Department of Computer Science and Engineering School of Engineering University of Ioannina

Graduate Program of Studies «Data and Computer Systems Engineering» Courses Outline

ACADEMIC YEAR 2019/2020

Table of Contents

A0. Algorithmic Graph Theory	3
A1. Algorithmic Graph Theory	6
A2. Algorithms for Data Science	9
D0. Introduction In Data Analysis And Processing	12
D2. Data Mining	15
D3. Optimization	
D4. Video Processing and Compression	22
D5. Computer Vision	25
D6. Online Social Networks and Media	29
D8. Biomedical data analysis	32
H0. Introduction to Computer Hardware Systems	
H1. Modern Computer Architecture	
H3. 3D Systems on Chip	39
H5. Robotic Systems	46
S1. Software & Data Evolution	52
S3. Cloud Computing Systems	55
S5. Mobile and Wireless Networks	58

A0. Algorithmic Graph Theory

COURSE OUTLINE

GENERAL

SCHOOL	ENGINEERING			
ACADEMIC UNIT	DEPARTMEN	DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING		
LEVEL OF STUDIES	GRADUATE			
COURSE CODE	A0		SEMESTER	Fall
	Introductio	n to Algorithm	and Informat	tion
COURSE TITLE	Technologie	es		
INDEPENDENT TEACHI	NG ACTIVITI	ES	WEEKLY	,
if credits are awarded for separate co		-	TEACHING	G CREDITS
lectures, laboratory exercises, etc. If the			HOURS	
	eaching hours and the total credits			
Lectures/Laboratory Exercices			4	7
Add rows if necessary. The organisation of teaching and the teaching				
methods used are described in detail at (a	ds used are described in detail at (d).			
COURSE TYPE	Special back	kground		
general background,				
special background, specialised general				
knowledge, skills development				
PREREQUISITE COURSES:	NO			
LANGUAGE OF INSTRUCTION	I Greek			
and EXAMINATIONS:				
IS THE COURSE OFFERED TO	YES			
ERASMUS STUDENTS				
COURSE WEBSITE (URL)	http://ecourse.uoi.gr/enrol/index.php?id=1736			

(1) LEARNING OUTCOMES

Learning outcomes

The course learning outcomes, specific knowledge, skills and competences of an appropriate level, which the students will acquire with the successful completion of the course are described.

Consult Appendix A

- Description of the level of learning outcomes for each qualifications cycle, according to the Qualifications Framework of the European Higher Education Area
- Descriptors for Levels 6, 7 & 8 of the European Qualifications Framework for Lifelong Learning and Appendix B
- Guidelines for writing Learning Outcomes

The course covers the necessary background that is required for attending the elective courses of Module A: Algorithm and Information Technologies. The objective of the course is to acquaint students with:

- More elaborate use of fundamental techniques for the design and analysis of algorithms.
- Advanced techniques for the design and analysis of algorithms.
- Mathematical tools such as probabilistic analysis, amortized analysis, and competitive analysis.
- Topics in computational complexity, approximate solutions, and randomization.

Students who complete the course successfully learn to: Apply advanced techniques for the design and analysis of algorithms. Provide appropriate mathematical models for various problems. Compare the efficiency and suitability of different algorithmic techniques for solving specific problems. Recognize in which of the basic complexity classes (e.g. P, NP) a specific problem belongs to. **General Competences** Taking into consideration the general competences that the degree-holder must acquire (as these appear in the Diploma Supplement and appear below), at which of the following does the course aim? Search for, analysis and synthesis of data and Project planning and management information, with the use of the necessary technology Respect for difference and multiculturalism Adapting to new situations Respect for the natural environment Decision-makina Showing social, professional and ethical responsibility and Working independently sensitivity to gender issues Team work Criticism and self-criticism Working in an international environment Production of free, creative and inductive thinking Working in an interdisciplinary environment Production of new research ideas Others... Production of free, creative and inductive thinking •

- Search for, analysis and synthesis of data and information, with the use of the necessary technology.
- Algorithmic thinking.
- Team work.
- Autonomous work.

(2) SYLLABUS

Basic and advanced techniques for algorithms design and analysis. Data structures. Graph algorithms. Computational geometry. Randomized algorithms and tools for probabilistic analysis. Computational complexity and NP-completeness. Approximation algorithms. Elementary number theory and applications in security and cryptography.

(3) TEACHING and LEARNING METHODS - EVALUATION

DELIVERY	Face-to-face
Face-to-face, Distance learning, etc.	
USE OF INFORMATION AND	 Use of projector and interactive board during
COMMUNICATIONS	lectures.
TECHNOLOGY	Course website maintenance. Announcements and
Use of ICT in teaching, laboratory education, communication with students	posting of teaching material (lecture slides and
	notes, programs).
	• Announcement of assessment marks via the e-
	course platform by UOI.

TEACHING METHODS	Activity	Semester workload	
The manner and methods of teaching are described in detail.	Lectures	13 × 3 = 39 hours	
Lectures, seminars, laboratory practice,	Laboratory practice	13 × 1 = 13 hours	
fieldwork, study and analysis of bibliography, tutorials, placements, clinical practice, art workshop, interactive teaching, educational visits, project, essay writing, artistic creativity, etc.	Student's study hours	123 hours	
The student's study hours for each learning activity are given as well as the hours of non-directed study according to the principles of the ECTS	Course total	175 hours	
STUDENT PERFORMANCE	Language of evaluation: Greek		
EVALUATION Description of the evaluation procedure Language of evaluation, methods of evaluation, summative or conclusive, multiple choice questionnaires, short- answer questions, open-ended questions, problem solving, written work, essay/report, oral examination, public presentation, laboratory work, clinical examination of patient, art interpretation, other	 Methods of Evaluation: Final written examination with problem solving questions. Homework assignments. 		
Specifically-defined evaluation criteria are given, and if and where they are accessible to students.	The evaluation procedure is accessible to students via the course website.		

(4) ATTACHED BIBLIOGRAPHY

- Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest and Clifford Stein, Introduction to Algorithms, MIT press, 3rd edition, 2009.
- Jon Kleinberg and Éva Tardos, Algorithm Design, 1st edition, Pearson, 2006.

A1. Algorithmic Graph Theory

COURSE OUTLINE

GENERAL

SCHOOL	ENGINEERING			
ACADEMIC UNIT	DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING			
LEVEL OF STUDIES	GRADUATE			
COURSE CODE	A1		SEMESTER	
COURSE TITLE	ALGORITHM	IC GRAPH TH	EORY	
INDEPENDENT TEACHI if credits are awarded for separate co lectures, laboratory exercises, etc. If the whole of the course, give the weekly teach	omponents of the course, e.g. TEACHING CREDITS			
Lec	tures/Laborato	ory Exercices	4	7
Add rows if necessary. The organisation of methods used are described in detail at (a				
COURSE TYPE general background, special background, specialised general knowledge, skills development	Specialised general knowledge			
PREREQUISITE COURSES:	NO			
LANGUAGE OF INSTRUCTION and EXAMINATIONS:	Greek			
IS THE COURSE OFFERED TO ERASMUS STUDENTS	YES			
COURSE WEBSITE (URL)	http://www.cs.uoi.gr/~stavros/mypage-teaching-MSc-			
	<u>AGT.html</u>			

LEARNING OUTCOMES

Learning outcomes

The course learning outcomes, specific knowledge, skills and competences of an appropriate level, which the students will acquire with the successful completion of the course are described.

Consult Appendix A

- Description of the level of learning outcomes for each qualifications cycle, according to the Qualifications Framework of the European Higher Education Area
- Descriptors for Levels 6, 7 & 8 of the European Qualifications Framework for Lifelong Learning and Appendix B
- Guidelines for writing Learning Outcomes
 The main chiestive of this course is to study the main

The main objective of this course is to study the main concepts of graph theory and to recognize graphs as an important modeling technique in several applications. In addition the course introduces the students to algorithmic graph theory which has become one of the major tools for the design and analysis of algorithms. The course focuses on the most interest topics in theoretical computer science.

The course's aim is to develop interest in graph theory and its many applications. In particular, at the end of this course, a student should be able to

- apply the abstract concepts of graph theory in several practical problems;
- develop a number of standard and powerful algorithms, as well as demonstrate methodologies in graph techniques; and
- use the graphs in the solution of complex problems.

General Competences

Taking into consideration the general competences that the degree-holder must acquire (as these appear in the Diploma

Supplement and appear below), at which of the following does the course aim? Search for, analysis and synthesis of data and Project planning and management information, with the use of the necessary technology Respect for difference and multiculturalism Respect for the natural environment Adapting to new situations Decision-making Showing social, professional and ethical responsibility and Working independently sensitivity to gender issues Criticism and self-criticism Team work Working in an international environment Production of free, creative and inductive thinking Working in an interdisciplinary environment Production of new research ideas Others ...

- Production of free, creative and inductive thinking
- Search for, analysis and synthesis of data and information, with the use of the necessary technology.
- Algorithmic thinking
- Team work
- Autonomous work

SYLLABUS

- Graph theoretic foundations.
- The design of efficient algorithms (complexity of algorithms, data structures). Perfect graphs. Holes and antiholes in graphs. Triangulated graphs.
- Comparability graphs. Split graphs. Permutation graphs. Interval graphs. Cographs, Quasi-threshold (or, trivially perfect), and threshold graphs.
- Perfectly orderable graphs.

TEACHING and LEARNING METHODS - EVALUATION

DELIVERY Face-to-face, Distance learning, etc.	Face-to-face		
USE OF INFORMATION AND COMMUNICATIONS TECHNOLOGY Use of ICT in teaching, laboratory education, communication with students	Use of projector and interactive board during lectures. •Course website maintenance. Announcements and posting of teaching material (lecture slides and notes, programs). •Announcement of assessment marks via the e-course platform by UOI.		
TEACHING METHODS	Activity	Semester workload	
The manner and methods of teaching are	Lectures	13x3=39 hours	
described in detail. Lectures, seminars, laboratory practice,	Laboratory practice	13x1=13 hours	
fieldwork, study and analysis of	Student's study hours	123 hours	
bibliography, tutorials, placements, clinical practice, art workshop, interactive teaching,			
educational visits, project, essay writing,			
artistic creativity, etc.			
The student's study hours for each learning			
activity are given as well as the hours of non-directed study according to the			
principles of the ECTS			
	Course total 175 hours		
STUDENT PERFORMANCE	Language of evaluation: Greek		
EVALUATION			
Description of the evaluation procedure	Methods of Evaluation:		
Language of evaluation, methods of	i) Final written examination		

evaluation, summative or conclusive, multiple choice questionnaires, short- answer questions, open-ended questions, problem solving, written work, essay/report, oral examination, public presentation, laboratory work, clinical examination of patient, art interpretation, other	 ii) Lab projects examination iii) Evaluation of weekly assignments The evaluation procedure is accessible to students via the course website.
Specifically-defined evaluation criteria are given, and if and where they are accessible to students.	

ATTACHED BIBLIOGRAPHY

- M.C. Golumbic, Algorithmic Graph Theory and Perfect Graphs. Academic Press, Inc., New York, 1980. Second edition, Annals of Discrete Mathematics 57, Elsevier, 2004.
- A. Brandstadt, V.B. Le, and J. Spinrad, Graph classes -- A survey, SIAM Monographs in Discrete Mathematics and Applications, SIAM, Philadelphia, 1999.

A2. Algorithms for Data Science

COURSE OUTLINE

GENERAL

SCHOOL	ENGINEERING			
ACADEMIC UNIT	DEPARTMEN	T OF COMPUTER	R SCIENCE & ENGI	NEERING
LEVEL OF STUDIES	GRADUATE			
COURSE CODE	A2		SEMESTER	
COURSE TITLE	ALGORITHM	S FOR DATA SCIE	INCE	
INDEPENDENT TEACHI if credits are awarded for separate co lectures, laboratory exercises, etc. If the whole of the course, give the weekly teach	omponents of the course, e.g. TEACHING CREDITS			
	-	tory Exercices	4	7
Add rows if necessary. The organisation of methods used are described in detail at (a	of teaching and the teaching			
COURSE TYPE general background, special background, specialised general knowledge, skills development				
PREREQUISITE COURSES:	NO			
LANGUAGE OF INSTRUCTION and EXAMINATIONS:	Greek			
IS THE COURSE OFFERED TO ERASMUS STUDENTS	YES			
COURSE WEBSITE (URL)	http://ecourse.uoi.gr/enrol/index.php?id=1677			

LEARNING OUTCOMES

Learning outcomes

The course learning outcomes, specific knowledge, skills and competences of an appropriate level, which the students will acquire with the successful completion of the course are described.

Consult Appendix A

- Description of the level of learning outcomes for each qualifications cycle, according to the Qualifications Framework of the European Higher Education Area
- Descriptors for Levels 6, 7 & 8 of the European Qualifications Framework for Lifelong Learning and Appendix B
- Guidelines for writing Learning Outcomes

The course focuses on algorithmic techniques that are used in practice to solve basic problems in data processing and extraction and can be successfully applied even to large-scale data.

After attending the course students should be able to:

- Apply techniques for the design and analysis of algorithms suitable for the processing of large scale data.
- Provide appropriate mathematical models for data mining problems.
- Compare the efficiency and suitability of different algorithmic techniques to solve a problem.

