
Deciding the Physical Implementation of ETL Workflows

Vasiliki Tziovara
University of Ioannina

Ioannina, Hellas
vickit@cs.uoi.gr

Panos Vassiliadis
University of Ioannina

Ioannina, Hellas
pvassil@cs.uoi.gr

Alkis Simitsis
IBM Almaden Research Center

San Jose, California, USA
asimits@us.ibm.com

ABSTRACT
In this paper, we deal with the problem of determining the best
possible physical implementation of an ETL workflow, given its
logical-level description and an appropriate cost model as inputs.
We formulate the problem as a state-space problem and provide a
suitable solution for this task. We further extend this technique by
intentionally introducing sorter activities in the workflow in order
to search for alternative physical implementations with lower cost.
We experimentally assess our method based on a principled orga-
nization of test suites.

Categories and Subject Descriptors
H.2.1 [Database Management]: Logical Design—data models,
schema and subschema

General Terms
Algorithms, Design

Keywords
Data Warehousing, ETL, Physical Design, Optimization

1. INTRODUCTION
Extract - Transform - Load (ETL) tools are special purpose soft-

ware artifacts used to populate a data warehouse with up-to-date,
clean source records. To perform this task, a set of operations
should be applied on the source data. Nowadays, the majority of
ETL tools organize such operations as a workflow. At the logi-
cal level, an ETL workflow can be considered as a directed acyclic
graph (DAG) used to capture the flow of data from the sources to
the data warehouse. The nodes of the graph are either recordsets
used for storage purposes or transformation and cleansing activi-
ties that reject problematic records and reconcile data to the target
warehouse schema. The edges of the graph represent input and
output relationships between the nodes. Eventually, such an ab-
stract logical design has to be implemented physically; i.e., to be
mapped to a combination of executable programs and scripts that

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DOLAP’07, November 9, 2007, Lisboa, Portugal.
Copyright 2007 ACM 978-1-59593-827-5/07/0011 ...$5.00.

perform the ETL process. In this context, a logical-level activity
can be physically implemented using various algorithmic methods,
each with different cost in terms of time requirements or system
resources (e.g., memory and space on disk).

An ETL process is extremely complex, error-prone, and time
consuming [5]. Therefore, its optimization in terms of execution
cost is a continuously increasing necessity. Surprisingly, despite its
importance, no full-blown optimization technique for ETL processes
has been provided either by the commercial ETL tools, or the re-
lated research efforts. To the best of our knowledge, the common
practice indicates that the underlying DBMS should undertake the
task of optimization. However, this policy does not allow the opti-
mization of the whole ETL workflow, but only of isolated parts of
it. To deal with the optimization of the ETL design, in a previous
line of research, we have proposed a method for the logical opti-
mization of ETL processes [4, 5]. Nevertheless, a limitation of that
work is that the physical implementation of the ETL operations is
not taken into consideration.

The objective of this work is to identify the best possible physi-
cal implementation for a given logical ETL workflow. The problem
would not be novel if it concerned the optimization of the physical
execution of queries in relational and post-relational environments.
Still, ETL workflows are NOT big queries: their structure is not a
left-deep or bushy tree, black box functions are employed, there is a
considerable amount of savepoints to aid faster resumption in cases
of failures, and different servers and environments are possibly in-
volved. Moreover, frequently, the objective is to meet specific time
constraints w.r.t. both regular operation and recovery (rather than
the best possible throughput).

In our approach, different alternatives for the physical execution
of each logical-level activity are employed. To facilitate the task of
the designer, an automated mechanism for the mapping of a logical
activity to a valid physical implementation is presented, based on a
library of reusable templates for both logical and physical activities.
The problem is modeled as a state-space search problem and differ-
ent alternatives for state generation are considered for discovering
the optimal physical implementation of a scenario. A generic cost
model is considered as a discrimination criterion between physical
representations, which is suitable for black-box activities with un-
known semantics as well. Still, the determination of the best possi-
ble implementation for each activity in isolation does not guarantee
the optimal implementation of the workflow; thus, a more elaborate
search is required. To this end, the design is enriched by an addi-
tional set of special-purpose activities, called sorter activities, that
apply on different positions of the design and sort the respective
tuples according to the values of some, critical for the subsequent
flow, attributes. Thus, more alternative physical implementations
for a logical activity are provided; e.g, a join activity can use a

49

Merge Join implementation once data arrive sorted at its inputs.
Finally, due to the lack of any standard, commonly agreed set

of test suites for ETL workflows, we build upon a taxonomy for
ETL workflows that classifies typical real-world ETL workflows
in different template structures, to which we refer as butterflies,
because of the shape of their graphical representation [8]. Our ex-
perimental evaluation is organized according to this classification
and computes the best possible physical implementation for logical
ETL workflows. The experiments demonstrate that the intentional
introduction of sorters can make the difference in the determination
of the final solution in several cases.

