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ΠΕΡΙΛΗΨΗ 

Τσώτσος Θεόδωρος του Αθανασίου και της Αντωνίας. 
MSc, Τµήµα Πληροφορικής, Πανεπιστήµιο Ιωαννίνων, Ιούλιος, 2006. Κατασκευή ∆ικτύων 
Οµοτίµων Βασισµένων στο Φορτίο Ερωτήσεων µε Χρήση Ιστογραµµάτων. Επιβλέπουσα: 
Ευαγγελία Πιτουρά. 
 
 
Τα συστήµατα οµοτίµων παρέχουν έναν αποδοτικό τρόπο διαµοιρασµού δεδοµένων µεταξύ 

ενός δυναµικού συνόλου από ανεξάρτητους κόµβους. Κάθε κόµβος σε ένα σύστηµα 

οµοτίµων συνδέεται µε ένα µικρό πλήθος άλλων κόµβων, δηµιουργώντας µε αυτόν τον τρόπο 

ένα λογικό δίκτυο επικάλυψης. Μία ερώτηση για δεδοµένα µπορεί να τεθεί σε οποιοδήποτε 

από τους κόµβους και να δροµολογηθεί µέσω του δικτύου στους κόµβους που παρέχουν τα 

επιθυµητά δεδοµένα. Σε αυτήν την εργασία, επικεντρωνόµαστε σε ερωτήσεις εύρους και 

χρησιµοποιούµε την ιδέα της κατασκευής λογικών δικτύων επικάλυψης βασιζόµενα στο 

φορτίο ερωτήσεων. Ο γενικός στόχος είναι να κατασκευάσουµε λογικά δίκτυα επικάλυψης 

που ικανοποιούν συγκεκριµένες απαιτήσεις αναφορικά µε το πλήθος των συσχετιζόµενων 

αποτελεσµάτων των ερωτήσεων. Το κίνητρο για την δηµιουργία τέτοιου είδους δικτύων είναι 

ότι οι κόµβοι που παρέχουν µεγάλος πλήθος αποτελεσµάτων για παρόµοιες ερωτήσεις θα 

πρέπει να βρίσκονται σε µικρή «απόσταση» µεταξύ τους. Η πιθανότητα εµφάνισης των 

ερωτήσεων λαµβάνεται υπόψιν έτσι ώστε οι δηµοφιλείς ερωτήσεις να συµβάλλουν 

περισσότερο στην διαµόρφωση του λογικού δικτύου επικάλυψης από ότι οι λιγότερο 

δηµοφιλείς. Η προσέγγιση µας βασίζεται στον καθορισµό «µέτρων οµοιότητας» µεταξύ των 

κόµβων προκειµένου να γίνει οµαδοποίηση οµοίων κόµβων.  

 

Σε αυτήν την εργασία, εισάγουµε τρεις µετρικές υπολογισµού της οµοιότητας δύο κόµβων 

που λαµβάνουν υπόψιν τους το φορτίο ερωτήσεων και διαφέρουν ως προς τον τρόπο που το 

«µέγεθος» των κόµβων, δηλαδή το πλήθος των πλειάδων ενός κόµβου, συµβάλλει στον 

καθορισµό της οµοιότητας µεταξύ τους. Στην συνέχεια, αποτιµούµε την επίδοση των 

µετρικών αυτών µε κριτήριο τον τρόπο οµαδοποίησης των κόµβων του συστήµατος που 

επιτυγχάνουν και τις συγκρίνουµε µε διάφορες άλλες δηµοφιλείς µετρικές που χρησιµοποιούν 

αποκλειστικά τα περιεχόµενα δύο κόµβων για τον καθορισµό της οµοιότητας τους. Το κύριο 
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συµπέρασµα που προέκυψε είναι ότι στην γενική περίπτωση οι µετρικές που λαµβάνουν 

υπόψιν το φορτίο ερωτήσεων συµβάλλουν στην αποδοτικότερη οµαδοποίηση των κόµβων, 

που οδηγεί στην επιστροφή περισσότερων αποτελεσµάτων για µία ερώτηση, σε σύγκριση µε 

την οµαδοποίηση που παρέχουν οι µετρικές που χρησιµοποιούν µόνο τα περιεχόµενα των 

κόµβων. 

 

Προκειµένου να υλοποιηθεί αποδοτικά µία τέτοιου είδους οµαδοποίηση κόµβων σε ένα 

δίκτυο οµοτίµων, απαιτείται η χρησιµοποίηση δοµών τέτοιων που να συνοψίζουν µε ακρίβεια 

τόσο τα περιεχόµενα των κόµβων όσο και το φορτίο ερωτήσεων. Επιλέγουµε να 

χρησιµοποιήσουµε ιστογράµµατα για να περιγράψουµε τόσο τα περιεχόµενα τους όσο και το 

τοπικό φορτίο ερωτήσεων τους. Ειδικότερα, προτείνουµε ένα είδος ιστογράµµατος, το 

maxdiff(v, f) ιστογράµµα για να συνοψίσουµε τα δεδοµένα των κόµβων και το συγκρίνουµε 

µε το δηµοφιλές equi-width ιστογράµµα. Επιπλέον, εισάγουµε ένα νέο τύπο ιστογράµµατος, 

το W-ST ιστόγραµµα, για να αναπαραστήσουµε το τοπικό φορτίο ερωτήσεων κάθε κόµβου 

και συγκρίνουµε την απόδοση του µε το W-Equi-width ιστόγραµµα, το οποίο κατασκευάζεται 

χρησιµοποιώντας τον equi-width ευριστικό αλγόριθµο. Στην συνέχεια, προτείνουµε έναν 

αλγόριθµο για την συγχώνευση δύο ιστογραµµάτων. Ο συγκεκριµένος αλγόριθµος 

χρησιµοποιείται προκειµένου να αποκτήσουµε µία εκτίµηση του φορτίου ερωτήσεων του 

συστήµατος από τις εκτιµήσεις των τοπικών φορτίων ερωτήσεων των κόµβων. Επιπρόσθετα, 

εισάγουµε µία µετρική υπολογισµού της οµοιότητας δύο κόµβων χρησιµοποιώντας 

ιστογραµµάτα που λαµβάνει υπόψιν αφ’ ενός τις συνόψεις των δεδοµένων των κόµβων αφ’ 

ετέρου την εκτίµηση του φορτίου ερωτήσεων του συστήµατος. Αποδείχθηκε ότι 

χρησιµοποιώντας αυτή την µετρική µε βάση τα ιστογράµµατα επιτυγχάνουµε µία πάρα πολύ 

καλή προσέγγιση των µετρικών που λαµβάνουν υπόψιν τους το φορτίο ερωτήσεων. 

 

Επιπρόσθετα, χρησιµοποιούµε ιστογράµµατα και για την δροµολόγηση των ερωτήσεων. 

Ειδικότερα, εκτός από τα ιστογράµµατα που χρησιµοποιούνται για να αναπαρασταθούν τόσο 

τα περιεχόµενα του κάθε κόµβου όσο και το τοπικό του φορτίο ερωτήσεων, κάθε κόµβος έχει 

επιπλέον και ένα ευρετήριο δροµολόγησης για κάθε µία από τις ακµές του που περιγράφει το 

περιεχόµενο των κόµβων που µπορούµε να επισκεφτούµε µέσω αυτής της ακµής. Για την 

κατασκευή των ευρετηρίων δροµολόγησης, χρησιµοποιούµε επίσης τον αλγόριθµο 

συγχώνευσης ιστογραµµάτων. Τέλος, αποτιµούµε πειραµατικά το δίκτυο που κατασκευάζεται 

χρησιµοποιώντας την µετρική υπολογισµού της οµοιότητας δύο κόµβων µε βάση τα 

ιστογράµµατα και το φορτίο ερωτήσεων του συστήµατος και το συγκρίνουµε µε τα δίκτυα 

που κατασκευάζονται χρησιµοποιώντας τις µετρικές οµοιότητας που λαµβάνουν υπόψιν µόνο 

τα δεδοµένα των κόµβων. Η αποτίµηση των δικτύων γίνεται µε βάση τα αποτελέσµατα που 



 

 

xiii

επιστρέφονται ανά ερώτηση. Τα πειραµατικά αποτελέσµατα δείχνουν ότι τα δίκτυα οµοτίµων 

που κατασκευάζονται χρησιµοποιώντας το φορτίο ερωτήσεων αυξάνουν το ποσοστό των 

επιστρεφόµενων αποτελεσµάτων για κάθε ερώτηση, όταν κάθε µία από αυτές επισκέπτεται 

ένα συγκεκριµένο πλήθος κόµβων. 
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Pitoura. 
 
 
Peer-to-peer (p2p) systems offer an efficient means of data sharing among a dynamic set of a 

large number of autonomous nodes. Each peer in a p2p system is connected with a small 

number of other peers, thus forming an overlay network. A query for data items posed at a 

peer is routed through the overlay network to peers that host the requested items. In this 

thesis, we focus on range selection queries. Our overall objective is an overlay network 

construction that satisfies specific requirements regarding the result sizes of queries. The 

motivation is to to create overlays where peers that match a large number of similar queries 

are nearby. Query probability is taken into account so that popular queries have a greater 

effect on the formation of the overlay than unpopular ones. Our approach is based on defining 

appropriate workload-aware similarity measures and then creating cluster of similar peers 

based on these measures.  

 

In this thesis, we consider three types of workload-aware distance measures that differ on how 

they take into account the size of the peers. We assess their efficiency on clustering the peers 

of the system in comparison with several well known content-based distance measures. Our 

evaluation shows that in the general case the workload-aware distance measures result in 

creating cluster of peers that return more results than those created using the content-based 

ones.   

 

To implement clustering efficiently in a p2p system, we need estimations of both the content 

of the peers and the query workload. We use histograms to summarize the content of the peers 

and their local query workloads. In particular, we propose using the maxdiff(v, f) histogram 

for summarizing the content of each peer and compare it with the traditional equi-width 
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histogram. Furthermore, we introduce a new type of histogram, the W-ST histogram, for 

summarizing the local query workload of each peer and evaluate its accuracy in comparison 

with the W-Equi-width, which uses an equi-width based heuristic for its construction. Next, 

we propose a general algorithm for merging two histograms. This algorithm is used to obtain 

the estimation of the system query workload by merging the local estimations of the peers 

query workloads. In addition, we introduce a workload-aware histogram distance metric that 

takes into account the estimation of the system query workload and the summaries of the 

peers content. We show that by using the workload-aware histogram distance measure we get 

a good approximation of the workload-aware distances. Then, peers are clustered based on 

this workload-aware histogram distance measure. 

 

We also use histograms for routing queries. Specifically, besides the histograms that represent 

the content of the peers and their local query workloads, each peer maintains a routing index 

for each of its links that summarizes the content of the set of peers that we can visit by 

following this link. To build routing indexes, we also use the procedure of merging 

histograms.  

 

Finally, we present a simulation of the networks that are constructed using the workload-

aware histogram distance measure and the content-based histogram distance measures. The 

evaluation of these networks is done in term of the number of results returned per query. Our 

results show that workload-aware overlays created using the corresponding histogram-based 

distance measure increase the percentage of query results returned for a given number of 

peers visited. 
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CHAPTER 1. INTRODUCTION 

1.1. Peer-to-Peer Preliminaries 

1.2. Scope of the Thesis 

1.3. Thesis Outline 

 

1.1. Peer-to-Peer Preliminaries 

The popularity of file sharing systems such as Napster [2] and Gnutella [1] has resulted in 

attracting much current research in peer-to-peer (p2p) architectures as an efficient means of 

sharing data. In peer-to-peer computing, a large dynamic set of autonomous computing nodes 

(the peers) cooperate to share resources and services. The peers form logical overlay networks 

by establishing links to some other peers they know or discover. 

 

There are several definitions of “peer-to-peer” that are being used by the p2p community. A 

widely accepted definition is the following [4]: 

“Peer-to-peer systems are distributed systems consisting of interconnected nodes able to self-

organize into network topologies with the purpose of sharing resources such as content, CPU 

cycles, storage and bandwith, capable of adapting to failures and accommodating transient 

population of nodes while maintaining acceptable connectivity and performance, without 

requiring the intermedation or support of a global centralized server or authority.” 

 

Specifically, the term “peer-to-peer” refers to a class of systems and applications that employ 

distributed resources to perform a critical function-application in a decentralized manner [26]. 

Although the best-known application of p2p systems is file sharing (for example, music files 

in Napster), p2p system applications go beyond data sharing. Peer-to-peer computing is also a 

way of implementing systems based on the notion of increasing the decentralization of 

systems. In particular, by leveraging vast amounts of computing power, storage and 

connectivity from personal computers distributed around the world, p2p systems provide a 
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substrate for a variety of applications such as network monitoring and routing, web search and 

large scale notification systems. 

 

 

 

 

 

 

 

 

                                        (a)                                                                 (b) 

Figure 1.1: High-Level View of (a) Peer-to-Peer versus (b) Centralized (Client-Server) 
Approach.

The motivation behind building applications based on p2p architectures derives to a large 

extent from their ability to function, scale and self-organize in the presence of a highly 

transient population of nodes, network and computer failures, without the need of a central 

server and the overhead of its administration. Some additional benefits of peer-to-peer 

systems include: load-balancing availability through massive replication, and the ability to 

pool together and harness large amounts of resources. For example, file-sharing peer-to-peer 

systems distribute the main cost of sharing data – bandwith and storage – across all the peers 

in the network, thereby allowing them to scale without the need for powerful, expensive 

servers. 

 

Conceptually, peer-to-peer systems are an alternative to the centralized and traditional client-

server models of computing, where there is typically a single or small cluster of servers and 

many clients. In its purest form, the peer-to-peer model has no concept of server; rather all 

participants are peers. In Figure 1.1, we demonstrate in a high level a peer-to-peer system and 

a centralized (client-server) approach.  

 

The peers in a peer-to-peer system are autonomous, i.e., they are not wholly controlled by 

each other or by the same authority, e.g., the same user. Peers depend on each other for 

getting information, computing resources, forwarding requests, etc, which are essential for the 

functioning of the system as a whole and for the benefit of all peers. As a result of the 

autonomy of peers, they cannot necessarily trust each other and rely completely on the 

peers 
clients 

server 
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behaviour of other peers, so issues of scale and redundancy become much more important 

than in traditional centralized or distributed systems. 

 

Peer-to-peer is about sharing: giving to and obtaining from the peer community. A peer gives 

some resources and obtains other resources in return. For example, in the case of Napster, it 

was about offering music to the rest of the community and getting other music in return. An 

increasing number of users choose peer-to-peer systems as a means to efficiently share their 

resources, data and services, and exploit the resources that other participating users provide. 

Therefore, a central issue is discovering the appropriate data and services among the available 

huge, massively distributed data collections. Thus, the resource discovery mechanism that is 

responsible for finding the appropriate data a user desires is a challenging issue for peer-to-

peer systems. Users issue queries that describe the resources they are interested in, and expect 

from the system to provide accurate, timely results. A single query on a peer may need results 

from a large number of others, hence we need a mechanism that finds the peers that contain 

matching to the query data efficiently and is able to scale up as more users join the system and 

large volumes of data become available. 

1.2. Scope of the Thesis 

The goal of this thesis is to design a peer-to-peer database system for resource discovery. We 

consider that we have a peer-to-peer system where each peer is connected with a small 

number of other peers, thus forming an overlay network. Each peer stores a database with the 

same schema. A query for data may be issued at any peer. The query is routed through the 

overlay network from the issuing peer to peers that have data (tuples) satisfying it (stored at 

variοus peers); we call such peers matching peers. We are interested in increasing the number 

of query results returned by propagating the query message to peers that have large number of 

results that satisfy this query.  

 

One way to attain a large number of matching results for a query is by clustering peers based 

on their content so that peers with similar content are nearby in the overlay network. Then, 

once in the appropriate cluster, all relevant peers are nearby. In our previous work [22], we 

have proposed forming clusters based on the query workload. In particular, the formation of 

clusters relies on two basic factors, (i) peers content, where two peers with similar content 

will participate in the same cluster, and (ii) query workload, so that the type and probability of 

queries is taken into account in creating the clusters. Hence, “popular” queries affect the 

formation of peer groups more than unpopular ones. The motivation for taking into account 
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the query workload is that if some data items are queried only seldomly, we do not want them 

to influence clustering as much as other data items. 

 

In particular, we have considered workload-aware overlays consisting of a number of smaller 

networks (clusters) of relevant peers that are rich in links between their peers (short-range 

links), while they are linked to each other with a few random connections (long-range links). 

The relevance of two peers was based on their query results to the system workload, denoted 

as global query workload. The reason for constructing such “workload-aware” overlay 

network is that once in the appropriate group, the most relevant to a query peers are a few 

short-range links apart. Long-range links are used for routing among peers. 

 

The construction of the overlay network exploits local indexes. In particular, each peer stores 

a local index, which is a summarization of the local content of a peer. Besides the local index, 

each peer maintains one routing index for each of its links. The routing indexes are created by 

aggregating local indexes of neighboring peers and are used to form the cluster of peers, i.e., 

to navigate a new peer that joins the system to the right cluster, and to route a query message 

to those peers that provide enough matching results. We used equi-width histograms as local 

indexes. The main advantages of histograms over other techniques are that they incur almost 

no run-time overhead and, for most real-world databases, there exist histograms that produce 

low-error estimates while occupying reasonably small space. 

 

To demonstrate the feasibility of workload-aware clustering we consider range queries over 

one attribute of the database. For instance, the attribute of the query may correspond to a 

single characteristic of music files (such as release-year, artist-name, etc.) in a music file-

sharing system or the available resources (such as CPU, memory) in a resource sharing 

system. 

 

In this work, we extend our previous work as follows: First, we introduce three workload-

aware distance measures that differ on how they take into account the size of the peers. We 

compare them with several well known content-based distance measures from the perspective 

of how efficient is the clustering that they achieve. The experimental evaluation shows that in 

the general case the clustering that the workload-aware distance measures provide is more 

efficient than those created using the content-based ones, since the matching results returned 

for a query are more than those when we use a content-based distance measure for clustering. 
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In addition, we propose more sophisticated histograms to use as local indexes. In particular, 

we use the maxdiff(v, f) histogram to summarize the content of the peers and compare it with 

the traditional equi-width histogram. As expected, the experimental evaluation shows that the 

maxdiff(v, f) histogram is much more accurate than the equi-width histogram since it 

produces much lower estimation error in approximating the distribution of data. Furthermore, 

we propose a novel procedure for merging two histograms of unequal sizes that we use it to 

create the routing indexes of each peer. 

 

Besides the local index and the routing indexes, each peer maintains a local query workload 

synopsis which summarizes the queries that arrive at a peer. To represent the local query 

workload of each peer efficiently, we propose using also histograms. We introduce a new 

histogram type, the workload self-tuning (W-ST) histogram. We compare the W-ST histogram 

with the W-Equi-width histogram, which uses an equi-width based heuristic for its 

construction. The experimental results show that the W-ST histogram is much more efficient 

in comparison with the W-Equi-width histogram and captures accurately the distribution of a 

query workload. We also show that W-ST histograms can adapt to changes in the workload 

fast. 

 

In addition, we present an approach for building workload-aware overlays based on a 

decentralized procedure that exploits local indexes and query workload synopses. To attain 

workload-awareness, we define a weighted histogram distance measure between two peers 

that takes into account their local indexes and is weighted by using the synopsis of the global 

query workload, which is acquired by the local query workload synopses, so as to achieve the 

peers with similar results for the query workload to be a few links away in the overlay 

network. The estimation of the global query workload can be obtained by merging the peers 

local query workload synopses using the general algorithm for merging two histograms that 

we have developed. We also show that this workload-aware histogram distance measure is an 

accurate approximation of the workload-aware distance measures. 

 

In summary, in this thesis we make the following contributions: 

 

• We propose three workload-aware distance measures for the formation of the overlays, 

where the grouping of similar peers is not based solely on the content of the peers but also 

on the query workload, and compare the quality of clustering that they achieve with the 

quality of clustering that is achieved when using several well-known content based 

distance measures. 
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• We exploit the use of histograms as local indexes and as local query workload synopses 

for constructing workload-aware overlays. In particular, we propose using the maxdiff(v, 

f) histogram for summarizing the peers content. Furthermore, we introduce a new type of 

histogram, the W-ST histogram, for summarizing the query workload information, which 

is adaptive to changes of the query workload.  

• We propose a general algorithm for merging two histograms. This algorithm is used for 

creating routing indexes by merging local indexes and for obtaining an estimation of the 

system query workload by merging the peers local query workload synopses.  

• We introduce an appropriate workload-aware histogram distance metric that incorporates 

the probability and type of queries. 

1.3. Thesis Outline 

The remainder of this thesis is structured as follows. In Chapter 2, we present related work. In 

Chapter 3, we motivate the need for workload-aware overlays. We propose three workload-

aware similarity measures and experimentally compare them with several well known 

content-based similarity measures. Chapter 4 focuses on histograms as local indexes. We 

consider two popular type of histograms, equi-width and maxdiff(v, f) histograms and 

evaluate their suitability for serving as local indexes in a p2p setting. We also present a 

procedure for merging histograms of different sizes. In Chapter 5, we deal with the problem 

of selecting an efficient histogram for representing the query workload. We introduce a new 

type of histogram, the Workload Self-Tuning (W-ST) histogram that can represent the query 

workload accurately and adapts to changes of the query workload. In Chapter 6, we propose a 

novel workload-aware histogram distance measure and present experiments comparing it with 

other content-based histogram distance measures. In Chapter 7, we describe the protocols that 

we use for the construction of the network, the routing of a query, and the creation and 

maintainance of the routing indexes. In Chapter 8, an experimental evaluation is presented 

showing the performance of the workload-aware network in comparison with other networks 

including those that are constructed using content-based similarity measures. Finally, in 

Chapter 9, we offer conclusions and directions for future work.  
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CHAPTER 2. RELATED WORK 

2.1. Resource Discovery in P2P Systems 

 2.1.1. Clustering in P2P Systems 

 2.1.2. Searching in P2P Systems 

 2.1.3. P2P Systems Supporting Range Queries 

2.2. Histograms Supporting Selectivity Estimation of Queries 

 2.2.1. One-dimensional Histograms 

 2.2.2. Multi-dimensional Histograms 

 

 

We propose an approach for building a peer-to-peer overlay network based on both the 

content of the peers and the query workload using routing indexes and query workload 

synopsis, respectively. Routing indexes are stored for each link of a peer and summarize the 

content of a number of peers that are reached through this link. In addition, query workload 

synopsis summarizes the query workload, i.e., the queries that are posed by all the users that 

participate in the p2p network. We focus on “range” queries and use histograms to summarize 

the content of peers and the query workload. In this chapter, related work is presented. 

Consequently, we distinguish the research related to our work into two areas. First, we present 

the research that was done on resource discovery in p2p systems and then we provide several 

techniques for creating histograms that can efficiently summarize the content of relations over 

one or more than one attributes. 

2.1. Resource Discovery in P2P Systems 

Peer-to-peer systems have become one of the fastest growing applications in recent years 

since they offer a lot of potentials at the domain of sharing resources among dynamic sets of 

users while providing autonomy, robustness in failures, self-organization, load balancing, 

privacy, etc. In p2p computing, distributed nodes (peers) across the Internet form an overlay 

network and exchange information directly with each other. 
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The first widely used system of this kind of distributed computing was Napster [2]. Napster 

relied on a centralized architecture, where a central server, e.g., Napster’s web site, stored the 

index of all the files available from the nodes that formed the overlay network. In order to 

find and download a file, a node had to issue a query to the central Napster site and find 

which other nodes stored the requested file. The file was then downloaded directly from one 

of these nodes. The main disadvantage of Napster was that the file location method used was 

“centralized”, thus the system was not scalable. In addition, due to the centralized nature of 

Napster, legal issues forced it to shut down. To avoid this kind of problems, the research 

community turned to unstructured architectures for peer-to-peer systems. Gnutella [1] is one 

of the most representative systems that uses unstructured content location and relies on 

flooding to answer nodes queries.  

 

In general, peer-to-peer systems can be classified based on their architecture. The centralized 

p2p systems, like Napster, rely on indexing all the shared data of all nodes in a central 

directory. Queries are issued to this central directory to find the nodes that have the desired 

files. In decentralized p2p systems, the information is shared among the nodes of the network 

without having any centralized structure, such as a central directory. We can further 

distinguish the decentralized p2p systems in structured and unstructured ones. In structured 

p2p systems, data items are not placed at random nodes but at specific nodes determined by 

using distributed hashing (DHT). In more details, each data item is assigned a key, by using 

DHT, and each node is assigned a range of keys. Thus a data item with an associative key will 

be placed at the node that includes this key in its range. In this kind of systems search is very 

efficient, requiring a small number of hops to answer a query. CHORD [37] and CAN [33] 

are the most popular structured p2p systems. In unstructured p2p systems, there is no 

assumption about how the data items are placed at the nodes. The location of each data item is 

unknown. Thus, in order to find a file, the most common method is flooding which induces a 

lot of communication overhead in the p2p network. The most popular unstructured p2p 

system is Gnutella that uses flooding as a search method. In addition, p2p systems can be 

classified based on the degree of decentralization. Thus, p2p systems can be categorized 

either as pure, where all nodes have equal roles, i.e., playing both the role of a client and a 

server, or as hybrid where some nodes, denoted as super-peers, have different roles from the 

rest of the nodes, denoted as leaf-nodes. Each super-peer acts like a proxy for its neighboring 

leaf-nodes by indexing their data-items and servicing their requests. Figure 2.1 demonstrates 

the p2p classification described above. 
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Figure 2.1: Classification of P2P Systems. 

In the following sections, we summarize recent work on several issues that have risen with the 

arrival of p2p systems. In Section 2.1.1, we describe several methods that have been adopted 

by p2p systems to cluster nodes or data items in the overlay network and Section 2.1.2 refers 

to the most important search techniques. In Section 2.1.3, we describe several p2p systems 

that support range queries from the perspective of clustering and routing. 

2.1.1. Clustering in P2P Systems 

In peer-to-peer systems there are two categories of methods on how clustering can be 

achieved [20]. Both of them have the intention to place together data that have similar 

properties. The first category clusters similar data or indexes of similar data. Thus, similar 

data (or indexes of similar data) are placed at the same or neighboring nodes. In contrast, the 

second category groups nodes that have similar data. By clustering nodes with relevant data, 

when a query is routed and finds a node with the desired data, then with high probability this 

node must be at the appropriate cluster, thus, all the other nodes that have similar data can be 

found within a short distance. In centralized p2p systems, no clustering is applied. Hence, a 

node joins the p2p network in a random fashion. In the following two sections, we describe 

several clustering methods for structured and unstructured p2p systems respectively. 

2.1.1.1. Clustering in Structured P2P Systems 

Structured p2p systems use the first category to achieve clustering. As mentioned before, at 

this kind of p2p systems, a key derived from a hash function is assigned to each data item. 

 

P2P

Centralized Decentralized

Hybrid P2P Pure P2P

Structured Unstructured Structured Unstructured 
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CHORD [37] assigns (using a hash function) to each node of the overlay network an identifier 

so as each node to maintain a small fraction of (key, data) pairs. In more details, the nodes 

identifier space is represented as a ring and each data item’s associative key k is assigned to 

the node, denoted as successor of key k, whose identifier is equal or follows in the identifier 

space the key value k. Figure 2.2 shows an example with four nodes and in which node each 

key will be stored. When a new node n enters the system then the appropriate keys stored at 

n’s successor must be reassigned to n. To implement this procedure and for better routing 

performance, each node maintains information about a small fraction, O(logN), of the other N 

system’s nodes in a structure called finger table. The i-th entry of node k’s finger table 

includes the identity of the first node that succeeds node k a distance at least 2i-1, i=1, …, m 

on the circle. Hence, it has the information about the exact node location of the data keys that 

intuitively must be placed at nodes with distance 2i-1, i=1, …, m far from node k. In Figure 2.2 

we represent the finger table of node 0 that points to nodes 1, 2 and 4 respectively. Since 

nodes 2 and 4 are not in the system, node 0 points to nodes 3 and 6 that immediately follow 

nodes 2 and 4 respectively. Thus, when a new node n joins the system the three steps that 

must be followed are: firstly, n must connect with an existing node n’ in the system and 

initialize its finger table using n’ support, secondly the finger tables of the existing nodes in 

the system must be updated to include node n, and finally the appropriate keys that is 

responsible for must be transferred to node n from its successor, i.e., the first node clockwise 

in the ring from n. 

 

In CAN [33] the hash table is represented as a d-dimensional Cartesian coordinate space and 

is partitioned among all the CAN nodes of the system. The associative keys of data items are 

mapped onto points of the coordinate space. Hence, in each node an individual chunk (zone) 

of the coordinate space is assigned. Figure 2.3 illustrates a 2-dimensional coordinate space 

with 6 nodes. The (key, data) pairs stored in a node are those whose key values are contained 

in the zone of that node. Thus, similar keys are laid in the same node. Furthermore, two nodes 

in the overlay network are immediate neighbors if their zones are adjacent. This means that 

relevant keys, hence relevant data, are either in the same node or at adjacent nodes. The 

clustering of the data items is more clear when a new node ni joins the CAN network. This 

node must allocate its own chunk in the coordinate space. That can be achieved by first 

connecting randomly the new node with a CAN node currently in the system. Then, the new 

node randomly selects a point P from the coordinate space and sends a message in the overlay 

CAN network to find the node nj whose zone contains the point P. The occupant node nj splits 

its own zone in two equal chunks and assigns one of them to the new node. Finally, the node 

ni connects immediately with node nj and with a subset of nj’s neighbors, whose zones are 
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adjacent with ni’s zone, while node nj updates its neighbor set in order to delete the immediate 

connections it had with the neighbor nodes that are no longer its neighbors after the join of the 

new node ni in the CAN network. From the join procedure it is obvious that when a new node 

enters the CAN network and “selects” a chunk of the coordinate space, the data items whose 

keys are included in this chunk, which are similar data, will be stored in the new node. 

Furthermore this node will have neighbors with adjacent zones with its zone, thus the data 

stored to its neighbor nodes will be similar to its stored data. 

 

 

        

Figure 2.2: An Identifier Circle Consisting of 
the four Nodes 0, 1, 3 and 6. Finger Table for 
Node 0 and Key Locations for Keys 1, 2 and 
7. In this Example, Key 1 is Located at Node 

1, Key 2 at Node 3, and Key 7 at Node 0. 

 

 

 

Figure 2.3: Example 2-d Space with 6 Nodes. 

In [39], the notion of semantic overlay networks is introduced where indices of documents are 

distributed across the network based on their semantics. Thus, documents with similar 

semantics are clustered either at the same node or at nodes with small distance between them, 

creating a semantic overlay network. In particular, each document is represented by a 

semantic vector in a Cartesian space, based on its content. These vectors are derived using 

either the vector space model (VSM) or latent semantic indexing (LSI). Hence, the similarity 

of two documents is proportional to the similarity of their semantic vectors. The Cartesian 

space is used along with CAN, so as the location, i.e., point, of a document in the CAN’s 

coordinate space is derived from its semantic vector. So, similar documents are placed in a 

short distance at the Cartesian space. Furthermore, as mentioned in CAN, for each node of the 

1 

Successor (1)=1

2
Successor (2)=3

3 

4 

5 

6 

7 

0 

Successor (4)=6 

Successor (7)=0 

Finger Table
1         1 
2         3 
4         6

0.0
0.0 

C 

(0-0.5, 0.5-1.0) 

(0.75-1.0, 0.5-1.0) (0.5-0.75, 0.5-1.0) 

B 

(0.5-1.0, 0.0-0.5) 

1.0 

1.0 

D E 

A F 
Node B’s virtual 

coordinate space 

(0.25-0.5, 0-0.5) (0-0.25, 0-0.5) 



 

 

12

overlay network is assigned a zone of the space. Thus, each node will store the indices of 

semantically similar documents. 

 

                            

Figure 2.4: A Gnutella Overlay Network with 
three Shortcut-links for the Bottom Right 

Node. 

Figure 2.5: Overlay Network with two 
Overlapping Guide Rules. 

 

2.1.1.2. Clustering in Unstructured P2P Systems 

Gnutella does not provide any kind of clustering, i.e., when a new node joins the network 

connects with a small set of random nodes of the network. In [36], some kind of clustering for 

Gnutella is proposed based on grouping nodes that share the same interests. More specifically, 

this mechanism organizes the Gnutella nodes into a clustered network on top of the Gnutella 

network. Thus, the basic Gnutella topology is retained and in addition a new network of nodes 

is created on top of Gnutella consisting of shortcut links. Figure 2.4 illustrates a Gnutella 

overlay network with three shortcut links for the bottom-right node. The criterion for creating 

a shortcut link between two nodes based on interest-based-locality, e.g., if a node ni has a data 

that another node nj requested, then node ni is very likely to have other data items that node nj 

is interested in. Hence, these two nodes share the same interests. Each node maintains a 

shortcut list with the nodes to which it is connected through shortcuts. Initially, a node joins 

the system in a Gnutella-like fashion since it has no information about the other nodes 

interests. Then, when it looks up for a data item, a set of nodes is returned that stores the 

desired data. The newly joined node will create shortcuts with these nodes updating its 

shortcut list. Hence, the node is connected, clustered, with nodes that share similar interests.  

 

Guide Rule 1

Guide Rule 2
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In Semantic Overlay Networks (SONs) [10], nodes that have similar documents are clustered 

at the same group, denoted as SON. In particular, a classification hierarchy is used to classify 

the nodes documents, which is defined a priori. Thus, two nodes belong to the same overlay 

network (SON) if some of their documents are relevant, i.e., they are classified under the 

same concept. This way, a set of overlay networks are formed; the number of these networks 

is predefined. All nodes that belong to the same overlay network have documents that belong 

to the same concept. In addition, nodes can belong to more than one SON. Thus, when a node 

wishes to join the p2p network, it initially floods the network to obtain the classification 

hierarchy. It then decides which SONs to join. This can be done by classifying its documents 

to their associative concepts. The next step is to find nodes for each SON that it belongs to. 

This can be done again by flooding the network.  

 

Another unstructured p2p system, which provides clustering of nodes with similar data, is the 

Associative Overlays [8]. The overlay network is constituted by guide rules. Each guide rule 

is a set of nodes that satisfy some predicate. Thus, all the nodes that belong to the same guide 

rule contain similar data. The connectivity of nodes inside a guide rule is similar to the 

connectivity of unstructured network. Figure 2.5 illustrates a set of nodes with two 

overlapping guide rules. Several kinds of guide rules can be proposed. Possession rules is the 

guide rule applied in [8], where each possession rule has an associative data item. The 

predicate a node must satisfy to be included in a possession rule is the presence of the 

possession’s rule associative data item to its local index. Note that a node can participate in 

more than one guide rules. 

2.1.2. Searching in P2P Systems 

Several search techniques have been proposed in the literature in order to accomplish 

discovery in a small number of hops and getting as much query results as possible. In 

centralized systems, such as Napster, a centralized index is storing information about the 

contents of all nodes in the network. Queries are issued to this central index to find the nodes 

that have the desired files. The files are then downloaded directly from these nodes. The 

drawback of this approach is that the central index server becomes a bottleneck and a single 

point of failure. In decentralized systems, the search methods can be categorized in two main 

domains. The first domain refers to those methods applied to structured p2p systems and the 

second domain to methods applied to unstructured p2p systems. The categorization is done 

due to the morphology of these two kinds of p2p systems. More specifically, at the first one 
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data items are placed at specific nodes in contrast with the other kind where there is no 

assumption about the location, i.e., the nodes, the data items will be placed at. 