General Competences

Taking into consideration the general competences that the degree-holder must acquire (as these appear in the DiplomaSupplement and appear below), at which of the following does the course aim?Search for, analysis and synthesis of data andProject planning and management

Search for, analysis and synthesis of data and	Project planning and management
information, with the use of the necessary technology	Respect for difference and multiculturalism
Adapting to new situations	Respect for the natural environment

Decision-making Working independently Team work Working in an international environment Working in an interdisciplinary environment Production of new research ideas Showing social, professional and ethical responsibility and sensitivity to gender issues Criticism and self-criticism Production of free, creative and inductive thinking Others...

- Production of free, creative and inductive thinking
- Search for, analysis and synthesis of data and information, with the use of the necessary technology.
- Algorithmic thinking.
- Team work.
- Autonomous work.

SYLLABUS

Design, analysis and application of algorithms in areas where there is a direct practical interest in processing large scale data. In particular, the following topics are considered: algorithms and data structures for string processing, data compression, information theory and codes, multi-dimensional data calculations, algorithms in graphs and networks, linear programming, combinatorial optimization.

TEACHING and LEARNING METHODS - EVALUATION

DELIVERY Face-to-face, Distance learning, etc.	Face-to-face			
USE OF INFORMATION AND COMMUNICATIONS TECHNOLOGY Use of ICT in teaching, laboratory education, communication with students	 Use of projector and interactive board during lectures. Course website maintenance. Announcements and posting of teaching material (lecture slides and notes, programs). Announcement of assessment marks via the e-course platform by UOI. 			
TEACHING METHODS	Activity	Semester workload		
The manner and methods of teaching are	Lectures	13 × 3 = 39 hours		
described in detail. Lectures, seminars, laboratory practice,	Laboratory practice	13 × 1 = 13 hours		
fieldwork, study and analysis of	Student's study hours	123 hours		
bibliography, tutorials, placements, clinical practice, art workshop, interactive teaching,				
educational visits, project, essay writing,				
artistic creativity, etc.				
The student's study hours for each learning activity are given as well as the hours of				
non-directed study according to the	Course total	175 hours		
principles of the ECTS				
STUDENT PERFORMANCE	Language of evaluation: Gre	eek		
EVALUATION Description of the evaluation procedure				
Description of the evaluation procedure	Methods of Evaluation:			
Language of evaluation, methods of evaluation, summative or conclusive,	• Final written examination with problem solving			
multiple choice questionnaires, short-	questions.			
answer questions, open-ended questions,	Homework assignments.			
problem solving, written work, essay/report, oral examination, public presentation,	 Individual presentation of a research topic 			
laboratory work, clinical examination of patient, art interpretation, other		ct matter of the course.		

Specifically-defined evaluation criteria are given, and if and where they are accessible to students.	The evaluation procedure is accessible to students via the course website.
---	--

ATTACHED BIBLIOGRAPHY

- Jure Leskovec, Anand Rajaraman, Jeff Ullman, Mining of Massive Datasets, Cambridge University press, 2nd edition, 2014.
- Avrim Blum, John Hopcroft, Ravindran Kannan, Foundations of Data Science. Unpublished, available online.
- Steven S. Skiena, The Data Science Design Manual, Springer, 2017.
- Brian Steele, John Chandler, Swarna Reddy: Algorithms for Data Science, Springer, 2016.

D0. Introduction In Data Analysis And Processing

COURSE OUTLINE

GENERAL				
SCHOOL	SCHOOL OF ENGINEERING			
ACADEMIC UNIT	DEPT. OF CO	DEPT. OF COMPUTER SCIENCE & ENGINEERING		
LEVEL OF STUDIES	GRADUATE			
COURSE CODE	D0		SEMESTER	SPRING
COURSE TITLE	INTRODUCT	ION IN DATA A	ANALYSIS AND	PROCESSING
INDEPENDENT TEACHI if credits are awarded for separate co lectures, laboratory exercises, etc. If the whole of the course, give the wee total credit	omponents of t the credits are ekly teaching h	he course, e.g. awarded for	WEEKLY TEACHING HOURS	CREDITS
Lectures / Labs /	Tutorials		4	7
	Add rows if necessary. The organisation of teaching and the teaching methods used are described in detail at (d).			
COURSE TYPE general background, special background, specialised general knowledge, skills development	l, d s			
PREREQUISITE COURSES:				
LANGUAGE OF INSTRUCTION and EXAMINATIONS:	GREEK or ENGLISH			
IS THE COURSE OFFERED TO ERASMUS STUDENTS	YES			
COURSE WEBSITE (URL)	http://ecou	rse.uoi.gr/enro	I/users.php?id=	<u>=1720</u>

LEARNING OUTCOMES

Learning outcomes

The course learning outcomes, specific knowledge, skills and competences of an appropriate level, which the students will acquire with the successful completion of the course are described.

Consult Appendix A

- Description of the level of learning outcomes for each qualifications cycle, according to the Qualifications Framework of the European Higher Education Area
- Descriptors for Levels 6, 7 & 8 of the European Qualifications Framework for Lifelong Learning and Appendix B
- 2 Guidelines for writing Learning Outcomes

This introductory course exposes the students to the main concepts and methodologies in Data Science. The course comprises a series of lectures that concisely cover the necessary mathematical background as well as essential topics in Data Science, such as data types and representation, clustering techniques, learning and generalization, optimization, data transformations and compression, text processing and information retrieval. Moreover, it offers an overview of popular programming tools used in Data Science.

After the successful completion of this course, students will be exposed to:

• The fundamental mathematical background that is necessary for the in-depth study of specialized topics in Data Science.

- The basic fields of study that they can deepen in data analysis and processing.
- Modern programming tools that are highly useful in Data Science.

General Competences

Taking into consideration the general competences that the degree-holder must acquire (as these appear in the Diploma Supplement and appear below), at which of the following does the course aim?

Search for, analysis and synthesis of data and	Project planning and management
information, with the use of the necessary	Respect for difference and multiculturalism
technology	Respect for the natural environment
Adapting to new situations	Showing social, professional and ethical responsibility and
Decision-making	sensitivity to gender issues
Working independently	Criticism and self-criticism
Team work	Production of free, creative and inductive thinking
Working in an international environment	
Working in an interdisciplinary environment	Others
Production of new research ideas	

- Production of free, creative and inductive thinking.
- Decision-making.
- Search for, analysis and synthesis of data and information.
- Development of algorithmic thinking.
- Ability of analyzing and modelling problems.

SYLLABUS

- Elements of Linear Algebra
- Elements of Optimization
- Overview of Probability Theory and Statistics
- Data Types and Representation
- Clustering
- Data Transformations
- Data Compression
- Learning and Generalization
- Text Processing and Information Retrieval
- Programming Tools in Data Science

TEACHING and LEARNING METHODS - EVALUATION

DELIVERY Face-to-face, Distance learning, etc.	Weekly lectures	
USE OF INFORMATION AND COMMUNICATIONS TECHNOLOGY Use of ICT in teaching, laboratory education, communication with students	 Course webpage where literature and free material is provided. Live simulations in the classroom. Use of email services and social media for communication with the students. 	
TEACHING METHODS The manner and methods of teaching are described in detail. Lectures, seminars, laboratory practice,	Activity Lectures	Semester workload 13*3 = 39 hours

fieldwork, study and analysis of bibliography,	Labs	13*1 = 13 hours
tutorials, placements, clinical practice, art workshop, interactive teaching, educational	Self-study	123 hours
visits, project, essay writing, artistic creativity, etc.		
ett.		
The student's study hours for each learning activity are given as well as the hours of non-		
directed study according to the principles of		
the ECTS		
	Course total	175 hours
STUDENT PERFORMANCE		
EVALUATION		
Description of the evaluation procedure	LANGUAGE OF EVALUATION	I: Greek or English
Language of evaluation, methods of evaluation, summative or conclusive, multiple choice		
questionnaires, short-answer questions, open- ended questions, problem solving, written work, essay/report, oral examination, public presentation, laboratory work, clinical examination of patient, art interpretation, other	METHODS OF EVALUATION: Written exam	
Specifically-defined evaluation criteria are given, and if and where they are accessible to students.		

ATTACHED BIBLIOGRAPHY

- Suggested bibliography:

- A. Blum, J. Hopcroft, R. Kannan, **Foundations of Data Science**, Cornell University, 2015, e-book available at: <u>https://www.cs.cornell.edu/jeh/book.pdf</u>
- J. Grus, Data Science from Scratch: First Principles with Python, O'Reilly Media, 2015.

- Related academic journals:

D2. Data Mining

COURSE OUTLINE

GENERAL				
SCHOOL	SCHOOL OF SCIENCES			
ACADEMIC UNIT	DEPARTMEN	T OF COMPUTE	R SCIENCE & ENGI	NEERING
LEVEL OF STUDIES	GRADUATE			
COURSE CODE	D2		SEMESTER	
COURSE TITLE	Data Mining			
if credits are awarded for separate co lectures, laboratory exercises, etc. If the	INDEPENDENT TEACHING ACTIVITIES redits are awarded for separate components of the course, e.g. ares, laboratory exercises, etc. If the credits are awarded for the of the course, give the weekly teaching hours and the total credits			CREDITS
Lectures/Laboratory Exercices			4	7
Add rows if necessary. The organisation of teaching and the teaching methods used are described in detail at (d).				
COURSE TYPE general background, special background, specialised general knowledge, skills development	general background, special background, specialised general			
PREREQUISITE COURSES:				
LANGUAGE OF INSTRUCTION and EXAMINATIONS:	Greek			
IS THE COURSE OFFERED TO ERASMUS STUDENTS	YES			
COURSE WEBSITE (URL)	http://www.cse.uoi.gr/~arly/courses/dm/dm.html			

LEARNING OUTCOMES

Learning outcomes

The course learning outcomes, specific knowledge, skills and competences of an appropriate level, which the students will acquire with the successful completion of the course are described.

Consult Appendix A

- Description of the level of learning outcomes for each qualifications cycle, according to the Qualifications Framework of the European Higher Education Area
- Descriptors for Levels 6, 7 & 8 of the European Qualifications Framework for Lifelong Learning and Appendix B
 Guidelines for writing Learning Outcomes

The objective of this course is to provide a detailed description of data mining problems and solutions. The main problems presented and studied are related to classification, regression, clustering, feature selection/extraction and discovery of association rules. State-of-the-art methods are presented and compared for all the above problems.

It is expected that after taking the course the student will have: knowledge of the data mining problems a clear understanding of the notions of learning and generalization the ability to solve classification, regression and clustering problems using state-ofthe-art approaches the ability to discover association rules from data • the ability to handle large scale datasets • the skill to apply all the algorithmic steps required for extracting useful knowledge from a given dataset. **General Competences** Taking into consideration the general competences that the degree-holder must acquire (as these appear in the Diploma Supplement and appear below), at which of the following does the course aim? Search for, analysis and synthesis of data and Project planning and management information, with the use of the necessary technology Respect for difference and multiculturalism Adapting to new situations Respect for the natural environment Decision-making Showing social, professional and ethical responsibility and Working independently sensitivity to gender issues Team work Criticism and self-criticism Working in an international environment Production of free, creative and inductive thinking Working in an interdisciplinary environment Production of new research ideas Others Search for, analysis and synthesis of data and information, with the use of the ٠ necessary technology. **Decision making** Production of free, creative and inductive thinking

- Team work
- Autonomous work
- Production of new research ideas

SYLLABUS

Introduction to data mining problems, learning and generalization, data preprocessing, linear models, decision trees, rule-based classifiers, naïve Bayes, SVM, classifier ensembles, model selection and evaluation, prototype-based clustering (eg. k-means), agglomerative clustering, spectral clustering, association rule mining, feature selection and extraction, scaling issues.

TEACHING and LEARNING METHODS - EVALUATION

DELIVERY Face-to-face, Distance learning, etc.	Face-to-face
USE OF INFORMATION AND COMMUNICATIONS TECHNOLOGY Use of ICT in teaching, laboratory education, communication with students	Lecture slides, multimedia (video demonstrations), e- mail communication, course Web page maintenance.

TEACHING METHODS	Activity	Semester workload
The manner and methods of teaching are described in detail.	Lectures	13x3=39 hours
Lectures, seminars, laboratory practice,	Laboratory practice	13x1=13 hours
fieldwork, study and analysis of bibliography, tutorials, placements, clinical practice, art workshop, interactive teaching, educational visits, project, essay writing, artistic creativity,	Student's study hours	123 hours
etc. The student's study hours for each learning activity are given as well as the hours of non- directed study according to the principles of	Course total	175 hours
the ECTS		
STUDENT PERFORMANCE EVALUATION	Language of evaluation: Greek	
Description of the evaluation procedure	Methods of Evaluation:	
Language of evaluation, methods of evaluation, summative or conclusive, multiple choice questionnaires, short-answer questions, open-ended questions, problem solving, written work, essay/report, oral examination, public presentation, laboratory work, clinical examination of patient, art interpretation,	 v) Final written examination v) Lab projects examination vi) Evaluation of weekly assignments 	
other Specifically-defined evaluation criteria are	the course website.	
given, and if and where they are accessible to students.		

ATTACHED BIBLIOGRAPHY

Book: P. Tan, M. Steinbach and V. Kumar, "Introduction to Data Mining", Addison-Wesley 2006.