Roadmap. In Section 2, we formulate the problem of design-
ing the physical implementation of ETL workflows as a state-space
search problem. In Section 3, we incorporate extensions into the
problem. In Section 4, we present our approach for obtaining the
optimal physical configuration of an ETL scenario. In Section 5,
we demonstrate our experimental evaluation. In Section 6, we dis-
cuss related work and in Section 7, we conclude with a prospect of
the future.

2. PROBLEM FORMULATION
In this section, we present the formal definition of the problem

under consideration. In what follows, we will employ the term
recordsets to refer to any data store that obeys a schema (with
relational tables and record files being the most popular kinds of
recordsets in the ETL environment), and the term activity to refer
to any software module that processes the incoming data, either by
performing any schema transformation over the data or by apply-
ing data cleansing procedures. Activities and recordsets are logical
abstractions of physical entities. At the logical level, we are inter-
ested in their schemata, semantics, and input-output relationships;
however, we do not deal with the actual algorithm or program that
implements the logical activity or with the storage properties of a
recordset. When at a later stage, the logical-level workflow is re-
fined at the physical level, the best possible implementation for an
activity or physical layout for a recordset is considered, in order to
optimize the execution cost of the workflow.

Each recordset has a schema that consists of a finite list of at-
tributes. Each activity is characterized by the following proper-
ties: (a) a name (a unique identifier for the activity), (b) one input
schema (unary activity) or two input schemata (binary activity),
and (c) exactly one output schema. The following distinction holds
for logical and physical activities:

Logical-level activity. A logical activity is considered as the
declarative description of the relationship of its output schema with
its input schema without delving into algorithmic or implementa-
tion issues. For example, an activity performing a logical-level join
of tables R and S (denoted as R�S) does not provide further infor-
mation on the implementation technique followed for the activity’s
execution.

Physical-level activity. A physical activity includes detailed in-
formation on the implementation techniques that must be employed
for the activity’s execution. For example, assume an activity a1

which performs the join of tables R and S. If we define that this
join is implemented using the Nested-Loops algorithm, the exe-
cution engine is informed about the inner procedures followed to
produce the result of the join and can be aware of the cost of this
implementation w.r.t. time or system resources. A physical imple-
mentation of an activity is characterized by the following elements:

• The algorithm, and executable code, employed for the phys-
ical execution of the activity.

• The implementation cost in terms of time or system resources

such as memory or disk space allocation.

• A set of input preconditions, i.e., a set of conditions that the
input data must hold, in order for the physical activity to
be executed. Certain physical implementations can be em-
ployed only if specific conditions are met by the source data.
For example, a Merge Join requires both inputs to be sorted
on the join attribute.

• A set of extra constraints possibly defined by the designer,
to guarantee certain properties of the solution; e.g., that the
the resources consumed, the resumption cost of the scenario
or the execution cost of a part of it do not exceed certain
thresholds.

ETL workflows. Formally, we model an ETL workflow as a
directed acyclic graph G(V,E). Each node v∈V is either an ac-
tivity a∈A or a recordset r∈R. An edge (a, b)∈E denotes that b
receives data from node a for further processing. In this provider
relationship, node a plays the role of the data provider, while node
b is the data consumer. The following well-formedness constraints
determine the interconnection of nodes in ETL workflows:

• The data consumer of a recordset cannot be another record-
set. Still, more than one consumer is allowed for recordsets.

• Each activity must have at least one provider, either another
activity or a recordset. When an activity has more than one
data providers, these providers can be other activities or ac-
tivities combined with recordsets.

• Each activity must have exactly one consumer, either another
activity or a recordset.

• Feedback of data is not allowed; i.e., the data consumer of an
activity cannot be the same activity.

Templates. To facilitate the mapping of a logical-level activ-
ity to its alternative physical-level implementations, we consider a
template library for activities that are customized per scenario. A
template activity is a customizable design artifact with commonly
agreed semantics concerning its ability of performing a specific
task over its -yet unspecified- input data. Thus, each template has
a set of properties, which involve some predefined semantics and a
set of parameters that, once set, determine the functionality of the
template.

In our setting, we employ two categories of templates: (a) logical
templates that materialize logical-level activities, and (b) physical
templates that materialize physical-level activities. Similar to logi-
cal and physical activities, there is a 1:N mapping between logical
and physical templates, depicted in Figure 1.

Using logical and physical templates, a certain physical-level ac-
tivity is materialized as follows. First, for a given logical activity a
logical template from the template library is picked. Then, for the
creation of the activity’s logical instance, the necessary schemata
and concrete values for the logical template parameters should be
specified. Next, the logical-to-physical mapping of templates pro-
duces one or more physical templates, and finally, the physical tem-
plate chosen, according to certain constraints and preconditions, is
instantiated to a physical instance.

For example, consider the case of a logical activity performing
a Not Null check on the source data stemming from a recordset
R(A, B, C), over attribute B. The appropriate logical template for
this case is the NotNullLT . This template requires the customiza-
tion of (a) its input schema, which is set to (A, B, C), (b) its out-
put schema, which in this case, is identical to the input schema,

50

Logical
activity aL

T �� tL

M(1:N)

��

Logical
template

Physical
activity

aP tP
C

�� Physical
template

Figure 1: The mechanism for the mapping of a logical activity
to a physical implementation

and (c) a parameter NN_attr, which is the name of the attribute
over which the Not Null check will be performed; e.g., attribute B.
Therefore, the generic semantics of the template activity’s output
that are {x | x∈Input(∅), x.NN_attr �=NULL}, are customized
as {x | x∈Input(A, B, C), x.B �=NULL}.

In general, different implementations can be chosen for the same
logical activity, depending on the physical characteristics of the
data. For instance, the logical template NotNullLT can be associ-
ated with two physical-level templates: FilterP

T and Sorted_filterP
T .

The first checks all the input extensions for records that fulfill the
filtering condition, whereas the second requires a precondition to
be met: a total order of the input over the checked value, and stops
its execution whenever the last record with the particular value is
met. (If NULL is the last value in the total order of the domain of
attribute B, once the first record with a NULL value is met, the
activity completes its execution.)

Not all the physical implementations constitute legal mappings.
For instance, the usage of a Sorted_filterP

T , in the above exam-
ple is only allowed in the presence of sorted data over a specific
attribute. Therefore, each physical implementation has a set of pre-
conditions that determine whether its usage in a certain scenario
is valid or not. To confront with this constraint, in Section 3, we
discuss the possibility of artificially introducing sorters in the work-
flow to allow a broader range of available implementations in order
to improve the execution cost of the ETL process.

Assume a template library containing a set of logical template
activities LL = {tL

1 , tL
2 , . . . , tL

n}, a set of physical template activ-
ities LP = {tP

1 , tP
2 , . . . , tP

k } with n≤k, and a 1:N mapping M
among activities from both sets that maps each logical template to
a set of valid physical template implementations.

Let A be an infinitely countable set of activities and Ω an in-
finitely countable set of templates. We define a mapping T , such
that: T : A→ Ω. Thus, for an activity a∈A that is a materializa-
tion of a template t∈Ω, the following holds: T (a) = t. We define
also the mapping C as the inverse of T . Then, C : Ω→ A. Thus,
for a certain ETL scenario, the customization of a template t∈Ω for
an activity a∈A is given by the mapping: C(t) = a. The mappings
T and C apply both to logical and physical level activities.

For a physical activity aP , constr(aP) is a predicate in a simple
conjunctive form denoting the set of constraints ci = 1, . . . , q that
exist for the physical implementation of activity aP ; i.e., constr(aP)
= {c1 ∧ c2 ∧ · · · ∧ cq}.

Cost. Also, cost(aP) is a function that returns the cost of a
physical activity aP . This cost depends on (a) the cost model con-
sidered; (b) the position of the activity in the workflow (specifi-
cally, its cardinality mi); and (c) the physical implementation that
is selected for its execution. Activities that implement well-known
relational operators can be accompanied with detailed cost models.
Still, there are also activities that depart from the typical relational
operators. For such a black-box activity i with known or unknown
semantics, the following generic formula estimates its computa-
tional cost, costC :

costC(i) = mi × cpt(i) (1)

where cpt(i) is the cost of activity i to process a single record.
In this case, micro-benchmarks can be used for the estimation of
cpt(i). The total cost of a physical ETL scenario comprising n
activities is obtained by summarizing the costs of all its activities
and is given by the following formula:

Cost(G) =
n�

i=1

cost(aP
i) (2)

The State-Space Nature of the Problem. We model the prob-
lem of finding the physical implementation of an ETL process as
a state-space search problem. Given a logical-level ETL workflow,
GL, a set of physical-level scenarios is generated. These scenar-
ios have equivalent semantics with the original logical scenario,
but may have different costs. Our objective is to determine the
physical-level scenario GP such that (i) all logical recordsets, ac-
tivities, and (ii) provider edges are mapped to their physical coun-
terparts, (iii) all constraints are respected and, (iv) GP has the min-
imal cost among all other alternative solutions explored.

States. A state is a graph GP that represent a physical-level
ETL workflow. The initial state GP

0 is produced after the random
assignment of physical implementations to logical activities w.r.t.
preconditions and constraints.

Transitions. Given a state GP, a new state GP′ is generated (a)
by replacing the implementation of a physical activity aP of GP

with another valid implementation for the same activity and (b) by
the introduction of a physical-level sorter activity as a new node in
the graph.

Formal definition of the problem. Given a logical-level ETL
workflow GL(VL,EL), where VL=AL∪R, AL is the set of log-
ical activities and R is the set of recordsets, determine the physical-
level graph GP(VP,EP), where VP=AP∪R, AP is the set of
physical activities, such that:

• aP
i =C(M(T (aL

i))), aP
i ∈AP, aL

i ∈AL

• ∀eL=(xL, yL), eL∈EL, xL, yL∈VL, introduce eP to EP

where eP =(xP , yP), xP , yP∈VP

• ∧iconstr(aP
i)=true, aP

i ∈AP

• �i cost(aP
i)=minimal, aP

i ∈AP

3. ADDITION OF SORTERS
Traditional query optimization is based on the notion of interest-

ing orders to find the optimal plans for relational database queries
[3]. In our context, we can exploit orderings of data in several ways,
mainly by applying fast algorithms in the presence of orderings
(e.g., Merge-Join and Merge-based aggregation are the fastest algo-
rithms for their respective families, but they depend upon an appro-
priate pre-existing ordering of the data to be applicable). Still, algo-
rithms in traditional query processing exploit existing orderings to
determine the best execution plan. In our case, we aim at deriving
an algorithm that exploits the possibility of intentionally introduc-
ing orderings, towards obtaining physical plans of lower cost. To
this end, we introduce special-purpose, physical-level transforma-
tions, called Sorter activities or Sorters. Sorter activities apply on
stored recordsets and rearrange the order of their input tuples ac-
cording to the values of some specified attributes.

Impact of Adding Sorters. Adding sorter activities to a physical-
level graph does not impose changes to the functionality of the

51

R σA<1000

γA

|A=A T

S

Z

W

P

1

3

2

4

5
γA

γB

(c)

(a) (b) 6

$2€€ (D,B)

(d)

(e)

(f)
VγA,B

7

Figure 2: Candidate places for sorters

workflow: each graph node produces the same output tuples as it
used to in the original scenario. The addition of each sorter activity
to the graph causes an increase to the total cost of the workflow,
of the order of O(n ∗ log n), where n is the number of tuples the
sorter has to order. This raise of the workflow’s operational cost
is significant, especially for large values of n. On the other hand,
if the ordering imposed by the sorter can be exploited by activities
that follow the sorter due to the adoption of a cheaper implementa-
tion technique that exploits this ordering, the cost of these activities
declines considerably. Altogether, as we will discuss in Section 5,
there exist several cases where the total cost of the workflow can
be reduced significantly and the gain in the performance of the sce-
nario can be crucial.

Issues Raised by the Introduction of Sorters. The following
issues need to be addressed regarding the introduction of sorters:
(a) where the orderings of data should be introduced; (b) over which
attributes the orderings should be applied; and (c) what type of or-
dering (ascending or descending) should be preferred.

Candidate Positions for the Introduction of Sorter Activities. Given
a logical graph GL(VL,EL), our first consideration is to discover
all the candidate places to insert sorter activities, and specifically:
(a) source tables; (b) data staging area (DSA) tables; and (c) edges
that connect two activities, i.e., edges whose data provider and data
consumer are both activities.

Figure 2 shows an ETL scenario involving two source databases
R and S, a DSA table P , a fact table T , and three materialized
views Z, W and V . There are also 7 activities, performing filtering,
conversion, join, and aggregation. Figure 2 illustrates the candidate
positions to place sorter activities. Candidate positions for sorters
are marked with letters enclosed in parentheses (places (a) to (f),
i.e., on the data of tables R, S, P , and T and on the edges among
activities, i.e., edges (1, 2) and (2, 4).

Interesting Orders for Sorters. A second issue concerns the choice
of the attributes of each recordset’s schema, or activity’s output
schema, over which an ordering of data will be performed. We
adopt the traditional technique of [3], in the setting of which, an
interesting order is a set of attributes present in the join, grouping,
and ordering conditions of a query. In a broader sense, an interest-
ing order is a set of attributes such that, an ordering of the data over
them can lead to a cheaper evaluation plan for a query. