes reality and different aspects of this vision

can be focused. Translating this vision into reality includes design and development of appli-

cations, hardware and software systems, algorithms for gathering and analyzing information

and methods for robust and secure operations. Moreover, in a distributed and heterogeneous

system of sensors middleware framework is needed among the operating system and the ap-

plications or devices on each side of the system. Our goal in this thesis was to integrate a

specific category of sensors -GSM enabled sensors- in a global computing environment built

on top of the World-Wide Web. We proposed a customizable middleware framework that

enables uniform access to mobile sensors.

According to the sensor protocols, which involve the exchange of SMS and MMS mes-

sages, we introduced a mobile sensor description to configure the middleware. Starting from

a general XML Schema for the description, we demonstrated examples of mobile sensor cus-

tomization using a proposed Mobile Sensor Control Description (MSCD) XML file. The

customization process is based on creating the proxy servers and the interfaces of the mid-

dleware according to MSCD files.

We have detailed two sensors: a GSM-based Autonomous Weather Station and a Mobile

Observation Camera. We have performance experiments for determining the customization

time of the framework from different MSCD files and the middleware time overhead in the

73

cases of the weather station and the mobile camera. In the case of the weather station we

evaluated different cases of requests in two implementations and for the mobile camera we

measured the whole process of requesting and delivering data (image and temperature) ac-

cording to the interaction protocols that were detailed.

Future work may include different kinds of sensors, for example sensors that use different

communication protocols (like WiFi based on the IEEE 802.11) and sensors that send streams

of data. The middleware can be made more distributed, as different parts of the architecture

can be in a local network. There are many choices regarding the implementation and the

position of the proxy servers, the web interfaces This fact leads to a variety of solutions and

latencies, and this is the reason that different implementation and distribution can be an

interesting aspect to be discussed, materialized and evaluated in future work. Finally, we

can evaluate the performance of the middleware in more complex scenarios where multiple

users simultaneously request data from sensors.

74

Bibliography

[1] The ObjectWeb consortium: What is Middleware. (http://middleware.objectweb.org/)

[2] SPECIAL ISSUE: Wireless sensor networks. Communications of ACM Vol.47 (2004)

p.30-57.

[3] Harvey Mudd College: Center for Environmental Studies. (http://www.environcenter.

hmc.edu/)

[4] J. Hicks: Lizardnet - developing and testing a non-invasive sensor system for tracking

wildlife. http://www.environcenter.hmc.edu/research/lizardnetreport.pdf (2005)

[5] The Sensor Web Project: NASA’s Volcano Sensorweb. (http://sensorwebs.jpl.

nasa.gov/)

[6] K.A. Delin, S.P. Jackson, S.C. Burleigh, D.W. Johnson, R.R. Woodrow, and J.T. Brit-

ton: The JPL Sensor Webs Project: Fielded Technology. In: Space Mission Challenges

for IT Proceedings, Annual Conference Series. (2003)

[7] R. Doyle: An Autonomous Earth-Observing Sensorweb. IEEE Intelligent Systems

(2005) http://www.computer.org/intelligent .

[8] A. Mainwaring, J. Polastre, R. Szewczyk, D. Culler, and J. Anderson: Wireless Sensor

Networks for Habitat Monitoring. In: Proceedings of First ACM Workshop on Wireless

Sensor Networks and Applications. (2002)

[9] Habitat Monitoring on Great Duck Island: Introduction. (http://www.greatduckis

land.net/)

[10] CORIE: EOFS project that is studying Oregon’s Columbia River. (http://www.ccalmr.

ogi.edu/CORIE/about.html)

[11] Envisense: The Next Wave Centre for Pervasive Computing in the Environment.

(http://envisense.org)

76

[12] K. Martinez, J.K. Hart and R. Ong : Sensor Network Applications:‘Environmental

Sensor Networks’. Computer - Published by the IEEE Computer Society Vol.37 (2004)

[13] S.M. Brennan, A.M. Mielke, D.C. Torney and A.B. Maccabe: Sensor Network Appli-

cations:‘Radiation Detection with Distributed Sensor Networks’. Computer - Published

by the IEEE Computer Society Vol.37 (2004)

[14] M. Maroti, G. Simon, A. Ledeczi and J. Sztipanouits: Sensor Network Applica-

tions:‘Shooter Localization in Urban Terrain’. Computer - Published by the IEEE

Computer Society Vol.37 (2004)

[15] B. Hemingway, W. Brunette, T. Anderl and G. Borriello: The Flock: Mote Sensors Sing

in Undergraduate Curriculum. Computer - Published by the IEEE Computer Society

Vol.37 (2004)

[16] TinyOS: An open-source OS for the networked sensor regime. (http://www.tinyos.net/)

[17] D. Abadi, D. Carney, U. Cetintemel, M. Cherniack, C. Convey, C. Erwin, E. Galvez,

M. Hatoun, J. Hwang, A. Maskey, A. Rasin, A. Singer, M. Stonebraker, N. Tatbul,

Y. Xing, R. Yan, S. Zdonik: Aurora: A Data Management System (demo description)

(2003) In proceedings of the 2003 ACM SIGMOD Conference of Management of Data,

San Diego, CA.

[18] H. Balakrishnan M. Balazinska, D. Carney, U. Cetintemel, M. Cherniack, C. Convey,

C. Erwin, E. Galvez, J. Salz, M. Stonebraker, N. Tatbul, R. Tibbetts, S. Zdonik: Retro-

spective on Aurora (2004) The VLDB Journal (2004) / Digital Object Identifier (DOI)

10.1007/s00778-004-0133-5 .

[19] A. Arasu, et al.: STREAM: The Stanford Data Stream Management System.

http://dbpubs.stanford.edu:8090/pub/2004-20 (2004)

[20] The STREAM Group: STREAM: The Stanford Stream Data Manager. IEEE Data

Engineering Bulletin 26 (2003)

[21] C. Intanagonwiwat, R. Govindan, D. Estrin, J. Heidemann and F. Silva: Directed

Diffusion forWireless Sensor Networking. ACM/IEEE Transactions on Networking 11

(2002) 2–16

[22] D. Ganesan: TinyDiffusion Application Programmer’s Interface (API) 0.1.

http://www.isi.edu/scadds/papers/tinydiffusion-v0.1.pdf (2001)

77

[23] TinyDB: A Declarative Database for Sensor Networks. (http://telegraph.cs.berke

ley.edu/tinydb/)

[24] Axelprod GSM Solutions: GTM module network and dedicated PC based

software management and different kinds of GSM modules and platforms.

(http://www.axelprod.ch/index.php?rub=home)

[25] SPY EQUIPMENT: Patriot unit, GSM alarm monitoring system and GPS vehicle

locating. (http://www.spy-equipment.co.uk/GSM Alarm/gsm alarm.html)

[26] DPS-Promatic GSM controls: Telecom Systems a variety of GSM remote controls units.

(http://www.dps-promatic.com/default.html)

[27] Nokia UK: Nokia Observation Camera. (http://www.nokia.co.uk/nokia/0,5184,18287,00.html

and http://www.nokia.co.uk/nokia/0,8764,42939,00.html)

[28] AUTOTECH Automation Technologies: AUTOTECH Irida/GSM - Remote Control

through GSM network. (http://www.autotech.gr/products.php?pcategoryid=23 &pro-

ductid=15&set lang=en)

[29] Ekopower: Complete Datalogger System EKO21. (http://www.ekopower.nl/eko21.htm)

[30] GuardMagic: GuardMagic SCT, GuardMagic SC2x2, GuardMagic SC4x4.

(http://www.guardmagic.com/index.html and http://www.guardmagic.com/engl/2e-

products/e-hard-01.htm)

[31] Biene Electronics: GSM/SMS Remote Control Module, BieneRemote16GM.

(http://www.bieneelectronics.com/products/bieneremote16GM.htm)

[32] DPS-Promatic GSM controls: TCS-AWS, GSM Autonomous Weather Station.

(http://www.dpspro.com/tcs environ.html)

[33] GSM World - the world wide web site of the GSM Association: GSM - SMS

Overview, a technical overview of SMS. http://www.gsmworld.com/technology/

sms/index.shtml (2005)

[34] Nicholas Chase: Tip: Use XML to send SMS messages; Reap the benefits of

MMAP and SMAP. developerWorks(R) , IBM’s resource for developers http://www-

106.ibm.com/ developerworks/xml/library/x-tipsms1.html (2004)

[35] The SMS Forum. (http://www.smsforum.net/)

78

[36] W3C: Web Services Architecture. Technical report, W3C (2004) http://www.w3.org/

TR/ws-arch/ .

[37] Guy Antony Halse and George Wells: A bi-directional SOAP/SMS gateway service.

Proceedings of SATNAC 2002 (2002)

[38] Vijay Kumar, et. al.: WAP: Present and Future. Pervasive Computing Vol.2, No.1

(2003)

[39] Smith, B.C.: Procedural Reflection in Programming Languages. PhD thesis, MIT (1982)

Available as MIT Techical Report 272.

[40] R. Hayton, A. Herbert, and D. Donaldson: Flexinet - A Flexible Component Oriented

Middleware System. In: Proceedings of the 8th ACM-SIGOPS European Workshop,

ACM (1998)

[41] A. Singhai, A. Sane, and R. Campell: Reflective ORBs: Supporting Robust, Time

Critical Distribution. In: Proceedings of ECOOP ’97 Workshop on Reflective Real-

Time Object Oriented Programming and Systems, ECOOP (1997)

[42] T. Ledoux: Implementing proxy objects in reflective orbs. In: Proccedings of ECOOP

’97 Workshop on CORBA Implementation, Use and Evaluation, ECOOP (1997)

[43] G.S. Blair, G. Goulson, and M. Papathomas: An Architecture for Next Generation

Middleware. In: Proceedings of MIDDLEWARE ’98, IFIP (1998) 191–203

[44] Cameron Laird: SMS: Case study of a Web services deployment, “Instant gratification”

programming results. developerWorks(R), IBM’s resource for developers http://www-

106.ibm.com/ developerworks/webservices/library/ws-sms.html (2001)

[45] Evaggelia Pitoura et. al.: DBGlobe: a Service-Oriented P2P System for Global Com-

puting. SIGMOD Record 32 (2003) 77–82

[46] J. Malenfant, M. Jacques, and F.N. Demers: A Tutorial on Behavioral Reflection and

its Implementation. In: Proceedings of REFLECTION ’96, ECOOP (1996)

79

Appendix

Description of the basic tags in the MSCD XML file

The basic elements of an XML file that describes a mobile sensor are:

i init, a group of initialization elements that describes different cases of initializa-

tion processes for the mobile sensor, for instance when we select a name for the sensor

device or we set the phone number of the administration user,

ii info, a group of infoRequest elements that describes different cases of requesting

information from the sensor, for instance when we request weather measurements from

the weather station, and

iii end-user, a group of end-user description elements that includes different cases

of frequently used interactions with the sensor (as shown in the case of the mobile

camera).

The first two elements include initialization and infoRequest tags specifying mes-

sages that will be sent. For this case we use the tag message which contains a messageType

tag. The messageType contains SMS or MMS tag (usually SMS for the requests) with

the body and the messageVar (with choices or variables) elements and optionally, when it is

needed, a sender and a receiver. In the messageVar there can be different choices or variables.

For each choice, the choiceDescription, the choiceValue, and the choiceValueDescr ele-

ments can be specified. For each variable, the variableName and the variableDescription

elements can be used. An example is shown in Figure 1 of the Appendix. Additionally, there

can be further information about the delivery message, an alternative body of the message,

a url link with helping information, etc.

In the case of end-user the frequently used interactions are specified using the above tags.

In addition within the infoRequest elements there may be subtypes elements, for the cases

81

Figure 1: Part of the GSM Autonomous Weather Station description file.

that the request for information has optional characteristics that can be chosen, for instance

when we can select the resolution of an image and then request for the image from the camera.

Figure 1 shows a part of the MCSD file in the cases of the GSM Weather Station that

was presented in Section 2.2.4.

82

Author’s Publications

Z.K. Plitsis, I. Fudos, E. Pitoura and A. Zarras: On Accessing GSM-enabled

Mobile Sensors, 2nd International Conference on Intelligent Sensors, Sensor Networks and

Information Processing 2005 (ISSNIP 2005), Melbourne, Australia, December 2005.

����������� 	
��
�
�� ���������� �� 	�
�������
� ����

������

�������	 1���������� %���
��	 %��!�&��� ��������
' ������4�
 ;�.���9���(
���
	

����� +�������3��� ;�.���� � ��� ;�.���� � @������
� �	 0��
���&���� ������
�����

A�

�������
	 ��*���
 "##<�

84

Short CV

Zissis Plitsis, MSc Student

Zissis K. Plitsis received his Diploma in Electrical and Computer Engineering from the

Polytechnic School of Aristotle University of Thessaloniki, Greece in 2003. He has been a

MSc degree student in the Department of Computer Science in the University of Ioannina

since November 2003. He has worked in ITI (Informatics and Telematics Institute) in Thes-

saloniki during his thesis on Software Agent Techniques in Learning Environments under the

supervision of Prof. Michael G. Strintzis and Prof. Demetrios Sampson. Zissis has been a

student member of the IEEE (Aristotle University IEEE Student Branch) and he is a member

of the Technical Chamber of Greece since 2004.

Recently, Zissis has joined the army and will be serving in the Hellenic Navy until August

2007.

E-Mail: zplitsis@cs.uoi.gr or zplitsis@yahoo.com