Book: D. Hand, H. Mannila, P. Smyth, "Principles of Data Mining", MIT Press, 2001. **Book:** I. Kononenko and M. Kukar, "Machine Learning and Data Mining: Introduction to Principles and Algorithms", Horwood Publishing, 2007.

D3. Optimization

COURSE OUTLINE

GENERAL				
SCHOOL	SCHOOL OF	SCHOOL OF ENGINEERING		
ACADEMIC UNIT	DEPT. OF CO	DEPT. OF COMPUTER SCIENCE & ENGINEERING		
LEVEL OF STUDIES	GRADUATE	GRADUATE		
COURSE CODE	D3	D3 SEMESTER -		-
COURSE TITLE	OPTIMIZATION			
INDEPENDENT TEACHI if credits are awarded for separate compor laboratory exercises, etc. If the credits are aw give the weekly teaching hours	nents of the course arded for the whe	e, e.g. lectures, ole of the course,	WEEKLY TEACHING HOURS	CREDITS
Lectures / Labs / Tutorials		4	7	
Add rows if necessary. The organisation of teac used are described in detail at (d).	hing and the teaching methods			
COURSE TYPE general background, special background, specialised general knowledge, skills development PREREQUISITE COURSES:	general background, pecial background, specialised general knowledge, skills development			
LANGUAGE OF INSTRUCTION	GREEK or ENGLISH			
and EXAMINATIONS:				
IS THE COURSE OFFERED TO ERASMUS STUDENTS	YES			
COURSE WEBSITE (URL)	http://ecourse.uoi.gr/enrol/index.php?id=553			

LEARNING OUTCOMES

Learning outcomes

The course learning outcomes, specific knowledge, skills and competences of an appropriate level, which the students will acquire with the successful completion of the course are described. Consult Appendix A

- Description of the level of learning outcomes for each qualifications cycle, according to the Qualifications Framework of the European Higher Education Area
- Descriptors for Levels 6, 7 & 8 of the European Qualifications Framework for Lifelong Learning and Appendix B
- Guidelines for writing Learning Outcomes

Optimization is the branch of Mathematics that deals with the detection of optimal solutions. Typically, a solution to a given problem is modeled via a parametric "objective" function (model), the minima of which may correspond to desired solutions. Also, the problem may contain a set of constraints, typically defined through equality and / or

inequality relations. The Optimization course aims at equipping the students with essential knowledge in local and global Optimization algorithms of various types. Among other, these include: Gradient-based algorithms that use first- and second-order derivatives information, • such as Gradient Descent, Newton, Quasi-Newton, Conjugate Gradients, in combination with Line Search and Trust Region techniques. Derivative-free algorithms such as Nelder-Mead, Hooke-Jeeves, and Pattern Search. Stochastic and evolutionary algorithms such as Genetic Algorithms and Particle Swarm Optimization. Moreover, different techniques for solving problems with constraints are given, along with techniques for the detection of multiple minimizers. After the successful completion of this course, students are expected to be able to: Implement and apply local and global Optimization algorithms. • Determine the most appropriate algorithm for a given problem. Design variants of the algorithms for serial and parallel computing environments, as well as for challenging applications. **General Competences** Taking into consideration the general competences that the degree-holder must acquire (as these appear in the Diploma Supplement and appear below), at which of the following does the course aim? Search for, analysis and synthesis of data and Project planning and management information, with the use of the necessary technology Respect for difference and multiculturalism Respect for the natural environment Adapting to new situations Showing social, professional and ethical responsibility and sensitivity to gender issues Decision-making Working independently Criticism and self-criticism Production of free, creative and inductive thinking Team work Working in an international environment Working in an interdisciplinary environment Others ... Production of new research ideas Production of free, creative and inductive thinking. • Decision-making. Search for, analysis and synthesis of data and information. • Development of algorithmic thinking. •

• Ability of analyzing and modelling problems.

SYLLABUS

- Introduction to Optimization
- Optimality conditions
- One-dimensional optimization
- Derivative-free methods: Steepest Descent, Nelder-Mead, Hook-Jeeves, Pattern Search.
- Gradient-based methods: Newton, Quasi-Newton, Conjugate Gradients.
- Line Search and Trust Region techniques.

- Stochastic and evolutionary algorithms: Multistart, Simulated Annealing, Genetic Algorithms, Particle Swarm Optimization.
- Solution techniques for constrained problems.
- Techniques for the detection of multiple minimizers. Parallel coordinates.

TEACHING and LEARNING METHODS - EVALUATION

DELIVERY	Weekly lectures		
Face-to-face, Distance learning,			
etc.			
USE OF INFORMATION AND	Course webpage	where literature and free	
COMMUNICATIONS	material is provided		
TECHNOLOGY			
Use of ICT in teaching, laboratory education, communication with students	• Live simulations in the classroom.		
communication with statents	 Use of email serv 	rices and social media for	
	communication wit	h the students.	
TEACHING METHODS	Activity	Semester workload	
The manner and methods of teaching are described in detail.	Lectures	13*3 = 39 hours	
Lectures, seminars, laboratory practice,	Labs	13*1 = 13 hours	
fieldwork, study and analysis of bibliography, tutorials, placements, clinical practice, art	Self-study	123 hours	
workshop, interactive teaching, educational			
visits, project, essay writing, artistic creativity, etc.			
The student's study hours for each learning activity are given as well as the hours of non-			
directed study according to the principles of			
the ECTS			
	Course total	175 hours	
STUDENT PERFORMANCE			
EVALUATION			
Description of the evaluation procedure			
Language of evaluation, methods of evaluation, summative or conclusive, multiple choice questionnaires, short-answer questions, open- ended questions, problem solving, written work, essay/report, oral examination, public	LANGUAGE OF EVALUATION: Greek or English		
presentation, laboratory work, clinical examination of patient, art interpretation,			
other			
Specifically-defined evaluation criteria are given, and if and where they are accessible to students.			

ATTACHED BIBLIOGRAPHY

- Suggested bibliography:

- W. Sun, Y. Yuan: **Optimization Theory and Methods**, Springer, 2006.
- R. Fletcher: **Practical Methods of Optimization**, 2nd edition, Wiley, 2000.
- D. Bertsekas: **Nonlinear Programming**, 2nd edition, Athena Scientific, 2004.
- M.S. Bazaraa, H.D. Sherali, C.M. Shetty, Nonlinear Programming, Theory and Algorithms, 3rd edition, Wiley, 2006.
- I. Griva, S.G. Nash, A. Sofer, Linear and Nonlinear Optimization, 2nd edition, SIAM, 2008.
- J. Nocedal, S.J. Wright, **Numerical Optimization**, 2nd edition, Springer, 2006.
- Z. Michalewicz: Genetic Algorithms + Data Structures = Evolution Programs, 3rd edition, Springer, 1999.
- K.E. Parsopoulos, M.N. Vrahatis: Particle Swarm Optimization and Intelligence: Advances and Applications, IGI Global, 2010.
- A. Inselberg, **Parallel Coordinates**, Springer, 2009.

- Related academic journals:

- Optimization Letters, SPRINGER.
- Optimization Methods and Software, TAYLOR & FRANCIS.
- Journal of Global Optimization, SPRINGER.
- Journal of Optimization Theory and Applications, SPRINGER.
- Mathematical Programming, SPRINGER.
- SIAM Journal on Optimization, SIAM.
- IEEE Transactions on Evolutionary Computation, IEEE.
- Applied Soft Computing, SPRINGER.
- Soft Computing, ELSEVIER.
- European Journal on Operational Research, ELSEVIER.
- Computers & Operations Research, ELSEVIER.
- Computers & Industrial Engineering, ELSEVIER.
- Annals of Operations Research, SPRINGER.

D4. Video Processing and Compression

COURSE OUTLINE

GENERAL

SCHOOL	SCHOOL OF ENGINEERING			
ACADEMIC UNIT	DEPARTMENT OF COMPUTER SCIENCE AND			
	ENGINEERII	NG		
LEVEL OF STUDIES	GRADUATE			
COURSE CODE			SEMESTER	-
COURSE TITLE	Video Proce	ssing and Comp	oression	
if credits are awarded for separate co lectures, laboratory exercises, etc. If the	INDEPENDENT TEACHING ACTIVITIESWEEKLYif credits are awarded for separate components of the course, e.g.TEACHINGectures, laboratory exercises, etc. If the credits are awarded for the ole of the course, give the weekly teaching hours and the total creditsHOURS			CREDITS
Lectures / Labs / Tutorials			4	7
Add rows if necessary. The organisation of teaching and the teaching				
methods used are described in detail at (a	ed are described in detail at (d).			
COURSE TYPE	Special background			
general background,				
special background, specialised general knowledge, skills development				
PREREQUISITE COURSES:	-			
LANGUAGE OF INSTRUCTION	TION GREEK			
and EXAMINATIONS:				
IS THE COURSE OFFERED TO	YES			
ERASMUS STUDENTS				
COURSE WEBSITE (URL)	http://ecourse.uoi.gr/enrol/index.php?id=1629			

LEARNING OUTCOMES

Learning outcomes

The course learning outcomes, specific knowledge, skills and competences of an appropriate level, which the students will acquire with the successful completion of the course are described.

Consult Appendix A

- Description of the level of learning outcomes for each qualifications cycle, according to the Qualifications Framework of the European Higher Education Area
- Descriptors for Levels 6, 7 & 8 of the European Qualifications Framework for Lifelong Learning and Appendix B
- Guidelines for writing Learning Outcomes

The goal of the course is the learning of the basic theory of video processing and compression.

After successfully passing this course the students will be able to:

- Understand the basic principles of video capture and display.
- Apply tools of multidimensional signal processing to video applications.
- Understand and use video sampling theory.
- Implement various motion estimation algorithms.
- Understand the fundamentals of compression and their application to video coding.

• Be familiar with current video compression standards.

General Competences

Taking into consideration the general competences that the degree-holder must acquire (as these appear in the Diploma Supplement and appear below), at which of the following does the course aim?

Search for, analysis and synthesis of data and	Project planning and management
information, with the use of the necessary technology	Respect for difference and multiculturalism
Adapting to new situations	Respect for the natural environment
Decision-making	Showing social, professional and ethical responsibility and
Working independently	sensitivity to gender issues
Team work	Criticism and self-criticism
Working in an international environment	Production of free, creative and inductive thinking
Working in an interdisciplinary environment	
Production of new research ideas	Others

- Search for, analysis and synthesis of data and information, with the use of the necessary technology
- Decision-making
- Production of free, creative and inductive thinking
- Evaluation of different solutions and selection of the most appropriate one
- Use of structured mathematical thinking for the development and reinforcement of arguments

SYLLABUS

<u>Video Capture:</u> Color coordinate systems. Video camera. Video display. Progressive and Interlaced scan.

<u>Multidimensional signal processing:</u> Multidimensional signals and systems. Multidimensional continuous and discrete Fourier Transform. Frequency response of the human visual system.

<u>Video sampling theory:</u> Generalized Nyquist sampling theorem. Sampling rate conversion.

Motion estimation: Motion modeling. Optical flow equation. Block matching.

<u>Fundamentals of compression</u>: Information theory basics. Quantization. Transform theory. DCT, KLT, DWT transforms. Motion compensated prediction.

Video compression standards: H.264, H.265, VP9, AV1.

TEACHING and LEARNING METHODS - EVALUATION

DELIVERY Face-to-face, Distance learning, etc.	Lectures, lab sessions	
USE OF INFORMATION AND COMMUNICATIONS TECHNOLOGY Use of ICT in teaching, laboratory education, communication with students	 Use of projector during lectures. Use of Matlab in the lab. Use of the ecourse electronic platform for course announcements, uploading of class notes, homework assignment, and grade announcement. 	

	 Use of email and social media for more effective communication with the students 			
TEACHING METHODS	Activity			
The manner and methods of teaching are	Lectures	13*3 = 39 hours		
described in detail. Lectures, seminars, laboratory practice,	Labs	13*1 = 13 hours		
fieldwork, study and analysis of bibliography,	Self-study	123 hours		
tutorials, placements, clinical practice, art workshop, interactive teaching, educational				
visits, project, essay writing, artistic creativity,				
etc.				
The student's study hours for each learning				
activity are given as well as the hours of non-	Course total	175 hours		
directed study according to the principles of the ECTS				
STUDENT PERFORMANCE	LANGUAGE OF EVALUATION: Greek			
EVALUATION Description of the evaluation procedure				
F				
	METHODS OF EVALUATION			
Language of evaluation, methods of evaluation, summative or conclusive, multiple	(i) Final examination. The st	tudents are tested in theory		
choice questionnaires, short-answer questions, open-ended questions, problem solving,	and exercises of video proc			
written work, essay/report, oral examination, public presentation, laboratory work, clinical	(ii) Homework assignments	. The students are asked to		
examination of patient, art interpretation, other	solve video processing and	compression exercises.		
	(iii) Lab reports. The studer	its turn in their code and		
Specifically-defined evaluation criteria are given, and if and where they are accessible to students.	answer questions regarding their results. The evaluation procedure is accessible to students via the course website.			

ATTACHED BIBLIOGRAPHY

- Suggested bibliography:

- Video Processing and Communications, Y. Wang, J. Ostermann, Y.-Q. Zhang, Prentice-Hall, 2002.
- Multidimensional Signal, Image and Video Processing and Coding, J.W. Woods, Academic Press, 2nd edition, 2012.

- Related academic journals:

- IEEE Transactions on Image Processing
- IEEE Transactions on Circuits and Systems for Video Technology
- IEEE Transactions on Multimedia

D5. Computer Vision

COURSE OUTLINE

GENERAL

SCHOOL	ENGINEERI	NG		
ACADEMIC UNIT	DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING			IGINEERING
LEVEL OF STUDIES	GRADUATE			
COURSE CODE	D5 SEMESTER			
COURSE TITLE	Computer \	/ision		
INDEPENDENT TEACHI if credits are awarded for separate co lectures, laboratory exercises, etc. If the whole of the course, give the weekly teacl	mponents of the e credits are aw	e course, e.g. parded for the	WEEKLY TEACHING HOURS	CREDITS
	Lectures / La	abs/ Exercises	3/1/0	7
COURSE TYPE general background, special background, specialised general knowledge, skills development	Specialised	general knowle	dge	
PREREQUISITE COURSES:	NO			
LANGUAGE OF INSTRUCTION and EXAMINATIONS:	Greek			
IS THE COURSE OFFERED TO ERASMUS STUDENTS	YES			
COURSE WEBSITE (URL)	http://www.	<u>cs.uoi.gr/~cniko</u>	u/Computer%20V	sion.html

LEARNING OUTCOMES

Learning outcomes

The course learning outcomes, specific knowledge, skills and competences of an appropriate level, which the students will acquire with the successful completion of the course are described.

Consult Appendix A

- Description of the level of learning outcomes for each qualifications cycle, according to the Qualifications Framework of the European Higher Education Area
- Descriptors for Levels 6, 7 & 8 of the European Qualifications Framework for Lifelong Learning and Appendix B
- Guidelines for writing Learning Outcomes

Upon completion of this course, students will:

- Have acquired the intuition behind understanding the 3D world from images s
- Be familiar with both the theoretical and practical aspects of computing with images;
- Have described the foundation of image formation, measurement, and analysis;
- Have implemented common methods for robust image matching and alignment;
- Understand the geometric relationships between 2D images and the 3D world.
- Have gained exposure to object and scene recognition and categorization from images;
- Grasp the principles of state-of-the-art regression and classification methods in computer vision;

Have developed the practical skill	s necessary to build computer vision ;applications.
General Competences	
Taking into consideration the general competences that	the degree-holder must acquire (as these appear in the Diploma
Supplement and appear below), at which of the following	g does the course aim?
Search for, analysis and synthesis of data and	Project planning and management
information, with the use of the necessary technology	Respect for difference and multiculturalism
Adapting to new situations	Respect for the natural environment
Decision-making	Showing social, professional and ethical responsibility and
Working independently	sensitivity to gender issues
Team work	Criticism and self-criticism
Working in an international environment	Production of free, creative and inductive thinking
Working in an interdisciplinary environment	
Production of new research ideas	Others
Search for, analysis and synthesis	of data and information, with the use of the
necessary technology.	
Decision making	
• Production of free, creative and ir	nductive thinking

- Team work
- Autonomous work
- Production of new research ideas

SYLLABUS

- Linear filtering
- Edge detection
- Frequency representation, image pyramids, template matching
- Local features: corners
- Local features: scale and interest point descriptors
- Machine learning for computer vision
- Segmentation by clustering: mean shift
- Segmentation by clustering: normalized cut
- Segmentation by fitting a model: Hough transform and least squares fitting
- Segmentation by fitting a model: robust estimators and RANSAC
- Registration
- PCA and eigenfaces
- Face detection
- Fitting probability models
- Learning and inference in computer vision
- The pinhole camera
- Singular value decomposition
- Models for transformations
- Multiple cameras
- More features (LBP, shape context, dual PCA)
- Models for grids (grpah cut)
- Regression

Classification

TEACHING and LEARNING METHODS - EVALUATION

DELIVERY Face-to-face, Distance learning, etc.	Face-to-face		
USE OF INFORMATION AND COMMUNICATIONS TECHNOLOGY Use of ICT in teaching, laboratory education, communication with students	Lecture slides, multimedia (video demonstrations), e- mail communication, course Web page maintenance.		
TEACHING METHODS	Activity	Semester workload	
The manner and methods of teaching are	Lectures	13x3=39 hours	
described in detail. Lectures, seminars, laboratory practice,	Labs	13x1=13 hours	
fieldwork, study and analysis of bibliography, tutorials, placements, clinical practice, art workshop, interactive teaching, educational visits, project, essay writing, artistic creativity, etc. The student's study hours for each learning	Student's autonomous study of the theory, problem solving and response to homework assignments	123 hours	
activity are given as well as the hours of non- directed study according to the principles of			
the ECTS	Course total	175 hours	
STUDENT PERFORMANCE EVALUATION Description of the evaluation procedure	Language of evaluation: Gre Methods of Evaluation:	eek	
Language of evaluation, methods of evaluation, summative or conclusive, multiple choice questionnaires, short-answer questions, open-ended questions, problem solving, written work, essay/report, oral examination, public presentation, laboratory work, clinical examination of patient, art interpretation, other	vii) Weekly lab and viii) Mid-term exam ix) Final examination The evaluation procedure is the course website.	on	
Specifically-defined evaluation criteria are given, and if and where they are accessible to students.			

ATTACHED BIBLIOGRAPHY

- Suggested bibliography:

1. D. Forsyth and J. Ponce. Computer Vision: A Modern Approach. Second edition. Prentice

Hall, 2011.

2. S. Prince. Computer Vision: Models, Learning and Inference. Cambridge University Press, 2012.

- Related academic journals:

IEEE Transactions on Pattern Analysis and Machine Intelligence

International Journal of Computer Vision IEEE Transactions on Image Processing Image and Vision Computing Computer Vision and Image Understanding Pattern Recognition Journal of Mathematical Imaging and Vision Machine Vision and Applications

D6. Online Social Networks and Media

COURSE OUTLINE

GENERAL

SCHOOL	ENGINEERI	NC		
ACADEMIC UNIT	DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING			
LEVEL OF STUDIES	GRADUATE			
COURSE CODE	D6		SEMESTER	
COURSE TITLE	ONLINE SO	ONLINE SOCIAL NETWORKS AND MEDIA		
INDEPENDENT TEACHI if credits are awarded for separate co lectures, laboratory exercises, etc. If the whole of the course, give the weekly teach	mponents of the e credits are aw	nponents of the course, e.g. credits are awarded for the		CREDITS
L	ectures / Exer	cises/ Project	3	7
COURSE TYPE general background, special background, specialised general knowledge, skills development	Specialised	general knowle	dge	
PREREQUISITE COURSES:	NO			
LANGUAGE OF INSTRUCTION and EXAMINATIONS:	Greek			
IS THE COURSE OFFERED TO ERASMUS STUDENTS	YES			
COURSE WEBSITE (URL)	http://www.	cs.uoi.gr/~tsap/	teaching/cs-I14/	

LEARNING OUTCOMES

Learning outcomes

The course learning outcomes, specific knowledge, skills and competences of an appropriate level, which the students will acquire with the successful completion of the course are described.

Consult Appendix A

- Description of the level of learning outcomes for each qualifications cycle, according to the Qualifications Framework of the European Higher Education Area
- Descriptors for Levels 6, 7 & 8 of the European Qualifications Framework for Lifelong Learning and Appendix B
- Guidelines for writing Learning Outcomes

It is expected that after taking the course the student will have:

- knowledge of basic metrics and measurements for real networks, such as powerlaw degree distributions and clustering coefficient
- knowledge of models for real networks
- the knowledge and ability to find communities in graphs, or dense subgraphs.
- understanding of dynamic processes on networks, such as influence spread, or opinion formation, and algorithms for affecting them
- knowledge of metrics and algorithms for identifying central and influential nodes in a graph.
- Knowledge of different models algorithms for predicting links or understanding their strength and sign
- Knowledge on specialized topics related to networks such as privacy, team formation, small world effects, fairness, content-based analysis
- The ability to process and manipulate large graphs using programming tools

General Competences

Taking into consideration the general competences that Supplement and appear below), at which of the following	the degree-holder must acquire (as these appear in the Diploma g does the course aim?
Search for, analysis and synthesis of data and	Project planning and management
information, with the use of the necessary technology	Respect for difference and multiculturalism
Adapting to new situations	Respect for the natural environment
Decision-making	Showing social, professional and ethical responsibility and
Working independently	sensitivity to gender issues
Team work	Criticism and self-criticism
Working in an international environment	Production of free, creative and inductive thinking
Working in an interdisciplinary environment	
Production of new research ideas	Others

- Search for, analysis and synthesis of data and information, with the use of the necessary technology.
- Decision making
- Production of free, creative and inductive thinking
- Team work
- Autonomous work
- Production of new research ideas

SYLLABUS

- Theoretical problems and applications around the analysis and mining of (online) social networks and media such as Facebook and Twitter.
- Indicative subjects: models for networks, techniques for obtaining, storing and processing networked data, models for information diffusion, algorithms for ranking and selecting of influencers, dynamic processes such as influence spread and opinion formation, team formation and community finding, games over networks, privacy, fairness and diversity.

TEACHING and LEARNING METHODS - EVALUATION

DELIVERY	Face to face		
Face-to-face, Distance learning, etc.	Face-to-face		
Fuce-to-juce, Distunce learning, etc.			
USE OF INFORMATION AND	Lecture slides, multimedia (video demonstrations), e-		
COMMUNICATIONS TECHNOLOGY	mail communication, course Web page maintenance.		
Use of ICT in teaching, laboratory education,			
communication with students			
TEACHING METHODS	Activity	Semester workload	
The manner and methods of teaching are described in detail.	Lectures	13x3=39 hours	
Lectures, seminars, laboratory practice,	Student's study hours	123 hours	
fieldwork, study and analysis of bibliography, tutorials, placements, clinical practice, art	Final Project	13 hours	
workshop, interactive teaching, educational			
visits, project, essay writing, artistic creativity,			
etc.			
The student's study hours for each learning			
activity are given as well as the hours of non-			
directed study according to the principles of	Course total	175 hours	
the ECTS			
STUDENT PERFORMANCE	Language of evaluation: Gre	ek or English	
EVALUATION			
Description of the evaluation procedure	Methods of Evaluation:		
Language of evaluation, methods of	x) Assignments		
evaluation, summative or conclusive, multiple choice questionnaires, short-answer questions,	xi) Presentation		

open-ended questions, problem solving, written work, essay/report, oral examination, public presentation, laboratory work, clinical examination of patient, art interpretation, other	xii) Final project The evaluation procedure is accessible to students via the course website.
Specifically-defined evaluation criteria are given, and if and where they are accessible to students.	

ATTACHED BIBLIOGRAPHY

D8. Biomedical data analysis

H0. Introduction to Computer Hardware Systems

COURSE OUTLINE

GENERAL

SCHOOL	SCHOOL OF	ENGINEERING		
ACADEMIC UNIT		DEPARTMENT OF COMPUTER SCIENCE AND		
ACADEMIC UNIT	ENGINEERING			
	BridingBrid	NU		
LEVEL OF STUDIES	GRADUATE			
COURSE CODE	HO SEMESTER -			-
COURSE TITLE	Introduction	n to Computer	Hardware Syste	ems
INDEPENDENT TEACHI if credits are awarded for separate co lectures, laboratory exercises, etc. If the whole of the course, give the weekly teach	mponents of the e credits are aw	e course, e.g. arded for the	WEEKLY TEACHING HOURS	CREDITS
		ures / Tutorials	3+1	7
Add rows if necessary. The organisation of methods used are described in detail at (a	, ,	the teaching		
COURSE TYPE	Specialized	general Knowl	edge	•
general background,		0	0	
special background, specialised general				
knowledge, skills development				
PREREQUISITE COURSES:	-			
LANGUAGE OF INSTRUCTION	GREEK & EN	IGUSH		
and EXAMINATIONS:	C.LER & ER	02.0.1		
IS THE COURSE OFFERED TO ERASMUS STUDENTS	YES			
COURSE WEBSITE (URL)	http://ecou	rse.uoi.gr/cou	rse/view.php?ic	<u>l=1727</u>

LEARNING OUTCOMES

Learning outcomes

The course learning outcomes, specific knowledge, skills and competences of an appropriate level, which the students will acquire with the successful completion of the course are described.

Consult Appendix A

- Description of the level of learning outcomes for each qualifications cycle, according to the Qualifications Framework of the European Higher Education Area
- Descriptors for Levels 6, 7 & 8 of the European Qualifications Framework for Lifelong Learning and Appendix B
- Guidelines for writing Learning Outcomes

The primary aim of the course is to convey an in-depth understanding of modern computer systems hardware. After successfully passing this course the students will be able to:

- Describe the structure and operational characteristics of the core and memory hierarchy of a microprocessor.
- Demonstrate an understanding of
 - VLSI Design (full custom, standard cells, gate arrays), CMOS technology, manufacturing technologies and ASICs
 - Basic theory of MOS transistors, elementary & complex gates
 - o low-power design techniques at device, module and system levels
- Understand testing requirements in modern VLSI systems, explain testing procedures and describe basic design for testability structures and testing standards.

 Demonstrate an understanding of 				
\circ the basic components of a	a robotic system and their functions			
• the basic concepts of the kinematics of robotic systems				
General Competences				
Taking into consideration the general competences that the degree-holder must acquire (as these appear in the Diploma Supplement and appear below), at which of the following does the course aim?				
Search for, analysis and synthesis of data and information, with the use of the necessary technology Adapting to new situations Decision-making Working independently Team work Working in an international environment Working in an interdisciplinary environment Production of new research ideas	Project planning and management Respect for difference and multiculturalism Respect for the natural environment Showing social, professional and ethical responsibility and sensitivity to gender issues Criticism and self-criticism Production of free, creative and inductive thinking Others			
 Production of free, creative and in Search for, analysis and synthesis 	ductive thinking of data and information, with the use of the			

- Search for, analysis and synthesis of data and information, with the use of the necessary technology
- Analysis of requirements for problem solving
- Working independently
- Use abstraction to understand and analyze complex systems/problems

SYLLABUS

<u>Processor core and cache organization</u>: Instruction set architecture, Instruction-level parallelism, Organization and operation of cache memories, Performance evaluation of a computer

<u>VLSI:</u> VLSI design technologies, ASICs, packaging technologies, DRC, economics, MOS transistors, inverter, basic gates, complex gates, standard cells, gate arrays, basic transistor theory.

<u>Testing and Design for Testability</u>: VLSI testing, scan testing, built-in self test (BIST), testing standards (JTAG, IEEE1500).

<u>Low-power design</u>: Power consumption in CMOS circuits, modelling and evaluation of power, low-power design techniques

<u>Robotics</u>: Basic components of a robotic system and their functions, sensors and actuators, position and orientation of a robot, kinematics of a robot.

TEACHING and LEARNING METHODS - EVALUATION

DELIVERY Face-to-face, Distance learning, etc.	Lectures and tutorials
USE OF INFORMATION AND COMMUNICATIONS TECHNOLOGY Use of ICT in teaching, laboratory education, communication with students	 Use of projector and interactive board during lectures. Use of special electronic equipment and software for delivering the project. Course website maintenance. Announcements and posting of teaching material (lecture slides and notes, programs). Announcement of assessment marks via the ecourse platform by UOI. Use of email for information exchange and improved communication with students.

TEACHING METHODS The manner and methods of teaching are	Activity	Semester workload	
described in detail. Lectures, seminars, laboratory practice,	Lectures	13x3 = 39 hours	
fieldwork, study and analysis of bibliography,	Tutorials	13x1 = 13 hours	
tutorials, placements, clinical practice, art workshop, interactive teaching, educational	Quizzes	5x1=5 hours	
visits, project, essay writing, artistic creativity, etc.	Self-study	118 hours	
The student's study hours for each learning activity are given as well as the hours of non-			
directed study according to the principles of the ECTS	Course total	175 hours	
STUDENT PERFORMANCE EVALUATION Description of the evaluation procedure	LANGUAGE OF EVALUATION	N: Greek	
Language of evaluation, methods of evaluation, summative or conclusive, multiple choice questionnaires, short-answer questions, open-ended questions, problem solving, written work, essay/report, oral examination, public presentation, laboratory work, clinical examination of patient, art interpretation, other			
Specifically-defined evaluation criteria are given, and if and where they are accessible to students.			

ATTACHED BIBLIOGRAPHY

- Suggested bibliography:

- SYSTEM ON CHIP TEST ARCHITECTURES, L-T. Wang, C. Stroud, N. Touba, Εκδ.: Morgan-Kaufmann, 2008.
- CMOS VLSI DESIGN: A CIRCUITS AND SYSTEMS PERSPECTIVE, N. Weste and D. Harris, Addison-Wesley, 2011.
- Modern Processor Design, J.P. Shen, M. H. Lipasti, Waveland Press, 2013
- Robotics: Modeling, Planning and Control, Siciliano B., Sciavicco L., Oriolo G., Springer, 2009

-Συναφή επιστημονικά περιοδικά:

- IEEE Transactions on Computers,
- IEEE Transactions on Computer Aided Design of Integrated Circuits and Systems,
- IEEE Transactions on VLSI Systems,
- IEEE Design & Test of Computers
- IEEE Transactions on Robotics
- IEEE/ASME Transactions on Mechatronics

H1. Modern Computer Architecture

COURSE OUTLINE

GENERAL

SCHOOL	SCHOOL OF	ENGINEERING		
ACADEMIC UNIT	DEPARTME	DEPARTMENT OF COMPUTER SCIENCE AND		
	ENGINEERI	NG		
LEVEL OF STUDIES	GRADUATE			
COURSE CODE	H1		SEMESTER	-
COURSE TITLE	MODERN COMPUTER ARCHITECTURE			
INDEPENDENT TEACHI if credits are awarded for separate co lectures, laboratory exercises, etc. If the whole of the course, give the weekly teach	mponents of the e credits are aw	e course, e.g. arded for the	WEEKLY TEACHING HOURS	CREDITS
	Leo	tures / Project	3	7
COURSE TYPE	Specialized	general Knowle	dge	
	- F	J	0-	
general background,	- F	<u> </u>		
special background, specialised general	- F		-8-	
	-			
special background, specialised general knowledge, skills development	-			
special background, specialised general knowledge, skills development	- GREEK & EN			
special background, specialised general knowledge, skills development PREREQUISITE COURSES:	-			
special background, specialised general knowledge, skills development PREREQUISITE COURSES: LANGUAGE OF INSTRUCTION	-			
special background, specialised general knowledge, skills development PREREQUISITE COURSES: LANGUAGE OF INSTRUCTION and EXAMINATIONS:	- GREEK & EN			
special background, specialised general knowledge, skills development PREREQUISITE COURSES: LANGUAGE OF INSTRUCTION and EXAMINATIONS: IS THE COURSE OFFERED TO	- GREEK & EN YES	IGLISH	ol/index.php?id=	<u>1850</u>

LEARNING OUTCOMES

Learning outcomes

The course learning outcomes, specific knowledge, skills and competences of an appropriate level, which the students will acquire with the successful completion of the course are described.

Consult Appendix A

- Description of the level of learning outcomes for each qualifications cycle, according to the Qualifications Framework of the European Higher Education Area
- Descriptors for Levels 6, 7 & 8 of the European Qualifications Framework for Lifelong Learning and Appendix B
 Guidelines for writing Learning Outcomes

The primary aim of the course is to convey an in-depth understanding of modern, highperformance processor micro-architecture and the memory hierarchy. After successfully passing this course the students will be able to:

- Describe the structure and operational characteristics of a pipelined microprocessor.
- Demonstrate an understanding of pipeline hazards and interlocks, out-of-order execution, scoreboards and reservation tables, branch prediction
- Evaluate the performance of a processor and memory system.
- Describe the memory coherency issues involved when designing a multiprocessor system, and explain the behaviour of a typical cache coherency protocol.
- Adapt existing simulators, run simulations and present a critical evaluation of the

results. **General Competences** Taking into consideration the general competences that the degree-holder must acquire (as these appear in the Diploma Supplement and appear below), at which of the following does the course aim? Project planning and management Search for, analysis and synthesis of data and information, with the use of the necessary technology Respect for difference and multiculturalism Adapting to new situations Respect for the natural environment Decision-making Showing social, professional and ethical responsibility and Working independently sensitivity to gender issues Team work Criticism and self-criticism Production of free, creative and inductive thinking Working in an international environment Working in an interdisciplinary environment Production of new research ideas Others... Production of free, creative and inductive thinking Search for, analysis and synthesis of data and information, with the use of the necessary technology

- Analysis of requirements for problem solving
- Team work
- Use abstraction to understand and analyze complex systems/problems
- Adapting to new situations

SYLLABUS

<u>Introduction</u>: Performance measurement. Energy consumption metrics. Reliability metrics. Benchmark programs. Simulators.

<u>Pipelined processor organization:</u> Instruction dependencies, pipeline hazards, data forwarding, pipeline stall, delayed branches. Code scheduling.

<u>Instruction-level parallelism</u>: Dynamic/static superscalar processors. Dynamic scheduling. .Out of order execution. Speculative execution. Branch prediction.

<u>Memory subsystem:</u> memory technology. Organization and operation of cache memories. Performance evaluation of cache memory. Virtual memory, fast memory address translation, virtually/physically addressed caches.

<u>Parallel</u> systems: Shared-memory multicore systems. Memory coherence, memory consistency.

DELIVERY Face-to-face, Distance learning, etc.	Lectures, Project
USE OF INFORMATION AND COMMUNICATIONS TECHNOLOGY Use of ICT in teaching, laboratory education, communication with students	 Use of projector and interactive board during lectures. Use of special electronic equipment and software for delivering the project. Course website maintenance. Announcements and posting of teaching material (lecture slides and notes, programs). Announcement of assessment marks via the ecourse platform by UOI.

	• Use of email for inform improved communicat	-	
TEACHING METHODS	Activity	Semester workload	
The manner and methods of teaching are described in detail.	Lectures	13*3 = 39 hours	
Lectures, seminars, laboratory practice,	Tutorials		
fieldwork, study and analysis of bibliography, tutorials, placements, clinical practice, art	Project	10*2 = 20 hours	
workshop, interactive teaching, educational visits, project, essay writing, artistic creativity,	Self-study	116 hours	
etc.			
The student's study hours for each learning activity are given as well as the hours of non-	Course total	175 hours	
directed study according to the principles of the ECTS			
STUDENT PERFORMANCE	LANGUAGE OF EVALUATION: Greek		
EVALUATION Description of the evaluation procedure	METHODS OF EVALUATION		
Language of evaluation, methods of evaluation, summative or conclusive, multiple	(i) Final examination, which includes problem solving.		
choice questionnaires, short-answer questions, open-ended questions, problem solving,	The exam papers are evalu correctness and completen		
written work, essay/report, oral examination,	(ii) Laboratory & Project Ex		
public presentation, laboratory work, clinical examination of patient, art interpretation, other			
Specifically-defined evaluation criteria are given, and if and where they are accessible to students.			

- Suggested bibliography:

J.P. Shen, M. Lipasti: Modern Processor Design: Fundamentals of Superscalar Processors

-Συναφή επιστημονικά περιοδικά:

- IEEE Micro, IEEE Computer Architecture Letters, IEEE Transactions on Computers
- Transactions on Architecture and Code Optimization, Transactions on Computer Systems, ACM.
- Microprocessors and Microsystems, Journal of Systems Architecture, Elsevier.

H3. 3D Systems on Chip

COURSE OUTLINE

GENERAL

SCHOOL	SCHOOL OF ENGINEERING			
ACADEMIC UNIT	DEPARTMENT OF COMPUTER SCIENCE AND			
	ENGINEERING			
LEVEL OF STUDIES	GRADUATE			
COURSE CODE	H3 SEMESTER -			-
COURSE TITLE	3D SYSTEMS ON CHIP			
INDEPENDENT TEACHING ACTIVITIES if credits are awarded for separate components of the course, e.g. lectures, laboratory exercises, etc. If the credits are awarded for the whole of the course, give the weekly teaching hours and the total credits			WEEKLY TEACHING HOURS	CREDITS
Lectures / Labs / Tutorials		3+1	7	
Add rows if necessary. The organisation of teaching and the teaching methods used are described in detail at (d).				
COURSE TYPE general background, special background, specialised general knowledge, skills development	Specialized general Knowledge			
PREREQUISITE COURSES:	-			
LANGUAGE OF INSTRUCTION and EXAMINATIONS:	GREEK & ENGLISH			
IS THE COURSE OFFERED TO ERASMUS STUDENTS	YES			
COURSE WEBSITE (URL)				

LEARNING OUTCOMES

Learning outcomes

The course learning outcomes, specific knowledge, skills and competences of an appropriate level, which the students will acquire with the successful completion of the course are described.

Consult Appendix A

- Description of the level of learning outcomes for each qualifications cycle, according to the Qualifications Framework of the European Higher Education Area
- Descriptors for Levels 6, 7 & 8 of the European Qualifications Framework for Lifelong Learning and Appendix B
- Guidelines for writing Learning Outcomes

The students acquire the basic knowledge on the design and test of 3-Dimensional Systemson-Chip. Initially they understand the 2D limitations that led to the 3D integration and then they study the basic mechanisms for solving such problems. The students emphasize on the design, manufacturing and test methods proposed to attack electrical, temperature and power-dissipation issues in 3D stacks, while at the same time they face problems related to the embedding of multiple cores/memory and they understand the proposed solutions for each case. Finally, they study applications of 3D manufacturing.

General Competences

Taking into consideration the general competences that the degree-holder must acquire (as these appear in the Diploma Supplement and appear below), at which of the following does the course aim?

Search for, analysis and synthesis of data and	Project planning and management
information, with the use of the necessary technology	Respect for difference and multiculturalism
Adapting to new situations	Respect for the natural environment
Decision-making	Showing social, professional and ethical responsibility and
Working independently	sensitivity to gender issues
Team work	Criticism and self-criticism

Working in an international environment	Production of free, creative and inductive thinking
Working in an interdisciplinary environment	
Production of new research ideas	Others

- Production of free, creative and inductive thinking
- Search for, analysis and synthesis of data and information, with the use of the necessary technology
- Analysis of requirements for problem solving

SYLLABUS

2D Barriers, 3D SoC Integration, 3D Classification, Through-Silicon-Vias, Permanent and Temporary Bonding Technologies, Wafer Thinning, Stress Relief, Wafer Handling, Under-fill, Self Assembly, Thermal Management, Thermal Aware Architectures, Power & Thermal Integrity, Energy & Power Models, Electrothermal Simulation, 3D IC Cooling, Inductive Coupling, Power Delivery, TSV-to-TSV Coupling, TSV Current Crowding & Power Integrity, TSV Placement, Buffer Insertion, Low-Power Clock Routing, Power Network Design, Floorplanning, Gate-Level Placement, Digital/Analog/Mixed-Signal IC Applications, SoCs, GPUs and MicroProcessors, Image Sensor Applications, NoCs, Pre-bond and Post-bond Testability, 3D TAM architectures and optimization, TSV Testing, Test Flows and Cost Models

DELIVERY	Lectures	
Face-to-face, Distance learning, etc.		
USE OF INFORMATION AND	The teaching is performed through powerpoint slides	
COMMUNICATIONS TECHNOLOGY	and the communication is conducted by electronic	
Use of ICT in teaching, laboratory education, communication with students	means (ecourse, email etc)	
TEACHING METHODS	Activity	Semester workload
The manner and methods of teaching are described in detail.	Lectures	13x3
Lectures, seminars, laboratory practice,	Tutorials	13x1
fieldwork, study and analysis of bibliography,	Labs	-
tutorials, placements, clinical practice, art workshop, interactive teaching, educational	Self-study	123
visits, project, essay writing, artistic creativity,	,	
etc.		
The student's study hours for each learning		
activity are given as well as the hours of non-		
directed study according to the principles of the ECTS	Course total	175 hours
STUDENT PERFORMANCE	LANGUAGE OF EVALUATION: Greek / English	
EVALUATION		
Description of the second sector second in		
Description of the evaluation procedure	METHOD OF EVALUATION:	Written Exam
Language of evaluation procedure	METHOD OF EVALUATION:	Written Exam
Language of evaluation, methods of evaluation, summative or conclusive, multiple	METHOD OF EVALUATION:	Written Exam
Language of evaluation, methods of evaluation, summative or conclusive, multiple choice questionnaires, short-answer questions,	METHOD OF EVALUATION:	Written Exam
Language of evaluation, methods of evaluation, summative or conclusive, multiple	METHOD OF EVALUATION:	Written Exam
Language of evaluation, methods of evaluation, summative or conclusive, multiple choice questionnaires, short-answer questions, open-ended questions, problem solving, written work, essay/report, oral examination, public presentation, laboratory work, clinical	METHOD OF EVALUATION:	Written Exam
Language of evaluation, methods of evaluation, summative or conclusive, multiple choice questionnaires, short-answer questions, open-ended questions, problem solving, written work, essay/report, oral examination,	METHOD OF EVALUATION:	Written Exam
Language of evaluation, methods of evaluation, summative or conclusive, multiple choice questionnaires, short-answer questions, open-ended questions, problem solving, written work, essay/report, oral examination, public presentation, laboratory work, clinical examination of patient, art interpretation, other	METHOD OF EVALUATION:	Written Exam
Language of evaluation, methods of evaluation, summative or conclusive, multiple choice questionnaires, short-answer questions, open-ended questions, problem solving, written work, essay/report, oral examination, public presentation, laboratory work, clinical examination of patient, art interpretation,	METHOD OF EVALUATION:	Written Exam

- Suggested bibliography:

- 1. Design of 3D Integrated Circuits and Systems, R. Sharma, K. Iniewski, CRC Press, 2015
- 2. 3D Integration for VLSI Systems, C. S. Tan, K. N. Chen, S. J. Koester, Pan Stanford Publishing, 2012
- 3. Design for High Performance, Low Power, and Reliable 3D Integrated Circuits, Sung Kyu Lim, Springer 2013
- 4. 3D Stacked Chips, From Emerging Processes to Heterogeneous Systems, I. M. Elfadel and G. Fettweis, Springer, 2016
- 5. Handbook of 3D Integration, Technology and Applications of 3D Integrated Circuits, P. Garrou, M. Koyanagi, P. Ramm, Wiley-VCH, 2014

-Συναφή επιστημονικά περιοδικά:

- IEEE Transactions on Computers,
- IEEE Transactions on Computer Aided Design of Integrated Circuits and Systems,
- IEEE Transactions on VLSI Systems,
- IEEE Design & Test of Computers

H4. Embedded Systems for IoT Applicationss

COURSE OUTLINE

GENERAL

SCHOOL	SCHOOL OF SCIENCE			
ACADEMIC UNIT	DEPARTMENT OF COMPUTER SCIENCE AND			
	ENGINEERING			
LEVEL OF STUDIES	GRADUATE			
COURSE CODE	Y4 SEMESTER -		-	
COURSE TITLE	Embedded S	Embedded Systems for IoT Applications		
INDEPENDENT TEACHI	NG ACTIVITI	ES	WEEKLY	
if credits are awarded for separate co			TEACHING	CREDITS
lectures, laboratory exercises, etc. If the		,	HOURS	0.122.110
whole of the course, give the weekly teach	whole of the course, give the weekly teaching hours and the total credits			
Lectures / Labs / Tutorials			3+1	7
Add rows if necessary. The organisation of teaching and the teaching				
methods used are described in detail at (d).				
COURSE TYPE	Specialized general Knowledge			
general background,				
special background, specialised general				
knowledge, skills development				
PREREQUISITE COURSES:	-			
LANGUAGE OF INSTRUCTION	GREEK & ENGLISH			
and EXAMINATIONS:				
IS THE COURSE OFFERED TO	YES			
ERASMUS STUDENTS				
COURSE WEBSITE (URL)				
(01L)				

LEARNING OUTCOMES

Learning outcomes

The course learning outcomes, specific knowledge, skills and competences of an appropriate level, which the students will acquire with the successful completion of the course are described.

Consult Appendix A

- Description of the level of learning outcomes for each qualifications cycle, according to the Qualifications Framework of the European Higher Education Area
- Descriptors for Levels 6, 7 & 8 of the European Qualifications Framework for Lifelong Learning and Appendix B
- Guidelines for writing Learning Outcomes

The students acquire the basic knowledge on integrated circuit and system design for the Internet of Things (IoT), and in particular for the nodes at its edge.

The students learn what the IoT is from the design point of view and the system point of view, and how the constraints imposed by IoT applications translate into integrated circuit requirements and design guidelines.

After taking this course, beside the state-of-the-art design techniques for IoT applications, the students will learn about the fundamental sub-systems encountered in Systems on Chip for IoT:

- ultra-low power digital architectures and circuits, low- and zero-leakage memories (including emerging technologies)
- circuits for hardware security and authentication
- on-chip power management and energy harvesting
- ultra-low power analog interfaces and analog-digital conversion
- short-range radios
- miniaturized battery technologies
- packaging and assembly of IoT integrated systems (on silicon and non-silicon substrates).

The course also examines how the IoT could evolve based on recent and foreseeable trends in the semiconductor industry, highlighting the key challenges, as well as the opportunities for circuit and system innovation to address them.

General Competences

Taking into consideration the general competences that the degree-holder must acquire (as these appear in the Diploma Supplement and appear below), at which of the following does the course aim?

Search for, analysis and synthesis of data and information, with the use of the necessary technology Adapting to new situations Decision-making Working independently Team work Working in an international environment Working in an interdisciplinary environment Production of new research ideas Project planning and management Respect for difference and multiculturalism Respect for the natural environment Showing social, professional and ethical responsibility and sensitivity to gender issues Criticism and self-criticism Production of free, creative and inductive thinking Others...

- Production of free, creative and inductive thinking
- Search for, analysis and synthesis of data and information, with the use of the necessary technology

.....

• Analysis of requirements for problem solving

SYLLABUS

- The IoT Ecosystem
 Embedded Computer Devices
 M2M Communications
 Smart environments
 Cyber-physical systems
 - Cloud computing, fog computing, edge computing

- Fog and cloud interplay
- IoT Application Constraints
- Energy efficient IoT devices
 - Ultra-low power digital architectures and circuits
 - Low- and zero-leakage memories (including emerging technologies)
 - Ultra-low power analog interfaces and analog-digital conversion
 - Short-range radios
 - On-chip power management and energy harvesting
- Security in IoT Devices
 - Circuits for hardware security and authentication
- Miniaturized battery technologies
- Packaging and assembly of IoT integrated systems

Terms: Embedded Computer Devices, Energy Efficient IoT Devices, Energy Harvesting for IoT, Internet of Things, Intranet Connected Devices, IoT, IoT Devices, IoT System-on-chip, M2M Communications, Security in IoT Devices, ultra-low power digital architectures and circuits, Iow- and zero-leakage memories (including emerging technologies), circuits for hardware security and authentication, System on Chip design methodologies, on-chip power management and energy harvesting, ultra-low power analog interfaces and analogdigital conversion, short-range radios, miniaturized battery technologies, packaging and assembly of IoT integrated systems (on silicon and non-silicon substrates), Cyber-Physical Systems, Cloud computing, fog computing, edge computing, fog and cloud interplay, smart environments

DELIVERY Face-to-face, Distance learning, etc.	Lectures
USE OF INFORMATION AND COMMUNICATIONS TECHNOLOGY Use of ICT in teaching, laboratory education, communication with students	 Use of projector and interactive board during lectures. Use of special electronic equipment and software for delivering the project. Course website maintenance. Announcements and posting of teaching material (lecture slides and notes, programs). Announcement of assessment marks via the ecourse platform by UOI. Use of email and social media for information exchange and improved communication with students.

TEACHING METHODS	Activity	Semester workload
The manner and methods of teaching are described in detail.	Lectures	13x3
Lectures, seminars, laboratory practice,	Tutorials	13x1
fieldwork, study and analysis of bibliography, tutorials, placements, clinical practice, art	Labs	-
workshop, interactive teaching, educational visits, project, essay writing, artistic creativity,	Self-study	123
etc.		
The student's study hours for each learning		
activity are given as well as the hours of non- directed study according to the principles of the ECTS	Course total	175 hours
STUDENT PERFORMANCE	LANGUAGE OF EVALUATION	I: Greek / English
EVALUATION		
Description of the evaluation procedure		
Language of evaluation, methods of evaluation, summative or conclusive, multiple choice questionnaires, short-answer questions, open-ended questions, problem solving, written work, essay/report, oral examination, public presentation, laboratory work, clinical examination of patient, art interpretation, other	METHOD OF EVALUATION:	Written Exam
Specifically-defined evaluation criteria are given, and if and where they are accessible to students.		

- Suggested bibliography:

- 1. Enabling the Internet of Things: From Integrated Circuits to Integrated Systems, Massimo Alioto (Publisher: Springer)
- 2. Big Data and Internet of Things: A Roadmap for Smart Environments, in book series Computational Intelligence, Volume 546, Nik Bessis, Ciprian Dobre (Publisher: Springer)

-Συναφή επιστημονικά περιοδικά:

- IEEE Transactions on Circuits and Systems I and II,
- IEEE Transactions on Computers,
- IEEE Transactions on Computer Aided Design of Integrated Circuits and Systems,
- IEEE Transactions on VLSI Systems

H5. Robotic Systems

COURSE OUTLINE

GENERAL

SCHOOL	SCHOOL OF ENGINEERING			
ACADEMIC UNIT	DEPARTMENT OF COMPUTER SCIENCE AND			
	ENGINEERING			
LEVEL OF STUDIES	GRADUATE	GRADUATE		
COURSE CODE	H5 SEMESTER -			-
COURSE TITLE	ROBOTIC SYSTEMS			
INDEPENDENT TEACHI if credits are awarded for separate co lectures, laboratory exercises, etc. If the whole of the course, give the weekly teach	mponents of the e credits are aw	e course, e.g. arded for the	WEEKLY TEACHING HOURS	CREDITS
	Lectures / L	abs / Tutorials.	4	7
Add rows if necessary. The organisation of	rows if necessary. The organisation of teaching and the teaching			
methods used are described in detail at (a				
COURSE TYPE	Specialized general knowledge			
general background,				
special background, specialised general knowledge, skills development				
PREREQUISITE COURSES:				
TREAEQUISITE COURSES.	-			
LANGUAGE OF INSTRUCTION	GREEK			
and EXAMINATIONS:				
IS THE COURSE OFFERED TO	YES			
ERASMUS STUDENTS				
COURSE WEBSITE (URL)	http://ecourse.uoi.gr/course/view.php?id=1037			

LEARNING OUTCOMES

Learning outcomes

The course learning outcomes, specific knowledge, skills and competences of an appropriate level, which the students will acquire with the successful completion of the course are described.

Consult Appendix A

- Description of the level of learning outcomes for each qualifications cycle, according to the Qualifications Framework of the European Higher Education Area
- Descriptors for Levels 6, 7 & 8 of the European Qualifications Framework for Lifelong Learning and Appendix B
- Guidelines for writing Learning Outcomes

The main course objective is to introduce students with more advanced aspects in selected areas of robotics, such as non-linear control, and motion planning of a robotic platform. A student that successfully attends this course should be able to:

- Understand, design, and implement advanced control methodologies for robotic manipulators and mobile platforms.
- Demonstrate advanced knowledge in motion planning of a robotic platform or a robotic fleet.
- Study and solve real life complex problems in the control of robotic systems.
- Understand research papers in the field of robotics and try out some innovative ideas.

General Competences		
Taking into consideration the general competences that the degree-holder must acquire (as these appear in the Diploma		
Supplement and appear below), at which of the following does the course aim?		
Search for, analysis and synthesis of data and Project planning and management		
information, with the use of the necessary technology	Respect for difference and multiculturalism	
Adapting to new situations	Respect for the natural environment	
Decision-making	Showing social, professional and ethical responsibility and	
Working independently	sensitivity to gender issues	
Team work	Criticism and self-criticism	
Working in an international environment	Production of free, creative and inductive thinking	
Working in an interdisciplinary environment		
Production of new research ideas Others		
• Search for, analysis and synthesis of data and information, with the use of the		
necessary technology		
Adapting to new situations		
Decision-making		
Team work		
Working in an interdisciplinary environment		
Production of new research ideas		
 Production of free, creative and inductive thinking 		

• Abstraction ability for problem modeling

SYLLABUS

<u>Kinematics</u>: Direct kinematics, inverse kinematics, differential kinematics, Jacobian matrices, singularities, kinematics of mobile robots.

<u>Sensors and actuators</u>: Actuators in Robotics, electronic subsystem, sensors, amplifiers, control system, PID control of a joint, control architecture of a mobile robot.

<u>Robotic motion planning</u>: Robot planning and control architecture, path planning, the configuration space, obstacles in work-space, roadmap, artificial potential fields, non-holonomic constraints, motion planning of a robotic fleet.

<u>Advanced control of robotic systems</u>: Compliance control, impedance control, non-linear control, visual servoing.

DELIVERY	Lectures, lab courses
Face-to-face, Distance learning, etc.	
USE OF INFORMATION AND	• Use of projector and computer during lectures.
COMMUNICATIONS TECHNOLOGY Use of ICT in teaching, laboratory education, communication with students	 Course website maintenance. Announcements and posting of teaching material (lecture slides and notes, exercises, example programs). Use of robots in laboratories.
	 Announcement of assessment marks via the ecourse platform by UOI. Use of email for information exchange and improved communication with students.

TEACHING METHODS	Activity	Semester workload	
The manner and methods of teaching are described in detail. Lectures, seminars, laboratory practice,	Lectures	13*3 = 39 hours	
fieldwork, study and analysis of bibliography, tutorials, placements, clinical practice, art	Labs	13*1 = 13 hours	
workshop, interactive teaching, educational visits, project, essay writing, artistic creativity, etc.	Self-study	123 hours	
The student's study hours for each learning activity are given as well as the hours of non-			
directed study according to the principles of the ECTS	Course total	175 hours	
STUDENT PERFORMANCE EVALUATION Description of the evaluation procedure	LANGUAGE OF EVALUATION: Greek		
Language of evaluation, methods of evaluation, summative or conclusive, multiple choice questionnaires, short-answer questions, open-ended questions, problem solving, written work, essay/report, oral examination, public presentation, laboratory work, clinical	METHODS OF EVALUATION(i) Final written examination.(ii) Project.		
examination of patient, art interpretation, other Specifically-defined evaluation criteria are given, and if and where they are accessible to students.	The evaluation procedure is the course website.	accessible to students via	

-Suggested bibliography in Greek:

- Siciliano, B., Sciavicco, L., Villani, L., Oriolo, G., Ρομποτική: Μοντελοποίηση, Σχεδιασμός και Έλεγχος, Εκδόσεις Φούντας, 2013.
- Craig, J.J., Εισαγωγή στη Ρομποτική, Εκδόσεις Τζιόλα, 2009.
- Δουλγέρη, Ζ., Ρομποτική: Κινηματική, Δυναμική και Έλεγχος Αρθρωτών Βραχιόνων, Εκδόσεις Κριτική, 2007.
- Εμίρης, Δ., Κουλουριώτης, Δ.Ε., Ρομποτική, Εκδόσεις ΣΕΛΚΑ 4Μ ΕΠΕ, 2006.

-Suggested bibliography in English:

- Siciliano, B., Sciavicco, L., Villani, L., Oriolo, G., Robotics: Modelling, Planning and Control, Springer, 2009.
- Craig, J.J., Introduction to Robotics: Mechanics and Control, Prentice Hall, 2004.
- Corke, P., Robotics, Vision and Control: Fundamental Algorithms in MATLAB, Springer Tracts in Advanced Robotics, Springer, 2011.
- Angeles, J., Fundamentals of Robotic Mechanical Systems: Theory, Methods, and Algorithms, Springer, 2014.
- Choset, H., et al., Principles of Robot Motion: Theory, Algorithms, and Implementations, The MIT Press, 2005.

-Related academic journals:

- The International Journal of Robotics Research.
- IEEE Transactions on Robotics.
- IEEE/ASME Transactions on Mechatronics

S0. Introduction to Software Systems

COURSE OUTLINE

GENERAL

SCHOOL	POLYTECHNIC			
ACADEMIC UNIT	DEPARTME	DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING		
LEVEL OF STUDIES	GRADUATE	GRADUATE		
COURSE CODE	L0 SEMESTER			
COURSE TITLE	Introduction to Software Systems			
INDEPENDENT TEACHI if credits are awarded for separate co lectures, laboratory exercises, etc. If the whole of the course, give the weekly teach	components of the course, e.g. the credits are awarded for the HOURS		G CREDITS	
	Lectures / Labs/ Exercices 3 / 1/0 7			7
COURSE TYPE general background, special background, specialised general knowledge, skills development	Specialised general knowledge			
PREREQUISITE COURSES:	NO			
LANGUAGE OF INSTRUCTION and EXAMINATIONS:	Greek			
IS THE COURSE OFFERED TO ERASMUS STUDENTS	YES			
COURSE WEBSITE (URL)	http://ecourse.uoi.gr/course/view.php?id=1726			

LEARNING OUTCOMES

Learning outcomes

The course learning outcomes, specific knowledge, skills and competences of an appropriate level, which the students will acquire with the successful completion of the course are described.

Consult Appendix A

- Description of the level of learning outcomes for each qualifications cycle, according to the Qualifications Framework of the European Higher Education Area
- Descriptors for Levels 6, 7 & 8 of the European Qualifications Framework for Lifelong Learning and Appendix B
- Guidelines for writing Learning Outcomes

The course L0 "Introduction to Software Systems" aims to provide post-graduate students with the necessary background on advanced topics in the area of software systems.

General Competences

Taking into consideration the general competences that the degree-holder must acquire (as these appear in the Diploma Supplement and appear below), at which of the following does the course aim?

Search for, analysis and synthesis of data and	Project planning and management
information, with the use of the necessary technology	Respect for difference and multiculturalism

Data and Computer Systems Engineering

Adapting to new situations	Respect for the natural environment
Decision-making	Showing social, professional and ethical responsibility and
Working independently	sensitivity to gender issues
Team work	Criticism and self-criticism
Working in an international environment	Production of free, creative and inductive thinking
Working in an interdisciplinary environment	
Production of new research ideas	Others

- Production of free, creative and inductive thinking
- Decision making
- Search for, analysis and synthesis of information, and use of the necessary technology.
- Team work
- Autonomous work
- Ability to apply research results to the solution of practical problems

SYLLABUS

The course covers the following areas of software systems

- Programming languages
- Software technology
- Virtualization
- Security
- Networking
- Fault tolerance and consistency
- Parallelism

DELIVERY Face-to-face, Distance learning, etc.	Weekly lectures		
USE OF INFORMATION AND COMMUNICATIONS TECHNOLOGY Use of ICT in teaching, laboratory education, communication with students	Lecture slides, course Web page maintenance (slides and course notes), e-mail communication		
TEACHING METHODS The manner and methods of teaching are described in detail. Lectures, seminars, laboratory practice,	Activity Lectures Laboratory practice	Semester workload 13x3=39 hours 13x1=13 hours	
fieldwork, study and analysis of bibliography, tutorials, placements, clinical practice, art workshop, interactive teaching, educational visits, project, essay writing, artistic creativity, etc.	Student's study hours	123 hours	

The student's study hours for each learning activity are given as well as the hours of non- directed study according to the principles of the ECTS	Course total	175 hours
STUDENT PERFORMANCE EVALUATION	Language of evaluation: Gre	eek
Description of the evaluation procedure Language of evaluation, methods of evaluation, summative or conclusive, multiple choice questionnaires, short-answer questions, open-ended questions, problem solving, written work, essay/report, oral examination, public presentation, laboratory work, clinical examination of patient, art interpretation, other Specifically-defined evaluation criteria are given, and if and where they are accessible to students.	Methods of Evaluation: Cou quizzes, programming exerce The exact evaluation procee students on the course web	cises dure is announced to

Proposed bibliography:

Guide to the Software Engineering Body of Knowledge, Version 3.0, P. Bourque and R.E. Fairley, eds., IEEE Computer Society, 2014, ISBN 978-0-7695-5166-1

Ανάπτυξη Προγραμμάτων σε Java: αφαιρέσεις, προδιαγραφές, και αντικειμενοστρεφής σχεδιασμός, B. Liskov and J. Guttag, Κλειδάριθμος, 2007, ISBN 978-960-461-063-1

Software Engineering - Theory & Practice, S. L. Pfleeger, Κλειδάριθμος, 2012, ISBN 978-960-461-477-6

Software Engineering, I. Sommerville, Κλειδάριθμος, 2009, ISBN 978-960-461-220-8

UML 2 and the Unified Process: Practical Object-Oriented Analysis and Design (2nd Edition). Jim Arlow, Ila Neustadt. Addison-Wesley Professional, 2005, ISBN 978-020-177-060-5

Principles of Computer System Design: An Introduction, J. H. Saltzer, M. F. Kaashoek, Morgan Kaufmann/Elsevier, 2009, ISBN 978-012-374-957-4

Introduction to High Performance Scientific Computing, Victor Eijkhout (2nd edition), 2016, ISBN 978-125-799-254-6

S1. Software & Data Evolution

COURSE OUTLINE

GENERAL

SCHOOL	ENGINEERI	NC		
ACADEMIC UNIT		DEPARTMENT OF COMPUTER SCIENCE AND		
	ENGINEERIN			
LEVEL OF STUDIES	POSTGRADU	JATE		
COURSE CODE	S1		SEMESTER	
COURSE TITLE	SOFTWARE	& DATA EVOL	UTION	
INDEPENDENT TEACHI if credits are awarded for separate co	components of the course e.g. WEENLY		CREDITS	
lectures, laboratory exercises, etc. If the	e credits are aw	arded for the		CREDITS
whole of the course, give the weekly teach	hing hours and t	the total credits	HOURS	
	Lectu	ires / Tutorials	3/1	7
COURSE TYPE	Special back	ground		
general background,	•	0		
special background, specialised general				
knowledge, skills development				
PREREQUISITE COURSES:	-			
LANGUAGE OF INSTRUCTION	GREEK			
and EXAMINATIONS:				
IS THE COURSE OFFERED TO	YES			
	165			
EDACMUC CTUDENTC				
ERASMUS STUDENTS	1		1 0 1 1	
ERASMUS STUDENTS COURSE WEBSITE (URL)	http://www.	cs.uoi.gr/~zarras	s/software-data-e	evol.html

LEARNING OUTCOMES

Learning outcomes

The course learning outcomes, specific knowledge, skills and competences of an appropriate level, which the students will acquire with the successful completion of the course are described.

Consult Appendix A

- Description of the level of learning outcomes for each qualifications cycle, according to the Qualifications Framework of the European Higher Education Area
- Descriptors for Levels 6, 7 & 8 of the European Qualifications Framework for Lifelong Learning and Appendix B
 Guidelines for writing Learning Outcomes

After successfully passing this course the students will be able to:

- Understand the state-of-the-art and the historical evolution of research in the area under study.
- Understand in depth the critical steps in the process of re-engineering.
- Reverse engineer an existing system and produce (a) an abstract model of the system and (b) the appropriate documentation that goes along with the abstract model.
- Identify symptoms of bad design and rigidity and prioritize them in terms of reengineering.
- Understand the role of re-engineering patterns in the process of software maintenance, their interrelationships and tradeoffs.
- Design specific solutions for the identified problems and assess both the "forces" that constrain the solution space as well as the trade-offs that each candidate solution incurs.
- Acquire hands-on experience by developing a complete project wherein they apply the design and algorithmic knowledge obtained from the course in order to re-engineer an

existing complex software system.			
General Competences Taking into consideration the general competences that Supplement and appear below), at which of the following	the degree-holder must acquire (as these appear in the Diploma g does the course aim?		
Search for, analysis and synthesis of data and information, with the use of the necessary technology Adapting to new situations Decision-making Working independently Team work Working in an international environment Working in an interdisciplinary environment Production of new research ideas	Project planning and management Respect for difference and multiculturalism Respect for the natural environment Showing social, professional and ethical responsibility and sensitivity to gender issues Criticism and self-criticism Production of free, creative and inductive thinking Others		
 Production of free, creative and inductive thinking 			

- Decision making
- Search for, analysis and synthesis of data and information, with the use of the necessary technology
- Team work
- Algorithmic thinking
- Abstraction ability for problem modeling
- Apply research results in solving practical problems
- Literature studying and management

SYLLABUS

The course Software and Data Evolution offers an in-depth coverage of a core topic within the broader field of information systems engineering -- specifically, the evolution and reengineering of software and data. The course starts by reviewing software evolution in general. Then, it proceeds to cover in an in-depth analysis, the area of the re-engineering of legacy software. The course presents the general method of re-engineering a legacy system into a new, well-designed and maintainable object-oriented system. Then, the particular steps of the method, along with patterns and anti-patterns are covered: reverse engineering, abstract modeling of an OO system, identification of bad design symptoms, reengineering patterns and forces. The course moves on to cover the evolution of data, and presents typical patterns by which database schemata evolve, and techniques to handle schema evolution.

A team project where a large and complex software system is re-engineered accompanies the theoretical lecturing.

DELIVERY Face-to-face, Distance learning, etc.	Weekly Lectures
USE OF INFORMATION AND COMMUNICATIONS TECHNOLOGY Use of ICT in teaching, laboratory education, communication with students	 Use of projector during lectures. Course website maintenance. Announcements and posting of teaching material (lecture slides and notes, programs). Use of email to improve communication with students.

TEACHING METHODS	Activity	Semester workload
The manner and methods of teaching are described in detail.	Lectures	13*3 = 39 hours
Lectures, seminars, laboratory practice,	Tutorials	13*1 = 13 hours
fieldwork, study and analysis of bibliography, tutorials, placements, clinical practice, art	Self-study	123 hours
workshop, interactive teaching, educational		
visits, project, essay writing, artistic creativity,		
etc.		
The student's study hours for each learning		
activity are given as well as the hours of non- directed study according to the principles of	Course total	175 hours
the ECTS		
STUDENT PERFORMANCE EVALUATION	LANGUAGE OF EVALUATION	N: Greek
EVALUATION Description of the evaluation procedure		
	METHODS OF EVALUATION	
Language of evaluation, methods of evaluation, summative or conclusive, multiple choice questionnaires, short-answer questions, open-ended questions, problem solving, written work, essay/report, oral examination, public presentation, laboratory work, clinical examination of patient, art interpretation, other Specifically-defined evaluation criteria are given, and if and where they are accessible to students.	 (i) A large programming assignment in groups (project (ii) At each lecture, the students are asked to be prepared on the material of the lecture and participate in the critical discussions that ari concerning their project. Moreover, the students a regularly required to report on intermedia 	
	The evaluation procedure is the course website.	accessible to students via

- Suggested bibliography:

Object-Oriented Reengineering Patterns, S. Demeyer, S. Ducasse, O. Nierstrasz, ISBN 978-3-9523341-2-6.

Working Effectively with Legacy Code, M. Feathers, Prentice Hall, ISBN-13: 978-0131177055. Refactoring. Improving the Design of Existing Code, Fowler, Addison-Wesley, ISBN 0-201-48567-2.

Refactoring To Patterns, J. Kerievsky. Addison-Wesley, ISBN 0-321-21335-1.

Design Patterns: Elements of Reusable Object-Oriented Software, E. Gamma, R. Helm, Richard, R. Johnson, Ralph, J. Vlissides, Addison-Wesley, ISBN 0-201-63361-2.

S3. Cloud Computing Systems

COURSE OUTLINE

GENERAL

SCHOOL	ENGINEERI	NC		
ACADEMIC UNIT	DEPARTME	<u>NT OF COMPUT</u>	<u>'ER SCIENCE & EN</u>	GINEERING
LEVEL OF STUDIES	GRADUATE			
COURSE CODE	S 3		SEMESTER	
COURSE TITLE	CLOUD CO	CLOUD COMPUTING SYSTEMS		
INDEPENDENT TEACHI if credits are awarded for separate co lectures, laboratory exercises, etc. If the whole of the course, give the weekly teacl	omponents of the course, e.g. TEACHING CREDITS			CREDITS
	Lectures / Labs/ Exercices 4			7
COURSE TYPE general background, special background, specialised general knowledge, skills development	Specialised	general knowle	dge	
PREREQUISITE COURSES:	NO			
LANGUAGE OF INSTRUCTION and EXAMINATIONS:	Greek			
IS THE COURSE OFFERED TO ERASMUS STUDENTS	YES			
COURSE WEBSITE (URL)	http://www	v.cse.uoi.gr/~st	ergios/teaching/	<u>13</u>

LEARNING OUTCOMES

Learning outcomes

The course learning outcomes, specific knowledge, skills and competences of an appropriate level, which the students will acquire with the successful completion of the course are described.

Consult Appendix A

- Description of the level of learning outcomes for each qualifications cycle, according to the Qualifications Framework of the European Higher Education Area
- Descriptors for Levels 6, 7 & 8 of the European Qualifications Framework for Lifelong Learning and Appendix B
- Guidelines for writing Learning Outcomes
- The course covers traditional and latest research publications on cloud computing systems. Examined issues include cluster management, virtualization, data storage and

networking, dataflow processing, heterogeneous systems, and cloud security.

- Participating students are expected to actively contribute to the critical discussions during paper reading sessions.
- Additionally, the students under the guidance of the instructor will work on a project of their choice that will explore interesting research directions.
- Overall, the course will help students get familiar with the design, implementation and experimental evaluation of modern cloud computing systems.

General CompetencesTaking into consideration the general competences that the degree-holder must acquire (as these appear in the Diploma
Supplement and appear below), at which of the following does the course aim?Search for, analysis and synthesis of data and
information, with the use of the necessary technologyProject planning and management
Respect for difference and multiculturalism

Adapting to new situationsRespect for the natural environmentDecision-makingShowing social, professional and ethical responsibility and
sensitivity to gender issuesWorking independentlyShowing social, professional and ethical responsibility and
sensitivity to gender issuesTeam workCriticism and self-criticismWorking in an international environmentProduction of free, creative and inductive thinkingWorking in an interdisciplinary environment.....Production of new research ideasOthers....

- Search for, analysis and synthesis of data and information, with the use of the necessary technology.
- Decision making
- Production of free, creative and inductive thinking
- Team work
- Autonomous work
- Production of new research ideas

SYLLABUS

- The course covers topics in the design and implementation of cloud computing systems, such as communication, synchronization, scheduling, dependability, data storage, security.
- The syllabus is adjusted every year according to the latest publications of the related literature published in international conferences and journals.

DELIVERY Face-to-face, Distance learning, etc.	Face-to-face		
USE OF INFORMATION AND COMMUNICATIONS TECHNOLOGY Use of ICT in teaching, laboratory education, communication with students	 Lecture slides Web page maintenance with bibliography and other course material. E-mail communication 		
TEACHING METHODS	Activity	Semester workload	
The manner and methods of teaching are described in detail.	Lectures	13x3=39 hours	
Lectures, seminars, laboratory practice,	Laboratory practice	13x1=13 hours	
fieldwork, study and analysis of bibliography,	Student's study hours	123 hours	
tutorials, placements, clinical practice, art workshop, interactive teaching, educational			
visits, project, essay writing, artistic creativity,			
etc.			
The student's study hours for each learning			
activity are given as well as the hours of non- directed study according to the principles of	Course total	175 bours	
the ECTS	Course total	175 hours	
STUDENT PERFORMANCE	Language of evaluation: Gre	eek	
EVALUATION			
Description of the evaluation procedure	Methods of Evaluation:		
Language of evaluation, methods of	i. I di depation in paper reduing sessions		
evaluation, summative or conclusive, multiple choice questionnaires, short-answer questions,	ii. Evaluation of w	eekly assignments	
open-ended questions, problem solving,	iii. Project or final	written examination	
written work, essay/report, oral examination,	The evaluation procedure is	accessible to students via	

public presentation, laboratory work, clinical examination of patient, art interpretation, other	the course website.
Specifically-defined evaluation criteria are given, and if and where they are accessible to students.	

- ACM Symposium on Cloud Computing
- ACM Symposium on Operating Systems Principles
- ACM SIGCOMM Conference
- ACM European Conference on Computer Systems
- USENIX Annual Technical Conference
- USENIX Symposium on Operating Systems Design and Implementation
- USENIX Symposium on Network Systems Design and Implementation
- IEEE Computer
- Communications of the ACM

S5. Mobile and Wireless Networks

COURSE OUTLINE

GENERAL

SCHOOL	SCHOOL OF ENGINEERING				
ACADEMIC UNIT	DEPARTMENT OF COMPUTER SCIENCE AND				
	ENGINEERING				
LEVEL OF STUDIES	POSTGRADUATE				
COURSE CODE	S5 SEMESTER				
COURSE TITLE	Mobile and Wireless Networks				
INDEPENDENT TEACHI		-	WEEKLY		
if credits are awarded for separate co			TEACHING	CREDITS	
lectures, laboratory exercises, etc. If the					
whole of the course, give the weekly teach	0		2/4		
Lectures / Tutorials			3/1	7	
COURSE TYPE					
general background,					
special background, specialised general knowledge, skills development					
PREREQUISITE COURSES:					
FREREQUISITE COURSES:	-				
	CDEEK				
LANGUAGE OF INSTRUCTION	GREEK				
and EXAMINATIONS:					
IS THE COURSE OFFERED TO	YES				
ERASMUS STUDENTS					
COURSE WEBSITE (URL)	http://www.cs.uoi.gr/~epap/L05				

LEARNING OUTCOMES

Learning outcomes

The course learning outcomes, specific knowledge, skills and competences of an appropriate level, which the students will acquire with the successful completion of the course are described.

Consult Appendix A

- Description of the level of learning outcomes for each qualifications cycle, according to the Qualifications Framework of the European Higher Education Area
- Descriptors for Levels 6, 7 & 8 of the European Qualifications Framework for Lifelong Learning and Appendix B
- Guidelines for writing Learning Outcomes

The course offers an insight into wireless and mobile networking. To this end, the course will analyze the most well-known technologies for wireless and mobile networks as well as the users' needs met by each technology. The course also focuses on new trends in building wireless and mobile networks. After successfully completing the course, a student should be able to:

- understand the basic challenges in wireless and mobile networking
- understand the basic architectures and networking technologies implemented in real-life wireless mobile networks as well as the users' needs that each of these technologies meets
- comprehend the basic networking mechanisms and how these mechanisms influence the network's performance
- be able to evaluate the performance of a network in the context of limited resources that are available in a mobile node

be able to identify open issues and challenges and propose possible solutions General Competences

Taking into consideration the general competences that the degree-holder must acquire (as these appear in the Diploma Supplement and appear below), at which of the following does the course aim?

Search for, analysis and synthesis of data and Project planning and management Respect for difference and multiculturalism *information, with the use of the necessary technology* Respect for the natural environment Adapting to new situations Showing social, professional and ethical responsibility and Decision-makina Working independently sensitivity to gender issues Team work Criticism and self-criticism Working in an international environment Production of free, creative and inductive thinking Working in an interdisciplinary environment Production of new research ideas Others...

- Production of free, creative and inductive thinking
- Search for, analysis and synthesis of data and information, with the use of the necessary technology
- Team work
- Algorithmic thinking
- Apply research results in solving practical problems
- Literature studying and management
- Abstraction ability for problem modeling
- Working independently

SYLLABUS

The course focuses on the key enabling technologies for wireless and mobile networks and delineates their fundamental operating principles. In the first part, the course examines the dominant technologies in the field of wide area and metropolitan area infrastructured networks such as LTE and WiMAX. Then, the course focuses on ad hoc networks, such as Mobile Ad Hoc Networks (MANETs) and opportunistic networks, as well as on Delay Tolerant Networking (DTN). Finally, the course discusses key technologies proposed in the context of 5G networks. Summarizing, the following technologies will be examined during the course:

- 4G Networks and LTE
- Wireless Metropolitan Access Networks (WiMAX)
- Mobile Ad Hoc Networks (MANETs) and Opportunistic Networks, Mobile Social Networks
- Delay Tolerant Networks (DTNs)
- Machine-to-Machine Communication (M2M), Internet of Things (IoT) in 5G Networks,
- Software Defined Networking (SDN), Network Slicing

DELIVERY Face-to-face, Distance learning, etc.	Weekly Lectures	
USE OF INFORMATION AND COMMUNICATIONS TECHNOLOGY	Use of projector during lectures.	

Use of ICT in teaching, laboratory education, communication with students	 Course website maintenance. Announcements and posting of teaching material (lecture slides and notes, programs). Use of email to improve communication with students. 			
TEACHING METHODS	Activity	Semester workload		
The manner and methods of teaching are described in detail.	Lectures	13*3 = 39 hours		
Lectures, seminars, laboratory practice,	Tutorials	13*1 = 13 hours		
fieldwork, study and analysis of bibliography,	Self-study	123 hours		
tutorials, placements, clinical practice, art workshop, interactive teaching, educational				
visits, project, essay writing, artistic creativity,				
etc.				
The student's study hours for each learning				
activity are given as well as the hours of non- directed study according to the principles of				
the ECTS	Course total	175 hours		
STUDENT PERFORMANCE	LANGUAGE OF EVALUATION	I: Greek		
EVALUATION				
Description of the evaluation procedure	METHODS OF EVALUATION			
Language of evaluation, methods of	(i) Final exams			
evaluation, summative or conclusive, multiple choice questionnaires, short-answer questions,	(ii) Project			
open-ended questions, problem solving,				
written work, essay/report, oral examination, public presentation, laboratory work, clinical				
examination of patient, art interpretation, other				
Specifically-defined evaluation criteria are given, and if and where they are accessible to students.				

- Suggested bibliography:

- J. Kurose and K. Ross, Computer Networking: A Top-Down Approach, 7th edition, Pearson, 2017.
- Scholarly articles published in the relevant scientific journals

-Relevant scientific journals

- IEEE/ACM Transactions on Networking
- IEEE Transactions on Mobile computing
- IEEE Transactions on Wireless Communications
- IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS (J-SAC)
- Elsevier Ad Hoc Networks