2.1.2.1. Searching in Structured P2P Systems 

In general, searching in structured p2p systems is very efficient because specific data items 

are placed at specific nodes, thus all lookups are resolved successfully. 

 

In Chord [37], an efficient method for routing can be implemented using the nodes finger 

tables. When a requesting node asks for a key k, it must check its finger table to see whether 

one of the nodes for which has information about is the successor of the key. If so, it can 

contact immediately the successor node of the key, as it knows its identity, hence the lookup 

is resolved in one hop. Otherwise, when the requesting node does not know about the 

successor of key k it must find another node j in its finger table, whose identifier is closer and 

precedes the key. Node j repeats this procedure. Hence, at each step the query is forwarded to 

nodes that are closer and closer to the key. Finally, the query message finds the immediate 

predecessor node of the node whose identifier is associated with key k. The successor of that 

node holds the key k, thus the lookup procedure is resolved correctly. It has been shown that a 

query request is resolved in an N-node network in O(logN) hops. 

 

In CAN [33], each node maintains the IP address and the coordinate zones of its neighbors. 

When a query, generated in a CAN node i, requires a data item then the node i can learn data 

item’s associative key, using the hash function, and the point P of the coordinate space 

corresponding to the key. If the point P is not within the requesting node’s zone routing is 

deployed. The routing works by following the straight line of the coordinate space that 

connects the requesting node’s coordinates with the associative coordinates of the data item 

(point P). In more details, a CAN node forwards the query to one of its neighbors whose 

coordinates are closest to the destination coordinates. It has shown that for a d-dimensional 

space, the average path length is (d/4)(n1/d) hops which means that increasing the number of 

dimensions of the coordinate space the average path length grows by O(n1/d). 

 

Finally, pSearch procedure was introduced in [39] in order to achieve routing in semantic 

overlay networks. When a query q is created at a node, initially its semantic vector is 

generated, i.e., a point of the Cartesian space, and the query message is forwarded to the 

overlay network, as described in CAN, in order to find the destination, i.e., the node that 

contains this point in its zone. Upon reaching the destination, the query is flooded to all nodes 
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within a certain radius. Finally, all nodes that get the query message execute a search to their 

local index so as to find query matches. 

2.1.2.2. Searching in Unstructured P2P Systems 

In [40] the search methods in unstructured systems are classified in two categories, blind and 

informed search. In blind methods, there is no information about the location of a document. 

In contrast, in informed methods a distributed directory service contributes in discovering the 

requested data location. 

 

Blind search methods are very popular due to their simplicity. The most simple blind search 

mechanism is flooding, used by Gnutella. When a node initiates a query, in order to find 

results, it sends the query message to its neighbors that forward the query message to their 

neighbors and so on. Thus, the whole network or a subset of it, if we use the TTL (time-to-

live) parameter, is flooded in order to find as many matches as possible matches for the query. 

The TTL parameter represents the maximum number of hops the query message can travel 

before it gets discarded. The main disadvantages of this method are the large network 

overhead and the TTL selection problem. In order to eliminate this huge cost, several search 

methods, variations of flooding have been proposed. The first one is Modified-BFS [40] 

where each node instead of forwarding the query message to all of its neighbors, it chooses 

randomly a fraction of its neighbors. This algorithm reduces the network overhead of flooding 

but not as much as we wanted. In order to eliminate further the network overhead and resolve 

the TTL selection problem, the expanding ring [25] search method was proposed. This 

technique uses iterative flooding searches with increasing TTLs. The requesting node begins 

the search by flooding the network with a small TTL and if the search is not successful then 

the requesting node repeats the same procedure using an increased value for TTL and so on. 

The advantage of this method is that it is possible to find relative to the query data using a 

small TTL, hence incurring a small network overhead. More specifically, “popular” data that 

spread across a large fraction of the network nodes can be found with little network overhead. 

Instead, rare data can bring larger network overhead than flooding. Furthermore, expanding 

ring does not solve the problem of message duplication where a node receives the same query 

message from different neighbors. Random walks [25] try to solve this issue. The requesting 

node forwards the query message to a fraction k of its neighbors set. Then, each of the 

intermediate nodes forwards the query message to a randomly selected node. Hence, the 

query message follows k different paths, denoted as walks, in order to find the query results. 
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To terminate a walk either a specified TTL is used or “checking”, i.e., the walker asks first the 

requesting node before deciding to visit a new node. 

 

For hybrid p2p systems, two blind search techniques have been proposed. In hybrid p2p 

systems each super-peer is “responsible” for a number of other peers, denoted as “leaf-

nodes”. In GUESS [40], the super-peers are fully connected and each super-peer is connected 

with a fraction of other nodes of the network. The search is done by repeatedly forwarding the 

query message to a different super-peer and furthermore forwarding the query to the super-

peer’s leaf nodes. The search is terminated when a specified number of results has been 

found. In Gnutella2 [40], when a super-peer gets a query message from a leaf-node, it 

forwards the message to the other relevant leaf-nodes and also to its neighboring super-peers. 

 

Also, several informed search techniques have been proposed. The most important are 

described below. In order to eliminate the weakness of Gnutella flooding, that is scalability, 

an informed search mechanism is proposed in [36] that uses the shortcut links mentioned in 

previous section. In particular, when a node requests for a data item, firstly it uses its shortcut 

list to select the nodes to which will forward the query message. If the data item cannot be 

located through shortcuts then the node uses the underlying Gnutella network and performs 

flooding, otherwise its shortcut list must be updated with the nodes storing the returned data 

item.  

 

Another informed search technique is the Intelligent-BFS [40] where each node stores for 

each of its neighbors the number of results returned from recently answered queries. Thus, 

when a node receives a query message, identifies all the previous queries that are similar with 

this query and forwards the query message to the set of neighbors that returned the most 

results for the similar previously answered queries. 

 

An alternative informed search method uses local-indices [40] where each node has 

information about the files stored at nodes within a specific distance from it. Thus, a node 

returns query results on behalf of a set of other nodes. The query message can be forwarded 

only at the nodes that are within a specified distance from the requesting node. A very 

promising informed search technique, based on distributed indexing, is proposed in [9]. Each 

node of the network maintains routing indices (RI), one for each of its links. Each node’s 

routing index summarizes the content of other nodes of the network that can be reached 

through the selected node’s link. When a node receives a query, it firstly evaluates it using its 

local data and secondly if not enough results have been found it forwards this query to other 
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nodes of the network. Instead of routing the query message to all of the node’s neighbors, as 

flooding does, with routing indices a node selects some of its neighbors to forward the query. 

Hence, the query is routed through the paths that the more relevant data items can be found. 

Several routing indices have been proposed. Compound Routing Indices (CRI) of node n for a 

specified link l summarize information about the content of other nodes that are reachable 

from node n through link l. The main drawback of the CRIs is that they don’t take into 

account the cost of the number of “hops” required to find the desired data. The hop-count RIs 

overcome this problem by storing for link l a routing index for each number of hops up to a 

maximum number of hops, denoted as horizon. The drawback of this index is that it requires 

higher storage than CRIs and does not have any information for nodes beyond the horizon. 

The exponential RI is a combination of both CRIs and hop-count RIs, eliminating their 

drawbacks and generally outperforming the other two kinds of RIs. 

 

The idea of routing indexes is also used in [29], [22]. In particular, the authors propose using 

histograms as local and routing indexes. Each peer maintains a local index of all data 

available locally. It also maintains for each of its links, one histogram as routing index that 

summarizes the content of all peers reachable through this link within a given number of 

hops. Such histograms are used to route range queries and maximize the number of results 

returned for a given number of peers visited. 

 

A similar approach is presented in [21], [27]. Bloom filters are used as indexes. Specifically, 

in [21] the authors use multi-level Bloom filters to route queries in a p2p system. Each peer 

maintains a summary of its content in the form of a multi-level Bloom filter and it also 

maintains one merged multi-level Bloom filter for each of its links summarizing the content 

of all peers that can be reached through this link. Using such merged filters, each peer decides 

to direct a query only through links that may lead to peers with documents that match a query. 

In [27], each peer maintains a local Bloom filter that represents the object in the local 

repository, and a remote Bloom filter for each link obtained from its neighbors. During the 

query routing, each node propagates the query to the best k links based on the semantic 

similarity with the query. When a node discovers that a peer frequently produces good results 

to its request, it attempts to move closer to it by connecting directly to that peer.  

 

Furthermore, a query routing technique that relies on routing filters is introduced in [15]. In 

particular, the authors present an adaptive maintenance technique based on query feedback for 

keeping routing filters up-to-date. These routing filters are used for optimizing routing, which 

prevents from flooding the network. Routing filters are local index structures established at 
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each peer and are based on path trees, an adaptable summary structure for XML data. They 

compound information about data obtainable by the connections to all neighboring peers, 

each peer is restricted to limited knowledge about global data location and other participating 

peers by limiting the filters to a maximal hop count. In addition, each peer holds one separate 

filter instance for each neighbor. The basic query processing procedure takes place in four 

main steps, which are: 1. query forwarding, where each peer that receives a query message 

forwards it to all those neighboring peers that, according to its routing filters, can contribute 

to the final result, 2. local query processing, 3. updating the cache for intermediate results, and 

4. sending an answer message to that peer that has sent the message in the first place. The 

central issue is how to obtain and maintain the knowledge contained in the routing filters. 

They utilize a dynamic and adaptive maintenance approach based on query feedback, where 

the results of executed queries are used in order to refine the filters. Thus, the routing filters 

adapt to the actual workload and changing network situations. 

 

A search method that cannot be categorized neither as blind nor as informed, is the one used 

in Overlay Semantic Networks [10].  When a node creates the query, first it classifies it and 

then forwards the query message to the appropriate SON. Then, the query message is 

propagated at the nodes of the SON, in order to find matching documents, using flooding. As 

mentioned before, this method cannot be categorized neither as blind nor as informed, due to 

the reason that in [10], it is not determined how the query is forwarded to the appropriate 

SON. 

  

The Guided search method [8] can be viewed as a combination between blind search and 

routed search used in structured p2p systems. In more details, when a node originates a query, 

decides in which possession rules the query message is forwarded. Thus, the queries are 

directed to nodes that are likely to have the most results. Two possible search algorithms have 

been proposed about deciding in which possession rule the query must be forwarded. In 

Rapier (Random Possession Rule) algorithm a node selects randomly a possession rule from a 

set of possession rules that have been selected to answer previous node’s queries. In contrast 

in GAS (Greedy Guide Rule) algorithm each node creates its own strategy consisting by 

possession rules that have been more effective in previous node’s queries. It has been shown 

that GAS performance is better than Rapier’s but with higher overhead. After the selection of 

the possession rule, a blind search is performed inside this possession rule. 
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2.1.3. P2P Systems Supporting Range Queries 

In the previous sections, we discussed about p2p systems that support only simple lookup 

queries over a single attribute. However, many new p2p applications, such as p2p photo-

sharing applications and multi-player online games, require support for range queries. In the 

following sections we describe several p2p systems that support multi-attribute range queries 

from the perspective of how these systems achieve clustering and the search techniques they 

use to resolve range queries.  

2.1.3.1. Systems Overview 

Mercury [5] is a structured p2p system that supports multi-attribute range queries, i.e., each 

query is a conjunction of ranges in one or more attributes. Its basic architecture relies on 

creating a structure, denoted as routing hub, for each attribute in the application schema 

consisting of a subset of system nodes. Note that a node can be part of multiple hubs. In 

addition, each routing hub is organized into a circular overlay of nodes and each node within 

a routing hub takes charge of a contiguous range of values for the equivalent attribute. Thus, 

two data items that have contiguous values for a specific attribute will be placed at the same 

node or at neighboring nodes in the routing hub that “represents” this attribute. This kind of 

structure is similar with CHORD’s but the main difference is that Mercury doesn’t use 

randomized hash functions for placing data due to the choice of supporting range queries.  

 

In [34], a method for efficiently evaluating multi-attribute range queries is proposed. This 

kind of method uses a 2d-dimensional coordinate space in a way similar to CAN system. In 

more details, considering a relation with d attributes the system creates a 2d coordinate space, 

i.e., 2 dimensions of the space correspond to a single attribute. The coordinate space is 

constructed as follows: Assuming that the domain of a single attribute is [a, b], the boundaries 

of the two-dimensional coordinate space are (a, a), (b, a), (b, b) and (a, b). In addition, the 

space is partitioned into multiple rectangular sub-regions, denoted as zones, where each zone 

is assigned to a system node. Note that the zones are assigned to only some of the system 

nodes, denoted as active nodes, whereas the remaining nodes that do not own a zone are 

called passive nodes. Furthermore, each active node keeps a list of passive nodes and links to 

its neighbors, i.e., the nodes that are owners of adjacent zones. The partitioning of the 

coordinate space is done dynamically by splitting existing zones and new zones are assigned 

to passive nodes that become active. The decision of splitting a zone is taken by the owner of 

the zone. For splitting a zone one of the following two conditions must hold. The first 

condition is met when the owner of the zone answers too many queries; hence, it splits its 
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corresponding zone into two chunks of even distribution of stored answers. The second 

condition is satisfied when a node is overloaded because of too many query routing messages. 

Then, this node splits its owned zone into two equal chunks. Each range query corresponds to 

a single point, denoted as target point, in the coordinate space therefore each node is 

responsible for a number of range queries that their points are included to its owned zone. The 

zone in which a target point lays and the corresponding node are called target zone and target 

node, respectively. Thus, each target node stores the data items that are associated with the 

range queries for which the target node is responsible. When a node generates a range query 

and wishes to publish the query results to the network, it caches the query results and the 

target node creates a pointer to it. The target node also caches the results of the range query. 

 

 

Figure 2.6: Example of Data Item Insertion and Query Routing in Mercury. 

Space-Filling curves with range Partitioning (SCRAP) [12] and Multi-Dimensional 

Rectangulation with KD-Trees (MURK) [12] are two alternative approaches for supporting 

multi-dimensional range queries. In SCRAP, the multi-dimensional data items, i.e., the data 

items having more than one attribute, are mapped into a single dimension by using a space-

filling curve. These one-dimensional data items are then partitioned among the system’s 

nodes where each node is responsible for a contiguous range of values for the single 

dimension. In MURK, the multi-dimensional data space, i.e., the space where each multi-

attribute data item is represented as a point, is partitioned into sub-regions, denoted as 

“rectangles”, and each rectangle is assigned to one of the system nodes. To achieve this 

partitioning, MURK uses Kd-trees, in which each leaf corresponds to a rectangle. This kind of 

partitioning is similar with the partitioning of the CAN’s coordinate space. The main 
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difference is that CAN tries to partition the coordinate space into equal sub-regions since the 

data items are expected to be uniformly distributed. In contrast, MURK splits its data space 

considering that each rectangle must have the same load. Another difference between CAN 

and MURK is that in CAN the number of dimensions for the coordinate space is determined 

by the routing efficiency, rather than the dimensionality of the data items, as MURK does. 

2.1.3.2. Query Routing 

In Mercury [5], the first step for routing a query is to select one of the hubs, let’s say Ha, 

which corresponds to the queried attributes. Hence, to guarantee that the query will find all 

the relevant data items, each data item is placed at all hubs that are associated with the 

attributes for which the data item has value. After the selection of the hub Ha, the next step is 

routing the query within this hub, which is done by forwarding the query to the node that is 

responsible for the first value of the query range for attribute a. Then, using the property of 

contiguity that Mercury has, the query is spread along the nodes of the ring to find all relevant 

data items. 

 

Example 2.1: Consider that we have two hubs Ha and Hb that correspond to attributes a and 

b respectively. The value range of both attributes is [0, 250]. When a new data item, with 

values 80 and 210 for the attributes a and b, is inserted into the system it is sent to both hubs 

Ha and Hb and it is stored at nodes b and h. In addition, a query is initiated at a system node 

and wants to find all the data items with 120a70 ≤≤   and 160b80 ≤≤  . It selects the hub 

Ha to execute the routing and enters at node e. Then, the query is routed within Ha and finds 

the associated results at nodes a and b. The whole process is illustrated in Figure 2.6. 

 

The implementation of routing requires each node that participates in a routing hub to 

maintain a link to each of the other routing hubs, denoted as cross-hub links, so as to route the 

query to another hub, and to have links to its predecessor and successor nodes within its own 

hub for routing the query within the chosen hub. Using only predecessor and successor links 

query routing is not efficient since in the worst case a query can get flooded to all nodes 

within a hub. Thus, Mercury adopts a routing optimization, denoted as k long-distance links. 

In particular, besides the predecessor and successor links, each node maintains k links to other 

nodes of the same hub. It has been shown that with k long-distance links the number of hops 

required for routing is logarithmic.  
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In [34], when a node generates a range query, the query is routed to its target zone. In 

particular, when a query is initiated at a zone, the requesting node forwards the query message 

to one of its neighbors, i.e., to a node that is responsible for an adjacent zone, that its 

corresponding zone coordinates are the closest to the target zone. All the nodes, which get the 

query message, follow this procedure until the target node is reached. The routing of the 

query message is done by using each node its neighbor lists and the target point of the query. 

Note that a passive node can generate a range query. Hence, the passive node must forward 

the query message to any of the active nodes. The query is then routed to the target zone by 

following the above procedure. It has been shown that the routing path is )n(O , where n is 

the number of zones in the system. When the query message reaches the target zone, the 

target node checks if it has stored results from previous range queries that contain the query 

range. If so, then these results are forwarded directly to the requesting node. Furthermore, if 

the target node has a pointer to another node, let’s say nj, that contains results from a superset 

range, then the IP address of nj is returned as an answer to the requesting node, which can 

contact immediately with nj. If query results cannot be found locally to the target node, the 

query is forwarded to the top and left neighbors, which potentially contain results for the 

query. These neighbors check for local results and can also forward the query to their top-left 

neighbors recursively. 

 

 

Figure 2.7: Partitioning of the Coordinate Space and Routing of the Range Query <70, 120>. 

Example 2.2: Consider that we have data items with one attribute and the value domain of 

the attribute is [0, 250], as in Example 2.1. Then, the boundaries of the coordinate space are 

(0, 0), (250, 0), (0, 250) and (250, 250). In addition, we assume that we have five active 

nodes. The five zones of the coordinate space are: zone-1 <(0, 125), (125, 250)>, zone-2 

<(125, 125), (188, 250)>, zone-3 <(125, 0), (250, 125)>, zone-4 <(0, 0), (125, 125)>, zone-5 

<(188, 125), (250, 250)>. Assuming that the range query <70, 120> is initiated at zone-5 
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then the query is routed through zone-3 to its target zone, which is zone-4. Figure 2.7 

illustrates the query routing of the range query <70, 120>. 

 

In SCRAP [12], multi-dimensional query routing is executed by following two steps. At the 

first step, the multi-dimensional range query is divided into a set of one-dimensional range 

queries and at the next step each of the unidimensional queries are routed to the nodes whose 

range of values intersects with the query range. The second step is efficiently performed by 

using a circular list of nodes, denoted as skip graph. Recall, that each node in the skip graph is 

responsible for a range of contiguous values for the single dimension that the multi-

dimensional data items are mapped to. Instead of using only links to its neighbors, that will 

result in O(n) messages (n is the number of nodes) to locate the node having the query results, 

each node keeps additional O(logn) skip pointers to other nodes of the skip graph. It has been 

shown that with skip pointers query routing is achieved in O(logn) hops.  

 

In MURK [12] each node ni creates grid pointers to other nodes of the system that store 

adjacent rectangles of the multi-dimensional data space with the one that node ni stores. The 

query routing is executed in a very similar way with CAN. Consider a query generated at 

node n which requires data items that their corresponding data points are laid within a 

rectangle Q. If the rectangle Q does not belong to the requesting node, then the routing 

protocol forwards the query message from the node n to one of its neighbor nodes whose 

corresponding rectangle reduces the distance to Q by the largest amount. When the query 

message reaches a node m with relevant to the query data items, node m forwards the query to 

its neighbors that also contain relevant data items. That requires that each node has 

information about the corresponding rectangles boundaries of its neighboring nodes. This 

procedure is done recursively until the query message reaches all relevant to the query nodes. 

Furthermore, every MURK node uses additionally skip pointers to a few other nodes to 

improve query routing, especially when dimensionality is low. Thus, in the routing protocol 

when a node forwards the query message to one of its neighbors that is closest to the 

destination, i.e., the node that is responsible for rectangle Q, this neighbor might be either a 

“grid” neighbor or a neighbor through a skip pointer.  

2.1.3.3. Clustering - Node Join 

In Mercury [5], clustering is achieved in each routing hub by placing data items at the node 

whose range of values includes the data item’s value for the hub’s attribute. Thus, data items 

with equal or contiguous attribute values will be placed in the same or contiguous nodes at the 
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corresponding to the attribute hub. In particular, when a new node ni joins the system, it 

initially communicates with a node that is already part of the system and gets information 

about the system’s hubs and a list of representative nodes for each hub. Then, it selects 

randomly one of the hubs and contacts a node nj that is already part of the chosen hub. The 

new node becomes a predecessor of node nj, takes over half of nj’s values range and finally 

becomes a part of the hub. Furthermore, the new node must create its own cross-hub links and 

k-long distance links. To achieve this, it firstly copies these kind of links from its successor nj 

and then starts the process of setting up its new k-long distance links and obtaining new cross-

hub neighbors, by starting random-walks to each of the other hubs, distinct from those stored 

by its successor.   

 

MURK [12] achieves clustering by placing similar data items, i.e., data items that their 

corresponding data points are very close in the data space, to the same or neighboring system 

nodes. When a node joins the system, the rectangle that is managed by a participant node is 

split into two parts of equal load and one of them is assigned to the new node. 

2.2. Histograms Supporting Selectivity Estimation of Queries 

Histogram construction techniques and their use in selectivity estimation of range queries as 

well as their relationship to approximate query answering have a long research history in the 

database literature. In databases, several modules of a database system require estimates of 

query result sizes. For example, query optimizers select the most efficient plan for a query 

based on the estimation of competing plans. These costs are in turn based on estimates of 

intermediate result sizes. To estimate query result sizes an accurate approximation of the 

distribution of data values in attributes of the relations of a database must be maintained. A 

variety of statistics have been proposed in the literature to approximate the distribution of data 

values, e.g., histograms, sampling and parametric techniques. Probably the most common 

technique used in practice (e.g., DB2, Informix, Ingres) is maintaining histograms, where a 

histogram contains the number of tuples in a relation for each of several subsets of values in 

an attribute. Thus, histograms are used as a mechanism for compression and approximation of 

data distributions and play an important role in estimating query result sizes. In particular, 

histograms approximate the frequency distribution of a single (or more) attribute (attributes) 

by grouping attribute values into subsets, called “buckets”, and approximating true attribute 

values and their frequencies based on summary statistics maintained in each bucket. The main 

advantages of histograms over other techniques are that they incur almost no run-time 

overhead and they do not require the data to fit a probability distribution. In addition, there 
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exist histograms that produce low-error estimates while occupying reasonably small space 

[18]. 

2.2.1. One-dimensional Histograms 

Several one dimensional histograms, i.e., histograms that approximate the data distribution of 

a single attribute, have been proposed in the literature. A histogram on an attribute x is 

constructed by partitioning the attribute’s data distribution into a number of mutually disjoint 

subsets called buckets and approximating the frequencies and values in each bucket. 

 

Earlier work deals with histograms in the context of single operations, primarily selection. In 

particular, in [30] the authors consider the problem of reducing the error for selection queries 

using histograms. They study the equi-width histograms and propose an alternative kind of 

histograms, the equi-depth (or equi-height) histograms. Specifically, an equi-width histogram 

on an attribute, e.g., x, is specified by partitioning the value set of x into contiguous values 

ranges of equal width (buckets). Thus, the number of attribute values associated with each 

bucket is the same. For each bucket, the sum of the frequencies of the values that lie within 

the bucket, i.e., the total number of tuples with values for x within the value range of the 

bucket, is kept. In contrast, in an equi-depth histogram the value set of x is divided into 

buckets so as the sum of the total number of tuples having the attribute values associated with 

each bucket is the same for each bucket. Their main result shows that an equi-width histogram 

is not very good for estimating selectivity, since it frequently leads to estimates not much 

better than those obtained by random guessing. In contrast, the equi-depth histograms have a 

much lower worst-case and average error, compare to equi-width histograms, in estimating 

queries results for a variety of selection queries.  

 

The notion of variance optimality of histograms for limiting the errors in the estimates of 

query result sizes is introduced in [16], [17] and the v-optimal histogram is defined to be that 

which minimizes the error for estimating tree equality-join queries for a given number of 

buckets. For example, if 210 R,R ,R  are relation names and b ,a  are attributes of both, the 

authors do not deal with queries whose qualifications contain ( b.Rb.R and a.Ra.R 1010 == ). 

Instead, they deal with chain join queries, i.e., ones whose qualification is of the generic form 

)a.Ra.R and ... and a.Ra.R and a.Ra.R(Q NNN1-N22211110 ==== , where N0 R,... ,R  are 

relations and N1 a,...,a  are appropriate attributes. In particular, in [16], the tree equality-join 

queries are studied for which the result size reaches some extreme that essentially represent 
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the worst case of error. It is shown that optimality for error reduction is achieved by the class 

of serial histograms, which are introduced, when the query result size is maximized, whether 

or not the attribute independence assumption holds, and when the query result size is 

minimized and the attribute independence assumption holds. Since then, traditional 

histograms are usually constructed in such a way that each bucket stores attribute values that 

belong in a certain range in the natural order of the attribute domain. In contrast, serial 

histograms are constructed so that attribute values are grouped in buckets based on proximity 

in their corresponding frequencies and not in their actual values. Thus, this class of 

histograms group similar frequencies together, thereby reducing the variances of frequencies 

in the buckets. 

 

In addition, in [17], the authors investigate the trade-offs between histogram optimality and 

practicality. They prove that the class of serial histograms are optimal for tree equality-join 

queries either when the joint-frequency distribution is available or in the case that the 

frequency distribution of the relations of a query are individually available but are examined 

in isolation, which is the most common situation in practice. Furthermore, the optimal 

histogram on a join attribute of a query relation is proved to be independent of the rest of the 

query and is equal to the optimal histogram for the query that joins the relation with itself on 

that attribute. Thus, optimal histograms can be identified independently for each relation. 

They introduce the v-optimal serial histograms or v-optimal histograms and as in serial 

histograms they group contiguous sets of frequencies into buckets so as to minimize the 

variance of the overall frequency approximation. Unfortunately, the construction of a v-

optimal histogram is too expensive; its construction complexity is exponential. Due to the 

high complexity for constructing an optimal serial histogram, a subclass of serial histograms 

is studied, the end-biased histograms class, that accurately maintain the frequencies of some 

attribute values and assume the uniform distribution for the rest. A comparison between the 

optimal histogram in that class, i.e., v-optimal end-biased histogram, and the overall optimal 

(serial) histogram, i.e., the v-optimal serial histogram, is done and shows that the histograms 

in this subclass are effective in error reduction. Furthermore, the histograms of this subclass 

can be constructed much more efficiently than the v-optimal serial histograms. 

 

In [31], several key properties that characterize histograms are identified and a formal 

taxonomy of existing histograms is formed based on these properties. After placing all 

existing histogram types, such as equi-width, equi-depth, v-optimal and v-optimal end-biased 

histograms in the appropriate places in the taxonomy, new histogram types are proposed such 

as maxdiff and compressed histograms. Let β be the number of buckets in a histogram. In 
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general, the maxdiff histogram is constructed by a heuristic technique that places the bucket 

boundaries between those β pairs of adjacent values that differ the most in their frequencies. 

In contrast, in a compressed histogram the n highest frequencies are stored separately in n 

singleton buckets, i.e., they contain a single value and its corresponding frequency, and the 

rest are partitioned as in an equi-width or equi-depth histogram. The accuracy of both old and 

new histogram was determined using a large set of data distribution and range selection 

predicates. The v-optimal histograms have been shown to minimize the average error for 

several selectivity estimation problems, thus achieving good accuracy for those predicates as 

well, but as we mentioned before no efficient algorithm for constructing them has been 

proposed. In addition, the maxdiff histograms are very close to the best histograms on 

construction time and generated error issues. 

 

In [19], several algorithms are proposed for constructing v-optimal histograms, i.e., 

algorithms that attempt to minimize the error for a given number of buckets. The authors 

propose three algorithms for the problem, all of which found provably optimal or close to 

optimal solutions. At first, a basic optimal algorithm is proposed based on dynamic 

programming, which takes time that is quadratic in the number of distinct values of the 

attribute being considered and linear in the number of buckets being used. Then, an improved 

and more sophisticated method of the basic algorithm is presented that can compute optimal 

histograms in a short time for data distributions over ten of thousands of values. Finally, an 

approximation algorithm that determines a provably close to optimal histogram is introduced 

that is significantly faster than the optimal algorithms. 

 

Previous work on computing optimal histograms considers only equality queries when 

computing the error incurred by a particular choice of a histogram bucket boundaries. In 

particular, the v-optimal histograms defined in [16], [17] minimize the error for estimating 

equality join queries. Heuristically, constructed v-optimal histograms are evaluated in [31] for 

range selection predicates along with several other histograms and are shown to achieve a 

good accuracy for those predicates as well. However, the evaluation of v-optimal histograms 

for range queries was performed on v-optimal histograms constructed by taking only equality 

queries into account. In [23], the authors address this problem and focus on efficiently 

computing optimal histograms for the case of hierarchical range queries. A range query qij 

over an attribute x asks for the sum of the tuples that have value for the attribute x between the 

range [i, j]. Thus, a set S of range queries is said to be hierarchical, if for any two queries qij  

and qkl in S, either the range [i, j] and [k, l] are disjoint, or one is contained in the other. They 

show that “optimal” histograms for equality queries are sub-optimal for hierarchical range 
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queries. In addition, they present polynomial-time, dynamic programming algorithms for 

computing optimal histograms that provably minimize expected error for a given amount of 

space, for the special cases of one-sided ranges and balanced binary trees, as well as for the 

general case of arbitrary hierarchical range queries. They prove that the algorithm for the case 

of one-sided ranges is as efficient in running time as the v-optimal algorithm proposed in 

[19], which computes optimal histograms for equality queries, and experimentally 

demonstrate that the histograms produced by their algorithm have substantially lower error.  

 

The histogram types mentioned before have the common characteristic of examining 

exclusively the data set or a sample of it so as to infer data distribution. Thus, the cost of 

building them and maintaining or rebuilding them when the data set is modified could 

become very large. In particular, building a histogram involves scanning or sampling the data, 

sorting them and finally partitioning them into buckets. For large databases, the cost is 

significant enough to prevent from building all the histograms that might be useful for 

estimating query result sizes. A novel approach that helps reduce the cost of building and 

maintaining histograms for large tables is introduced in [3], and the Self-tuning (ST) 

histograms are proposed. This type of histogram is build not by examining the data but by 

using feedback information about the execution of the queries on the database (query 

workload). Specifically, the construction of a Self-tuning histogram is done by firstly building 

an initial histogram with whatever information we might have about the distribution of the 

histogram attribute. As queries are issued on the database, the query optimizer uses the 

histogram to estimate selectivities in the process of finding the best query execution plan. 

Whenever a plan is executed, the query execution engine can count the actual result size 

produced by each operator. Thus, the feedback information can be used to refine the 

histogram. In other words, whenever a query is issued and uses the histogram, the estimated 

selectivity and the actual selectivity are compared and the histogram is refined based on the 

selectivity estimation error. Summarizing, an ST-histogram greedily partitions the data 

domain into disjoint buckets and refines their frequencies using query feedback. After a 

predetermined number of queries, the histogram is restructured by merging and splitting 

buckets at a time. 

2.2.2. Multi-dimensional Histograms 

Several multi-dimensional histograms have been proposed in the literature to compute 

selectivity estimators of multidimensional data sets. A multidimensional version of the equi-

depth histogram is presented in [28] that recursively partitions the data domain, one 



 

 

29

dimension at a time, into buckets enclosing the same number of tuples. It is shown that the 

cost for building a D-dimensional equi-depth histogram is significantly less compared to D 

times, at least, the cost for creating an equi-depth histogram on a single attribute, as one might 

expect. 

 

MHist histograms are introduced in [32], based on underlying maxdiff histograms, which at 

each step choose and partition the most “critical” attribute. In more details, assume that we 

have a number, let’s say n, of attributes xi for which we would like to create the MHist 

histogram. The joint data distribution T1…n of x1,…,xn is the entire set of (value combination, 

joint frequency) pairs, where value combination is the set of all possible combinations of the 

attributes’ values and the joint frequency for a specific value combination is the number of 

tuples in the relation that for each one of the attributes x1,…,xn have the corresponding value 

of the value combination. In addition, the individual data distributions of each one of the 

attributes are referred as marginal distributions. The main idea is to iteratively partition the 

data domain using a greedy procedure. At each step, the algorithm deals with a set of partial 

data distributions that are subsets of the entire joint data distribution. In other words, each 

partial data distribution corresponds to a bucket. Initially this set contains the entire joint data 

distribution, hence one bucket. At each step, from the set of partial data distributions, we 

choose a partial data distribution, i.e., a bucket, that contains an attribute xi that is the most in 

need for partitioning. Such a bucket will have the largest “area gap” between two consecutive 

values along the xi’s dimension. Thus, we split the bucket that corresponds to the selected 

partial data distribution along the dimension that corresponds to the xi attribute. Using this 

information, MHist iteratively splits buckets until it reaches the desired number of buckets. 

 

All the above histogram techniques are static in the sense that after histograms are built, their 

buckets and frequencies remain fixed regardless of any changes in the data distribution. The 

Self-tuning histogram [3], described in the previous section, is also used in the case of 

multiple attributes. We refer to Self-tuning histograms for multiple attributes as STGrid 

histograms [3]. STGrid is the first multi-dimensional histogram that uses query feedback to 

refine buckets. A STGrid histogram greedily partitions the data domain into disjoint buckets 

that form a grid, and refines their frequencies using query feedback. After a predetermined 

number of queries, the histogram is restructured by merging and splitting rows of buckets at a 

time (in order to preserve the grid structure). 

 

Recently, STHoles [6] is presented, a novel workload-aware multidimensional histogram that 

allow bucket nesting to capture data regions with reasonably uniform tuple density. This 
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histogram identifies a novel partitioning strategy that is especially well suited to exploit 

workload information and query feedback. Intuitively, STHoles exploits query workload to 

zoom in and spend more resources, i.e., more buckets, in heavily accessed areas, thus 

allowing some inaccuracy in the rest. Hence, this technique uses information about both the 

workload (range selection queries) and the data distribution itself, through statistics collected 

from query result streams. The authors present algorithms that show how to exploit result of 

queries in the workload and gather associated statistics to progressively build and refine a 

STHoles histogram. An important consequence of this refinement procedure is that the 

STHoles histograms can gracefully adapt to changes in the data distribution they 

approximates without the need to periodically rebuild them. 

 

In [24], SASH is presented, a Self-Adaptive Set of Histograms that addresses the problem of 

building and tuning a set of histograms collectively for multidimensional queries in a self-

managed manner based only on query feedback information. SASH is a two-phase method for 

the online construction and maintenance of a set of histograms. In the online tuning phase, 

SASH uses the delta rule to tune the current set of histograms in response to the estimation 

error of each query. The estimation error is computed from the true selectivity of a query 

obtained from the query execution engine, i.e., the query feedback. In the restructuring phase, 

SASH searches for a new and more accurate set of histograms to replace the current set of 

histograms. To model the set of histograms they used graphical statistical models and the best 

model found by SASH includes both the optimal set of histograms and the corresponding 

optimal memory allocation for each histogram. Thus, SASH addresses both the problem of 

finding the best attribute sets to build histograms on and the problem of finding the best 

memory distribution (of a given amount of memory) among the histograms. 
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Peer-to-peer (p2p) systems have become a popular medium to share huge amounts of data. 

P2p systems distribute the main costs of sharing data, disk space for storing data items and 

bandwidth for transferring them, across the peers in the network, thus enabling applications to 

scale without the need for powerful, expensive servers. Their ability to build a resource-rich 

system by aggregating resources enables them to dwarf the capabilities of many centralized 

systems for little cost. 

 

We assume a p2p system with a set of autonomous computing nodes (the peers). Each peer is 

connected to other peers thus forming an overlay network and stores data items or resources 

that shares with the other peers of the system. This kind of system is dynamic, meaning that 

the set of peers changes as peers may join and leave the system. A query may be posed at any 

of the peers, while data items that satisfy the query may be stored at various peers of the 

system; we call such peers matching peers. The query is routed through the overlay network 

from the peer that posed the query to such matching peers. Our goal is for each query to 

maximize the number of results returned for a given number of peers visited. We would like 
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for each query to return more than one result due to several reasons. For example, consider a 

p2p system where each peer shares music files. Ideally, when a user poses a query, i.e., asks 

for a song, he would expect to receive the IP addresses of all the peers that store this song. 

The reason that a user would like to know all the peers that have the desired song, hence as 

many results as possible, is that he might want to choose from which of the candidates peers 

to download the desired song based on specific criteria like their bandwidth, e.g., if the peer 

has dial-up connection to the Internet or is connected via cable-modem or DSL. Another 

example is when a user poses a query not for a song but for an artist. Hence, he expects to 

receive all the songs of this artist that are stored at the peers.  

3.1. Motivation 

Ideally, when a query q is issued at a peer, we would like to route the query through the 

overlay network from the issuing peer only through peers that have data items satisfying it. 

The role of the overlay p2p network topology, i.e., how the peers are connected to each other, 

is crucial for efficient query routing. Specifically, in a random p2p network where each peer 

is connected with a small set of peers selected randomly, e.g., Gnutella [1], when a query is 

initiated at a peer, we have to perform flooding or a variation of it in order to find matching 

results for the query. Thus, either the whole network is flooded or a subset of it, if we use the 

TTL (time-to-live) parameter. Both of these two approaches have serious drawbacks. The first 

one finds all the matching results for the query but it brings a large communication overhead 

due to visiting all the peers of the network. The second one may eliminate this huge network 

cost but the effectiveness in finding a satisfactory number of query results is very low. The 

main problem both for low performance in finding query results and high network overhead 

using flooding with or without the TTL parameter respectively, is owed to visiting peers that 

may not have relevant to the query data items due to the random network topology. Hence, we 

would like to create a network topology so as for each query to visit only a specified number 

of peers that have the most results for the query. This way, on one hand, we eliminate the 

network overhead, since we do not forward the query to all the peers of the network, and on 

the other hand we get the majority of data items that satisfy the query. Thus, for each query 

we are interested in maximizing the number of matching results returned for a given number 

of peers visited.  

 

One way to attain a large number of results is by clustering peers based on their content so 

that peers with similar content are nearby in the overlay network. The motivation for 

clustering is that once in the appropriate group, i.e., when a query finds a peer with a large 
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number of results, relevant peers that also have many results are nearby in the overlay 

network. We propose building a p2p network topology based on workload-aware clustering. 

In particular, the formation of clusters relies on two basic factors, (i) peers content, where two 

peers with similar contents will participate in the same cluster, and (ii) query workload, so 

that the type and probability of queries is taken into account in creating the clusters. Hence, 

“popular” queries affect the formation of peer groups more than unpopular ones. The 

motivation for taking into account the query workload is that if some data items are queried 

only seldomly, we do not want them to influence clustering as much as other data items.  

3.2. System Model 

Assume that we have a p2p system consisting of a set N of peers ni. Each peer is connected to 

a small number of other peers called its neighbors, thus forming an overlay network. We 

focus on p2p systems where each peer stores a relation R with a numeric attribute x, which is 

a non-negative integer-valued attribute, and on routing queries on x. 

3.2.1. Definitions and Query Result Set Requirements  

In general, the domain D of x is the set of all possible values of x and the (finite) value set 

)D(Vn ⊆  for peer n is the set of values of x that are actually present in its relation R. Without 

loss of generality, we assume a finite numerical domain with discrete values for attribute x, D 

= {0, …, M-1}. For peer n, the frequency of value i for the attribute x, 1Mi0 −≤≤ , denoted 

as fi, is the number of tuples (data items) Rt ∈  of peer n with t.x = i. In addition, the 

probability of value i, denoted as pi, 1p0 i ≤≤ , is a measure of how likely the value i occurs 

for the attribute x, i.e., p(t.x = i).  In general, let S be a set or a bag of items, by S  we denote 

the number of items that are included in S. For peer n, its data distribution for the attribute x 

is defined as follows: 

 

Definition 3.1 (Data Distribution) Let n be a peer which stores a relation R with a numeric 

attribute x. Let D be the domain of x. The data distribution of x for peer n is the set of pairs 

Di )},p ,i{(T i ∈= .  

 

Our approach is based on the query workload W that consists of a set of queries. Each query is 

posed at a peer and is routed through other peers of the system to find matching results. For a 

query q we define as fq its corresponding frequency, i.e., the number of its occurrences from a 
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sample of queries, while with pq we define the probability of the appearance of q. At this 

point we introduce the notion of the query workload: 

 

Definition 3.2 (Query Workload) A query workload W is a set of pairs (q, fq) where q 

denotes a distinct query and fq its associated frequency. 

 

As mentioned in Section 3.1, our overall goal is to route each query q only through those 

peers that have the largest number of results for q, i.e., to maximize the number of results 

returned for a given number of peers visited. Consider a routing procedure that visits k peers. 

A routing procedure is optimal for a query q if it visits the best k peers, which is the peers that 

contain the largest number of results for q. Definition 3.3 expresses the optimal query routing 

procedure. Let K be a set of k peers )NK( ⊆  that the routing procedure visits and results(n, 

q) be the number of results of peer n that match query q.  

 

Definition 3.3 (Optimal Query Routing) A routing procedure visiting only a set K of k peers 

is optimal for a query q if and only if ∀peer n∈K⇔ ¬∃peer n’∉K such that results(n’, 

q) > results(n, q). We denote the set K as Optimal(q, k). 

 

In general, we are looking for building networks and designing routing procedures that are 

optimal for a given query workload W. In more detail, a routing procedure that visits k peers 

for each query is optimal for a given query workload W, if for each query q of W, an optimal 

query routing is accomplished. Optimal Workload Routing expresses the optimal performance 

that each routing protocol should try to achieve in a p2p system. 

 

Definition 3.4 (Optimal Workload Routing) A routing procedure visiting k peers is optimal 

for a query workload W if ∀q ∈W, the procedure visits only the peers in Optimal(q, k). 

 

When a routing protocol is used in a p2p system, we have to measure how far from the 

optimal workload routing, the routing protocol performs. To this end, we define PeerRecall as 

our performance measure. Let K be a set of k peers )NK( ⊆ , with Sresults(K, q) we denote 

the sum of the number of results (matching tuples) for query q returned by all the peers that 

belong to K. Thus, ∑ ∈= Kn q) results(n,q),Sresults(K . 
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Definition 3.5 (PeerRecall) Let W be a query workload. For each q ∈W, let Visited(q, k)⊆ N 

be the set of k peers visited during the routing of a query q and Optimal(q, k)⊆ N be the set of 

k peers for the optimal routing of query q. We define PeerRecall(W)  for the entire workload W 

as: 

∑∑
∈

∈ 







=

Wq q
Wq q)W( f

1
)q ),k ,q(Optimal(Sresults

)q ),k ,q(Visited(SresultsfcallRePeer . 

 

PeerRecall expresses the average percentage of results that the routing protocol can achieve, 

when visiting k peers, for each query q of the workload with respect to the optimal results of 

each q. Thus, each distinct query contributes equally to the evaluation of PeerRecall 

independently of the number of its results, meaning that a query which has a large number of 

data items satisfying it does not influence the estimation of PeerRecall more than a query 

with a small number of results. Intuitively, to increase PeerRecall, for the entire workload W, 

peers that have the most results for most queries of W should be close to each other in the 

overlay network. 

3.3. Workload-Aware Clustering in Peer-to-Peer Systems 

We are interested in creating a topology for a p2p system in the form of clusters. Intuitively, 

this kind of topology represents a number of smaller networks (clusters) of relevant peers that 

are rich in links between their peers. These smaller networks (clusters) are linked to each 

other through a few connections. Figure 3.1 illustrates a random p2p network and a clustered 

p2p network. To increase PeerRecall for a given workload W, groups of peers should be 

formed based on whether the peers match similar queries and have the most results for each 

one of them. Hence, peers that match a query q and have a large number of results for the 

query will be a few links away. Thus, once in the right group, i.e., when a query visits a peer 

with a large number of results, all relevant peers that also have many results are nearby. 

Besides the content of each peer, the type of the query workload should also be taken into 

account in forming the clusters. For example, consider keyword-value queries and the query 

workload 1)} ,B''(x 3), ,'A'x{(W === . Consider three peers n1, n2 and n3. Assume that peer 

n1 has data items with values ‘A’ and ‘B’, peer n2 with values ‘A’ and ‘C’ and peer n3 with 

values ‘B’ and ‘D’. Most probably a non workload-aware clustering approach would consider 

peers n2 and n3 equally similar to peer n1, since both share one common value with it. 

However, when taking into account the workload, peer n2 is more “similar” to n1, since n1 and 

n2 match a larger part of the workload than n1 and n3. 
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Figure 3.1: (a) Random and (b) Clustered P2P Network. 

In addition, a central issue in p2p systems is how the load induced by the queries is 

distributed across the peers of the network. In particular, when a query q is posed at a peer n, 

it travels through the p2p network to find matching results from the issuing peer n and all the 

other peers that this query message visits. Thus, each peer that q visits queries its content to 

find data items satisfying it. For a query workload W, the total number of queries that are 

issued to the p2p network is the same as the total number of query frequencies of the 

workload set. For example, assume that we have a query workload W = {(q, fq)}, as defined in 

Definition 3.2, the total number of queries that are issued in the p2p network is ∑ ∈Wq qf .  

We define the load for a peer n, denoted as PeerLoad(n), as a performance measure that 

expresses the percentage of the total queries of the query workload set that peer n serves.  

 

Definition 3.6 (PeerLoad) Let W = {(q, fq)} be a query workload and N be a set of peers. For 

each peer Nni ∈ , let Qi be the bag of queries that arrive at  ni. We define the load for peer ni, 

denoted PeerLoad(ni), as: 
∑ ∈

=
Wq q

i
i f

Q
)n(PeerLoad . 

 

In this thesis, we focus on measuring the performance of a p2p system based solely on the 

percentage of number of matching results returned for each query of the query workload 

(PeerRecall). Summarizing, an efficient clustering topology in a p2p system that is based both 

on the content of peers and the query workload must satisfy a number of properties so as to 

achieve an efficient grouping of similar peers, hence an efficient query routing. These 

properties are defined below: 

q q

  matching peer 
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Efficient Workload-Aware Clustering Properties 

1. Two peers, n1 and n2, which offer a similar number of matching results for a query q of 

the query workload must belong to the same cluster.  

2. The clustering of peers must take into account the whole query workload. Hence, queries 

which are frequent influence further the formation of clusters compare to other queries 

that are issued seldomly. 

3. Two peers that belong to the same cluster must be either immediately connected or 

nearby in the overlay network, i.e., the length of the shortest path that connects these two 

peers in the network must be very small. Thus, when a query q finds the appropriate 

cluster all the matching peers that contribute to the answer of the query will be a few 

links far away. In other words, any two peers lying in the same cluster tend to have a 

large number of paths connecting them, i.e., each cluster is rich in links between its peers. 

4. The load that the queries bring must be uniformly spread among the peers of the system. 

Thus, each peer must serve roughly the same amount of queries. Load balancing is a 

desirable property that an efficient clustering should hold. 

3.4. Content-Based and Workload-Aware Distances 

To create workload-aware overlays, we create clusters of peers that have similar content 

taking also into account a given query workload. Hence, the similarity between two peers 

depends both on their content and the query workload. We define the overlay network 

distance between two peers ni and nj, dist(ni, nj), as the length of the shortest path from ni to nj  

in the p2p network. Ideally, to achieve an optimal query routing for each query of the 

workload, the desirable procedure would be for each query to re-cluster the peers so as to get 

an optimal clustering for the issuing query. Obviously, this procedure is non feasible for 

several reasons. The central issue for creating an efficient clustering is to define an efficient 

distance measure (d) between pairs of peers to represent how related two peers are, since the 

similarity of two peers will be descriptive of the overlay network distance between these two 

peers. Note that the workload-aware distance is different from the overlay network distance. 

At this point, we denote by S(n) the size of peer n, i.e., the total number of tuples (data items) 

that peer n stores. 

 

As we have mentioned in Section 3.2.1, without loss of generality, the domain of the attribute 

x is D = {0, …, M-1}. Thus, the relation R with a numeric attribute x of each peer n can be 

represented as an M-dimensional vector (index) with features }x,...,x,x{x 1M ,n1 ,n0 ,nn −=
r , 
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where the feature i ,nx  represents the frequency of value i, of peer n for the attribute x. Hence, 

each feature has a non-negative integer value. In the following sections, we discuss about 

several content-based distance measures that have been proposed and we consider alternative 

workload-aware distance measures to define the similarity of two peers for a given query 

workload W.  

3.4.1. Content-Based Distance Measures 

Several similarity (distance) measures have been used in the literature [7], [14], [38], [41] to 

capture the similarity (distance) between two vectors. A similarity measure 1] ,0[s∈  

captures how related two vectors are and it can be mapped to a distance measure ] ,0[d ∞∈ . 

In general, the distance between two vectors 1xr  and 2xr , )x ,x(d 21
rr , is a non-negative number 

that is close to 0 when the two vectors are highly similar or “near” each other and becomes 

larger the more they differ. We experimented with the most popular distance measures, which 

are described in this section. Assume that we have two peers n1 and n2 with vectors 1xr  and 2xr  

of size MD =  respectively.  

Distance Metrics 

The Minkowski distance, also known as the Lp norm, is a very popular distance measure. 

Equation 3.1 suggests a definition of similarity between two peers, n1 and n2, based on 

Minkowski distance. For p=1 (p=2) we obtain the Manhattan-City Block (Euclidean) based 

similarity normalized to the [0, 1] interval, which is defined in equation 3.2 (3.3).  
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The Minkowski, the Manhattan and the Euclidean distance measures are defined as follows: 

( ) p/11M
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p
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2/121M
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In addition, an alternative distance measure is the edit distance. It has been shown that for 

ordinal measurements, as in our case, the edit distance is captured by the equation 3.7 [7]. In 

an ordinal measurement the values are ordered, e.g., the value of attribute x that each tuple has 

can be quantized into M integer values between 0 and M-1. 

( )∑ ∑−

= =
−=

1M

0i

i

0j j,2j,121edit xx)n ,n(d  

 

All the distance measures mentioned above satisfy the following mathematic requirements of 

a distance metric.  

1. :0)n ,d(n 21 ≥  The distance between two peers is a nonnegative number (Non-

negativity). 

2. :0)n ,d(n 11 =  The distance of a peer to itself is 0 (Reflexivity). 

3. :)n ,d(n)n ,d(n 1221 =  Distance is a symmetric function (Commutativity). 

4. :)n ,d(n)n ,d(n)n ,d(n 322131 +≤  The distance between peer n1 and peer n3 is no more 

than the sum of distances between (n1, n2) and (n2, n3) (Triangular inequality). 

Jaccard and Dice Similarity Measures 

Many similarity functions are based on the inner product. In what follows, we refer to the 

most popular of this kind, the Jaccard and Dice similarity measures. In general, for binary 

features the Jaccard coefficient measures the ratio of the number of commonly active features 

of 1xr  and 2xr  to the number active in either 1xr  or 2xr . For example, given two vectors 

)0 ,1 ,1 ,0(x1 =
r  and )0 ,0 ,1 ,1(x2 =

r , the cardinality of their intersection is 1 and the 

cardinality of their union is 3, rendering their Jaccard coefficient 1/3. When used with real-

valued features, as in our case, the extended Jaccard coefficient, also known as the Tanimoto 

coefficient, captures a length-dependent measure of similarity. The definition of the extended 

Jaccard coefficient in vector notation is given by Equation 3.8.  
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Thus, the Jaccard distance measure for real-valued features, based on the extended Jaccard 

coefficient, is defined as: 

2
T
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21
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1

2
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21Jaccard21Jaccard xxxxxx
xx1)n,n(s1)n ,(nd rrrrrr

rr

−+
−=−=  

It has been proven in [35] that the Jaccard distance also satisfies the mathematic requirements 

of a distance metric. Another similarity measure highly related to the extended Jaccard 

coefficient is the Dice coefficient which is defined in equation 3.10. 
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The Dice coefficient can be obtained from the extended Jaccard coefficient by adding 2
T
1 xx rr  

to both the numerator and denominator. Hence, it behaves very similar to the extended 

Jaccard coefficient. The Dice distance measure, based on Dice coefficient, is defined as:    
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3.4.2. Workload-Aware Distance Measures 

The distances mentioned above measure the similarity between two peers taking into account 

only their content. We would like to also take into account the query workload. Thus, we 

propose alternative distance measures so as the similarity between two peers depends both on 

their content and on the query workload. Consider a query workload set W={(q, fq)} with W  

distinct queries. The distribution of the query workload can be represented as a vector of size 

W  with features }p ..., ,p ,p{w
W21 qqq=

r , where the feature ∑ =
=

W

1j qqq jii
f/fp  represents 

the probability of the distinct query qi in W. In addition, as mentioned in Section 3.2.1, we 

symbolize with results(n, q) the number of matching results that peer n provides for the query 

q. Thus, for a given workload W, the matching results that a peer n provides for each distinct 

query qi of W can be represented as a vector of size W  of the form: 

)}q ,n(results ..., ),q ,n(results ),q ,n(results{W) ,n(r W21=
r .   

 

The first two workload-aware distances are variations of the Manhattan-(L1) distance and are 

based on the absolute difference of the number of matching results that two peers provide for 

a given query q. In particular, the Manhattan Workload-Aware distance measure between two 

peers, e.g., n1 and n2, computes for each distinct query q of the workload W, the absolute 

(3.9)

(3.10)

(3.11)
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difference between the number of matching results that the two peers provide and multiplies 

this factor with the probability pq corresponding to q. Then all these quantities that are arisen 

by the distinct queries of the workload are added up. Definition 3.7 formulates the Manhattan 

Workload-Aware distance measure. 

 

Definition 3.7 (Manhattan Workload-Aware Distance) Given two peers n1 and n2 and a 

query workload W = {(q, fq)}, we define the Manhattan Workload-Aware Distance as: 

W) ,n(r-W) ,n(rw)q ,n(results)q ,n(resultspW) ,n ,n(wd 21
T

Wq 21q21L1

rrr
=−=∑ ∈

 

 

Another proposed distance that is based on the Manhattan distance is the Size-weighted 

Manhattan Workload-Aware distance. The Size-weighted Manhattan Workload-Aware 

distance between two peers, e.g., n1 and n2, arises in a similar way with the Manhattan 

Workload-Aware distance. The only difference is that the quantity produced by the 

Manhattan Workload-Aware distance is additionally weighted by dividing it with the sum of 

the sizes of the two peers n1 and n2. Thus, the number of tuples (data items) that each peer has 

is also taken into account for the computation of the distance between the two peers. 

Definition 3.8 formulates the Size-weighted Manhattan Workload-Aware distance.  

 

Definition 3.8 (Size-weighted Manhattan Workload-Aware Distance) Given two peers n1 

and n2 and a query workload W = {(q, fq)}, we define the Size-weighted Manhattan Workload-

Aware Distance as: 

)n(S)n(S
W) ,n(r-W) ,n(rw

)n(S)n(S
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Both of the previous mentioned distances are based on the number of results that each peer n 

provides for a query q, i.e., the number of results of peer n that match query q. An alternative 

distance that factors out the size of the query results, thus making the distance between two 

peers depends on the distribution of their results is the Distribution-Based Manhattan 

Workload-Aware distance. In particular, this kind of distance computes the sum of the 

absolute differences of the normalized results that the two peers have for each query q of the 

workload. By normalized results, we mean that the number of data items that a peer n 

provides for a query q are divided by the size S(n) of peer n. Definition 3.9 formulates the 

Distribution-Based Manhattan Workload-Aware distance.  
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Definition 3.9 (Distribution-Based Manhattan Workload-Aware Distance) Given two 

peers n1 and n2 and a query workload W = {(q, fq)}, we define the Distribution-Based 

Manhattan Workload-Aware Distance as: 

)n(S
W) ,n(r-
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The Manhattan workload-aware distance measure and the Distribution-based Manhattan 

workload-aware distance measure satisfy the mathematical requirements of a distance metric. 

(Proofs in the Appendix). 

 

Query Workload 

We consider a query workload of range selection queries over an attribute x: 

})f ,q{(W
ijqij= , where }jixi:Dx{qij +≤≤∈=  and 

ijqf  its associated frequency. We 

denote by i, 1-Mi0 ≤≤ , the value where the query starts and j, 1Mj0 −≤≤ , the query 

range, i.e., the number of contiguous values the query includes. Thus, a range query ijq  over 

an attribute x asks for data items that have value for x within the range [i, i+j]. Note that for a 

query ijq  if 1Mji −>+  then )i1M(iij qq −−≡ , i.e., the range of values that the query asks for 

is [i, M-1].  

3.5. Discussion 

In this section we discuss about which type of cluster is created by each of the distance 

measures, i.e., for each distance measure which peers are grouped together to form a cluster 

and how efficient is this kind of clustering. 

3.5.1. Content-Based Distance Measures 

As we have mentioned before, we use a numerical domain D for the attribute x. Thus, there 

exists an ordering among the values of the domain D. For example, for our value domain D = 

{0, …, M-1} the values 0, 1, 2, …, M-1 correspond to the 1st, 2nd, …, Mth dimension of the 

vector-index that represents the relation of a peer. In finding the distance between two vectors 

of ordinal type measurements, the ordering of the values plays a crucial role when the query 

workload consists of range queries. Thus, we want a distance measure to take into account 

this ordering. We say that a distance that takes into account the ordering satisfies the shuffling 
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dependence property. The importance for a distance measure to satisfy the shuffling 

dependence property becomes clear by the following example:  

 

Example 3.1: Consider three vectors 1xr , 2xr  and 3xr  that represent the relations of the peers 

n1, n2 and n3 respectively. We assume a value domain D = {0, ..., 7} of size 8 and that the 

number of tuples in each relation is 5. For all tuples of relations 1xr , 2xr  and 3xr , the attribute 

x has the value 1, 2 and 7, respectively.   

5].  0  0  0  0  0  0  0[x
0],  0  0  0  0  5  0  0[x
0],  0  0  0  0  0  5  0[x

3

2

1

=
=
=

r

r

r

 

The distance between n1 and n2, that have all their values at adjacent dimensions in 1xr  and 

2xr  (dimensions 1 and 2 respectively), should be smaller than the distance between n1 and n3, 

that have all their values at dimensions further apart in 1xr  and 3xr  (dimensions 1 and 8 

respectively). This is because, the difference between the number of results provided by peer 

n1 and the number of results provided by peer n2 is smaller for a large number of range 

queries than for peers n1 and n3. 

 

As shown, the shuffling dependence property is not satisfied by the Manhattan, Euclidean and 

Jaccard distance measures because they are sums of individual distances for each value of the 

value domain. In particular, for our example the three vectors have the same pair-wise 

distance, d(n1, n2) = d(n1, n3), for each of the three metrics that mentioned before. Hence, 

these three distance measures are appropriate only for keyword-value queries, i.e., queries of 

the form: }ix:Dx{qi =∈= .  

 

In contrast, for the edit distance, the shuffling dependence property holds. In particular, the 

edit distance between two vectors, 1xr  and 2xr  is the total number of necessary minimum 

movements for transforming 1xr  to 2xr  by moving elements to the left or right. Edit distance 

takes the sum of absolute values of prefix sums of difference for each value of the value 

domain. In our example, using the edit distance measure, the pair-wise distances between 

peers n1, n2 and n3 are:  

3005555550)n ,n(d
500000050)n ,n(d

31edit

21edit

=+++++++=
=+++++++=
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Hence, )n ,n(d)n ,n(d 31edit21edit < . Thus, using the edit distance the network distance 

between n1 and n2 must be smaller than the network distance between n1 and n3, since the 

similarity of two peers is descriptive of the overlay network distance, which is the ideal. 

3.5.2. Workload-Aware Distance Measures 

The Workload-Aware distances measures that introduced before (Definitions 3.7-3.9) create 

the same kind of clustering when the size of all peers, i.e., the total number of tuples (data 

items) that each peer stores, is the same. For non-equal sized peers, the workload-aware 

distance measures, defined in Section 3.4.2, achieve different kinds of clustering due to the 

way they measure the similarity between pairs of peers. In what follows, we analyze the kind 

of clustering that each distance metric creates. At this point, we introduce the notion of “fat” 

and “thin” peers. In particular, we denote as “fat” peers those peers having a larger number 

of data items compare to the size of the rest of the system peers, which we denote them as 

“thin” peers. 

 

 

 

 

 

 

 

 

 

 

Figure 3.2: Example of Clustering Using the Manhattan Workload-Aware Distance Measure. 

Consider that we have a p2p system and three different groups of peers where all peers in the 

same group follow the same distribution for the attribute x. In addition, the peers in each 

group do not have the same size, i.e., we have “fat” and “thin” peers in the same group. Also, 

we assume a query workload W that consists of range queries. In Figures 3.2 - 3.4, we depict 

graphically how these peers are clustered using the three workload-aware distance metrics. In 

particular, the peers that follow the same data distribution for x have the same color density, 

while we distinguish the fat peers from the thin peers by their sizes, i.e., the fat peers are 

illustrated larger than the thin peers. 
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Thin peer 
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As we have mentioned before, the Manhattan workload-aware distance measures the absolute 

difference between the number of matching results that a pair of peers provides for each query 

of the workload W.  Thus, the distance between two peers is very small if they have roughly 

the same size of matching results for the entire query workload and is independent of the size 

of the peers. In Figure 3.2, we depict the kind of clustering that this distance measure achieves 

for the p2p system that mentioned before. In particular, all the thin peers that follow the same 

data distribution for x belong to the same cluster (group of peers) that is rich in links between 

their peers. Similarly, all fat peers with the same data distribution are also grouped together. 

Thus, each cluster consists of peers that follow the same distribution for their data and also 

have the same size. Furthermore, these clusters are linked to each other through a few 

connections. 

 

 

 

 

 

Figure 3.3: Example of Clustering Using the Size-Weighted Manhattan Workload-Aware 
Distance Measure. 

In contrast, the size-weighted Manhattan workload-aware distance favors fat peers since the 

absolute difference of results that two peers provide for a query q is divided by the sum of the 

sizes of the two peers. In Figure 3.3, we depict the kind of clustering that this distance 

measure achieves for our example. In particular, all the fat peers are clustered in the same 

group, while all the thin peers that follow the same data distribution are also grouped together. 

The main drawback of this distance, which makes it inefficient, is that even if two peers have 

a large difference in the number of results for a workload W, hence we would expect having a 

large distance, by dividing them by their sum of their sizes their distance could become very 

small.  
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Example 3.2: Consider three peers n1, n2 and n3 with sizes 10000, 1000 and 100 respectively 

and a query workload W consisting of a single query q. In addition, assume that peers n1, n2 

and n3 provide 5, 500 and 50 results for the query q, respectively and the query visits two of 

the peers. Suppose that initially the query message finds the peer with the most results for the 

query, i.e., peer n2. Ideally, the query message should visit peer n3, since it provides the next 

best number of results for query q. Clearly, the optimal results for the query are 550 results. 

In contrast, in the clustering based on the size-weighted manhattan workload-aware distance 

measure, the network distance between peers n2 and n1 is smaller than the network distance 

between n2 and n3. Hence, the query message visits peers n2 and n1 and gets only 505 results. 

 

 

 

 

 

Figure 3.4: Example of Clustering Using the Distribution-Based Manhattan Workload-Aware 
Distance Measure. 

In addition, with the distribution-based Manhattan workload-aware distance measure, the 

clustering of peers is based solely on their data distributions; hence, the size of matching 

results that each peer n provides for each query q of the workload is factored out. In Figure 

3.4, we depict the kind of clustering that this distance measure achieves. In particular, all thin 

and fat peers that follow the same distribution belong to the same cluster. The main drawback 

of the distribution-based workload-aware distance measure is that each cluster contains peers 

that follow the same distribution. Thus, the distance between a thin and a fat peer which 

follow the same distribution is 0 although the fat peer provides a larger number of results for 

each kind of query workload.  

 

Example 3.3: Consider three peers n1, n2 and n3 with sizes 10000, 1000 and 100 respectively 

and a query workload W consisting of a single query q. The three peers n1, n2 and n3, follow 

the same distribution for their data items and they provide 5000, 500 and 50 results for the 
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query q respectively. Assume that the query visits two of the peers and initially the query 

message finds the peer with the most results for the query, i.e., peer n1. Ideally, the query 

message should visit peer n2, since it provides the next best number of results for query q. 

Clearly, the optimal results for the query are 5500 results. In contrast, in the clustering based 

on the distribution-based manhattan workload-aware distance measure the network distance 

between the three peers is the same. Hence, the query message might visit peer n3 and get 

only 5050 results. 

3.6. Experimental Evaluation  

In this section, we evaluate the performance of the distance measures experimentally. In 

particular, we examine the quality of clustering that these distance measures achieve from the 

perspective of PeerRecall for different kinds of query workloads. We consider a number N  

of peers. Each peer stores a relation R with a numeric attribute x that follows a data 

distribution. In addition, we consider a query workload W consisting of queries on x that 

follows its own distribution. Initially, we select one of the distance measures and calculate the 

distances that each peer n has from all other peers of the network. Then, we simulate a peer-

to-peer overlay network with a directed graph based on the distances that we have found 

before. For example, if we have three peers, n1, n2 and n3, and the distance between n1 and n2 

is smaller that the distance between n1 and n3, ( )n ,n(d)n ,n(d 3121 < ), then the overlay 

network distance between n1 and n2 is smaller that the overlay network distance between n1 

and n3 ( )n ,n(dist)n ,n(dist 3121 < ). 

 

After the construction of the peer-to-peer network, we pose to it the queries of W. In 

particular, for each query q of W we initially select the peer, e.g., n, that provides the most 

results for q. We make this strong assumption so as to focus on the effect of clustering that if 

a query message starts from the peer that has the largest number of results for q in the 

network, then all other peers that also provide enough results for q are few links away. After 

posing the query to peer n, the query message is forwarded to a specified number (k-1) of 

other peers according to the topology of the p2p network that we have created. For each query 

q, we measure the total number of results returned and the optimal number of results returned 

visiting k peers, in the case of optimal query routing. Finally, we measure PeerRecall for the 

entire query workload W. The same experiment is also carried out when the p2p system is 

randomly constructed, i.e., each query of the query workload is forwarded to k randomly 

selected peers of the network. 
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3.6.1. Experimental Parameters 

We run a set of experiments to evaluate the performance of the distance measures. The value 

domain for the attribute x is D = [0, 999] and the parameter k varies from 5% to 80% of the 

network peers. Furthermore, we distinguish the set of experiments into two categories. In the 

first category, we assume that all peers have equal size, whereas in the second category all 

peers do not have equal size. In particular, a percentage of the network size, N , are “fat” 

peers and all the other peers are “thin”. We make this distinction because when all peers have 

the same size the workload-aware distances create the same clustering, thus the p2p network 

topology is the same and thus the estimation of PeerRecall for each kind of query workload is 

the same. In contrast, when all peers do not have the same size, the clustering of peers are not 

identical because some of the workload-aware distances take into account the size of the 

peers.  

3.6.1.1. Peer Data Distribution 

We consider that each peer in the network follows a data distribution for the attribute x. In 

particular, we divide the value domain D of x into a number of disjoint regions of equal width, 

denoted as Dr. For each peer a fraction of its tuples, denoted as DC (Data Concentration), 

falls into two of the Dr regions of the value domain, which are selected randomly, and the rest 

of the tuples are distributed uniformly among the rest of the values. We assume that each one 

of the two regions has (DC/2) of the tuples. 

 

The intuition behind our choice for this data distribution is that typically a user in a p2p 

system is not interested in all the available data. Usually, each user is interested just only in 

one or two topics. For example, a user may be interested in songs that were released or 

popular in the 80s or 70s and not earlier. Thus, in our distribution we simulate the 

concentration (DC) of a user’s interest in particular values (Dr) of the data domain. 

 

In the case of peers having the same size, we assume that each peer has different data 

distribution from all the other peers of the network. We make this strong assumption because 

the quality of clustering that each distance measure provides becomes much more evident in 

this way. For example, if we have a set Ni of peers that follow the same data distribution, then 

the distance between them is 0, hence all these peers in Ni are nearby in the overlay network. 

Thus, for a query of the workload and for a small number of peers visited when we initially 

select the peer ii Nn ∈  that has the largest number of results, all other peers in Ni will be 
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immediately visited and the PeerRecall will be high. Hence, we cannot clearly investigate 

where all the other peers in the network with different data distributions, e.g., ij Nn ∉ , and 

probably with similar number of query results are placed in the network. Note, that we are 

especially interested for each query to visit only a small fraction of the network. In contrast, in 

the case when each peer has different data distribution, after visiting the peer with the largest 

matching results we can see directly which other peers with different data distributions are 

nearby in the network and if they also provide large number of results for the query. Figure 

3.5 depicts an example of this data distribution with 6 disjoint regions and 3 peers, n1, n2 and 

n3. In our experiments, we use 100 peers to create the p2p network and we assume that each 

peer n has 10000 tuples. Furthermore, we set the parameters Dr and DC equal to 200 and 0.8, 

respectively. To create 100 different data distributions we select each peer Nn∈  to have 

different regions, where the majority of its tuples falls into, from all the other peers of the 

system. 

 

 

Figure 3.5: Example of our Data Distribution with 6 Disjoint Regions and 3 Peers. 

We also deal with the case where the peers do not have equal size. In this case, we assume 

that the network has 500 peers and more peers than one follow the same distribution. The 

reason for this is that two peers with the same distribution but different sizes may give fewer 

results for a query workload when compared with two peers that follow different data 

distributions. Thus, the distance between the two peers with different data distributions must 

be smaller than the distance of the peers that follow the same one. In other words, the size of a 

peer plays a crucial role on how the peers will be clustered. In our experiments, we create 50 

different data distributions in a similar way that we have mentioned before and for each one 

of them, 10 peers follow the same distribution. Hence, we created 50 clusters of peers. Recall 

that in each cluster the selected regions, where the majority of its tuples falls into, are 

different from all the other clusters. In addition, in each cluster 10% of the peers are “fat”, 

n2

n1

n3
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while the rest of them are “thin”. We experimented with two cases. In the first one, the thin 

peers have 1000 tuples and in the second one 10000 tuples, while in both cases the fat peers 

have 100000 tuples. 

3.6.1.2. Query Workload Distribution 

As we have mentioned before, we deal with query workloads, W, that consist of range 

selection queries. In addition, we consider that the starting point of the queries is chosen 

uniformly from the value domain D whereas their ranges vary according to a Zipf [13], [42] 

distribution. The main characteristic of the Zipf distribution is that there are a few values with 

high frequencies and many with low frequencies. In general, in Zipf distribution there is a 

ranking of the values of the data domain and the probability of a value i with rank r is 

analogous to z
i r/1p = , where z is a parameter which determines the skewness of the 

distribution. If the parameter z is set to 0, the Zipf is the same with the uniform distribution 

but as z increases, the skewness of the distribution increases accordingly. For a relation that 

has T tuples and a value domain D of size D , the frequency of value i with rank r, generated 

by the Zipf distribution is 
∑ =

=
D

1r
z

z

r
r/1

r/1Tf  for Dr1 ≤≤ .  
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Figure 3.6: Zipf Frequency Distribution. 

In our experiments, the ranking of the ranges is done as follows: Assume that the range with 

value i is the most popular one, denoted as hot query range (Hqr). Then, the popularity 

reduces as the distance between the range i and the other ranges increases. Hence, in our case, 
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the query workload W can be characterized by two parameters: the hot query range (Hqr) 

which determines which range is the most popular in W and the z parameter that determines 

for each range the frequency of the queries in the workload that have the specified range. 

 

Figure 3.6 is a graphical representation of the frequency distribution of the query range, which 

follows the Zipf distribution with 0 being the most popular range, i.e., keyword-value queries, 

and for several values for the parameter z. The x-axis represents the rank of the query range 

value, which in this case coincides with the query range value, with respect to its associated 

frequency of queries. In this example, the query workload consists of 10000 queries and the 

domain of the query range is [0, 99]. In our experiments, we consider a query workload which 

consists of 10000 queries and the z parameter that determines the frequency of a query, i.e., 

how many queries in W have the specified range, varies from 1.0 to 3.0.  

 

The input parameters for the first set of experiments are summarized in Table 3.1. We divide 

the input parameters into three categories: Peer-to-Peer parameters, Data distribution 

parameters and Query workload parameters. 

Table 3.1: Input Parameters for the P2P Network and the Query Workload W. 

3.6.2. Performance Evaluation of Distance Measures in the Case of Equal Peer Sizes 

In this section, we present experiments in the case of equally-sized peers. We evaluate the 

performance of clustering that all the distance measures achieve, using as our performance 

Parameter                                                      Default Value                    Range 
Peer-to-Peer Parameters                               
Number of peers ( N )                                    100                                      100 - 500 
Percentage (%) of peers visited 
during routing                                                                                              5 - 80  
Percentage (%) of “fat” peers                                                                      0 - 10                 
Data Distribution Parameters                       
Domain of x                                                    [0, 999] 
Tuples per node                                              10000                                   1000 - 100000 
Data Concentration (DC)                                0.8 
Number of disjoint regions (Dr)                     200                                       100 - 200 
Query Workload Parameters                        
Number of queries                                          10000 
Range of queries                                             [0, 999] 
Zipf parameter (z)                                                                                        1.0 - 3.0 
Hot query range (Hqr)                                                                                 10 - 100 
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measure PeerRecall (as defined in Definition 3.5), for several kinds of query workloads, i.e., 

varying the “hot” query range and the parameter z. In Figure 3.7, we demonstrate the 

PeerRecall we achieve when each query q in W visits a specified number of peers in the 

network when for the query workload W the parameter z takes the value 1.0 and the “hot” 

query range is 10 (Fig. 3.7(a)) and 100 (Fig.3.7(b)) respectively. In addition, in Figure 3.8 we 

demonstrate the same experiment but for z = 3.0 while the “hot” query range takes value 10 

(Fig. 3.8(a)) and 100 (Fig.3.8(b)). Recall that increasing the parameter z, the frequency of 

queries in the workload that have as range the “hot” query range increases too. Thus, when 

the “hot” query range takes the value 10 and as z increases the majority of the queries in W 

have small ranges, while setting the “hot” query range to 100 the most frequent queries are 

those with large ranges. Since all peers have equal size, all workload-aware distance measures 

result in the same clustering of peers for each kind of query workload; hence PeerRecall is the 

same. Thus, we demonstrate only the performance of the Manhattan workload-aware distance 

measure, denoted as WL1. Furthermore, we symbolize with L1 and L2 the Manhattan and the 

Euclidean distance measures, respectively. 
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                        (a)                                                                      (b) 

Figure 3.7: Comparison of Distance Metrics when Varying the Number of Peers Visited with 
z = 1.0 for (a) Hqr = 10 and (b) Hqr = 100. 

Obviously, for all the distance measures, when each query visits a large number of peers in 

the network, i.e., similar with flooding the network, the PeerRecall is high, since for each 

query, there is a high probability to find all relevant peers with large number of matching 

results. Thus, we are more interested in measuring PeerRecall, when each query visits a small 

fraction of the network.  
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As expected, the Manhattan (L1), the Euclidean (L2) and the Jaccard distance measures do 

not perform well, since they compare only the absolute difference between individual values 

without taking into account the neighboring values which however influence the behavior of 

queries with ranges larger than 0. In particular, because of the nature of the data distribution, 

the L1 (L2, Jaccard) distance between a peer n and all peers of the network is the same since 

L1 (L2, Jaccard) is not shuffling dependent and considers only individual values. Hence, these 

distance measures perform well only for queries with range 0, i.e., keyword-value queries. In 

contrast, the edit distance performs better than the L1 (L2, Jaccard) distance, since it is 

shuffling dependent.  
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                                    (a)                                                                      (b) 

Figure 3.8: Comparison of Distance Metrics when Varying the Number of Peers Visited with 
z = 3.0 for (a) Hqr = 10 and (b) Hqr = 100. 

However, the edit distance between two peers takes into account the ordering of all values, 

while a query with range j involves only (j+1) values and thus it should not depend on the 

difference that the two peers may have in the rest of their values. Hence, we expect the edit 

distance to perform well for query workloads where the most popular queries are those with 

large ranges. Indeed, as we can see in Figures 3.7(b) and 3.8(b) where the most popular 

queries in the workload are those whose range is 100, the PeerRecall achieved by the edit 

distance is much higher than when the majority of the queries have low ranges, e.g., Figures 

3.7(a) and 3.8(a) where the most popular query range is 10. This observation is much more 

evident in Figure 3.8 where the parameter z takes the value 3.0, hence the skewness of the 

range distribution is very high. In this case, when the Hqr is small, e.g., 10, the performance 

of the edit distance is not as good and is roughly similar to the L1, L2 and Jaccard distances 

(Fig. 3.8(a)). In contrast, the PeerRecall is very high when the Hqr is large (Fig. 3.8(b)). 
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For the workload-aware distance measures (WL1) the PeerRecall they achieve is very high for 

all kinds of query workloads, hence the clustering that these measures provide is efficient and 

the average number of results returned for each query in W is close to optimal.  

 

Finally, as we expected when we have a randomly constructed p2p network, the performance 

of the PeerRecall is very low for each kind of query workload. This happens because each 

peer is connected with a randomly selected peer and not with a peer that provides similar 

results for the query workload. Hence, the peers that a have large number of results for a 

query q might have a large network distance from the peer that has the most results for q, 

which we initially select to start the query routing. 

3.6.3. Performance Evaluation of Distance Measures in the Case of Non Equal Peer 

Sizes 

In this section, we investigate how the distance measures perform when the peers do not have 

equal sizes. In particular, we are especially interested in comparing the clustering achieved 

when using the Manhattan Workload-Aware Distance (WL1), the Size-weighted Manhattan 

Workload-Aware Distance (SL1) and the Distribution-based Manhattan Workload-Aware 

Distance (DL1) for different kinds of query workloads. We measure PeerRecall for each of 

the distance measures when for each query q of W, we visit 2% of the peers. We set the 

parameter k equal to 2% of the network size since what is most important in this experiment is 

to see whether all relevant peers that provide the largest number of results for W are placed  

nearby in the network or not.  

 

As we have mentioned in Section 3.5.2, the WL1 distance measure clusters the peers based on 

the difference of their results for a given workload W. Thus, two peers that provide a similar 

number of results for W will be placed nearby in the network, whereas two peers with large 

difference in their results will be far away. Note, that this distance metric measures the 

difference of results between pairs of peers for all the queries of W. Hence, the clustering that 

WL1 provides might be not optimal for each query Wq∈ , meaning that the difference of 

results for W might be very small for a pair of peers but not necessarily so for each distinct 

query q of the workload. The DL1 distance clusters peers based on their data distributions, i.e., 

all peers that have similar data distributions for x will be placed nearby in the network. 

Finally, the SL1 distance measure leads in placing fat peers nearby in the network even if they 

have large difference in their results for W.  
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In this set of experiments, we deal with two cases. In the first case, we consider that the size 

of the thin peers is 10000 and in the second one that this size is 1000, while in both cases the 

size of the fat peers is 100000 tuples. Furthermore, we set the skewness of the query range 

distribution (z) equal to 3.0, i.e., the query workload almost consists of queries with a 

specified Hqr.  
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                                    (a)                                                                      (b) 

Figure 3.9: Comparison of Distance Metrics in the Case of Non-Equal Peer Sizes when the 
Number of Peers Visited is Set to 2% of the Network’s size and the Query Workload consists 
of Range Queries with (a) Hqr = 10 and (b) Hqr = 100, while z = 3.0. The Size of the “thin” 

and the “fat” Peers is 10000 and 100000 tuples, respectively. 

Initially, we deal with the case where the thin peers have 10000 tuples. In Figure 3.9, we 

demonstrate the performance of all the distance measures when the majority of queries have 

low ranges (Fig. 3.9(a)) and high ranges (Fig.3.9(b)) respectively. As we can see in the case 

when the most popular queries are those with low range, i.e., Hqr = 10, the DL1 and WL1 

distances performs well, while SL1 does not. This happens when we have a query workload 

with small range queries, the query q initially selects the fat peer, e.g. n, which provides the 

most results for q, all the thin peers that follow the same data distribution with n provide also 

the most results for q in comparison with all other peers. Hence, placing peers with similar 

data distributions nearby in the network is ideal in this case. In contrast, when the majority of 

W’s queries have a large range (Fig.3.9(b)), i.e., asking for a larger number of contiguous 

values, the fat peers of the network provide larger number of results, hence placing them 

nearby in the network is desirable. That is why in this occasion the DL1 performs badly and 

SL1 performs efficiently. Note that in both cases the WL1 distance performs well. 

 

Figure 3.11 demonstrates the performance of the distance measures when the thin peers have 

1000 tuples while the fat peers have 100000 tuples. In particular, when the query workload 

nearly consists of either queries with small ranges or queries with large ranges, the fat peers 
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provide a larger number of results than the thin peers, independently of the data distribution 

that each peer follows, due to the small size of the thin peers. Hence, the SL1 performs well, 

while the DL1 has low performance especially when the query workload consists of queries 

with high ranges. The WL1 performs well in this case too. 
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Figure 3.10: Peers Load when the Clustering is Done based on the three Workload-Aware 
Distance Measures and the Query Workload consists of Range Queries with (a) Hqr = 10 and 
(b) Hqr = 100, while z = 3.0. The Size of the “thin” and the “fat” Peers is 10000 and 100000 

tuples, respectively. 

We also examine the influence of the clustering that the three workload-aware distance 

measures achieve in the load that the peers receive. In particular, the load of each peer, i.e., 

the number of queries that a peer receives, depends on the way that the peers are clustered, 

according to the workload-aware distance measure that we use. Ideally, we would like the 
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load that the queries bring to be uniformly spread among the peers of the system. In Figure 

3.10, we demonstrate the percentage of network peers that receive a percentage of queries of 

the query workload (PeerLoad) for each one of the three workload-aware distance measures 

when the size of the thin peers is 10000 tuples and for query workloads that consists of 

queries with most frequent range 10 (Fig.3.10(a)) and 100 (Fig.3.10(b)), respectively. 

Similarly, we conducted the same experiment also for the case when the size of the thin peers 

is 1000 tuples (Figure 3.12). As we expected, using the DL1 distance measure for clustering 

the peers leads in a unifom spread of the queries to the network (all the peers serves from 0 to 

10% of the workload’s queries), since this kind of distance metric is idependent of the size of 

the peers; hence it clusters peers with similar data distributions. In contrast, using the SL1 

workload-aware distance, some peers of the network receive a large ratio of query messages. 

We expect that these peers are the fat peers. This is not desired at all because on the one hand 

the fat peers receive a very large number of query messages and on the other hand, as we 

discussed in a previous section, these peers are very likely to not have a large number of 

matching results for a query. Finally, the load that the WL1 distance measure brings to the 

peers is an intermediate situation between these two that we described before, i.e., the load is 

not distributed equally among peers but it is not accumulated to some peers either. Some 

peers might receive a large number of queries but also they provide a large number of 

matching results for the query workload. 
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                                    (a)                                                                      (b) 

Figure 3.11: Comparison of Distance Metrics in the Case of Non-Equal Peer Sizes when the 
Number of Peers Visited is Set to 2% of the Network’s size and the Query Workload consists 
of Range Queries with (a) Hqr = 10 and (b) Hqr = 100, while z = 3.0. The Size of the “thin” 

and the “fat” Peers is 1000 and 100000 tuples, respectively. 

Summarizing, there are occasions where the DL1 performs well and others where its 

performance is very low. The same conclusions also hold for the SL1 distance. In contrast, the 

WL1 seems to perform well in every case. Hence, the conclusions of this experimental 
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evaluation leads us to select the WL1 distance metric as the most efficient distance metric for 

clustering the peers. Furthermore, for simplicity of presentation in the following sections we 

consider equal-sized peers. This assumption does not influence the system’s behaviour since 

the clustering that the WL1 distance metric provide is efficient in both cases when we have 

equal-sized peers or non-equal ones. 

 

0

10

20

30

40

50

60

70

80

90

100

Percentage (%) 
of Peers with 

Specified Load

0->10 10->20 20->30 30->40 40->50 50->60 60->70 70->80 80->90 90->100

Percentage (%) Load

WL1
DL1
SL1

 
(a) 

0

10

20

30

40

50

60

70

80

90

100

Percentage (%) 
of Peers with 

Specified Load

0->10 10->20 20->30 30->40 40->50 50->60 60->70 70->80 80->90 90->100

Percentage (%) Load

WL1
DL1
SL1

 
 (b) 

Figure 3.12: Peers Load when the Clustering is Done based on the three workload-aware 
distance measures and the Query Workload consists of Range Queries with (a) Hqr = 10 and 
(b) Hqr = 100, while z = 3.0. The Size of the “thin” and the “fat” Peers is 1000 and 100000 

tuples, respectively. 

Finally, we have to note that using the whole information of peers content and the query 

workload for estimating the similarity between pairs of peers leads in high computational 

cost. In the following sections, we propose more lightweight procedures, based on the 
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summarization of both the content of the peers and the query workload, to measure the 

similarity of peers. 

3.7. Summary 

To conclude, in this chapter we propose building workload-aware overlays where the 

grouping of similar peers is not based solely on the content of the peers but also on the query 

workload. Hence, the central issue for creating an efficient clustering is to define an efficient 

distance measure between pairs of peers to represent how related the two peers are. Initially, 

we present several popular content-based distance measures that have been proposed in the 

literature, e.g., Manhattan, Euclidean, Edit and Jaccard distance measures, and then we 

propose three workload-aware distance measures, the Manhattan workload-aware distance, 

the Size-weighted Manhattan workload-aware distance and the Distribution-based Manhattan 

workload-aware distance. In addition, we make an extensive discussion about how these 

distance measures create clusters of peers, i.e., which peers are grouped together to form a 

cluster, and we refer to the main drawbacks of each one of them.  

 

Furthermore, we experimentally evaluate the efficiency of the distance measures. In 

particular, we simulate a p2p network as a directed graph and we cluster the peers using each 

time one of these distance measures. We characterize their performance by measuring the 

PeerRecall they achieve for a given query workload. The main conclusions from our 

experiments show that the workload-aware distance measures perform better than the content-

based ones. In the extreme case, the average results returned for a query (PeerRecall), using 

the workload-aware distance measures are 50% more than those using the content-based ones. 

In addition, when the size of the peers is not equal, the workload-aware distance measures do 

not provide the same kind of clustering. Thus, we evaluate the three workload-aware distance 

measures also for this case. The results lead us to select the Manhattan workload-aware as the 

most efficient distance measure for clustering the peers in a p2p network.      
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CHAPTER 4. HISTOGRAM-BASED P2P INDEXES 

4.1. Histograms as Local Indexes 

4.2. Histograms as Routing Indexes 

 4.2.1. Merging two Histograms 

 4.2.2. Subtraction of a Local Index from a Routing Index 

4.3. Experimental Evaluation 

4.4. Summary 

 

 

To build workload-aware overlays, each peer maintains a summary of the data values stored 

locally; this is called a local index. Let LI(n) denote the local index and S(n) the number of 

data items of peer n. Besides its local index, each peer n maintains one routing index RI(n, e) 

for each of its links e, that summarizes the content of all the peers that are reachable from n 

using link e at a distance at most r, called radius. We use histograms to summarize the 

content of each peer.  

 

In the database community, histograms are widely used as a mechanism for compression and 

approximation of data distributions used in selectivity estimation and approximate query 

answering [18]. The main advantages of histograms over other techniques are that they incur 

almost no run-time overhead and, for most real-world databases, there exist histograms that 

produce low-error estimates while occupying reasonably small space. As mentioned in 

Chapter 3, we focus on p2p systems where each peer stores a relation R with a numeric 

attribute x. Hence, we are interested on constructing unidimensional histograms for the 

approximation of the data distribution of x in each peer. Intuitively, a histogram on an 

attribute x is constructed by partitioning the data distribution of x into b )1(≥  mutually 

disjoint subsets called buckets and approximating the frequencies and values in each bucket.  
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4.1. Histograms as Local Indexes 

One requirement in our context is using histograms as local indexes that can efficiently 

approximate the data distribution of the attribute x with a low cost; that is, given the data 

items stored locally at a peer, we are interested in a low-cost procedure for constructing a 

histogram that summarizes the content of this peer. To this end, we consider equi-width [30] 

and maxdiff(v, f) [31] histograms. The equi-width histogram is chosen due to its simplicity 

and efficiency in construction cost [31], while the more sophisticated maxdiff(v, f) histogram 

is selected because it is very close to the best histogram regarding both, construction time and 

generated errors [31]. As we have mentioned in Section 3.2.1, assume that the numerical 

domain for the attribute x is D = {0, …, M-1} with M distinct values. 

 

Equi-width histograms group ranges of contiguous attribute values into buckets where the 

number of attribute values associated with each bucket is the same. The equi-width histogram 

with b buckets over an attribute x is constructed using the following heuristic. Initially, the 

value set of attribute x is sorted and then it is divided into b mutually disjoint ranges of equal 

width w called buckets. Thus, each bucket includes M/b attribute values. 

 

The maxdiff(v, f) histogram groups contiguous sets of attribute values into buckets and places 

buckets boundaries so as to avoid grouping vastly different frequencies of values into one 

bucket. In particular, the maxdiff(v, f) histogram with b buckets over an attribute x is 

constructed using the following heuristic. At first, the value set of attribute x is sorted and 

then a bucket boundary is placed between two frequencies of values, which are adjacent in 

attribute value order, if the difference between these frequencies is one of the b-1 largest such 

differences.  

 

For each bucket 1-bi0 ,i ≤≤ , we keep information about the sum of frequencies of values 

that lie within it, that is the number of tuples (data items) with values for x within the value 

range of bucket i, as well as the lowest and highest value. In addition, for each histogram we 

maintain the total number of tuples, denoted as histogram size. We shall use the notation H(n) 

to denote a histogram used as local index for peer n. In addition, considering a histogram H(n) 

with b buckets, with Hi(n) and [li(n), ri(n)] we denote the frequency and the range of the 

values within the i-th bucket, ,1bi0 −≤≤  and with S(H(n)) its size. In Example 4.1 we 

demonstrate the construction of both equi-width and maxdiff(v, f) histograms with five 

buckets over an attribute x. 
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Example 4.1: Consider an attribute x of a relation R with value domain D = {0, ..., 9} and M 

= 10 distinct values. The associated frequencies for each one of the attribute values are 

shown in Fig. 4.1 (a). For the equi-width histogram with five buckets (b = 5), each bucket 

keeps the total frequency of two (M/b = 2) attribute values. Hence, the first bucket holds 

information about the sum of frequencies for the attribute values 0 and 1, i.e., the total 

number of tuples that belong to the first bucket is 20. Similarly, the total number of tuples that 

belong to the second bucket (the value of x is included within range [2, 3]) is 11, and so on. 

The equi-width histogram is depicted in Fig. 4.1 (b).   

 

 

Attribute 
x values 

Values 
Frequencies 

0 15 
1 5 
2 8 
3 3 
4 18 
5 6 
6 8 
7 5 
8 15 
9  0 17 

  
20 11 24 13 32  15 16 18 19 32 

                 (a)                                              (b)                                                   (c) 

Figure 4.1: (a) Relation R with a Numeric Attribute x. Construction of (b) an Equi-width and 
(c) a Maxdiff(v, f) Histogram over the Attribute x of R. 

For the construction of the maxdiff(v, f) histogram with five buckets we perform a single pass 

over the distinct attribute values and we locate the 4 (b-1) maximum differences between 

frequencies of successive distinct attribute values as well as an index at which attribute 

values each difference occurs. In our case, the four maximum differences in frequencies are 

between the attribute values pairs (0, 1), (3, 4), (4, 5) and (7, 8). Thus, the bucket boundaries 

are placed between the values of each of the above value pairs. The first bucket is a singleton, 

i.e., it holds the frequency for the single attribute value 0 which is 15, the second bucket keeps 

information for the attribute values 1, 2, 3, i.e., the number of tuples have value x within 

range [1, 3] is 16, and so on. The maxdiff(v, f) histogram is depicted in Fig. 4.1(c).  
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In addition, for both the equi-width and the maxdiff histograms, we maintain the histogram 

size, which is 100. 

 

Estimation of Query Results Using Histograms 

For a query q, we denote by results(n, q) the actual number of matching results of peer n and 

by hresults(H(n), q) the number of matching results estimated using the histogram H(n) of 

peer n. As usual, we make the uniform frequency assumption [31] and approximate all 

frequencies in a bucket by their average. In addition, to approximate the set of attribute values 

within a bucket, we make the continuous values assumption [31], where all possible values in 

D that lie in the range of a bucket are assumed to be present. Assume that we have a range 

selection query of the form }jixi :Dx{qij +≤≤∈= . The number of results for query qij 

using the histogram H(n) of peer n is estimated as follows: Consider the bucket l of H(n) with 

boundaries )]n(r ),n(l[ ll  that “straddles” i, i.e., )n(r  i )n(l ll ≤≤ . Likewise, the bucket r 

with boundaries )]n(r ),n(l[ rr  is defined as the one that straddles i+j. Thus, the range of the 

query qij contains portions of the l and r buckets and every bucket between these two in its 

entirety. Note that the l and r buckets may coincide, and there may be no buckets in between, 

but our discussion here is not seriously affected. For the portions within the l and r buckets, 

we use the uniform frequency assumption, i.e., we estimate the total frequency in the interval 

)]n(r ),n([lj]i ,i[ ll∩+  as ( )[ ])]n(r ),n([l/)]n(r ),n([lj]i ,i[)n(H lllll ∩+ , and likewise 

for the r bucket. The total estimate for the query qij is the sum of the estimates of frequencies 

for the l and r buckets, and the exact sum of frequencies for the buckets in between. More 

formally, there are two cases: 

 

• If rl ≠ , then 

1)n(l)n(r
)]n(r ),n([lj]i ,i[

)n(H

)n(H
1)n(l)n(r

)]n(r ),n([lj]i ,i[
)n(H)q ),n(H(hresults

rr

rr
r

1r

1lk k
ll

ll
lij

+−
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+
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+−

∩+
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• If rl = , then 

1)n(l)n(r
)]n(r ),n([lj]i ,i[

)n(H)q ),n(H(hresults
ll

ll
lij +−

∩+
=   

   

  

(4.1)

(4.2)
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Example 4.2: Consider the equi-width histogram of Figure 4.1 (b) with domain D = {0, …, 

9}. We want to estimate the result size for the range predicate 8}x3 :Dx{q 5,3 ≤≤∈= . The 

values 3 and 8 belong to the 2nd and the 5th buckets respectively. Thus, the result size of q35 is: 

58
2
1321324

2
111)q ),n(H(hresults

189
]9 ,[88] ,3[)n(H)n(H)n(H

123
]3 ,[28] ,3[)n(H)q ),n(H(hresults

3,5

54323,5

≈+++=⇔

⇔
+−

∩
+++

+−
∩

=
 

4.2. Histograms as Routing Indexes 

Besides its local index, each peer n maintains one routing index RI(n, e) for each of its links e, 

that summarizes the content of all peers that are reachable from n using link e at a distance at 

most r, called radius. The set of peers within distance r of n is called the horizon of radius r 

of n. How routing indexes are used is described in detail in Section 7. In our context, the 

central issue in creating a routing index for the link e of a peer n is to efficiently aggregate the 

histograms of the peers, which represents the local indexes, that are reachable through e 

within r. Thus, the routing index RI(n, e)  is also a histogram.  

 

The problem of merging several histograms into one so as to create the routing index is non 

trivial in the case we use histograms that their bucket boundaries are not the same. In 

particular, consider that we have two histograms, e.g., H(n1) and H(n2), as local indexes for 

peers n1 and n2 with the same number of b buckets and we want to create a routing index for 

peer n, (RI(n)), with also b buckets that includes the information of both histograms. If H(n1) 

and H(n2) are equi-width histograms, then simply for the i-th bucket of RI(n), its bucket 

boundaries will be the same with the i-th bucket boundaries of H(n1), H(n2)  and its frequency 

will be the sum of the frequencies of the i-th buckets of H(n1) and H(n2). In the general case, 

when we do not use equi-width histograms as local indexes, it is possible that the bucket 

boundaries of the i-th bucket of H(n1) and H(n2) are different. Hence, we cannot 

straightforwardly merge these two buckets into one so as to include the information of both 

Hi(n1) and Hi(n2). In the following section, we provide an algorithm for merging two 

histograms with b buckets. 
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algorithm MergeHist 
Inputs: H(n1), H(n2), b 
Outputs: MH(H(n1), H(n2)), b 
begin 
1. /* Find all the intervals that are intersections of the buckets regions of H(n1) and H(n2) and compute the 
        total frequency of values within each interval. */ 
2. i = 1,  j = 1 and m = 1; 
3. while((i ≤  b) and (j ≤  b)) 
4. )]n(r ),n(l[  )]n(r ),n(l[  ]r ,l[ 2j2j1i1imm ∩= ; 
5. /* Compute the frequency of the [lm, rm] at H(n1) and H(n2) using the uniform frequency assumption and get 

the sum of these frequencies.*/ 
6.          ]);r ,l[ ),n(H(F])r ,l[ ),n(H(F])r ,l[ ,))H(n ),MH(H(n(F mm2mm1mm21 +=  
7. /* If the right boundary of the intersection is the same with the right interval of Hi(n1) then go to next bucket of 

H(n1). */ 
8. if  )n(r   r 1im = then 
9.               i = i + 1; 
10. /* If the right boundary of the intersection is the same with the right interval of Hi(n2) then go to next bucket 

of H(n2). */ 
11. else if  )n(r   r 2jm = then 
12.             j = j + 1; 
13. endif 
14. m = m + 1; 
17. end while 
18. /* If the number of intersection intervals is larger than b. */ 
19. if  bm >  then 
20. /* Find the differences in average frequencies of all adjacent intervals. */ 
21. for k = 1 to (m-1) 

22.                      
);1lr/(])r ,l[ ,))H(n ),MH(H(n(F

)1lr/(])r ,l[ ,))H(n ),MH(H(n(F])r ,l[ ],r ,l([diff

1k1k1k1k21

kkkk211k1kkkk

+−−
+−=

++++

++   

23. endfor 
24.  while(m = b) 
25. /* Find the pair of adjacent intervals with the lowest difference in their average frequencies that has not been 

selected yet. */                   
26.                      };diff, ,diff ,min{diff ])r ,l[ ],r ,l([diff k211p1pppp …=++  
27. /* Merge the adjacent intervals and add their corresponding frequencies. */ 
28.               ];r ,l[]r ,l[ 1p1ppp ++∪  
29.                      ]);r ,l[,))H(n ),MH(H(n(F])r ,l[,))H(n ),MH(H(n(F 1p1p21pp21 +++  

30. /* Decrease at one the number of intervals. */ 
31.               m = m – 1; 
32. end while 
33. endif 
34. /* Create the Merged Histogram MH(H(n1), H(n2)). */ 
35. for  i = 1 to b 
36.  ; ]r ,l[)])H(n ),(H(nMH(r ),)H(n ),(H(nMH(l[ ii21i21i =  
37. ]);r ,l[,))H(n ),MH(H(n(F ))H(n ),(H(nMH ii2121i =  
38. endfor  
end MergeHist 

Figure 4.2: Algorithm for Merging Two Histograms. 
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4.2.1. Merging two Histograms 

We propose a general algorithm for merging two histograms. This algorithm takes as input 

two histograms H(n1) and H(n2) of b buckets each and gives as output a merged histogram 

MH(H(n1), H(n2)) with also b buckets. In Figure 4.2, we present this algorithm. 

 

Initially, we find all possible intervals that are intersections of the two histograms bucket 

regions and calculate the frequency of each interval as the sum of frequencies of the two 

histograms for this interval, using the uniform frequency assumption and continuous values 

assumption (Steps 3-17 in Figure 4.2). In particular, to estimate the frequency of an interval of 

values, which does not necessarily coincide with the boundaries of a bucket, we use the 

equations (4.1) and (4.2) introduced for the estimation of range selection queries. The number 

of these intervals is between [b, 2b-1], considering that each histogram has b buckets.  

 

Since we want to construct routing indexes of size b, if the number of intervals produced 

previously is larger than b, we want to decrease it to b. We propose to merge all adjacent pairs 

of intervals that have the lowest differences in their average frequencies until the number of 

regions that remain is b (Steps 18-33 in Figure 4.2). By average frequency we mean the total 

frequency of the interval divided by the number of values that are included within this 

interval. For example, if we want to merge two adjacent regions i and j, where i < j, with 

bucket boundaries [li, ri]  and [lj, rj] respectively, where lj = ri + 1, and frequencies F[li, ri]  

and F[lj, rj] respectively, then the merged region will have bucket boundaries [li, rj] and total 

frequency F[li, ri] +F[lj, rj]. 

 

 

Figure 4.3: An Example of Merging Two Histograms. 
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Example 4.3: Consider that we have two histograms, H(n1) and H(n2), with 3 buckets over an 

attribute x with value domain 10x 0 <≤  and we want to merge these two histograms so as to 

create the MH(H(n1), H(n2)), which will summarize the content of both H(n1) and H(n2). In 

Figure 4.3, we demonstrate how the merge process is achieved. In Step (a), we find all the 

intersection intervals based on the bucket boundaries of H(n1) and H(n2) and calculate the 

frequency of each interval. The number of these intervals is 5, thus to reduce the number of 

buckets to 3 we find the minimum differences in the average frequencies of adjacent intervals. 

In our case the 2nd and 3rd intervals and the 4th and 5th intervals have the lowest differences in 

their average frequencies ( 4/732/37 ≈  and 1/301/30 = ). Hence, we merge these two 

pairs of adjacent buckets, we calculate their frequencies and finally get the MH(H(n1), H(n2)). 

 

algorithm SubtractHist 
Inputs: H(n1), MH(H(n1), H(n2), …, H(nk)), b 
Outputs: MH(H(n2), …, H(nk)) with updated bucket frequencies 
begin 
1. for i = 1 to b do 
2. /* Define the range of values that the i-th bucket of the H(n1) covers. */ 
3. [lm, rm] = [li(n1), ri(n1)]; 
3. /* Find the set S of ki contiguous buckets of the MH(H(n1), H(n2), …, H(nk)) overlapping the range [lm,                

rm], }b,...,b,b{S
ik21= . */ 

4. /* For each one of the buckets ∈ S. */ 
5.  for  j = 1 to ki do 
6. /* Decrease the frequency of the selected bucket bj ∈ S in proportion to the percentage of overlap between the i-

th bucket of the H(n1) and the selected bucket bj of the MH(H(n1), H(n2), …, H(nk)). */ 
7.              frac = ([lm, rm] ∩  [lj(MH), rj(MH)])/[lm, rm]; 
8.  MHj(H(n2), …, H(nk)) = MHj(H(n1), H(n2), …, H(nk))) - frac* Hj(n1); 
9. endfor 
10. endfor 
end SubtractHist 

Figure 4.4: Algorithm for Subtraction of a Histogram H(n1) from the Merged Histogram 
MH(H(n1), H(n2), …, H(nk)). 

4.2.2. Subtraction of a Local Index from a Routing Index 

To subtract a histogram H(n1) from a merged histogram MH(H(n1), H(n2), …, H(nk)) that 

summarizes the information of several histograms, e.g., H(n1), H(n2), …, H(nk)  histograms, 

we propose an algorithm that is depicted in Figure 4.4. This algorithm is used for subtracting 

a local index from a routing index since a routing index summarizes the information of 

several local indexes. The algorithm takes as input a histogram H(n1) and a merged histogram 

MH(H(n1), H(n2), ..., H(nk)) and gives as output the merged histogram without the information 

of H(n1), MH(H(n2), …, H(nk)). Recall that both histograms have b buckets. The algorithm 
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first determines for each bucket i of H(n1) the set of buckets, }b,...,b,b{S
ik21= , of the 

merged histogram that overlap the range of values that the bucket i covers (lines 1-3 in Figure 

4.4). Next, the algorithm decreases the frequency of each one, bj, of these buckets in 

proportion to the fraction of overlap between its range of values and the one of the i-th bucket. 

This fraction is the length of interval where the bucket bj overlaps the bucket i, divided by the 

length of the bucket i (line 7). To distribute the frequency of the bucket i, Hi(n1), among the 

selected buckets of the merged histogram, for each bucket Sb j ∈  its frequency is decreased 

by a portion of Hi(n1) equal to its contribution to the overlap, i.e., frac* Hi(n1) (line 8). 

4.3. Experimental Evaluation  

In this section, we present an experimental evaluation of the equi-width and maxdiff(v, f) 

histograms and of the accuracy of the merging procedure between two histograms, defined in 

Section 4.2.1, to construct routing indexes. In particular, in Section 4.3.1 we assess the 

accuracy of these two types of histograms for query workloads with varying degrees of 

skewness and investigate their effectiveness for estimating range query result sizes. In Section 

4.3.2, we evaluate the algorithm we propose for merging two histograms for several types of 

query workloads by measuring its accuracy for estimating range query result sizes in  

comparison with the case when we have two individual histograms. 

4.3.1. Accuracy of Equi-width and Maxdiff(v, f) Histograms 

To compare these two types of histograms, we first construct a data set for an attribute x and 

then we create the corresponding equi-width and maxdiff(v, f) histograms for x. Next, we 

generate a query workload, which consists of range selection queries over x, and measure the 

performance of the histograms by their estimation errors on this query workload. A common 

metric for measuring the accuracy of the histograms is the 1-norm of the absolute errors, or 

average absolute errors. We choose average absolute errors as the accuracy metric, since 

relative errors tend to be less robust when the actual number of results for some queries is 

zero or near zero. Thus, given a data set Ds, a histogram H and a query workload W of N 

queries, the average absolute error, E(Ds, H, W), is calculated as follows: 

∑ ∈
=

Wq q q) act(Ds,-q) ,H(estf
N
1)W,H,Ds(E  

where est(H, q) is the estimate of the number of data items in the result of q, using histogram 

H for the estimation, and act(Ds, q) is the actual number of Ds data items in the result of q. To 

(4.3)
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make the results more meaningful, we normalize 1-norm absolute errors using the largest 

selectivity in the query workload. The data sets and the query workloads used for the 

experiments are described below. The number of buckets, b, that we use to construct a 

histogram is 10, 20, 50 and 100. 

Table 4.1: Parameters for the Experimental Evaluation of the Equi-width and Maxdiff(v, f) 
Histograms. 

Histogram-Related Parameters                         Default Value               Range 
Number of buckets (b)                                                                                 10 - 100 
Data Set Parameters                                           Default Value               Range 
Data Distribution Type                                          Zipf 
Domain of x                                                           [0, 999] 
Number of data items                                            10000                                          
Skew (Dz) of data distribution                                                                     0.0 - 3.0 
Hot value                                                               0 
Query Workload Parameters                            Default Value               Range 
Query Distribution Type                                       Zipf 
Number of queries                                                10000 
Range of queries                                                                                          0 - 999 
Skew (Qz) of query distribution                            1.0  
Hot query range                                                     0, 10 
 

Data Sets: The data sets that are used for the experiments follow data distributions with 

10000 data items, while the value domain of the attribute x values (D) is [0, 999]. The 

frequency sets were generated with frequencies following the Zipf distribution, and the 

distribution skewness, denoted as Dz, varied between 0 (uniform) and 3 (highly skewed). In 

addition, the correlation between the frequency sets and the values is done as follows: 

Considering that a value vi is the most popular, i.e., it has the highest frequency, the 

popularity reduces as the distance between the value vi and the other values increases. In our 

experiments, we assume that the most popular value is value 0. 

 

Query Workloads: Experiments were conducted using different query sets. All queries are of 

the form bxa ≤≤  and each set contains 10000 queries. In particular, we dealt with query 

workloads that consist of either range or prefix-range queries, that is for queries with one 

sided ranges: )}f,q{(W
omqom=  and for any pair qoj and q0l in W one is contained in the other. 

The ranges of the queries follow the Zipf distribution and for the range queries the starting 

point of a query, i.e., a, is chosen uniformly from the value domain. In addition, the 

correlation between a query range value and its frequency is similar with the one mentioned 

for the data sets. In particular, if a query range value is the most popular then the popularity 
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reduces as the distance between this value and the other values increases. Due to the large 

number of combinations of the parameter choices, i.e., which query range is the most popular 

and the skewness (Qz) of the distribution, we present results from two experiments that 

illustrate the typical behavior of the histograms’ errors. In the first set A, we consider prefix-

range queries, i.e., a = 0 and 999] ,0[b∈ , while the query ranges follow the Zipf  distribution 

with 0 being the most popular range, i.e., keyword-value queries. Set B also contains prefix-

range queries with 10 being the most popular range value. In both sets, the parameter Qz is set 

equal to 1.0. 

 

Table 4.1 summarizes the parameters that are used in the experiments. We distinguish the 

input parameters into three categories: Histogram-related parameters, Data set parameters 

and Query workload parameters. 

 

0

5

10

15

20

25

30

35

40

45

50

0.0 0.5 1.0 2.0 3.0

Skew in Data Set (Dz)

No
rm

al
iz

ed
 A

ve
ra

ge
 E

rr
or

 (%
)

b=10
b=20
b=50
b=100

0

1

2

3

4

5

6

7

8

9

10

0.0 0.5 1.0 2.0 3.0

Skew in Data Set (Dz)

No
rm

al
iz

ed
 A

ve
ra

ge
 E

rr
or

 (%
)

b=10
b=20
b=50
b=100

 
                          (a)                                 (b) 

Figure 4.5: (a) Equi-width and (b) Maxdiff(v, f) Normalized Average Error on Query Set A 
when Varying the Data Set Skew (Dz) and the Number of Buckets. 
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Figure 4.6: (a) Equi-width and (b) Maxdiff(v, f) Normalized Average Error on Query Set B 
when Varying the Data Set Skew (Dz) and the Number of Buckets. 
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Performance: To study the accuracy of the equi-width and maxdiff(v, f) histograms, we 

present results that show the errors generated by these two types of histograms when the skew 

of the data set changes. In particular, in Figures 4.5 and 4.6, we demonstrate the error 

produced by equi-width (Fig. 4.5(a) and 4.6(a)) and maxdiff(v, f) histograms (Fig. 4.5(b) and 

4.6(b)) on the query sets A and B respectively, when the skew in the data set (Dz) varies from 

0.0 to 3.0 and the number of buckets (b) varies from 10 to 100. In addition, in Figure 4.7 we 

compare the equi-width and maxdiff(v, f) histograms on the query set A for several degrees of 

skewness in the data set and when the number of histogram buckets varies from 10 to 100.  
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Figure 4.7: Normalized Average Error of Equi-width and Maxdiff(v, f) Histograms on Query 
Set A when Varying the Data Set Skew (Dz) and the Number of Buckets Takes the Values (a) 

10, (b) 20, (c) 50 and (d) 100. 

The behavior of the histograms in both query sets, A and B, is similar. Clearly, for very low 

skewness in the data set (Dz = 0.0), both histograms generate essentially low error. In 

contrast, when the skew is very high (Dz = 3.0), the maxdiff(v, f) histogram produces very 

low error, while the equi-width histogram does not perform well. This happens because the 

maxdiff(v, f) histogram tries to avoid grouping attribute values with vastly different 

frequencies into a bucket, while the equi-width does not do so since its bucket boundaries are 
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fixed from the beginning. Hence, in the limit, i.e., when the skew is very high, the maxdiff(v, 

f) histogram separates the high frequency values in singleton buckets of their own, a common 

objective for histograms. In addition, for the maxdiff histogram the hardest to deal with is the 

intermediate levels of the data set skewness, e.g., Dz = 1.0, since there are many frequencies 

that are quite different in these distributions. Thus, grouping them into only 10 (Fig.4.7(a)) or 

20 (Fig.4.7(b)) buckets was inevitable to avoid errors, i.e., grouping high frequency and low 

frequency values in the same buckets. 

 

Overall, the equi-width histogram performs well only when the skew in the data set is very 

low. As the skew increases, the accuracy of the equi-width histogram decreases dramatically. 

In contrast, the maxdiff(v, f) histogram performs better than the equi-width histogram 

especially when the data set skew is very high. For intermediate levels of skew, the accuracy 

of the maxdiff(v, f) is not so high, when the histogram is constructed with a small number of 

buckets.  

 

Hence, we select the maxdiff(v, f) histogram for using it as peer local index in our p2p system 

and set the number of buckets to 100. In that case, the maxdiff(v, f) generates negligible 

errors for every kind of query set and for several degrees of skewness in the data set. The 

selected number of buckets may seems high but we have to note that for each histogram 

bucket, we just need to store information about the lowest and highest attribute value in the 

bucket and its frequency. Thus, the total amount of space that the histogram requires is only a 

few hundreds of bytes. In particular, the storage cost of a histogram with 100 buckets is only 

the 10% of an index that keeps for each value of the data domain the corresponding 

frequency. 

4.3.2. Effectiveness of Merge Procedure 

To study the effectiveness of the merge procedure between two histograms, H1 and H2, we 

conduct an experiment which measures the accuracy of the histogram that results from 

merging H1 and H2. In particular, we first construct two data sets for the attribute x and we 

create their corresponding maxdiff(v, f) histograms, H1 and H2. Then, we apply the merge 

procedure on these two histograms and create the merged histogram MH(H1, H2). Finally, we 

generate a query workload and measure the performance of the merged histogram by 

comparing for each query q of the workload, the result size that is estimated based on the 

MH(H1, H2) histogram with the sum of the result sizes estimated using the original H1 and H2. 

As in the case of measuring the histogram performance, we select the average absolute errors 
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as accuracy metric to measure the effectiveness of MH(H1, H2). Hence, given two data sets 

Ds1 and Ds2, their corresponding histograms H1 and H2 and a query workload W of N queries, 

the average absolute error, E(H1, H2, MH(H1, H2), W), is calculated as follows: 

∑ ∈
=

Wq 2121q2121 q) ,H ,est(H-q) ),H ,MH(H(estf
N
1)W ),H , MH(H,H ,H(E  

where est(MH(H1, H2), q) is the estimate of the number of data items in the result of q, using 

the merged histogram MH(H1, H2) for the estimation, while est(H1, H2, q) is the sum of the 

number of data items for q using the H1 and H2 histograms for the estimation, i.e., 

∑=
=

2

1i i21 q) ,est(Hq) ,H ,est(H . In addition, we normalize the average absolute error using 

the largest estimated selectivity in the query workload.  

 

Note that for the construction of H1 and H2 we use 100 buckets, since this is the selected value 

in the previous section for the construction of the maxdiff(v, f) histograms. The merged 

histogram MH(H1, H2) will also have 100 buckets. The data sets and the query workloads 

used in our experiment are described below. 

Table 4.2: Parameters for the Experimental Evaluation of the Merged Histogram, MH(H1, 
H2). 

Histogram-Related Parameters                            Default Value            Range 
Histograms’ (H1, H2) type                                        Maxdiff(v,f) 
Number of buckets (b)                                             100                                                     
Data Set Parameters                                              Default Value            Range      
Data Distribution type                                              Zipf      
Domain of x                                                              [0, 999] 
Number of data items                                               10000                                          
Skew (Dz) of data distribution                                                                     0.0 - 3.0 
Hot values for the pair (Ds1, Ds2)  
of data sets                                                               (0, 999), (0, 100) 
Query Workload Parameters                               Default Value             Range 
Query Distribution type                                           Zipf      
Number of queries                                                   10000 
Range of queries                                                                                           0 - 999 
Skew (Qz) of query distribution                               1.0                                        
Hot query range                                                        10 
 

Data Sets: For the experiment, we create a pair of data sets, Ds1 and Ds2, over an attribute x 

with value domain (D) [0, 999]. Each one of the two data sets consists of 10000 data items 

and their frequency sets follows the Zipf distribution. The skewness, Dz, of the two 

distributions is the same and varies from 0.0 to 3.0. In addition, the correlation between the 

frequencies, produced by the Zipf distribution, and the values is similar with the one 

(4.4)
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mentioned in Section 4.3.1. We consider two different pairs of data sets. In the first pair, DPA, 

the data set Ds1 has the value 0 as the most popular value, while data set Ds2 has the value 999 

as the most popular value, i.e., we consider two totally different data distributions. In the 

second pair, DPB, the data set Ds1 has the value 0 as the most popular value while data set Ds2 

has the value 100 as the most popular value, i.e., the overlap between these two data sets is 

much larger than the overlapping of DPA’s data sets. 

 

Query Workloads: We considered several kinds of query workloads for the evaluation of the 

merged histogram. In particular, we deal with query sets that consists of 10000 range queries 

of the form bxa ≤≤ , where the query ranges follow the Zipf distribution. The results of our 

experiment did not vary significantly for different query sets, so we only present those 

obtained for two query sets, QsA and QsB. In the first query set QsA, we consider range queries 

where the starting point of each query, i.e., a, is chosen uniformly, while in the second query 

set QsB, we consider prefix-range queries, i.e., a = 0. In addition, in both query sets the 

skewness (Qz) of the distribution is set to 1.0. The correlation between a query range value 

and a frequency is similar with the one mentioned for the data sets. 

 

Table 4.2 summarizes the parameters that we use to conduct the experiment of merging two 

histograms. 

 

Performance: To study the effectiveness of our merging procedure for merging two 

histograms, H1 and H2, into one, MH(H1, H2), we present results that show the errors 

generated by the merged histogram, when the skew of the data set changes and for several 

kinds of query workloads. In addition, we compare our merging procedure with the 

straightforward or equi-width merge, i.e., for the merged histogram we divide the value 

domain of x into b disjoint regions-buckets of equal width and calculate the frequency in each 

bucket as the sum of the corresponding frequencies of H1 and H2 for the value domain that 

each bucket of the merged histogram covers, using the uniform frequency and contiguous 

values assumptions. For simplicity, we denote our merging procedure as Mindiff merge 

procedure. 

 

In particular, in Figure 4.8 we demonstrate the normalized average absolute error produced 

from the MH(H1, H2) histogram, which is constructed using the Mindiff and the equi-width 

merge procedures, for the pair DPA of data sets, when the data skew (Dz) varies from 0.0. to 

3.0 and using the QsA (Fig. 4.8(a)) and QsB (Fig. 4.8(b)) query sets for the estimation of the 

error. Similarly, in Figure 4.9 we conduct the same experiment but using the DPB pair of data 
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sets. As expected, in all cases the merged histograms that are produced by the Mindiff and 

equi-width merge procedures perform similarly for low degrees of skew of the data sets but as 

the skew increases, e.g., when Dz = 2.0 or 3.0, the Mindiff merged histogram is much more 

efficient than the equi-width merged histogram.  
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                                    (a)                                                                       (b) 

Figure 4.8: Comparison of the Mindiff and Equi-width Merge Procedures Using the (a) QsA 
and (b) QsB Query Sets for the Pair DPA of Data Sets when Varying the Data Set Skew (Dz).  
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Figure 4.9: Comparison of the Mindiff and Equi-width Merge Procedures Using the (a) QsA 
and (b) QsB Query Sets for the Pair DPB of Data Sets when Varying the Data Set Skew (Dz).  

In addition, we observe that for data sets with high skew, e.g., Dz = 3.0, the error produced by 

the Mindiff merged histogram is lower than for intermediate levels of data sets skewness, e.g., 

Dz = 0.5 or 1.0. This happens because in each data set with high skew the values that have 

frequency different from 0 are very few; hence it is easy for the Mindiff merge procedure to 

capture these values into singleton buckets. In contrast, when we have intermediate levels of 

data sets skewness, the overlap between the two different data sets is significant; hence it is 
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hardest to capture the distributions of both data sets especially when the two data sets follow 

totally different data distributions, as in the case of  DPA pair of data sets. 

4.4. Summary  

To conclude, in this chapter based on the idea of using histograms as local indexes to 

summarize the data values stored locally at each peer, we study the performance of different 

types of histograms to determine the appropriate type for this setting. In particular, we select 

the equi-width and the maxdiff(v, f) histogram types and present the corresponding 

algorithms for their construction. The equi-width histogram is chosen due to its simplicity and 

efficiency in construction cost [31], while the more sophisticated maxdiff(v, f) histogram is 

selected because it is very close to the best histogram regarding both, construction time and 

generated errors [31]. We experimentally evaluate the accuracy of these two histogram types 

for several kinds of data sets and query workloads in the cases when the number of buckets 

varies. The main conclusions from our experiments show that the maxdiff(v, f) histogram 

performs better than the equi-width histogram, especially in cases when the skewness of the 

data distribution is high. Thus, we select the maxdiff(v, f) histogram as the appropriate one for 

summarizing the content of the peers. 

 

In addition, we use the notion of the routing index that each peer n maintains for each of its 

links e, RI(n, e), that summarizes the content of all peers that are reachable from n using link e 

at a distance at most r, called radius. We propose a general algorithm for merging two 

histograms into one, denoted as Mindiff merge, so as to create the routing indexes. Especially, 

we study the effectiveness of our Mindiff merge, by measuring the accuracy of the 

corresponding constructed merged histogram in comparison with the merged histogram that is 

produced using an equi-width procedure for several kinds of pairs of data sets and for several 

kinds of query workloads. The results show that the Mindiff merge is much more efficient, 

i.e., its corresponding merged histogram generates very small errors, than the equi-width one 

especially when the skew of the data sets is very high.  
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CHAPTER 5. HISTOGRAM-BASED QUERY 

WORKLOAD SYNOPSIS 

5.1. Histograms as Query Workload Synopsis 

 5.1.1. Workload Equi-Width Histograms 

 5.1.2. W-ST Histograms 

5.2. Adaptivity of the W-ST Histogram 

5.3. Experimental Evaluation of Histograms that Are Used as Query Workload Synopsis  

 5.3.1. Effect of Refinement Parameters 

 5.3.2. Comparison of W-Equi-Width and W-ST Histograms 

 5.3.3. Effect of Restructuring Process 

 5.3.4. Evaluation of the W-ST Histogram Using the Aging Technique 

5.4. Summary 

 

 

For taking into account the query workload for the formation of clusters, we must maintain a 

summary of it, which is denoted as query workload synopsis. We also propose using 

histograms to summarize the query workload. To this end, we introduce the notion of the 

global query workload and the local query workload. The global query workload, denoted as 

W, represents the set of queries along with their corresponding frequencies that are issued in 

the p2p system. In contrast, the local query workload for a peer n, denoted as LW(n),  

represents the set of queries along with their corresponding frequencies that arrived to the 

peer. Besides the local index and the routing indexes, a peer n also maintains a summary of its 

local query workload. Since, we are interested on routing queries on an attribute x, we focus 

on unidimensional histograms for the summarization of the query workload. We shall use the 

notations WS and LWS(n) to denote the global query workload synopsis and the local query 

workload synopsis of the peer n, respectively. Since we are using histograms as synopsis for 

the query workload we shall also use the notations H(W) and HW(n) to denote the histograms 

that summarize the global query workload W and the local query workload of a peer n, LW(n), 

respectively. 
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5.1. Histograms as Query Workload Synopsis 

To represent a query workload QW efficiently, we propose using histograms as query 

workload synopsis to summarize the query workload over an attribute x with low cost. Notice 

that building a histogram over an attribute x that is used as local index for a peer is based on 

initially scanning the entire data set of this peer, sorting the data on x and partitioning them 

into buckets. Thus, the total information required for the construction of a peer histogram, i.e., 

the data items of a peer, is available. In contrast, we do not know from the beginning the 

entire query workload information, since the query workload set changes dynamically as new 

queries are initiated. Hence, for building a histogram that efficiently represents the query 

workload, several requirements must be satisfied.  

 

The first requirement is that the histogram be adaptive to query workload changes so as to 

represent efficiently the query workload set at each time. In particular, as mentioned before, 

the query workload dynamically changes as new queries are initiated. Thus, restructuring the 

histogram is necessary so as to include this change. An additional requirement is that the cost 

for building and restructuring the histogram that summarizes the query workload at each time 

must be very low. Since queries are issued very frequently in a p2p system, we expect that the 

need for restructuring the query workload histogram arises often. Thus, the overhead that is 

incurred by the reconstruction must be negligible. Finally, the histogram that summarizes the 

query workload must be efficient, meaning that the estimation of the frequency that each 

distinct query is issued must be accurate.  

 

Traditional types of histograms, such as maxdiff, v-optimal, equi-width, equi-depth 

histograms, do not have the potential of dynamic restructuring. These kinds of histograms are 

widely used for capturing data distributions of available data items. Thus, they are not suitable 

for summarizing query workload because they cannot be modified efficiently as new queries 

are issued.   

 

We propose two types of histograms for representing the query workload. Suppose we have a 

query workload consisting of a set of queries over an attribute x. We would like to construct a 

histogram over the attribute x that summarizes efficiently the query workload. The first type 

of histogram that we propose is based on the traditional equi-width histogram [30], denoted as 

Workload-equi-width (W-Equi-width) histogram. The main idea for building a W-equi-width 

histogram with b buckets is to initially create an equi-width histogram built with whatever 

information we have about the query workload. Whenever a new query is issued, we update 

the frequency of the corresponding bucket to include the information of the new query. 
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In addition, we propose a novel approach based on Self-tuning (ST) histograms [3], denoted 

as Workload Self-tuning (W-ST) histogram, that helps reduce the cost of building and 

maintaining histogram for the query workload. We start with an initial histogram built with 

whatever information we have about the query workload. As queries are issued, we refine the 

histogram bucket frequencies, i.e., update the bucket frequencies, and then we rebuild the 

histogram, i.e., restructure the buckets by moving the bucket boundaries to get a better 

partitioning that avoids grouping queries with high frequency and queries with low frequency 

in the same buckets. In general, the W-ST histogram is adaptive; meaning that as new 

information arrives, the W-ST histogram adjusts its bucket boundaries and generally is 

restructured to include the new information. 

 

In Section 3.6.1.2, we considered that we deal with query workloads consisting of range 

selection queries where the starting point of each query is chosen uniformly and the query 

ranges vary according to a distribution. Hence, to represent the query workload QW we have 

to approximate accurately, via histograms, the distribution that the query ranges follow. We 

describe next in detail how the W-Equi-width and W-ST histograms are built. Each one of 

them consists of b buckets. In each bucket i, we store the value range of the query ranges that 

it represents, i.e., the query range domain that the bucket i covers, and the number of queries 

in this domain, i.e., the frequency of the bucket. We shall use the notation H(QW) to denote 

the query workload histogram. In addition, for the query workload histogram H(QW) with b 

buckets, with Hi(QW) we denote the frequency of the values within the i-th bucket, 

,1bi0 −≤≤  and with S(H(QW)) its size. Note, that the range of a query can take values from 

the domain D of the attribute x. 

5.1.1. Workload Equi-Width Histograms 

We describe how to construct a W-Equi-Width histogram for a workload QW consisting of a 

set of b buckets. In general, the construction of a W-Equi-Width histogram consists of two 

stages. First, the histogram is initialized and then it is refined. The refinement process is 

driven by the query workload. The bucket frequencies are updated with every query on the 

histogram attribute. We describe each of these steps in the rest of this section. 

5.1.1.1. Initial Histogram 

The b bucket boundaries for the initial histogram are specified using the equi-width heuristic 

mentioned in Section 4.1. Thus, the b buckets of the initial histogram are evenly spaced 
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between 0 and M-1. At the time of initializing the histogram structure, we have no 

information about the query workload. Thus, initially we set the frequency to zero for each 

one of the histogram buckets.  

5.1.1.2. Refining Bucket Frequencies 

The bucket frequencies of a W-Equi-Width histogram are refined (updated) using the 

information from the queries of the workload. In particular, for every issuing query on the 

histogram attribute, we increase by one the frequency of the appropriate bucket, i.e., the 

bucket that contains the value of the query range in its range. Figure 5.1 presents the 

algorithm for updating the bucket frequencies of a W-Equi-Width histogram in response to a 

range selection query qij. 

 

algorithm UpdateFreq 
Inputs: H(QW), b, ijq  
Output: H with updated bucket frequencies 
begin 
1. Find the bucket k that contains within its range the value j. 
2. Increase by one the frequency of the bucket k.  
end UpdateFreq 

Figure 5.1: Algorithm for Updating Bucket Frequencies in W-Equi-Width Histograms. 

5.1.2. W-ST Histograms 

Refining bucket frequencies, as W-Equi-Width histogram does, is not enough to get an 

accurate histogram. The frequency of a specified range within a bucket is approximated by 

the average frequency of the bucket, i.e., the frequency of the bucket divided by the number 

of values that are contained within the value range of the bucket. Hence, if there is a large 

variation in frequency within a bucket, the average frequency is a poor approximation of the 

individual frequencies. Specifically, high frequency values will be contained in high 

frequency buckets, but they may be grouped with low frequency values in these buckets. 

Thus, in addition to refining the bucket frequencies, we must also restructure the buckets, i.e., 

move the bucket boundaries to get a better partitioning that avoids grouping high frequency 

and low frequency values in the same buckets.  

 

Hence, we propose the W-ST histogram that tries to avoid grouping query ranges which are 

much more frequent than others in the same bucket. In general, the lifecycle of a W-ST 

histogram consists of two stages. First, it is initialized and then it is refined. The process of 
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refinement can be broken further into two parts: (a) refining individual bucket frequencies, 

and (b) restructuring the histogram, i.e., moving the bucket boundaries. The initialization and 

the refinement of the individual bucket frequencies are identical with those described for the 

W-Equi-Width histogram in Sections 5.1.1.1 and 5.1.1.2, respectively. Thus, the bucket 

frequencies are updated with every query, while the bucket boundaries are updated by 

periodically restructuring the histogram. We describe the restructuring process in the 

following section. 

5.1.2.1. Restructuring 

In the restructuring process, we restructure the buckets, i.e., move the bucket boundaries so as 

to get a better partitioning that avoids grouping high frequency and low frequency query 

ranges in the same buckets. Therefore, we choose buckets that currently have high frequency 

and split them into several buckets. Splitting induces the separation of high frequency and low 

frequency values into different buckets. The frequency refinement process later adjusts the 

frequencies of these new buckets. Furthermore, to ensure that the number of buckets assigned 

to the W-ST histogram does not increase due to splitting, we need a mechanism to reclaim 

buckets as well. To this end, we use a step of merging that groups a run of consecutive 

buckets with similar frequencies into one bucket. 

 

Summarizing, we restructure the W-ST histogram periodically by merging buckets and using 

the freed buckets to split high frequency buckets. The restructuring process is invoked after 

every ri issuing queries. The parameter ri is called the restructuring interval. The merge and 

split procedures are described below. 

 

Merge Process 

To merge buckets with similar frequencies, we first have to decide how to quantify “similar 

frequencies”. We assume that two bucket frequencies are similar if the difference between 

them is less than mt percent of the sum of frequencies of all buckets, i.e., the total number of 

queries that are summarized from the histogram at the time we begin the restructure phase for 

the histogram. mt is a parameter that we call the merge threshold. We use a greedy strategy to 

form a run of adjacent buckets with similar frequencies and collapse them into a single 

bucket. We repeat this procedure until no further merging that satisfies the merge threshold 

condition is possible.  
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algorithm RestructureHist 
Inputs: H(QW), b, mt, st, Q 
Outputs: restructured H 
begin 

1. /* Find buckets with similar frequencies to merge. */ 
2. Initialize b runs of buckets such that each run contains one histogram bucket; 
3. For every two consecutive runs of buckets, find the maximum difference in frequency between a bucket in the 

first run and a bucket in the second run; 
4. Find the minimum of all these maximum difference, mindiff; 
5. if mindiff≤ mt*Q then 
6.           Merge the two runs of buckets corresponding to mindiff into one run; 
7.           Look for other runs to merge. Goto line 3; 
8. endif 
9.   
10. /* Assign the extra buckets freed by merging to the high frequency buckets. */ 
11. k=st*b 
12. Find the set, {b1, b2,..., bk} of buckets with the k highest frequencies that were not chosen to be merged with 

other buckets in the merging step; 
13. Assign the buckets freed by merging to the buckets of this set in proportion to their frequencies; 
14.   
15. /* Construct the restructured histogram by merging and splitting. */ 
16. Merge each previously formed run of buckets into one bucket spanning the range represented by all the buckets 

in the run and having a frequency equal to the sum of their frequencies; 
17. Split the k buckets chosen for splitting, giving each one the number of extra buckets assigned to it earlier. 
18. The new buckets are evenly spaced in the range spanned by the old bucket and the frequency of the old bucket 

is equally distributed among them; 
end RestructureHist 

Figure 5.2: Algorithm for Restructuring W-ST Histogram. 

Figure 5.2 (Steps 2-9) depicts the merge process for a W-ST histogram, H(QW), of b buckets 

for a query workload QW. The first step in histogram restructuring is greedily finding runs of 

consecutive buckets with similar frequencies to merge. The algorithm repeatedly finds the 

pair of adjacent runs of buckets such that the maximum difference in frequency between a 

bucket in the first run and a bucket in the second run is the minimum over all pair of adjacent 

buckets. The two runs are merged into one, if this difference is less than the threshold mt*Q, 

where Q is the total number of queries that are summarized from the histogram at the time we 

begin the construction of the histogram, otherwise we stop looking for runs to merge. This 

process results in a number of runs of several consecutive buckets. Each run is replaced with 

one bucket spanning its entire range, and with a frequency equal to the total frequency of all 

the buckets in the run. This frees a number of buckets to allocate to high frequency buckets 

during splitting. 
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Figure 5.3: Example of Histogram Restructuring. 

Split Process 

In the split process, we have to decide which “high frequency” buckets to split. We choose to 

split the st percent of the buckets with the highest frequencies. st is a parameter that we call 

the split threshold. The heuristic that is used distributes the reclaimed buckets among the high 

frequency buckets in proportion to their frequency. The higher the frequency of a bucket, the 

more extra buckets it gets. Specifically, splitting starts by identifying the st percent of the 

buckets that have the highest frequencies and are not singleton buckets. We avoid splitting 

buckets that have been chosen for merging since their selection indicates that they have 

similar frequencies to their neighbors. The extra buckets freed by merging are distributed 

among the buckets being split in proportion to their frequencies. In particular, a bucket j being 

split gets totalfreq/)QW(H j  of the extra buckets, where Hj(QW) is the frequency of bucket 

j and totalfreq is the total frequency of the buckets being split. To split a bucket, it is replaced 

with itself plus the extra buckets assigned to it. These new buckets evenly divide the range of 

the old bucket, and the frequency of the old bucket is evenly distributed among them. Figure 

5.2 (Steps 10-18) depicts the split process for restructuring a W-ST histogram of b buckets for 

a query workload QW. Note that splitting may unnecessarily separate values with similar low 

frequencies into different buckets. Such runs of buckets with similar low frequencies would 

be merged during subsequent restructuring. 
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Example 5.1: An example of histogram restructuring is depicted in Figure 5.3. In this 

example, the merge threshold is such that the merge procedure merges buckets if their 

difference between their frequencies is within 3. The algorithm identifies two runs of buckets 

to be merged 1 and 2, and buckets 4 to 6. Merging these runs frees three buckets to assign to 

high frequency buckets. The split threshold is such that we split the two buckets with the 

highest frequencies, buckets 8 and 10. Assigning the extra buckets to these two buckets in 

proportion to frequency means that bucket 8 gets two extra buckets and bucket 10 gets one 

extra bucket.  

5.2. Adaptivity of the W-ST Histogram 

Up to now, we have proposed the W-ST histogram to capture the distribution that the query 

workload follows. The main issue is what happens when the distribution of the query 

workload changes. In particular, we are interested in approximating the query distribution of 

the current queries and not of the queries that were issued in the past. However, the W-ST 

histogram, as introduced, keeps all the information of the past queries. This is not considered 

a drawback, when the query workload does not change. But in the case when the query 

workload changes this is not desirable since we want the W-ST histogram to approximate the 

current distribution that the queries follow. In other words, the W-ST histogram does not 

adapt to changes in the workload fast.  

 

In general, the problem of capturing the change of a query distribution is hard to deal with. To 

address this problem, we propose using an aging technique. In particular, after a restructuring 

process takes place we multiply the frequency of each bucket by a factor ag, 1ag0 ≤≤ , 

which we call aging factor. This way, we degrade the importance of the queries that were 

issued in the past. The closer to zero we set the aging factor, the more we degrade the 

information of the past queries. In contrast, the closer to one we set the value of ag, the longer 

the histogram keeps the past information about the query distribution. An additional 

requirement for the W-ST histogram to become adaptive is to change the merge criterion. 

Recall that, we merge a pair of adjacent runs of buckets, if the maximum difference between a 

bucket in the first run and a bucket in the second run is less than the threshold mt*Q, where Q 

is the total number of queries, i.e., the sum of bucket frequencies, that are summarized from 

the histogram. Because of the aging technique, after each restructuring process, we set the Q 

= ag*Q. In this way, the W-ST histogram becomes adaptive. 
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The aging factor depends on two parameters. The restructuring interval, ri, and the query 

distribution update, i.e., how many queries follow a specified distribution before this 

distribution changes, denoted as qd_up. Specifically, if up_qdri ≈ , i.e., the query 

distribution changes almost in every restructuring interval then we have to set the aging factor 

close to 0 so as to not take into account the previous distribution that the queries follow. In 

contrast, if riup_qd >> , i.e., the query distribution changes rarely, then we have to set the 

aging factor close to 1.0. 

5.3. Experimental Evaluation of Histograms that Are Used as Query Workload 

Synopsis 

In this section, we evaluate the performance of the W-Equi-Width and W-ST histograms for 

representing the distribution of the query ranges of a workload QW. Initially, we make an 

extensive discussion about the effect of the refinement parameters in the accuracy of the W-

ST histograms and select the appropriate values for each one of them. Then, we compare the 

W-Equi-Width and W-ST histograms for several query workloads with varying degrees of 

skew for the distribution of the query ranges.  

 

Consider that we have a query workload QW = {(q, fq)}, with range selection queries on an 

attribute x, in which the ranges of the queries follow a distribution and use it to construct the 

two types of histograms. Assuming that the value domain of attribute x is D, then the range of 

a query takes values from D. We used several metrics for measuring the accuracy of the W-

Equi-Width and W-ST histograms (H) for a query workload QW. A common measure is the 

average absolute error, which is defined as follows: 

∑∈
−=

Di
i) ,QW(act)i ,H(est

D
1)WQ ,H ,D(E  

where est(H, i) is the estimate of the number of queries in QW with range equal to i, using 

histogram H for the estimation, and act(QW, i) is the actual number of queries with value 

range i. Note that the estimation of the number of queries in QW with range equal to i, using 

histogram H is done using the uniform frequency assumption and the continuous values 

assumption. As in the case of measuring the effectiveness of equi-width and maxdiff 

histograms, we choose again the 1-norm of absolute errors as the accuracy metric, since 

relative errors tend to be less robust when the actual number of queries with a specified range 

is zero or near to zero. In general, however, absolute errors vary over different query sets, i.e., 

query workloads with different number of queries, making it difficult to report results for 

(5.1)
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different query sets. Therefore, we normalize the average absolute error by dividing it by 

∑∈
−=

Di unifunif i) ,QW(acti) ,QW(est
D
1)WQ ,D(E , where i) ,QW(estunif  is the number 

of queries in QW with range i obtained by assuming uniformity, i.e., in the case where no 

histograms are available. We refer to the resulting measure as Normalized Absolute Error, 

which is given by the following equation: 

∑
∑
∈

∈

−

−
=

Di unif

Di

i) ,QW(acti) ,QW(est

i) ,QW(act)i ,H(est
QW) H, ,D(NAE  

 

An alternative measure is the Normalized weighted absolute error, which is calculated as 

follows: 

∑∑ ∈
∈

=
Di i

QWq q

i) act(QW,-i) ,H(estp
f

1QW) H, ,D(NWAE  

where pi is the probability of query with range equal to i occurrences in QW. This metric 

favors the range values with high frequencies. For example, consider that the actual and the 

estimated number of queries with range j is act(QW, j) = 100 and est(H, j) = 101 respectively 

while the actual and the estimated number of queries with range k is act(QW, k) = 1000 and 

est(H, k) = 1001. In both ranges, the absolute difference between the actual and the estimated 

results is the same but the absolute difference that occurs for range k contributes more to the 

error than the absolute difference that occurs for range j. Hence, the error that is produced by 

the most frequent queries is much more significant than the error produced by rare queries. In 

addition, we normalize the weighted absolute error by dividing it with the sum of query 

frequencies of the workload.  

 

The number of buckets that we used to conduct the experiments varies from 10 to 100. In 

addition, the query workloads and the distribution that the query ranges follow are described 

below. 

 

Query Workload Distribution: We use workloads consisting of 10000 range queries on an 

attribute x; the domain D of x is [0, 999]. Furthermore, the query ranges follow the Zipf 

distribution with several degrees of skewness. We set 0 to be the most popular range, i.e., 

keyword-value queries. The correlation between a query range value and a frequency is 

identical with the one used for the creation of the data sets and query workloads of Section 

4.3. The parameters we use for evaluating the W-Equi-Width and W-ST histograms are 

summarized in Table 5.1. 

(5.2)

(5.3)
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Table 5.1: Parameters for the Experimental Evaluation of the W-Equi-Width and W-ST 
Histograms. 

Histogram-Related Parameters                        Default Value                Range 
Number of buckets (b)                                                                                 10 - 100 
Query Workload Parameters                           Default Value                Range 
Query Distribution type                                       Zipf      
Domain of x                                                         [0, 999] 
Number of queries                                               10000 
Range of queries                                                                                          0 - 999 
Skew (Qz) of query distribution                                                                  0.0 - 3.0  
Hot query range                                                    0 

5.3.1. Effect of the Refinement Parameters 

In this section, we investigate the effect of the refinement parameters: merge threshold (mt), 

split threshold (st) and restructuring interval (ri), in the accuracy of the W-ST histogram. For 

each one of these parameters, we select multiple values and we conduct experiments in which 

we measure the Normalized absolute error and the Normalized weighted absolute error, for 

several kinds of query workloads with varying degrees of the query range skew. We select the 

appropriate value for each parameter that minimizes both metrics. 

 

Effect of the Merge threshold parameter (mt): The selection of the appropriate merge 

threshold value is an important factor for efficiency of the W-ST histogram. Recall that the 

merge threshold determines which adjacent buckets have similar frequencies, hence we can 

merge them. If we select a large value for mt, then two adjacent buckets with large variance in 

their frequencies will be assumed similar and will be merged into one bucket. Hence, values 

with large difference in their frequencies will be placed in the same bucket, which is not 

desirable.  

 

In Figure 5.4, we demonstrate the estimation errors, using as measure the Normalized 

absolute error (Eq. 5.2), which the W-ST histogram achieves when we vary the query range 

skew (Qz) of the query workload and the merge threshold takes the values mt = 10%, 5%, 1%, 

0.5% and 0.01%. The number of buckets, the split threshold and the restructuring interval that 

we selected for the conduction of the experiment are 100, 10% and 100, respectively. As 

expected, when the skew is very low, i.e., 0.0, the error that the W-ST histogram generates is 

the same for every selected value of mt. This happens because in this case we have uniform 

distribution; hence the frequency of all the values is nearly the same. Thus, the problem of 

placing values with similar frequencies into a single bucket becomes trivial and independent 

of the mt value. In addition, a nearly 100% error occurs because the absolute error generated 
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by the W-ST histogram is almost the same with the error occurred when we assume 

uniformity, which is the case. 
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Figure 5.4: Effect of the Merge Threshold (mt) in the Accuracy of the W-ST Histogram for 
(a) Low Degrees and (b) High Degrees of Range Skew Using the Normalized Absolute Error. 
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Figure 5.5: Effect of the Merge Threshold (mt) in the Accuracy of the W-ST Histogram Using 
the Normalized Weighted Absolute Error. 

As the degree of skewness increases, i.e., the distribution becomes narrower; the selection of 

the appropriate value for the mt parameter becomes crucial. As we can see in Fig.5.4(b), 

where Qz takes the values 2.0 and 3.0, when mt takes the value 10% the estimation error is 

very high because it merges buckets with dissimilar frequencies. Hence, the W-ST histogram 

cannot isolate the high frequency values into singleton buckets. In contrast, the 0.01% value 

for the merge threshold leads to satisfactory results with low estimation error. We are lead to 

the same conclusions when we use as measure the Normalized weighted absolute error (Eq. 

5.3). Figure 5.5 depicts the effect of the merge threshold in the accuracy of the W-ST 

histogram for several degrees of range skew. 
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Effect of the Restructuring Interval parameter (ri):  The restructuring interval, i.e., how 

often the restructuring phase must be done so as to restore the histogram in a consistent state, 

is an important factor for the accuracy of the W-ST histogram and depends upon the degree of 

skew of the query range distribution.  
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                                   (a)                                                                       (b) 

Figure 5.6: Effect of the Restructuring Interval (ri) in the Accuracy of the W-ST Histogram 
for (a) Low degrees and (b) High Degrees of Range Skew Using the Normalized Absolute 

Error. 
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Figure 5.7: Effect of the Restructuring Interval (ri) in the Accuracy of the W-ST Histogram 
Using the Normalized Weighted Absolute Error. 

In Figure 5.6 we present the efficiency of the W-ST histogram, using the Normalized absolute 

error, when the query range skew varies from 0.0. to 3.0 and the restructuring interval takes 

the values ri = 100, 500, 1000, 5000 and 10000 queries. Furthermore, we set to 100, 0.01% 

and 10% the number of buckets, the merge threshold and the split threshold respectively. 

Obviously, for query workloads with low skew (Fig.5.6(a)) the restructuring phase has no 

benefits but as the skew increases (Fig.5.6(b)), the need for restructuring becomes evident. In 
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particular, when the restructuring phase takes place rarely, e.g., every 5000 or 10000 queries, 

and the degree of skewness is very high, e.g., 3.0, the values with high frequencies cannot be 

efficiently isolated into singleton buckets. Hence, values with large variance in their 

frequencies are placed in the same bucket, which causes the performance of the histogram to 

be low. In contrast, when the restructuring process is invoked after 100 queries, the W-ST 

histogram leads to efficient results. We lead to the same conclusions when we use the 

Normalized weighted absolute error. In particular, in Figure 5.7 we demonstrate the effect of 

the restructuring interval in the accuracy of the W-ST histogram for several degrees of range 

skew. 

 

Effect of the Split threshold parameter (st):  We also investigate the influence of the split 

threshold value (st) in the accuracy of the W-ST histogram. Recall that the st parameter 

determines the percentage of histogram buckets with the highest frequencies that we choose 

to split and distribute to them, in proportion to their frequencies, the free buckets that arose 

from the merge phase. In this experiment we choose the merge threshold and the restructuring 

interval to be 0.01% and 100 respectively, while the number of buckets is 100. 

 

In Figure 5.8, we present the effectiveness of the split threshold for several degrees of skew of 

the query range distribution. As we can see, for this type of distribution the split threshold 

parameter does not play a crucial role even if the degree of skew is very high. In the case 

where we have low degrees of skew (Fig.5.8(a)), the split threshold does not play a crucial 

role, because all the value frequencies are nearly the same. Thus, in this case, the splitting of 

buckets does not have a particular importance in the histogram accuracy. In addition, when 

we have high degrees of skew (Fig.5.8(b)), the selection of the st is also not crucial. This 

happens because we choose the correlation between a query range value and a frequency to be 

such that the values with high frequencies are adjacent. Hence, the values with high 

frequencies are either in the same bucket or in a small fraction of the buckets. We are lead to 

the same conclusions when we use the Normalized weighted absolute error as error measure. 

Figure 5.9 depicts the effect of the split threshold in the accuracy of the W-ST histogram for 

several degrees of range skew. Thus, we choose a split threshold value of 10% of the W-ST 

buckets.  

 

Overall, the values we select for the merge threshold, the split threshold and the restructuring 

interval that leads in increasing the W-ST histogram’s efficiency is 0.01%, 100 and 10% 

respectively. 
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Figure 5.8: Effect of the Split Threshold (st) in the Accuracy of the W-ST Histogram for (a) 
Low Degrees and (b) High Degrees of Range Skew Using the Normalized Absolute Error. 
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Figure 5.9: Effect of the Split Threshold (st) in the Accuracy of the W-ST Histogram Using 
the Normalized Weighted Absolute Error. 

5.3.2. Comparison of W-Equi-Width and W-ST Histograms 

In this section we investigate the effect of the number of histogram buckets in the accuracy of 

both W-Equi-Width and W-ST histograms for query ranges distributions with varying degrees 

of skew. The values that we choose for the refinement parameters are those that we selected 

in the previous section, i.e., mt = 0.01%, ri = 100 and st = 10%. In Figures 5.10 and 5.11, we 

demonstrate the errors produced, using the normalized absolute error measure, by these two 

types of histograms when the number of buckets (b) varies from 10 to 100 buckets and for 

several query range skews. Similarly, in Figures 5.12 (5.14) and 5.13 (5.15) we compare the 

W-Equi-Width and W-ST histograms as in Figures 5.10 and 5.11 respectively but using the 

normalized weighted absolute error (sum absolute error (SAE)) as accuracy measure. The 

sum absolute error is defined as: 

∑∈
−=

Di
i) ,QW(act)i ,H(est)WQ ,H ,D(SAE  (5.4)
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The results are similar for all the error measures that we use. In particular, both W-Equi-

Width and W-ST histograms perform similarly for low degrees of skew, e.g., Qz = 0.5, 

because the variance between the frequencies of the values is not high. In contrast, the W-

Equi-Width histogram does not perform well for high degrees of skew, e.g., Qz = 2.0 or 3.0. 

This happens because the bucket boundaries of the W-Equi-Width are predetermined, hence it 

is not possible to restructure the buckets to avoid grouping high frequency and low frequency 

values in the same buckets. In particular, when the number of buckets is small, e.g., 10, 

grouping high frequency with low frequency values in the same bucket is inevitable. In 

contrast, the W-ST histogram moves the bucket boundaries to get a better partitioning; hence 

it performs much better than the W-Equi-Width histogram. 

Table 5.2: Parameters of the W-ST Histogram. 

W-ST Histogram Parameters                                          Default Value                             
Number of buckets (b)                                                        100 
Merge threshold (mt)                                                           0.01% 
Split threshold (st)                                                               10% 
Restructuring Interval (ri)                                                   100                            
 

In addition, in both histograms when we increase the number of buckets, the accuracy gets 

better as expected. For the W-ST histogram, this happens until some point; meaning that even 

if we increase the number of buckets, the generated errors are roughly similar. This is much 

more evident for high degrees of skew in the query range distribution and happens because 

the high frequency values, which cause the largest amount in the error, are already isolated 

into singleton buckets. Overall, the W-ST histogram is much more efficient than the W-Equi-

Width histogram.  

 

We select the W-ST histogram with 100 buckets to be the histogram that is going to be used 

as query workload synopsis because we want to have high accuracy in approximating each 

kind of query workload. The selected values of the parameters, which determine the W-ST 

histogram, are summarized in Table 5.2. Thus, the selected number of buckets for each local 

index, its local query workload synopsis and its routing indexes is the same, i.e., 100.  
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                                    (a)                                 (b) 

Figure 5.10: (a) W-Equi-width and (b) W-ST Accuracy when Varying the Query Range Skew 
(Qz) and the Number of Buckets Using the Normalized Absolute Error as Accuracy Measure. 
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Figure 5.11: W-Equi-Width and W-ST Accuracy, Using the Normalized Absolute Error, when 
Varying the Query Range Skew (Qz) and the Number of Buckets Takes the Values (a) 10, (b) 

20, (c) 50 and (d) 100. 
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                                    (a)                                                                      (b) 

Figure 5.12: (a) W-Equi-Width and (b) W-ST Accuracy when Varying the Query Range Skew 
(Qz) and the Number of Buckets Using the Normalized Weighted Absolute Error as Accuracy 

Measure. 
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Figure 5.13: W-Equi-Width and W-ST Accuracy, Using the Normalized Weighted Absolute 
Error, when Varying the Query Range Skew (Qz) and the Number of Buckets Takes the 

Values (a) 10, (b) 20, (c) 50 and (d) 100. 
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Figure 5.14: (a) W-Equi-Width and (b) W-ST Accuracy when Varying the Query Range Skew 
(Qz) and the Number of Buckets Using the Sum Absolute Error as Accuracy Measure. 
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Figure 5.15: W-Equi-Width and W-ST Accuracy, Using the Sum Absolute Error, when 
Varying the Query Range Skew (Qz) and the Number of Buckets Takes the Values (a) 10, (b) 

20, (c) 50 and (d) 100. 

5.3.3. Effect of the Restructuring Process 

As we have mentioned in Section 5.1.2, refining only the histogram frequencies is not enough 

to get an accurate histogram. Thus, the process of restructuring, i.e., moving the bucket 

boundaries to get a better partitioning that avoids grouping high frequency and low frequency 
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values in the same buckets, plays a crucial role in the accuracy of the W-ST histogram. In this 

section, we study the importance of the restructuring process for “capturing” the distribution 

that the query ranges follow.  

 

In particular, we issue a query workload of 10000 queries, one query at a time, and create the 

W-ST histogram. Furthermore, for every set of M queries we measure, independently from 

the other query sets, its absolute estimation error. Our goal is to see the extend of the 

contribution of the restructuring process to the reduction of the absolute error. Note, that the 

values for the number of buckets, the merge threshold and the split threshold are those 

mentioned in Table 5.2. In addition, we also set the restructuring interval equal to M queries, 

i.e., for every set of M queries we restructure the W-ST histogram. We set the number of 

queries in each set equal to the restructuring interval, i.e., measuring the sum absolute error 

each time the restructuring process starts, so as to see more clearly the effect of the 

restructuring process on approximating the query workload. To verify that the restructuring 

process does indeed reduce the error, we also compute the sum absolute error of the query 

sets in the cases when assuming uniformity and using a W-Equi-Width histogram. These 

errors are plotted in Figures 5.16(a) - (e) and 5.17(a) - (e) for several degrees of query ranges 

skew when each set of queries consists of M = 1000 and M = 100 queries, respectively.  

 

There are several conclusions that arise. Initially, we deal with the errors produced when the 

restructuring process is invoked in every 1000 queries. Figures 5.16(a) - (e) show that the W-

ST histogram restructuring converges fairly rapidly. Especially, for the first set of queries 

when the restructuring process has not been invoked yet, the absolute error is high and the 

same with the one of the W-Equi-Width histogram. This happens because initially the bucket 

boundaries are fixed according to the equi-width heuristic; hence they are the same with those 

of the W-Equi-Width histogram. Recall that the difference between a W-Equi-Width and a 

W-ST histogram is the restructuring process. After the first restructuring process, the absolute 

error is sufficiently reduced and is nearly the same for all the query sets that follow. This 

means that query workload distribution is almost “captured” after the first restructuring 

process and shows the importance of this process. This is much more evident when the 

skewness of the query workload is high, e.g., Qz = 2.0 or 3.0. For low degrees of skew, e.g., 

Qz = 0.0 or 0.5, the absolute errors that are produced by the query sets are nearly the same 

due to the nature of the distribution; hence the restructuring process is not critical. Thus, in 

general the restructuring process has to be performed only a small number of times before the 

histogram becomes sufficiently accurate, i.e., “learns” the distribution. 
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                                                                         (e) 

Figure 5.16: Effect of Restructuring Process when the Query Range Skew Takes the Values 
(a) Qz = 0.0, (b) Qz = 0.5, (c) Qz = 1.0, (d) Qz = 2.0 and (e) Qz = 3.0 and the Restructuring 

Process is Invoked in every 1000 Queries. 

The previous experiment showed that the W-ST histogram almost captures the query 

workload distribution from the first restructuring process. This happens because the number 

of queries, M = 1000, between two restructuring processes is large enough to approximate the 

distribution of the query workload. The main issue that arises is what happens when the 

restructuring process is invoked after a small number of queries; since it is much more 

difficult to approximate the distribution using a small set of queries. The frequency of 

invoking the restructuring process is important. The higher the restructuring interval between 
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two restructuring processes, the larger the error that is produced before the first restructuring 

process is invoked in order to capture the distribution. Therefore, the more often the 

restructuring process takes place, the faster the W-ST histogram is going to capture the query 

workload distribution; hence it will become more accurate. Furthermore, if the restructuring 

process takes place rarely, then it is possible that the query workload distribution changes 

between two restructuring processes. Thus, the W-ST histogram will become inaccurate. 
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                                                                         (e) 

Figure 5.17: Effect of Restructuring Process when the Query Range Skew Takes the Values 
(a) Qz = 0.0, (b) Qz = 0.5, (c) Qz = 1.0, (d) Qz = 2.0 and (e) Qz = 3.0 and the Restructuring 

Process is Invoked in every 100 Queries. 
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Therefore, we set the restructuring interval and the number of queries in each set equal to 100. 

In Figures 5.17(a) - (e), where the restructuring process is invoked in every 100 queries, we 

demonstrate the absolute errors for the first 10 of 100 restructuring processes, since the errors 

for the rest of the restructuring processes is nearly the same. The conclusions are the same 

with those mentioned before. Specifically, the W-ST histogram may not “capture” the query 

distribution from the first restructuring process but this happens after a few restructuring 

processes. This happens because the queries that are issued are very few so as to represent the 

distribution.  

 

Summarizing, the restructuring process is essential for capturing the query workload 

distribution especially when its skewness is very high. Furthermore, in order to capture the 

distribution as quick as possible the restructuring interval between two restructuring processes 

must not be very long. 

5.3.4. Evaluation of the W-ST Histogram Using the Aging Technique 

In this section, we experimentally evaluate how fast the W-ST histogram adapts to the query 

workload changes using the aging technique. In particular, we create a query workload that 

consists of 10000 queries and change its distribution every qd_up queries. For simplicity, we 

consider that the value of the qd_up factor is a multiple of the value of the restructuring 

interval parameter, ri, which is 100; hence, distribution changes after a restructuring process 

takes place. In addition, we assume that the distribution of the query workload changes 

randomly. Recall, that our distribution for the query workload follows the Zipfian 

distribution, hence it depends on two parameters: the query range that is the most frequent 

one, Hqr, and the skewness of the distribution, Qz. By saying that the distribution of the query 

workload changes randomly, we mean that a new query distribution is created by selecting 

randomly the most frequent range value and its skewness. In our experiments, skewness takes 

values from the domain [0.0, 3.0] and Hqr from the value domain D.  

 

Ideally, we would like the W-ST histogram to approximate efficiently the current distribution 

that the query workload follows. To measure the accuracy of our histogram we calculate the 

error produced after each restructuring process. A common error measure is the sum absolute 

probability error (SAPE)), which is defined as follows: 

∑∈
−=

Di
i) ,CQW(p)i ,H(p~)WCQ ,H ,D(SAPE  (5.5)
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where CQW is the query workload between two restructuring processes, i.e., the current query 

workload, )i ,H(p~  is the estimated probability of the query with range i, using the histogram, 

and i) ,CQW(p  is the actual probability of the query in the current query workload CQW. 

 

In Figure 5.18, we demonstrate the effect of the aging factor in capturing the distribution that 

the queries follow. In particular, we depict the errors produced when the aging factor takes 

several values from 0.0 to 1.0 and when the distribution changes in every qd_up queries. In 

our experiments, we set the qd_up parameter equal to ri*5  Fig. 5.18(a), ri*10  Fig. 5.18(b) 

and ri*50  Fig. 5.18(c), i.e., the query distribution changes in every 500, 1000 and 5000 

queries respectively. The results are similar for all values of the qd_up parameter. Initially, 

the W-ST histogram captures the first query distribution very fast and performs similarly for 

all degrees of aging, i.e., using the aging technique or not the produced errors are similar. This 

shows that even if we set the aging factor close to 0.0, i.e., we drop all information about past 

queries that follow the same query distribution, the histogram still performs well. This 

happens for two reasons. The first one is that even if we have a small sample of queries 

between two restructuring processes, this sample seems to be capable of approximating the 

current distribution. Secondly, after a restructuring process the aging technique may reduce 

the frequency of the buckets but the bucket boundaries remain unchanged. Thus, the bucket 

boundaries are fixed in that way so as to capture efficiently the distribution of the future 

queries. This assumes that the future queries, i.e., the queries that are initiated in the next 

restructuring interval, follow the same distribution with those that were initiated in the 

previous restructuring interval. 

  

In addition, when the distribution of the queries changes the errors that are produced by the 

W-ST histogram increase for all degrees of aging, since the histogram cannot capture 

immediately this change. However, when the aging factor is close to 0.0 the histogram 

captures faster this change. This happens because the histogram reduces a lot the information 

about past queries; hence the previous distribution of the queries. In contrast, when we do not 

use the aging technique, ag = 1.0, the learning rate of the new distribution is much lower and 

leads to larger errors in comparison with the case we use aging. 
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(c) 

Figure 5.18: Accuracy of the W-ST Histogram when Varying the Aging Factor (ag) and the 
Query Distribution Changes in every (a) 500, (b)1000 and (c) 5000 Queries. 

Overall, the W-ST histogram performs better when we use an aging technique since it is 

adaptive to changes of the query workload distribution. Furthermore, we select 0.0 to be the 

appropriate value for the aging factor since the histogram does not seem to behave worse in 

comparison with the case when we do not use aging and the query distribution does not 

change while when the distribution changes the histograms adapts much more quickly to this 

change.   

5.4. Summary 

To conclude, in this chapter to take into account the query workload for the formation of 

clusters we consider using histograms for summarizing the query workload. In particular, we 

initially propose the W-Equi-Width histogram. The main drawback of the W-Equi-Width 

histogram is that it does not have the potential to avoid grouping in the same bucket query 

ranges which are frequent with ranges that are less frequent. Thus, we introduce a novel 

approach, the W-ST histograms and present an algorithm for their construction. In addition, 

we extend the W-ST construction procedure by using an aging technique so as to adapt to 

changes of the query workload. 
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We make an extensive experimental evaluation about the effect of the refinement parameters 

in the accuracy, i.e., the merge threshold, the split threshold and the restructuring interval, of 

the W-ST histogram and we select the appropriate values for each one of them that lead in 

increasing the accuracy of the histogram. We experimentally evaluate the accuracy of these 

two histogram types for several kinds of query workloads in the cases when the number of 

buckets varies. The main conclusions from our experiments show that the W-ST histogram 

performs better than the W-Equi-Width histogram, especially in cases when the skewness of 

the query distribution is high. Furthermore, we study the importance of the restructuring 

process for “capturing” the distribution that the query ranges follow. The experiments show 

that this process is critical for the accuracy of the W-ST histogram since after a few 

restructuring processes the W-ST histogram “captures” the query distribution and becomes 

accurate. Finally, we assess the usage of the aging technique to adapt the changes of the query 

workload distribution. The experiments show that using the aging technique in conjuction 

with the W-ST histogram leads in much lower estimation errors in comparison with the case 

when we do not use this technique; hence the rate of learning the new distribution is much 

higher.  
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CHAPTER 6. HISTOGRAM DISTANCE METRICS 

6.1. Histogram-Based Workload-Aware Property 

6.2. Histogram Distance Metrics 

 6.2.1. Extended Histogram Distance Metrics 

 6.2.2. Workload-Aware Histogram Distance Metrics 

6.3. Discussion on Histogram Distance Metrics 

6.4. Experimental Evaluation 

 6.4.1. Histogram Similarity 

 6.4.2. Clustering of Peers Using Global Query Workload 

 6.4.3. Global Query Workload Estimation 

 6.4.4. Clustering of Peers Using Local Query Workload 

6.5. Summary 

 

 

 

As discussed in Chapters 4 and 5, histograms over one attribute are used to summarize the 

peer content and their local query workload. In addition, in Chapter 3 we conclude that the 

distance measure used to define the similarity between pairs of peers plays a crucial role in 

clustering, hence in the performance of the p2p network. In this chapter, we focus on creating 

clusters of peers using their local indexes and query workload synopsis. We introduce 

histogram-based distance measures and we evaluate their performance.  

6.1. Histogram-Based Workload-Aware Property  

Assume that we have a query workload QW. QW may be either the global query workload W 

or the local query workload of a peer n, LW(n). To construct workload-aware overlays, we 

propose using local indexes and the synopsis of the query workload QW. In particular, we 

create clusters of peers that have similar local indexes taking into account a query workload 

QW. For this to work, the similarity between the local indexes of two peers, which is provided 

by a distance measure, must be descriptive of “how much” the two peers match the workload 

QW. In addition, as discussed in the previous chapters, we use histograms as local indexes 
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and local query workload synopses. Hence, we need to introduce histogram-based workload-

aware distance measures (hd) to define the similarity between pairs of peers. Furthermore, in 

Chapter 3, we concluded that when we have the whole information about the content of the 

peers and the query workload, the Manhattan Workload-Aware distance measure achieves the 

best clustering which in many occasions is close to optimal. Thus, we consider that the 

histogram-based workload-aware distance measures must be an approximation of this 

distance measure. In particular, the distance (hd) between two histograms must be descriptive 

of the difference in the number of results for a query workload QW. 

 

Property 6.1 (Histogram-Based Workload-Aware Property) A histogram distance metric 

hd between two histograms, H(n1) and H(n2), is said to be workload-aware for a query 

workload QW, if for any three peers n1, n2, n3, 

∑
∑

∈

∈

−

−
=∝

QWq 31q

QWq 21q

31L

21L

31

21

)q ,n(results)q ,n(resultsp

)q ,n(results)q ,n(resultsp

QW) ,n ,n(wd
QW) ,n ,n(wd

)QW ),H(n ),n(H(hd
)QW ),H(n ),n(H(hd

1

1  

 

If the distance between the histograms H(n1) and H(n2) of peers n1 and n2 is smaller than the 

distance between the histograms H(n1) and H(n3) of peers n1 and n3 for a query workload QW, 

we want also the difference in the number of results provided by n1 and n2 for QW to be 

smaller than the corresponding difference in the number of results provided by n1 and n3. 

6.2. Histogram Distance Metrics 

We consider two well-known distance metrics (namely the L1 and the edit distance) between 

two histograms and propose a weighted version of the edit distance, which satisfies the 

workload-aware property. Recall that, we assume that the histograms we use as local indexes 

and as local query workload synopsis have the same number of b buckets. In general, a 

histogram H(n) can be represented as a vector where each vector’s feature i represents the 

total frequency of the values that lie within the value range of the corresponding bucket i, i.e., 

Hi(n). To compare two histograms (vectors) with the same number b of buckets, the i-th 

bucket (feature), 1bi0 −≤≤ , for both histograms must be responsible for the same range of 

values. In particular, consider two histograms, H(n1) and H(n2), with b buckets where for each 

bucket i the value range for which it is responsible is the same in both histograms. Then, the 

L1 and the edit distance between these two histograms can be defined as follows: 
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Definition 6.1 (L1 distance between histograms) 

Let H(n1) and H(n2) be two histograms with b buckets, their L1 distance, 

))H(n ),n(H(hd 21L1
, is defined as: ∑ −

=
−=

1b

0i 2i1i21L .)n(H)n(H))H(n ),n(H(hd
1

 

 

Definition 6.2 (Edit distance between histograms) 

Let H(n1) and H(n2) be two histograms with b buckets, their edit distance, 

))H(n ),n(H(hd 21edit , is defined as: 

∑ ∑ ∑−

= = =
−=

1b

0i

i

0j

i

0j 2j1j21edit .)n(H)n(H))H(n ),n(H(hd  

Let us define as: 





 <≤−

= ∑ ∑= =

otherwise                                               0

bl0 if     )n(H)n(H
)l(pref

l

0i

l

0i 2i1i  

Then, the edit distance can be written as: 

 ∑ −

=
=

1b

0i21edit .)i(pref))H(n ),n(H(hd  

 

The L1 and the edit distance, as introduced before, can be directly applied to equi-width 

histograms. However, they cannot be applied to other types of histograms, e.g., maxdiff 

histograms, because the bucket boundaries of two histograms might be different. Thus, we 

have to extend them so that they can be used for these types of histograms as well.  

6.2.1. Extended Histogram Distance Metrics 

Consider that we have two histograms with b buckets on an attribute x and for each bucket i 

the bucket boundaries of the two histograms might be different. As we discussed in Section 

4.2.1 the number of all possible regions that are intersections of the bucket ranges of the two 

histograms is between [b, 2b-1]. Thus, to apply the L1 and the edit distance between two 

histograms, we follow the same strategy used for merging two histograms. In particular, we 

find all the intervals, which are intersection of the two histogram bucket regions. Let C be the 

number of these intervals and a histogram H(n). The frequency of each interval i, Ci0 <≤ , 

is calculated based on H(n) using the uniform frequency assumption and the continuous 

values assumption. We denote by Fi(n) the frequency of the interval i for peer n. Assume that 

interval i is responsible for a range k of values. Then, the interval i is responsible for the value 

domain [vi, vi+k-1], where vi is the first ordered value that is contained in this interval. Hence, 
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)n(Fi  is defined as: ∑
−+

=

=
)1k(v

vj
ji

i

i

)n(f~)n(F , where )n(f~j  is the approximated frequency of 

value j provided by H(n). Thus, the Extended-L1 and the Extended-edit distance are defined 

as: 

 

 

Figure 6.1: Example of Dividing into five Intervals each one of the Histograms H(n1), H(n2) 
with three Buckets over an Attribute 10) ,0[x∈ . 

Definition 6.3 (Extended-L1 distance between histograms) 

Let H(n1) and H(n2) be two histograms with b buckets, and C be the number of their 

intersection intervals. Their Extended-L1 distance, ))H(n ),n(H(hd 21EL1
, is defined as:  

∑ −

=
−=

1C

0i 2i1i21EL .)n(F)n(F))H(n ),n(H(hd
1

 

 

Definition 6.4 (Extended-Edit distance between histograms) 

Let H(n1) and H(n2) be two histograms with b buckets, and C be the number of their 

intersection intervals. Their Extended-Edit distance, ))H(n ),n(H(hd 21Eedit , is defined as: 

∑ ∑ ∑−

= = =
−=

1C

0i

i

0j

i

0j 2j1j21Eedit .)n(F)n(F))H(n ),n(H(hd  
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Then, the Extended-edit distance can be written as: 

∑ −

=
=

1C

0i21Eedit .)i(F_pref))H(n ),n(H(hd  

The Extended-Edit distance takes the prefix sums of the intervals of the histograms H(n1) and 

H(n2).  

 

Example 6.1: Figure 6.1 depicts an example of two histograms, H(n1) and H(n2), with three 

buckets and with five intersection intervals. The distance between H(n1) and H(n2) using the 

Extended-L1 and the Extended-Edit distance measures  is: 

4010201020403320172010))H(n ),n(H(hd 21EL1
=−+−+−+−+−=  and 

531001009080806040272010))H(n ),n(H(hd 21Eedit =−+−+−+−+−= , 

respectively. 

 

From now on, we will refer to the Extended-L1 and the Extended-edit distances as L1 and edit 

distances, respectively. The L1 and the edit distances depend only on the local indexes without 

taking into account the query workload QW. In the following section, we introduce a 

workload-aware histogram distance measure, based on the edit distance, which takes into 

account the query workload. 

6.2.2. Workload-Aware Histogram Distance Metrics 

To take into account the query workload QW, based on Definition 6.4 we define a workload-

aware variation of the edit distance metric. Consider that the query workload QW is 

summarized by the histogram H(QW) with b buckets, as the histograms used as local indexes. 

To measure the distance between H(n1) and H(n2), we want also to use H(QW). Recall that all 

three histograms are very likely to have different bucket boundaries. Thus, the main issue is 

how to define common intervals between H(n1) and H(n2) and H(QW) so as to measure the 

histogram distance. There are several approaches to address this problem. The first one is the 

strategy we followed in defining the Extended-L1 and Extended-edit distances. This approach 

is not convenient in this case because selecting the intervals based on H(n1) and H(n2) might 

lead in high loss of information of H(QW). Another approach is to define the intervals based 

solely on the H(QW) bucket boundaries. Also this approach has some drawbacks. The first 

one is that it might lead to high inaccuracy of H(n1) and H(n2.). Furthermore, if we pose the 

same query workload twice the bucket boundaries of H(QW) might be different because the 

construction of H(QW) depends on the sequence of the queries. Hence, the similarity between 

two peers might be different for the same QW. To avoid these problems, we follow an 
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intermediary approach. We propose to divide the value domain of each histogram into (2b), if 

Db2 <  otherwise Db2 = , intervals of equal width. In addition, we denote by pi(QW) the 

probability of the interval i of the query workload QW synopsis, i.e., 

))QW(H(S/)QW(F)QW(p ii =  where S(H(QW)) denotes the size of the histogram 

H(QW). Recall that, we assumed the query workload consists of range queries whose ranges 

follow a distribution and the starting point of each query is chosen at random. Hence, the 

histogram H(QW) approximates the query range distribution. In this case, the Workload-

Aware Edit distance between histograms (wedit) is defined as follows: 

 

Definition 6.5 (Workload-Aware Edit (wedit) distance between histograms) 

Let H(n1) and H(n2) be two histograms of peers n1 and n2 respectively and H(QW) be the 

histogram for the query workload QW. All the histograms have b buckets. The Workload-

Aware Edit distance (wedit), )H(QW) ),H(n ),n(H(hd 21wedit , is defined as:  
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In addition, we claim that for a given j, the following equation holds. 
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Also, let ljk =+ . Then, 

( )
( )∑

∑∑ ∑
+

=

= ++= = ++

−=

=−=−
ji

jl 2l1l

i

0k 2jk1jk
i

0k

i

0k 2jk1jk

.)n(F)n(F

)n(F)n(F)n(F)n(F
 

Hence, the wedit distance can be written as: 

.)1j(F_pref)ji(F_pref)QW(p)H(QW) ),H(n ),n(H(hd
1b2

0i

1b2

0ji21wedit ∑ ∑−

=

−

=
−−+=  

This metric computes for each range i, 1b2i0 −≤≤ , of intervals the distance of each 

possible region, which starts from interval j, 1b2j0 −≤≤ , and consists of i contiguous 

intervals in H(n1) from the corresponding region in H(n2) weighted by the i-th interval 

probability of H(QW). We select each possible region for each range i because we have 

assumed that the starting point of each query is chosen uniformly. 
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Example 6.2: Consider that we have two peers, n1 and n2, and a query workload QW. In 

addition, we assume that the attribute’s x value domain is split into three intervals and the 

frequency of each interval i, 2i0 ≤≤ , for peers n1, n2 and the workload QW results from 

H(n1) and H(n2) and H(QW), respectively. Then, the similarity of n1 and n2 using the wedit 

distance measure is computed as follows:  
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In addition, wedit also holds for a special case of range queries denoted as prefix-range 

queries; that is for queries with one sided ranges: })f ,q{(QW
j0qj0=  and for any pair of 

queries j0q  and l0q  in QW one is contained in the other. In particular, since the starting point 

of each prefix-range query is the 0, by setting j equal to 0, i.e., the starting interval of each 

region is always the first one, the wedit distance for prefix-range queries takes the form: 
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It has been shown that the wedit distance measure satisfies the requirements of a distance 

metric. The proof is given in the Appendix. 
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6.3. Discussion 

The histograms that we study are ordinal, i.e., there exists an ordering among their buckets, 

since they are built on a numeric attribute. Similarly with the content based distance metrics 

that we have discussed in Section 3.5.1, for ordinal histograms the position of the buckets is 

important and thus, we want the definition of the histogram distance to satisfy the shuffling 

dependence property, i.e., to take into account this ordering. For example, consider the 3 equi-

width histograms H(n1), H(n2) and H(n3). The histogram distance between H(n1) and H(n2) 

that have all their values at adjacent buckets (buckets 0 and 1 respectively) should be smaller 

than the distance between histograms H(n1) and H(n3) that have their values at buckets further 

apart (buckets 0 and 3 respectively). This is because, the difference between the number of 

results provided by peer n1 and the number of results provided by peer n2 is smaller for a 

larger number of different range queries than for peers n1 and n3. As we have discussed in 

Chapter 3, the shuffling dependence property does not hold for the L1 distance, i.e., the three 

histograms have the same pair-wise distance, while it holds for the edit distance. In particular, 

the edit distance between two histograms H(n1) and H(n2) is the total number of all necessary 

minimum movements for transforming H(n1) to H(n2) by moving elements to the left or right. 

 

 

Figure 6.2: The Distance between H(n1) and H(n2) should be Smaller than the Distance 
between H(n1) and H(n3). 

However, although, the edit distance is shuffling dependent still it does not take into account 

the probability of queries, i.e., the query workload. Overall, the L1 distance does not satisfy 

the workload-aware property (Property 6.1), while the edit distance satisfies it in special cases 

when the query workload does not influence the pair-wise distance of peers by examining 
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only their contents. Recall that the workload-aware property requires that the distance 

between the histograms of two peers be descriptive of the difference in the number of results 

the peers provide for a workload W. In the ideal case, we want the distance between two 

histograms H(n1) and H(n2) of peers n1 and n2 to correspond to the difference of matching 

results provided by n1 and n2. In the Appendix, we show that the wedit distance satisfies the 

Property 6.1 for a workload })f ,q{(W
ijqij= , when i is uniformly distributed between the 

values of the attributes domain and the query range j follows a distribution. In addition, it also 

satisfies Property 6.1 in the special case when the query workload consists of prefix-range 

queries, i.e., })f ,q{(W
j0qj0= . 

6.4. Experimental Evaluation 

In this section, we run a set of experiments to evaluate the performance of the histogram 

distance measures. In particular, in Section 6.4.1 we investigate experimentally if the 

histogram distance measures satisfy the workload-aware property for several kinds of query 

workload while in Section 6.4.2 we conduct the same experiment with that in Section 3.6 but 

this time we use histograms for summarizing the peer content and the global query workload 

W. Furthermore, in Sections 6.4.3 and 6.4.4, we study how the global query workload can be 

estimated and propose to cluster the peers using their local query workloads, respectively. The 

experimental parameters for the peer data distribution, the query workload distribution and 

the network size are the same with those used for experiments of Chapter 3 in the case we 

have equal peer sizes, while the histogram parameters are the ones selected in Chapters 4 and 

5. These parameters are summarized in Table 6.1. 

6.4.1. Histogram Similarity 

In this set of experiments, we evaluate the three histogram distance metrics from the 

perspective of satisfying the workload-aware property for several query workloads. Consider 

that we have a-priori knowledge of the global query workload W. Initially, we create the 

histogram H(n) of each peer n, 100n0 <≤ , that summarizes its content and the 

corresponding to W histogram H(W).  We select a peer Nni ∈  and we compute the distance 

of each histogram H(n), 100n0 <≤  and inn ≠ , with H(ni) using the three distance metrics. 

Our performance measure is the difference between the number of results provided by each n 

and the number of results provided by ni for the workload W, that is: 
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∑ ∈
−

Wq iq )q ,n(results)q ,n(resultsp  with respect to their distance hd(H(n), H(ni), H(W)). 

The desired behavior (as expressed by Property 6.1) is for the difference in the number of 

results provided by a pair of peers for W to be analogous to their distance, i.e., the smaller the 

distance between the two histograms, the smaller the difference in their result size. 

Table 6.1: Input Parameters for the P2P Network Using Histograms. 

Parameter                                                                   Default Value                Range 
Peer-to-Peer Parameters                                       
Number of peers ( N )                                                  100                                               
Percentage (%) of peers visited 
during routing                                                                                                       5 - 80  
Data Distribution Parameters                               
Domain of x                                                                   [0, 999] 
Tuples per node                                                             10000                                          
Data Concentration (DC)                                               0.8 
Number of disjoint regions (Dr)                                    200                                              
Query Workload Parameters 
Query Workload Distribution                                         Zipf                                 
Number of queries                                                          10000 
Range of queries                                                             [0, 999] 
Zipf parameter (Qz)                                                        3.0                                                
Hot query range (Hqr)                                                                                         10 - 800 
Histogram-Related Parameters                            
Peer Histogram Parameters (H(n)) 
Type of Histogram:                                                         Maxdiff(v, f) 
Number of buckets (b)                                                    100 
Query Workload Histogram Parameters   
Type of Histogram:                                                        W-Self-Tuning 
Number of buckets (b)                                                    100 
Merge threshold (mt)                                                       0.01% 
Split threshold (st)                                                           10% 
Restructuring Interval (ri)                                               100 

6.4.1.1. Histogram Similarity Taking into Account the Query Workload 

We investigate if the histogram similarity metrics satisfy the workload-aware property for 

several range query workloads. We consider query workloads that consist of range queries 

and their ranges follow the Zipf distribution with skew equal to 3.0 (Qz = 3.0) and the most 

popular query range varying from 10 (covering 10 values) to 800 (covering 800 values). We 

selected the skew parameter to have the value 3.0, i.e., high skewnesss in query range 

distribution. In Figures 6.3, 6.4 and 6.5 we demonstrate the behavior of the L1, edit and wedit 

histogram distances respectively.  
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Figure 6.3: Clustering Quality for L1 Distance when Varying the Popular Query Range Value 
of the Workload and the Range Skew is Set to 3.0. 

 

Figure 6.4: Clustering Quality for Edit Distance when Varying the Popular Query Range 
Value of the Workload and the Range Skew is Set to 3.0. 



 

 

115

 

Figure 6.5: Clustering Quality for Wedit Distance when Varying the Popular Query Range 
Value of the Workload and the Range Skew is Set to 3.0. 

The conclusions confirm the statements that we have made in the experimental evaluation of 

Chapter 3. In particular, because of the nature of the peer data distribution the L1 distance 

assumes that all histograms H(n) have nearly the same distance with H(ni), since L1 is not 

shuffling dependent and considers only individual intervals. However, the absolute difference 

of results for W between each peer and peer ni, nni ≠ , are different. The edit distance 

performs better than L1, especially for query workloads that almost consist of queries with 

large ranges, since it takes into account the order of intervals; it is shuffling dependent. In 

particular, the edit distance between two histograms, H(n1) and H(n2), takes into account the 

ordering of all common intervals, while a query with range k involves only (k+1) values. 

Hence, the query does not depend on the difference that the two peers, n1 and n2, may have in 

the rest of their values. This is evident in Figure 6.2 where for workloads with low range, e.g. 

10, the edit distance does not perform well. As the popular query range value increases, e.g., 

800, the performance of the edit distance improves. Finally, as we expected, the wedit 

distance performs well for all kind of query workloads, i.e., the difference in the results 

increases analogously to the histogram distances. 

6.4.2. Clustering of Peers Using Global Query Workload 

In this section, we conduct the same experiment as described in Section 3.6 but using 

histograms for summarizing the peer content and the global query workload W. In particular, 

we initially create for each peer n its associated histogram, H(n), that summarizes its content 

and for a given workload W, i.e., we know from the beginning the necessary information that 
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characterize the workload, its associated histogram H(W). Then, for each one of the three 

histogram distance metrics we construct the p2p network. Finally, we pose each query q of W 

to the network and we measure the PeerRecall that the network achieves when each Wq∈  

visits a specified number of peers. 

  

In Figure 6.6, we depict the performance of the three histogram distance metrics in 

comparison with the corresponding distance metrics, defined in Chapter 3, when we have the 

whole information about the peer content and the query workload. For W, we set the 

parameter Qz equal to 3.0 while varying the value of the most popular query range (Hqr). We 

define by H-L1 and H-edit the L1 and edit histogram distances respectively so as to 

differentiate them from the L1 (Eq. 3.5) and edit (Eq. 3.7) distances defined when we do not 

use histograms. As we can see, all the corresponding distances, e.g., L1 and H-L1, achieve the 

same PeerRecall, i.e., the clustering of the peers is identical. This means, on the one hand that 

the selected histograms summarize efficiently the peer content and the global query workload 

respectively and on the other hand the histogram distance metrics approximates well the 

corresponding distance metrics, which use the whole information about peers content and the 

query workload, since we do not loose enough information capable to lead in PeerRecall’s 

reduction. Furthermore, as we expected the wedit distance performs better than the H-L1 and 

H-edit distances. 

6.4.3. Global Query Workload Estimation 

In the previous section, we have shown that the wedit distance performs efficiently when we 

have a-priory knowledge about the global query workload. The assumption of having a-priory 

estimation of the global query workload is very strong since in p2p systems the query 

workload distribution may change during time. The results of this experiment show that 

having somehow an estimation of the global query workload and taking it into account to 

calculate the similarity between pairs of peers, leads us in efficient clustering. 

 

Thus, an important issue is the estimation of the global query workload when we do not have 

a-priori knowledge of its distribution. Recall that, each peer n keeps statistics, a histogram 

HW(n), that summarizes its local query workload, i.e., the queries that arrive to it. Hence, we 

propose to acquire the global query workload synopsis, H(W), by merging the local query 

workload histograms of the peers. The merging process that we follow is the same as the one 

described in Section 4.2.1, hence the merged global query workload synopsis, denoted as 

MH(W), that arises from this process has also b buckets. To evaluate the clustering of peers 
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using their local indexes and the global query workload synopsis, which arises from merging 

all the local query workload synopses, we conduct an additional experiment using the wedit 

distance.  
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                                    (a)                                 (b) 

Figure 6.6: Comparison of Histogram-Based Distance Metrics with the Corresponding 
Distances, which Use the Whole Information about Peer Content and Query Workload, when 

Varying the Number of Peers Visited with Qz = 3.0 for (a) Hqr = 10 and (b) Hqr = 100.  

In particular, the experiment is conducted as follows: Assume that we have a set N of peers 

and a given global query workload W. For each peer Nn∈ , we maintain two structures. The 

first one concerns the summarization of its content, i.e., its local index H(n), and the other, 

HW(n), summarizes its local query workload LW(n). Initially, we create the p2p network 

using the wedit distance based on H(n) and H(W). Then, we pose each query q of W to the 

constructed network and update the local query workload synopses of all the peers that q 

visits. After the construction of each HW(n), we re-cluster the peers based on the wedit 

distance but using the merged global query workload synopsis, MH(W), instead of H(W). 

Finally, we pose again each Wq∈  to the reconstructed network and measure the 

corresponding PeerRecall to see how efficient is the clustering of peers using their local query 

workloads synopses.  

 

In Figure 6.7, we show the PeerRecall achieved for several query workloads when for the 

formation of clusters we use the wedit distance when we use H(W) and when we use the 

merged global query workload synopsis, MH(W). As we can see, acquiring the global query 

workload synopsis by merging the local query workload synopsis is efficient since the 

PeerRecall we achieve in this case is similar with the one we get when we have a-priory 

knowledge of H(W). This was expected since in Section 4.3.2 we showed that the merge 
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procedure for merging two histograms is very efficient. Hence, the H(W) and MH(W) 

histograms are very similar. 

6.4.4. Clustering of Peers Using Local Query Workload 

The question that arises is if it would be efficient to create a clustering of peers based on their 

local query workload synopses instead of using the global query workload synopsis. To 

answer this question, we conduct an additional experiment where we create clusters of peers 

using the wedit distance based on local query workloads. The experiment is carried out in a 

similar way as before but we re-cluster the p2p network based on the local indexes and the 

local query workload synopses. In particular, for each pair of peers, n1 and n2, we find their 

distance, based on wedit, using H(n1), H(n2) and one of the local query workload histograms 

of these two peers, HW(n1) or HW(n2), selected randomly. Finally, we pose again each Wq∈  

to the reconstructed network and measure the corresponding PeerRecall so as to see how 

efficient is the clustering of peers using their local query workloads synopsis. 
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                                    (a)                                 (b) 

Figure 6.7: Comparing the Wedit Distance when it Uses the A-priori Global Query Workload 
Synopsis, H(W), and the Merged Global Query Workload Synopsis, MH(W) while Varying 

the Number of Peers Visited with Qz = 3.0 for (a) Hqr = 10 and (b) Hqr = 100.  

In Figure 6.8, we depict the PeerRecall for a given workload W when the clustering of peers 

is performed based on local query workload synopsis, HW(n), and when the clustering of 

peers is done based on the merged global query workload synopsis, MH(W). We compare 

these two methods with the case when we have a-priory knowledge of W. As we can see, the 

PeerRecall we achieve when we cluster the peers using the wedit distance based on local 

query workload synopses is similar with that when we use the global query workload 

synopsis. This happens because peers that have similar results for a given query workload 
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also have similar distribution of their local query workloads, i.e., the same queries arrive to 

them. Therefore, this experiment shows that if the appropriate queries for a peer arrive to it, 

i.e., a query visits the peers with the most matching results, the clustering of peers can be 

done efficiently taking into account their local query workloads.  
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                                    (a)                                 (b) 

Figure 6.8: Comparing the Wedit Distance when we Use the Global Query Workload 
Synopsis, H(W), the Local Query Workload Synopsis, HW(n), and the Global Query 

Workload Resulted by Merging Peers Local Query Workload Synopses, MH(W), respectively 
while Varying the Number of Peers Visited with Qz  = 3.0 for (a) Hqr = 10 and (b) Hqr = 

100. 

6.5. Summary 

To conclude, in this chapter we make an extensive discussion on histogram-based distance 

measures that are used for the formation of peer clusters. Initially, we introduce a histogram-

based workload-aware property that the histogram distance measures must follow so as to 

create an efficient clustering. Then, we introduce a workload-aware histogram distance 

measure, the wedit distance, and we compare it with two well-known histogram distance 

measures, the L1 and the edit distance. The experiments show that the wedit histogram 

distance satisfies the workload-aware property while the L1 and the edit histogram distances 

do not. 

 

In addition, we conduct several experiments where the clustering of peers is done based on 

the global query workload, which obtained by merging the peers’ local query workloads, and 

when the clustering of peers was done based on the local query workloads. In both cases the 

clustering of peers is efficient. Summarizing, there are many ways to create workload-aware 

clustering of peers. At one extreme, the global query workload is used while at the other 

extreme only the workload at a single peer is used. In the first case, an estimation of the 

global query workload can be obtained by merging the local query workloads of the peers. 
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Hence, some form of gossiping or epidemic propagation [11] has to be used, i.e., each peer in 

the network has to send its local query workload to the other peers of the network, so as to 

eliminate the communication overhead in the network. This issue is beyond the scope of this 

thesis. 

 

In the next chapter, we describe how the protocols for join, leave and lookup behave when the 

clustering of peers is done taking into account the global query workload and the local query 

workload.  
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CHAPTER 7. BUILDING WORKLOAD-AWARE 

OVERLAYS USING HISTOGRAMS 

7.1. Building Workload-Aware Overlays Based on Global Query Workload 

7.1.1. Workload-Aware Overlay Construction 

7.1.2. Query Routing 

7.1.3. Peer Leave 

7.1.4. Creating and Maintaining Routing Indexes 

7.1.5. Updating the Global Query Workload 

7.1.6. Detection of Changes in the Local Query Workload Distribution 

7.1.7. Re-clustering 

7.2. Building Workload-Aware Overlays Based on Local Query Workloads 

7.2.1. Workload-Aware Overlay Construction 

7.2.2. Peer Leave 

7.3. Summary 

  

 

In this chapter, we describe how histograms are used to construct a workload-aware p2p 

network and how a query is routed through this network. Recall that each peer n maintains the 

following data structures: its local index LI(n) that summarizes the data values stored locally, 

one routing index RI(n, e) for each of its links e, which summarizes the content of all peers 

that are reachable from n using link e at a distance at most r, called radius, and its local query 

workload synopsis LW(n) that summarizes the set of queries arrive to n. In addition, for the 

connection between two peers we make a distinction between two types of links: short-range 

links (or short links) and long-range links (or long links). Short-range and long-range links 

are used to connect peers that are similar and non-similar, respectively. The degree of 

similarity between two peers depends on the similarity measure that we decide to use for the 

construction of the overlay network. In the following sections, we describe the procedures 

that we follow for building the p2p network and routing a query through it, based on those 
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described in [22], when the clustering of peers is done based on the global query workload 

and when the clustering of peers is based on local query workloads. 

7.1. Building Workload-Aware Overlays Based on Global Query Workload 

In this section, we describe the protocols that we use when a new peer wishes to join the p2p 

network, for routing a query on it and when a peer decides to leave the system in the case 

when we use the global query workload for the formation of clusters, i.e., each peer has 

knowledge of the global query workload. 

7.1.1. Workload-Aware Overlay Construction 

In this section, we describe how the overlay network can be constructed based on the routing 

indexes. The main issue when a new peer n enters the system is to find and link n with a set of 

peers similar to n. In general, the idea is to set the local index of peer n as a join message 

which is routed, via routing indexes, towards the peers that are most similar with n. Assume 

that the join message at some point has visited a group J of peers. The peers in J are sorted 

based on their similarity with n. Peer n is linked with the SL most similar to it peers and with 

probability Pl to one of the remaining peers in J. Both SL and Pl are tuning parameters whose 

values affect the quality of clusters formed. The motivation for distinguishing the links into 

two types is that short links are inserted so as to connect peer n with the most similar peers 

that the join message has visited. Hence, relevant peers are located nearby in the network. In 

contrast, long links are inserted so as when the join message is not in a “relevant” group of 

peers, i.e., the join message of peer n is located in a peer that is not similar with n, to be easy 

to navigate the message to another group of relevant peers that might be more relevant with n. 

In addition, long links are also useful for the routing of a query as we will discuss in the next 

section. 

 

In particular, when a new peer n wishes to join the system, initially it poses its local index 

LI(n) as a join message to a well known peer of the system. In addition, this message also 

keeps a list L (initially empty) with all the peers that it will visit during routing. Each peer p 

that receives the join message performs the following steps: 

1. The distance d(WS, LI(p), LI(n)) between the local indexes LI(p) and LI(n) of peers p and 

n respectively is calculated taking into account the global query workload synopsis WS. 

2. Node p and the corresponding distance are added to list L. 
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3. For each one of the links e of peer p, the distance d(WS, RI(p, e), LI(n)) between the local 

index LI(n) and the routing index RI(p, e) is calculated taking into account the global 

query workload synopsis WS. 

4. The join message is propagated through the link l whose routing RI(p, l) is the most 

similar with LI(n) (d(WS, RI(p, l), LI(n)) < d(WS, RI(p, e), LI(n)) ∀  link le ≠ ) and has 

not been followed yet. When the join message reaches a peer with no more unvisited links 

to follow, backtracking is used. 

 

The routing of the join message stops when JMaxVisited peers are visited. Then, peer n 

creates short links with the SL peers in the list L of visited peers whose distances are the 

smallest ones. Also, with probability Pl, peer n creates a long link with another peer from the 

list different from the SL peers previously selected. 

 

Note that if we use a content-based similarity measure that does not take into account the 

query workload, in Steps 1 and 3 of the join procedure, the distance between the local indexes 

LI(p) and LI(n) of peers p and n takes the form d(LI(p), LI(n)) and the distance between the 

local index LI(n) and the routing index RI(p, e) takes the form d(RI(p, e), LI(n)), respectively. 

 

An important issue is how to select the peer that will be attached through long link with peer 

n. One simple approach is to select the peer from the list L that has the largest distance and 

does not belong to the SL peers selected to be linked through short links. Another approach is 

to select randomly one of the rest of the peers within the list L, which also does not belong to 

the SL peers selected to be linked through short links. In this thesis we follow the second 

approach. 

 

Finally, as we have mentioned before the routing index of peer p for its link e, RI(p, e), 

summarizes the content of all peers that are reachable from p using link e within radius r. 

Hence, to calculate in Step 3 the distance d(WS, RI(p, e), LI(n)), we normalize the frequency 

of each bucket of the RI(p, e) by dividing it with the number of the peers that are included in 

the routing index. By using normalization, the RI(p, e) portrays the average frequency 

distribution of the peers, which are within the radius r and are reachable from p using link e. 

7.1.2. Query Routing 

A query q may be posed at any peer n. Our goal is to route the query q through a set of peers 

that gives a large number of results for q, that is, we want to maximize PeerRecall. The 
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routing of a query stops when a predefined number of peers is visited, denoted as 

QMaxVisited. The routing procedure we propose relies on a depth-first traversal of the 

network. In particular, each peer p that receives a query q executes the following steps: 

1. For each one of its links e, peer p estimates the number of results that we will be found 

for q, by using the RI(p, e), i.e., hresults(RI(p, e), q), if link e is followed. 

2. The query is propagated through the link l whose routing RI(p, l) gives the most matches 

(hresults(RI(p, l), q) ≥ hresults(RI(p, e), q) ∀  link le ≠  and hresults(RI(p, l), q)≠0) and 

has not been followed yet. When the query reaches a peer with no more unvisited links to 

follow, backtracking is used. 

 

By following this link, the query is propagated towards the peers that are estimated to provide 

the most results and thus PeerRecall is increased. An occasion that can be occurred is when 

the query q visits peer p and there are no matching peers within the horizon of this peer, i.e., 

hresults(RI(p, e), q)=0 ∀  link e of p. Recall that, horizon is the set of peers within distance r 

of n. Hence, the matching peers are outside the radius r of p. To handle this situation, we 

follow the long-range link of peer p (even if it does not match the query). The idea is that we 

want to move to another region of the network, since the current region (bounded by the 

horizon) has no matching peers. In the case that peer p has no long-range link or we have 

already followed its long-range link, the query is propagated through a short link to a direct 

neighbor peer and so on until a long-range link is found. 

 

The main drawback of the above procedure is that the query is propagated to only one peer 

each time. Hence, this procedure is not so efficient in terms of response time; it is desirable to 

retrieve the query matching results as quick as possible. A variation of the above procedure 

can be used for faster retrieval of query results. In particular, when the query q is initiated at a 

peer n, we follow steps 1 and 2 of the above procedure to route the query to the appropriate 

region of the network that is rich with matching results. Consider that peer p belongs to the 

appropriate group of peers and is visited by q. Then, to exploit the grouping of similar peers, 

which are nearby in the network, we can use flooding to propagate the query to all the 

neighbor peers that are connected with short-links.  

 

The main issue in this procedure is to determine whether the query has reached the 

appropriate region in the network, i.e., a peer with a large number of matching results. A 

simple approach is the query message to keep information about the number of matching 

results that each visited peer provides. If the query visits a peer that provides a sufficient 

larger number of results compared to those provided by the already visited peers, then we 
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assume that we are in the right group of peers. However, this approach of detecting the 

appropriate cluster of peers for the query does not guarantee that we are in the right cluster of 

peers. In addition, when using this variation of query routing, after the flooding starts, the 

propagation of the query is limited within one group of peers only. This might be a drawback 

since it is possible that a range query can be answered by peers of more than one group 

depending on the similarity measure we use when a peer joins the system. In particular, if we 

use a content-based similarity measure, each peer that joins the system links to the most 

similar of the existing peers according to their contents. Furthermore, a range query can be 

answered efficiently by more than one group of peers. Hence, to retrieve a large number of 

results, the query must visit all the appropriate groups and not only one of them. Thus, using 

content-based similarity measures for clustering the peers does not ensure that many results 

will be found. In contrast, if we use a workload-aware similarity measure, all the peers that 

are nearby in the network answer similar the same set of queries; thus, they are in the same 

group. Hence, by limiting the query propagation into only one group of peers we expect the 

performance of PeerRecall not to be influenced negatively. The variation of the routing 

procedure needs further investigation and is left as future work. 

 

Another important issue is the kind of routing indexes [9] that we use for routing the query. In 

particular, the routing indexes that we proposed so far summarize the content of all the peers 

that are reachable from a peer n using its link e at a distance at most r. The main limitation of 

this kind of routing indexes is that they do not take into account the number of hops required 

to find the query results. For instance, consider that we want to create RI(n, e) and we have 

two peers, p and g, which must be included in the routing index. The first one is a direct 

neighbor of n while the second is many hops away from n. In this case the local indexes of 

both peers, LI(p) and LI(g), will participate “equally” in the creation of the routing index of 

peer n, even though the probability of the query visiting peer g is much lower when compared 

to that of visiting peer p. An alternative approach is to keep separate routing indexes for the 

procedures of join and routing. For the routing of a query, we propose the routing indexes to 

take into account the number of hops: hop-count routing indexes. In particular, if we want to 

create RI(n, e) and peer p is reachable from peer n through link e at m<r hops, then the LI(p) 

will be divided by a factor m and then it is going to be included in the RI(n, e). Hence, the 

furthest peer p is located from n, the less the LI(p) contributes in the creation of RI(n, e). The 

hop-count routing indexes are left as future work. 
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7.1.3. Peer Leave 

When a peer n decides to leave the system, it must decide about the new connections that will 

be established among peers so as on the one hand to keep the network connected and on the 

other hand the peer departure to not affect the grouping of peers. To achieve this, we propose 

to link all the neighbors of peer n in a path. 

 

In particular, when a peer n wishes to leave the system it first asks its neighbors about their 

local indexes and their local query workload synopsis. Hence, for each of its neighbors, p, 

peer n stores the local index of p, the local query workload synopsis of p and the type of link, 

short or long, which is connected with p. In addition, peer n keeps in a list NL the identifiers 

of its own neighbors. Before peer n leaves the system, does the following steps in order to 

decide about the new connections that will be created after its departure. 

 

While NL is not empty 

1. Peer n selects a neighbor p from NL. NL = NL - {p}. 

2. If the link that connects peers n and p is short, link(n, p) = short, then we select 

another peer m∈NL, which is also connected through short link with n, link(n, m) = 

short, to link through short link with p. In addition, peer m must be the one with the 

smallest histogram distance from peer p, i.e., d(WS, LI(p), LI(m)) < d(WS, LI(p), 

LI(k)) ∀  peer mk ≠  and k∈NL, if we use a workload-aware distance metric or 

d(LI(p), LI(m)) < d(LI(p), LI(m)) ∀  peer mk ≠  and k∈NL, if we use a content-

based distance metric. 

3. If the link that connects peers n and p is long, link(n, p) = long, then similarly with 

step 2 we select another peer m∈NL, which is also connected through short link with 

n, to link with p through a long link. 

End While 

 

By following the above procedure we ensure that the network will remain connected after the 

departure of peer n since there is a path between all the neighbors of n. Furthermore, the 

grouping of the peers remains unaffected since each neighbor p that connects with short link 

with n will be linked with the most similar of n’s neighbor, m, which is also linked with n 

through a short link. As we have mentioned in section 7.1, when a peer joins the system it 

connects with the most similar existing peers. Hence, we expect peers n, p, m to be similar to 

each other. After determining about the new connections, peer n sends a message to each of 

its neighbors, p, which contains the new connections that p is going to create. Then, peer n 
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leaves the system. Note that the creation of new links for n’s neighbors changes the routing 

indexes of peers that are within the horizon of n. Thus, the routing indexes of those peers 

must be updated. 

7.1.4. Creating and Maintaining Routing Indexes 

Let us now turn our attention on how RIs are either created or maintained [22]. The creation 

of a routing index is necessary when a peer joins the system while the routing index update is 

essential for existing peers in cases when a peer joins the system, when the data changes 

locally at a peer; hence its local index is updated, and when a peer leaves the system.  

 

In particular, when a new peer ni joins the system must construct its own routing indexes and 

must inform the peers within radius r about its stored data, in order to update their routing 

indexes and keep them in a consistent state. Thus, after peer ni joins the system and links with 

its selected as neighbors peers, then it sends a message New(LI(ni), Counter) to all the peers 

that are within its horizon, in order to propagate them its local index. Initially, the message 

New(LI(ni), Counter) is propagated to all ni’s neighbors and the Counter is set to r. Each peer 

nj that receives the New message, from its link e, merges the LI(ni) with its routing index of 

the corresponding link, RI(nj, e), it reduces the Counter by one and then it sends the message 

New(LI(ni), Counter-1) to all of its neighbors.  

 

In addition, peer ni must construct its own routing indexes. Hence, it must receive the local 

indexes of all the peers that are within its radius r for each of its links and create the 

corresponding routing indexes as we described in Section 4.2.1. This is achieved through a 

sequence of FW(Local Index, Counter, Flag) messages. In particular, each peer nj that 

receives the New message from a peer nk, it replies to nk with a FW(LI(nj), r, False) message. 

Upon receipt the FW(LI(nj), Counter, False) message, each peer decrements the Counter by 

one and if Counter is non zero then it forwards the FW(LI(nj), Counter-1, False) message 

back to the peer that sent the New message to it. Thus, all the peers that receive the New 

message, i.e., all the peers that belong in the horizon of ni, send their local indexes through the 

FW messages to ni and its routing indexes are constructed by merging the corresponding local 

indexes. 

 

The usage of the Flag parameter is important in the case when the insertion of the new peer 

changes the horizons of the existing peers. For example, consider the network depicted in 

Figure 7.1 where the radius of the routing indexes is set to r = 2. Assume that peer 10 enters 
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the system and links with peers 1 and 4. Hence, the local index of peer 10 must be propagated 

to peers 1, 2, 3, 4, 5. Furthermore, the routing indexes of the new peer must be constructed. 

However, note that the insertion of peer 10 changes the relative distance of some peers. In 

particular, now peer 4 belongs to the horizon of peer 1 and vice versa, since their distance 

through peer 10 is now 2. Thus, the local index of peer 4 (1) must now be merged with the 

corresponding routing index of peer 1 (4). To deal with this situation, we use the Flag 

parameter. 

 

 

Figure 7.1: Example of Index Update 

Specifically, the Flag parameter is used as follows: Initially, Flag is set to False for each new 

FW(Local Index, Counter, Flag) message. When the new peer ni receives a FW(Local Index, 

Counter, Flag) message, it changes the Flag parameter from False to True and decrements 

the Counter by one. If the Counter is non-zero, it propagates the FW(Local Index, Counter-1, 

True) message to all of its neighbors except from the peer that has received the message. Each 

peer that receives a FW(Local Index, Counter, True) message merges the Local Index with its 

corresponding routing index, decrements the Counter by one and if the Counter is non-zero it 

forwards the FW(Local Index, Counter-1, True) message to its neighbors, except from the one 

that has received the message. Hence, in our example peer 10 sends the New(LI(10),2) 

message through the links l1 and l2 to all the peers, i.e., 1, 2, 3, 4, 5. Upon receipt of the New 

message, peer 1 sends a FW(LI(1), 2, False) message back to 10. When peer 10 receives this 

message, changes the Flag parameter from False to True, decrements the Counter by one and 

propagates the FW(LI(1), 1, True) message to peer 4. When peer 4 receives this message, 

merges the LI(1) with its RI(4, l2); hence the horizon of peer 4 and the routing index of link l2 

are maintained up-to-date. 
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In the case when the data change locally at a peer ni, its local index must be updated. In 

addition, the routing indexes of all the peers within ni’s horizon must be updated too. Hence, 

each peer, in order to detect the changes in its data, periodically reconstructs its local index. 

Furthermore, a peer ni that updates its local index informs the peers within its horizon to 

update their routing indexes through a sequence of New_Up(LI(ni), LI’(ni), Counter) 

messages. The New_Up messages are similar with the New messages and the only difference 

is that they contain additional information about the old “version” of the ni’s local index, 

LI(ni), and the more recent version of ni’s local index, LI’(ni). When a peer nj receives the 

New_Up message, then it excludes from the corresponding routing index the old “version” of 

ni’s local index, LI(ni), and updates the routing index by merging to it the LI’(ni). 

 

In addition, when a peer ni wishes to leave the system, it must inform all the peers within its 

horizon to exclude the information of the LI(ni) from their routing indexes. To achieve this, 

peer ni sends a New message to all its neighbors with a Counter set to the radius r, New(LI(ni), 

r). When the message reaches a peer nj through link l, the peer updates its routing index, 

reduces the Counter by one and then sends the message New(LI(ni), Counter-1) further to all 

its neighbors until the Counter reaches 0. Furthermore, peer nj sends a New(LI(nj), r) message 

through link l to inform the peers that are now included in its horizon about its local index, 

since the departure of peer ni has resulted in the decrease of the distance between other peers.  

 

In the following sections, we briefly discuss how the global workload synopsis can be kept 

up-to-date and the conditions that we must follow for efficiently maintenance of peer 

clustering.   

7.1.5. Updating the Global Query Workload 

In this section, we discuss how we can keep the synopsis that approximates the global query 

workload up-to-date. In particular, the workload distribution in a p2p system may change 

during time. Hence, the corresponding synopsis, WS, must be kept up-to-date so as to 

represent each time the distribution that the global query workload follows accurately. In 

addition, as we have mentioned in Section 6.4.3 we create the global query workload synopsis 

by merging the local peer workload synopses. Although, the issue of acquiring the global 

query workload synopsis from the local ones is beyond the scope of this thesis, i.e., which 

form of gossiping or epidemic propagation has to be used, we propose some ideas to 

accomplish this. 
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A very simple approach is using a periodic strategy where a peer n periodically broadcasts-

pushes an update message ))n(LWS ),n(LWS(Up_W
1kk tt +

 to the network. In particular, each 

peer n keeps two snapshots of its local query workload synopsis. The first one, )n(LWS
kt , 

corresponds to the local workload synopsis of peer n at time tk while the second one, 

)n(LWS
1kt +

, represents the workload synopsis of peer n at time tk+1, where (tk+1 - tk) is the 

broadcast period between two messages. Upon receiving this message, each peer p excludes 

from its WS the information of the )n(LWS
kt  and merges the WS with the )n(LWS

1kt +
. The 

period of sending the update message might be different for each peer. This approach has two 

serious drawbacks. The first one is that it incurs a large communication overhead to the 

network, especially when the time period is too small, because each peer is forced to 

broadcast the update message even when the distribution of its local query workload does not 

change; hence it is meaningless to send this message. Secondly, the distribution of the query 

workload for a peer might change between two consequent messages. This will lead in 

inaccuracy of the estimation of the global query workload especially when the period between 

two consecutive update messages is large enough. Overall, it is difficult to determine the time 

period between two concecutive broadcasts of the update message.  

 

A more sophisticated approach is for a peer n to broadcast its local query workload synopsis 

when it detects that a change to its workload distribution has occurred. In particular, this 

approach is similar with the previous one with the difference that the peer n broadcasts the 

update message ))n(LWS ),n(LWS(Up_W
lk tt  when it detects a change on its local query 

workload distribution. tk corresponds to the last time unit that peer n sent an update message 

while tl is the time unit that the peer detects the change in its local workload distribution. In 

that way, we eliminate the cost of sending useless messages and furthermore at each point the 

global query workload is consistent.  

7.1.6. Detection of Changes in the Local Query Workload Distribution 

In this section, we discuss how we can detect a change in the query workload distribution of a 

peer. Although this issue is hard to deal with, we propose a simple approach to overcome this 

problem. Recall that in Section 5.2, we proposed an aging technique in order to enable the W-

ST histogram to capture the current distribution of the queries that arrive at a peer. Similarly, 

to detect the change of the query workload, exactly before each time the restructuring process 

of the W-ST histogram takes place, e.g., tl, we compare the two local query workload 
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synopses )n(LWS
kt  and )n(LWS

lt  of peer n, where tk corresponds to the last time unit that 

peer n sent an update message. To achieve this, we propose to use a content-based similarity 

measure, e.g., the edit histogram distance metric, and to measure the ratio of dissimilarity 

between these two histograms. If the dissimilarity is larger than a threshold then we assume 

that the query workload distribution has changed. 

7.1.7. Re-clustering 

When the global query workload distribution changes, we have to re-cluster the peers since 

their clustering is done based on the previous distribution. By the term re-cluster we mean that 

a peer leaves and joins the system in the way that we have described in Sections 7.1.3 and 

7.1.1, respectively. Obviously, the procedure of re-clustering all the peers will cause a large 

cost for reconstructing the network especially when the distribution changes frequently. To 

reduce this cost, we propose a peer to leave and re-join the system only when the distribution 

changes considerably. In particular, for a peer n, we measure the distance between two 

snapshots of the global query workload synopsis, whenever an update of the global query 

workload is occurred, d(WS’, WS) where WS’ and WS is the previous and the current-updated 

version of the global query workload synopsis. If this distance is larger than a threshold then 

the peer is re-clustered. 

 

The main drawback of the above procedure is that each peer just examines when a change to 

the global query workload happens and not whether the current clustering of peers is still or 

remains appropriate for the new “version” of the global workload distribution; hence the peer 

does not have to leave and re-join the network. Thus, an extension of the above procedure can 

be used. In particular, when a peer n detects a change to the global query workload 

distribution, then it sends a message to its neighbors and asks for their local indexes. Upon 

receiving their local indexes, for each neighbor p it measures the distance d(WS, LI(n), LI(p)) 

and if this distance is close to zero or lower than a threshold, which means that peer n and its 

neighbor p provide similar results even for the new global workload distribution, then peer n 

does not have to leave and re-join the system.  

7.2. Building Workload-Aware Overlays Based on Local Query Workloads 

As we saw from the experimental evaluation of Section 6, taking into account the local query 

workload for the formation of clusters can lead to an efficient clustering in the case when a 
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query visits the peers with the most matching results. This kind of clustering does not have 

the drawback that each peer must know the global workload distribution. In what follows, we 

describe the procedures for constructing the p2p network and when a peer decides to leave the 

system. These procedures are similar with those mentioned in Section 7.1 but with few 

differences. The protocols for routing a query and keeping the routing indexes up-to-date are 

exactly the same with those described in Sections 7.1.2 and 7.1.4, respectively.  

7.2.1. Workload-Aware Overlay Construction 

The procedure that we propose to follow when a peer n wishes to join the system is similar 

with the one mentioned in Section 7.1.1 but with the difference that instead of using the 

global query workload synopsis, WS, for measuring the distance between itself and the 

candidate peer p that is going to be linked, it uses the local query workload synopsis of peer p, 

LWS(p). The idea is that if the two peers provide similar number of results for a given query 

workload, which in our occasion is the local query workload of peer p, then they must be 

immediately linked.  

 

Thus, as before when a new peer n wishes to join the system, initially it poses its local index 

LI(n) as a join message to a well known peer of the system. In addition, this message also 

keeps a list L (initially empty) with all the peers that it visits during routing. Each peer p that 

receives the join message executes the following steps: 

1. The distance d(LWS(p), LI(p), LI(n)) between the local indexes LI(p) and LI(n) of peers p 

and n respectively is calculated taking also into account the local query workload 

synopsis LWS(p) of peer p. 

2. Node p and the corresponding distance are added to list L. 

3. For each one of the links e of peer p the distance d(LWS(p), RI(p, e), LI(n)) between the 

local index LI(n) and the routing index RI(p, e) is calculated taking into account the local 

query workload synopsis LWS(p) of peer p. 

4. The join message is propagated through the link l whose routing RI(p, l) is the most 

similar with LI(n)  (d(LWS(p), RI(p, l), LI(n)) < d(LWS(p), RI(p, e), LI(n)) ∀  link le ≠ ) 

and has not been followed yet. When the join message reaches a peer with no more 

unvisited links to follow, backtracking is used. 

 

After peer n joins to the system, i.e., it is linked with the peers that it chooses as neighbors, 

initially it has no information about its local query workload since no queries has arrived at it 

yet. Its local query workload synopsis will be created when several queries will visit it. 
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An important issue is how to calculate the distance d(LWS(p), LI(p), LI(n)) between the local 

indexes of peers p and n and the distance d(LWS(p), RI(p, e), LI(n)) between the local index of 

peer n and the routing index of the link e of peer p in the case when we use a workload-aware 

distance measure and no queries have arrived to peer p, i.e., we have no information about 

LWS(p). In that case, we overcome this problem by using a content-based similarity measure. 

7.2.2. Peer Leave 

The procedure that we must follow when a peer n leaves the system is similar with the one 

mentioned in Section 7.1.3 with the only difference that the new connections that will be 

established between the neighbors of n, in order to keep the network connected, is based on 

the local query workload synopsis of n. In particular, before peer n leaves the system, it 

performs the following steps:  

While NL is not empty 

1. Peer n selects a neighbor p from NL. NL = NL - {p}. 

2. If the link that connects peers n and p is short, link(n, p) = short, then we select 

another peer m∈NL, which is also connected through short link with n, link(n, m) = 

short, to link through short link with p. In addition, peer m must be the one with the 

smallest histogram distance from peer p, i.e., d(LWS(p), LI(p), LI(m)) < d(LWS(p), 

LI(p), LI(k)) ∀  peer mk ≠  and k∈NL, if we use a workload-aware distance metric 

or d(LI(p), LI(m)) < d(LI(p), LI(m)) ∀  peer mk ≠ and k∈NL, if we use a content-

based distance metric. 

3. If the link that connects peers n and p is long, link(n, p) = long, then similarly with 

step 2 we select another peer m∈NL, which is also connected through short link with 

n, to link through long link with  p. 

End While 

 

Finally, when a peer detects a change in its local query workload distribution then the peer 

must leave and re-join the system since the clustering of peers might be inefficient. The 

detection of changes in the local query workload distribution was discussed in Section 7.1.6. 

7.3. Summary 

Summarizing, in this chapter we describe the protocols that a peer follows when it wishes to 

join and leave the system as well as how a query is routed through the network in the case 

when we use the global query workload and when we use the local query workload to create 
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the clustering of peers. In addition, we described how to create and maintain the routing 

indexes when a new peer joins the system, when an existing peer wishes to leave the system 

and when the data changes locally at a peer. Finally, we made a brief discussion on how the 

global query workload synopsis can be updated, how a peer can detect a change on its local 

query workload distribution and the conditions that we must follow in order to decide when a 

peer must be re-clustered. 

 

As we have mentioned before, taking into account the local query workload for the formation 

of clusters can lead to an efficient clustering in the case when a query visits the peers with the 

most matching results. This approach does not have the drawback that each peer must know 

the global workload distribution. However, it does not guarantee that all the queries that arrive 

at a peer are answered efficiently, i.e., a query might visit several peers that do not provide 

enough matching results. Thus, the clustering of peers might not be efficient because the local 

query workload of the peers is not the ideal.  

 

In the following chapter, we conduct an experimental evaluation where we follow the first 

approach, i.e., the clustering of peers takes into account the global query workload. 
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CHAPTER 8. EXPERIMENTAL EVALUATION 

8.1. Experimental Parameters 

8.2. Performance of Constructed Networks 

8.3. Cycles in Query Routing 

8.4. Summary 

 
 

 

In this chapter, we experimentally evaluate the performance of the network built based on the 

global query workload. The network construction and the routing of a query through the 

network are done by following the procedures that we described in Sections 7.1.1 and 7.1.2, 

respectively. In particular, we evaluate the network that is constructed using the workload-

aware edit histogram distance mesure (wedit) and compare it with the networks that are 

constructed using the content based, the L1 and the edit histogram distance measures. We also 

compare those p2p networks with a randomly constructed p2p network (random), i.e., when 

both the join of a peer and the routing of a query is done randomly, and with a network that 

uses the routing indexes only for the routing of a query message (random_join), i.e., when 

only the construction of the network is done randomly. The evaluation of the performance of 

answering range-queries is done by measuring the PeerRecall. In what follows, we initially 

describe the parameters that we use for the conduction of the experiments. Furthermore, we 

study the influence of the radius of the routing indexes and the long links in the performance 

of the network and finally we discuss “cycle” avoidance. 

8.1. Experimental Parameters and Distributions 

We simulated the peer-to-peer network as a graph and the size, |N|, of the network is set to 

500 peers. When a new peer wishes to enter the system, the routing of the join message is 

propagated until JMaxVisited peers are visited. In our experiments, we set this parameter 

equal to Nlog  peers so as the routing of the join message increase logarithmically with the 
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network. Furthermore, each peer creates 1 to 2 short links (SL = 1 or 2) and one long link with 

probability Pl that varies from 0.0 to 1.0. As far as routing indexes are concerned, we set the 

radius of the horizon from 1 to 4. In addition, when a query is initiated at a peer, we set the 

number of peers that the query message visits, QMaxVisited, equal to 5% of the network size, 

since we are interested in visiting only a small fraction of the network. 

 

Each peer stores a relation with an integer attribute 999] ,0[x∈  that contains 10000 tuples. 

The parameters that we use for the histograms that are used as local indexes are those defined 

in Chapter 4. In particular, the tuples are summarized by a maxdiff(v, f) histogram with 100 

buckets. Note that the histograms that are used as routing indexes also have the same number 

of buckets. The data distribution that the content of each peer follows is the same with the one 

described in Section 3.6.1.1 in the case when the peers have equal size but with the difference 

that more than one peer follows the same distribution. Specifically, for each peer, 80% of the 

tuples falls into 2 of 200 equal disjoint regions that we have divided the value domain, which 

are selected randomly, and the rest of the tuples are uniformly distributed among the rest of 

the values. Each one of the selected regions has 40% of the tuples.  

 

Furthermore, for simplicity, in our experiments we consider that we know the distribution that 

the global query workload follows. Thus, instead of acquiring the global query workload 

synopsis from the local ones by merging the local workload synopses we create the 

histogram-synopsis that represents the distribution that the global workload follows by 

passing a set of queries. The W-ST histogram that represents the global query workload 

synopsis also has 100 buckets, while the rest of the parameters, e.g., merge threshold e.t.c., 

that describe the histogram are those defined in Chapter 5. For these experiments, we assume 

two different kinds of query workloads consisting of range queries. In both query workloads, 

we assume that the starting point of the queries is chosen uniformly, while the query ranges 

follow a Zipf distribution. For the first query workload, we consider that the most frequent 

queries are those with range 10 (Hqr = 10), while in the second query workload the most 

frequent queries are those with range 100 (Hqr = 100). In both query workloads the skewness 

of the Zipf distribution is set to 3.0 (Qz = 3.0). The input parameters are summarized in Table 

8.1. 

8.2. Performance of Constructed Networks 

In this section, we evaluate the clustered networks that are constructed using the wedit, the 

edit and the L1 histogram distance measures. We compare them with a randomly constructed 
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network (random), where a new peer that joins the system connects randomly to existing 

peers and the routing of a query is also done randomly, meaning that when a peer gets a query 

message it forwards it randomly to one of its neighbors, and with a randomly constructed 

network that uses the routing indexes only for routing a query (random_join). The evaluation 

of the constructed networks is done using PeerRecall as our performance measure. 

Table 8.1: Input Parameters for the P2P Network. 

Parameter                                                                   Default Value                Range 
Peer-to-Peer Parameters                                       
Number of peers ( N )                                                 500  
Radius of the horizon (r)                                              2                                     1 - 4 
Number of short links (SL)                                           2                                     1 - 2 
Probability of long link (Pl)                                          1.0                                  0.0 - 1.0             
Percentage (%) of peers visited 
during join procedure routing (JMaxVisited)               Nlog  
Percentage (%) of peers visited 
during query routing (QMaxVisited)                            5 
Data Distribution Parameters                               
Domain of x                                                                  [0, 999] 
Tuples per peer                                                             10000                                          
Data Concentration (DC)                                              0.8 
Number of disjoint regions (Dr)                                   200                                              
Query Workload Parameters 
Query Workload Distribution                                       Zipf                                 
Number of queries                                                        1000 
Range of queries                                                           [0, 999] 
Zipf parameter (Qz)                                                      3.0                                                
Hot query range (Hqr)                                                  10, 100 
Histogram-Related Parameters                            
Peer Histogram Parameters (H(n)) 
Type of Histogram                                                        Maxdiff(v, f) 
Number of buckets (b)                                                  100 
Query Workload Histogram Parameters   
Type of Histogram                                                        W-Self-Tuning 
Number of buckets (b)                                                  100 
Merge threshold (mt)                                                     0.01% 
Split threshold (st)                                                         10% 
Restructuring Interval (ri)                                             100 
 

 

In Figures 8.1 and 8.2, we demonstrate the influence of the radius of the routing indexes in the 

performance of the constructed networks when the number of short links that are used for 

connecting a new peer that joins the system with the existing peers is SL = 1 and SL = 2, 

respectively and when the query workload mainly consists of queries with ranges 10 (Fig. 



 

 

138

8.1(a) and 8.2(a)) and 100 (Fig. 8.1(b) and 8.2(b)). The radius of the horizon varies from 1 to 

4 while the probability of a long link is fixed to 1.0. 
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                                      (a)                                                                  (b) 

Figure 8.1: Performance of Constructed Networks for different Values of the Radius when (a) 
Hqr = 10 and (b) Hqr = 100 and when Qz = 3.0 and SL = 1. 
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                          (a)                                                                  (b) 

Figure 8.2: Performance of Constructed Networks for different Values of the Radius when (a) 
Hqr = 10 and (b) Hqr = 100 and when Qz = 3.0 and SL = 2.                           

Our first observation is that using routing indexes for both the construction of the p2p 

network, i.e., when a new peer joins the system we try to link it with the most similar peers as 

determined by the similarity distance measure (L1, edit or wedit) used, and for the routing of a 

query results in much better performance in comparison with the networks that do not use 

routing indexes at all (random) or use the routing indexes only for the routing of a query 

(random_join). Thus, the clustering of similar peers using a distance measure plays a crucial 
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role in the performance of the network. In addition, in the case of the clustered constructed 

networks when we use 2 short links instead of 1 for connecting a new peer results in better 

performance, since when a new peer enters the system, it has the potential to be linked with 

more similar peers. 

 

Comparing now the constructed clustered networks we see that creating a p2p network using 

our wedit distance measure leads to better performance in comparison with the networks that 

are constructed using the content-based, which are the L1 and the edit distance measures for 

all kinds of query workloads. In particular, for query workloads that consist of queries with 

small range, Hqr = 10, the network constructed based on the edit distance measure performs 

worse than the one constructed based on the L1 distance, in the case when the radius is larger 

than 1, and even worse than the one created using the wedit distance (Fig.8.1(a) and 8.2(a)). 

This happens because as we have discussed in Section 6.4.1, the clustering of peers that the 

edit distance achieves is not efficient in the case when the query workload consists of queries 

with small ranges.  

 

Although we expected the network constructed by the edit distance to perform better than the 

one created using the L1, since the L1 distance is not shuffling dependent, this does not happen 

in the case when the radius of the routing indexes is larger than 1. Specifically, as we have 

discussed, for the data distribution that the peers follow in our experiments the L1 distance 

metric clusters the peers that follow the same distribution and it considers the distance 

between a peer that follows a distribution with all the other peers that follow different 

distributions equal. Hence, when the radius of the routing indexes is 1, i.e., a peer has 

information about the local indexes of only its immediate neighbors that likely follow the 

same distribution, then indeed the edit distance performs better than the L1. In other words, 

when the radius is 1 the performance of the query routing depends on how efficient is the 

similarity that we use for clustering the peers. But as the radius increases, then it is possible 

the routing index of a peer to include information of the content of peers that do not follow 

the same distribution with it. Hence, during the routing of a query message the routing 

indexes, with radius larger than 1, allow the query to navigate efficiently to other clusters of 

peers that provide enough results for the query.  

 

In the case when the query workload consists of queries with large range (Hqr = 100) 

(Fig.8.1(b) and 8.2(b)) the network that is constructed using the edit distance performs better 

than the one that is created by using the L1 distance since the clustering of peers that the edit 

distance creates is much more efficient for query workloads with large ranges. Also in this 
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case, the network that is constructed using the wedit distance is much more efficient in 

comparison with the other two constructed clustered networks. 

 

In addition, for all distance metrics, PeerRecall increases until some point and then it 

decreases. In particular, in the case when SL = 2, PeerRecall decreases for radius greater than 

2 while in the case when SL = 1 the performance of the constructed networks increases until 

the radius takes the value 3. In general, this happens because the larger the radius of a routing 

index, the more peers with different distributions are included within the horizon of a peer; 

hence, a large number of local indexes are summarized by a routing index of a peer. This 

leads the routing indexes to become useless since a query message cannot “select” efficiently 

which link to follow from a peer so as to find enough matching results for the query. 

Furthermore, for 1 short link, the PeerRecall increases even for radius 3 which does not 

happen when we use 2 short links. This happens because in this case the number of peers that 

are wihin the horizon of a routing index is smaller; hence, the inaccuracy of the routing index 

is not so high. For radius 2 and for 2 short links, we achieve the best performance. 
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                                    (a)                                                                      (b) 

Figure 8.3: Effect of Long Link in the Performance of the Constructed Networks for Different 
Values of Pl when (a) Hqr = 10 and (b) Hqr = 100 and when Qz = 3.0, SL = 2 and r = 1.                   

We also examine the influence of creating each peer a long link in the performance of the 

network. Recall that, the long links are inserted so as when the join message of a new peer n 

is not in the right group of peers, i.e., the join message of the new peer is located in a peer that 

is not similar with n, to be easy to navigate the message to another group of relevant peers 

that might be more relevant with n. For the same reason, long links are also useful for the 

routing of a query message. When the query message is not in the right group of peers, i.e., 

these peers do not provide enough results for the query then the long links can be used to 

forward the query message more easily to another group of peers that provide larger matching 
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results for the query. Specifically, we vary the probability of creating a long link for a peer 

when it joins the system and we measure the PeerRecall that the constructed networks achieve 

for each value that the probability takes. The probability of creating a long link takes values 

between 0.2 and 1.0. PeerRecall with respect to the long link probability is presented in 

Figure 8.3 for query workloads where the majority of queries have range 10 (Fig.8.3(a)) and 

100 (Fig.8.3(b)). From the experimental results, we conclude that as the probability of 

creating a long link for each peer increases the performance of the constructed networks 

increases too. This was expected because the creation of long links contributes considerably 

to the navigation of the join and query messages among the groups of peers. We achieve the 

best performance when this probability takes the value 1.0. 

 

 

Figure 8.4: Example of a Case when more than one Routing Indexes Include the same Local 
Index. 

8.3. Cycles in Query Routing 

In this section, we analyze how cycles in query routing affect performance. In particular, it is 

possible that the local index of a peer ni is included in more than one routing index of a peer 

nj. For example, consider the network depicted in Figure 8.4 and that the radius of the routing 

indexes is set to r = 2. Hence, for peer 1 the routing index of link l1 contains the local indexes 

of peers 2, 4 and 5, while the routing index of link l2 contains the local indexes of peers 3, 5 

and 6. This is not desirable because if the routing indexes of two links, e.g., l1 and l2, of peer 

nj contain the local indexes of almost the same peers, then during query routing it is highly 

possible that two different paths from the same peer nj, starting from l1 and l2 respectively, 

may lead us to the same peer ni. The query message will detect that it is routed to the same 

peer ni only one hop far away of it. Note that the query message visits the same peer nj when 

backtracking is used, which we expect to happen occasionally, and link from nj that has not 

been followed yet is selected so as to route the message. 
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  Figure 8.5: Example of a Mistaken Routing of the Query Message in the Case when we Use 
the Cycle Avoidance Approach. 

To avoid this situation, there are several approaches. In the first approach, denoted as No-op 

solution, no changes are made to the algorithms. An alternative approach, proposed in [22], is 

cycle avoidance solution. In particular, we considered that a local index is stored in only one 

of a peer’s routing indexes. To achieve this, each peer stores the identifiers of the peers that 

are included in each of its routing indexes. Hence, when a peer nj that receives the New(LI(ni), 

Counter) message from its link e, that informs the peer nj that the local index of peer ni must 

be included in its routing of link e, before it starts the merging of the LI(ni) with its routing 

index of the corresponding link, it first checks if this local index has already stored at the 

routing index of another of its links. If so, then the merge procedure is not executed. 

 

Although this approach seems to be promising it has a serious drawback. Excluding one or 

more local indexes from the routing indexes of a peer nj can lead us to take a wrong decision 

about which link a query message must follow. For example, consider the network depicted in 

Figure 8.5. Let us assume that a query q is initiated at peer 1 and that peers 2, 3, 4 and 5 have 

1000, 0, 400 and 600 matching results for q, respectively. Moreover, the radius of the horizon 

is set to 2. Thus, in the case when we do not use the No-op solution, the routing indexes of 

links l1 and l2 must summarize the information of the local indexes of peers 3, 2 and 4, 2, 

respectively. When we use the Cycle Avoidance solution, the routing index of link l1 

summarizes the information of the local indexes of peers 3 and 2. Then, the routing index of 

link l2 has information about the local index of peer 2 only. Thus, in this case the path that the 

query message follows is 1 - 3 - 2 - 5 and 1600 matching results are found. In the case when 

we follow the No-op solution the query follows the path 1 - 4 - 2 - 5 and finds 2000 matching 

results. In our implementation, we follow the No-op solution.  
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                                    (a)                                                                      (b) 

Figure 8.6: Performance of the Constructed Network Using the L1 Distance Measure when the 
No-op and the Cycle Avoidance Solutions are Applied for different Values of the Radius 

when (a) Hqr = 10 and (b) Hqr = 100, when Qz = 3.0 and SL = 2.   
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                                    (a)                                                                      (b) 

Figure 8.7: Performance of the Constructed Network Using the Edit Distance Measure when 
the No-op and the Cycle Avoidance Solutions are Applied for different Values of the Radius 

when (a) Hqr = 10 and (b) Hqr = 100, when Qz = 3.0 and SL = 2.   

We conducted an additional experiment where we examine the influence of the No-op 

solution and the cycle avoidance solution in the performance of query routing of the clustered 

constructed networks. In particular, in Figures 8.6, 8.7 and 8.8 we show the PeerRecall we 

achieve with respect to the radius when the L1, the edit and the wedit histogram distance 

measures are used for the construction of the network, respectively, and for query workloads 

where the most frequent queries are those with range 10 (Fig. 8.6(a), 8.7(a) and 8.8(a)) and 

100 (Fig.8.6(b), 8.7(b) and 8.8(b)). The results show that the performance of all clustered 

networks is better when we use the No-op approach instead of the cycle avoidance approach.  
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Figure 8.8: Performance of the Constructed Network Using the Wedit Distance Measure when 
the No-op and the Cycle Avoidance Solutions are Applied for different Values of the Radius 

when (a) Hqr = 10 and (b) Hqr = 100, when Qz = 3.0 and SL = 2. 

8.4. Summary 

To conclude, the networks that are constructed using a distance measure, L1, edit or wedit, 

and routing indexes both for the construction of the p2p network and for the routing of query 

perform better than the random and the random_join networks. Furthermore, the networks 

that are constructed using the workload-aware edit (wedit) distance perform better than the 

clustered networks that use other distance measures, e.g., L1 and edit, for all kinds of query 

workloads. Finally, using the No-op approach leads to better performance than using the cycle 

avoidance approach, which tries to avoid cycles in the routing of a query message. 
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CHAPTER 9. CONCLUSIONS AND FUTURE 

WORK 

9.1. Summary 

9.2. Future Work 

 

9.1. Summary  

In this thesis, we use the idea of creating a peer-to-peer network based on the query workload 

[22]. In particular, the formation of peer clusters relies on two basic factors, (i) peers content, 

where two peers with similar content will participate in the same cluster, and (ii) query 

workload, so that the type and probability of queries is taken into account in creating the 

clusters. Hence, “popular” queries affect the formation of peer groups more than unpopular 

ones. The motivation for taking into account the query workload is that if some data items are 

queried only seldomly, we do not want them to influence clustering as much as other data 

items. 

 

Initially, we introduce three workload-aware distance measures that differ on how they take 

into account the size of the peers and we compare them with several well known content-

based distance measures so as to see how efficient is the clustering of peers that each one of 

them achieves. The experimental evaluation shows that in the general case the clustering that 

the workload-aware distance measures provide is more efficient than those created using the 

content-based ones. In addition, we select one of the three workload-aware distance measures, 

the Manhattan workload-aware distance measure, as the most appropriate to cluster the peers 

since the quality of clustering that it provides, from the perspective of PeerRecall, in compare 

with the quality of clustering that the other two workload-aware distance measures provide is 

more efficient in most of the cases.  
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Furthermore, based on the idea of using histograms as local indexes to summarize the content 

of each peer, we study the performance of different types of histograms. In particular, we 

select the maxdiff(v, f) and traditional equi-width histogram types and we make an extensive 

discussion on how these histograms are constructed. The experimental evaluation shows that 

the maxdiff(v, f) histogram performs much better than the equi-width; hence, we selected the 

maxdiff(v, f) histogram as the appropriate one for summarizing the content of the peers.  

Moreover, we also use histograms as routing indexes. Routing indexes are stored for each link 

of a peer, summarizing the content of the peers within the horizon, reachable through this 

link. These indexes are used in order to route a join or a query message through the link that 

we expect to find similar peers or enough matching results for the query, respectively. For 

creating routing indexes, we propose a novel procedure for merging two independent 

histograms into one that summarizes accurately the information of both of them. 

 

To take into account the query workload for the formation of clusters we also propose using 

histograms for summarizing the peers local query workload, i.e., the queries that arrive at 

each peer. We introduce the W-ST histogram and we make an extensive discussion on how 

these histograms are constructed. We experimentally evaluate the accuracy of this histogram 

in compare with the W-Equi-Width histogram for several kinds of query workloads. The main 

conclusion from our experiments shows that the W-ST histogram can capture accurately the 

distribution that the query workload follows and performs much better than the W-Equi-

Width histogram. Moreover, by using an aging technique the W-ST acquires the possibility to 

adapt to changes of the query workload distribution. 

 

In order to construct the peer-to-peer network based on the content of the peers and the query 

workload, the distance between the histograms that represent the content of pair of peers 

should be calculated. The peers with small distance will be grouped together. The criterion 

based on which peers will be grouped together is the difference in the number of results that a 

pair of peers provide for a query workload, denoted as Histogram-Based Workload-Aware 

Property. Based on this property, we introduced a workload-aware histogram distance metric, 

denoted as wedit, that takes also into account the query workload in the calculation of the 

distance between two histograms. We also considered two well known content based 

histogram distance measures, the L1 and the edit. It is shown experimentally and 

mathematically that the wedit satisfies this property, i.e., the distance between two histograms 

is an accurate approximation to the difference in the number of results that the two 

corresponding peers provide for a given query workload, while the content-based histogram 

distance metrics does not. In addition, we conduct several experiments where the clustering of 
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peers is done based on wedit distance measure and in the first case it is taken into account the 

global query workload, which obtained by merging the peers local query workload 

histograms, while in the second case it is taken into account the peers local query workloads. 

In both cases the clustering of peers was efficient. This experiment gives us a motivation that 

there are several ways to create an efficient workload-aware clustering of peers. 

 

Furthermore, we present the corresponding procedures for the construction of the network, for 

updating and maintaining the routing indexes, for routing a query through the network and 

when a peer wishes to leave the system in the cases when we take into account the global 

query workload and the peers’ local query workloads to form the clusters of peers.  

 

Finally, we construct a clustered p2p network using the wedit histogram distance measure that 

takes into account the global query workload and we compared it with the clustered p2p 

networks that are constructed using the content-based histogram distance measures. We also 

compare those networks with a randomly constructed p2p network (random) and with a 

randomly constructed network that uses routing indexes only for the routng of a query 

message (random_join). Our experimental results show that the clustered constructed 

networks perform much better than the random and random_join networks. Moreover, the 

network which is constructed using the wedit histogram distance measure performs well and 

higher from all the other clustered constructed networks, which use content-based histogram 

distance measures for the clustering of peers, for several kinds of query workloads. 

9.2. Future Work 

This work takes into account the query workload for the formation of clusters in a peer-to-

peer network using histograms. There are many issues that need further investigation. So far, 

we used the global query workload for the clustering of peers. An interesting issue is to create 

the peer-to-peer network based on local query workloads, as described in Chapter 7. This 

approach does not have the “drawback” of estimating the global query workload distribution 

which is a hard to deal problem. 

 

In addition, in our thesis we considered that the query workload consists of range queries 

where the starting point of each query is chosen randomly while the range of queries follows a 

skewed distribution. Hence, the query workload can be efficiently estimated by constructing a 

histogram that represents accurately the distribution that the query ranges follow. An 

interesting issue is to include more general types of query workloads. In particular, instead of 
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selecting randomly the starting point of each query, we can select it following a skewed 

distribution. Thus, the query workload will be described by the combination of two 

parameters: the distribution of the query ranges and the distribution of selecting the starting 

point of each query. In this case, we have to construct a two-dimensional histogram to 

summarize the query workload and to define new histogram distance measures. 

 

Another interesting issue is how to select the peer that will be attached through a long link 

with a new peer that joins the system. In our implementation, we assume that this peer is 

selected randomly from the list of the visited peers and does not belong to the set of peers that 

are selected to be linked through short links. For this case, more sophisticated methods can be 

used that will affect the topology of the constructed network.  

 

Another important issue is the kind of routing indexes that we use for routing the query. In 

particular, the routing indexes that we use in our implementation summarize the content of all 

peers that are reachable from a peer n at a distance at most r. The main limitation of this kind 

of routing indexes is that they do not take into account the number of hops required to find the 

query results. For instance, consider that we want to create the RI(n, e) and we have two 

peers, p and g, which must be included in the routing index. The first one is a neighbor of n 

while the second is many hops away from n. In that case, the local indexes of both peers, 

LI(p) and LI(g), will participate “equally” in the creation of the routing index of peer n, even 

though the probability that the query visits peer g is much smaller than visiting peer p. An 

alternative approach is to keep separate routing indexes for the procedures of join and routing. 

For the routing of a query, we propose the routing indexes to take into account the number of 

hops: hop-count routing indexes. In particular, if we want to create the RI(n, e) and peer p is 

reachable from peer n through link e at m < r hops, then the LI(p) will be divided by a factor 

m and then it is going to be included in the RI(n, e). Hence, as far away is peer p from n, the 

less the LI(p) contributes in the creation of the RI(n, e). 

 

Finally, we can further extend our model to support also range queries over multiple 

attributes. So far, we considered queries that involve a single attribute. Histogram-based local 

and routing indexes can be used also in the case of queries that involve more than one 

attribute. Let us assume m attributes xi, mi1 ≤≤ . There is a number of different approaches 

to exploiting histograms in this case. The most simple approach is to select one of the 

attributes and create cluster based on this. The attribute selected may be the one present in 

most queries or the one with the largest skew among peers. Another straightforward extension 
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is to select c )mc1( ≤≤  attributes and build one histogram per each. Then, we can define the 

distance between two peers as the weighted sum of the c single attribute workload-aware 

distances. The weight for each of the distances should be based on the popularity of the 

respective attribute. For calculating the c single attribute workload-aware distances it is 

necessary to have c independent histograms, one for each attribute, that summarize the query 

workload over each attribute. In this approach, the workload-aware histogram distance 

measure that we proposed in this thesis can directly be applied. Such approaches, however, 

ignore any value dependencies that may exist among the attributes. To deal with this issue, we 

may also consider a multi-dimensional histogram built on all or a subset c of the m attributes 

[22]. Furthermore, it is required to create a sophisticated multi-dimensional histogram so as to 

summarize the query workload and define new workload-aware distance measures. 
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APPENDIX 

Proof that the Manhattan Workload-Aware Distance is a metric. (page 42) 

We show next that the 
1Lwd  distance measure is a metric, by proving that it satisfies the 

metric properties (reflexivity, non-negativity, commutativity and the triangle inequality). 

 

The 
1Lwd  distance measure is given by the following equation 
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Proof that the Distribution-Based Manhattan Workload-Aware Distance is a metric. 

(page 42) 

We show next that the 
1LDwd −  distance measure is a metric, by proving that it satisfies the 

metric properties (reflexivity, non-negativity, commutativity and the triangle inequality). 

 

The 
1LDwd −  distance measure is given by the following equation 
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Proof that the workload-aware edit distance (wedit) is a metric. (page 110)  

We show next that the wedit histogram distance measure is a metric, by proving that it 

satisfies the metric properties (reflexivity, non-negativity, commutativity and the triangle 

inequality). 

 

The wedit histogram distance measure is given by the equation 
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The workload-aware edit distance (wedit) satisfies the histogram-based workload-aware 

property. (page 112) 

 

Proof. 

 

To prove that the wedit distance satisfies the workload-aware property, it suffices to show that 

wedit is proportional to the difference in the number of results two peers, n1 and n2, provide 

for a query workload QW, i.e., QW) ,n ,n(wd)H(QW) ),H(n ),n(H(hd 21L21wedit 1
∝ , where 
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queries on x. The starting point of each query is chosen uniformly from the value domain D 

whereas the query ranges vary according to a distribution. The wedit distance is given by the 

following equation: 
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where )n(fk  is the actual frequency of value k in peer n. In addition, assuming that the 

number of buckets for )n(H 1 , )n(H 2  and )QW(H  is equal with the size of x’s domain, 

i.e., Mb = , then Mb2 > . Hence, we set Mb2 = . Equation (2) takes the form: 
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where 
jqp~  is the approximated probability of queries with ranges within interval j resulted by 

)QW(H  and )n(f~k  is the approximated frequency of values, using )n(H  of peers n, within 

interval k. We set wik =+ . Hence, equation (3) is done as follows: 
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From equations )I(  and )II(  we can see that 
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∝  holds.  

 

B) Assume that the query workload consists of prefix-range queries on x; 

})f ,q{(QW
j0qj0= . In this case, the wedit distance is given by the following equation: 

(5)  )n(F)n(F)W(p)H(QW) ),H(n ),n(H(hd
1b2

0j

j

0k

j

0k 2k1kj21wedit ∑ ∑ ∑−

= = =
−=  

We denote by 
jqp  the frequency of prefix-range queries in the workload with range j. Hence, 

equation (1) can be written as: 
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where 
jqp~  is the approximated probability of queries with ranges within interval j resulted by 

)W(H  and )n(f~k  is the approximated frequency of values, using )n(H  of peer n, within 

interval k.   
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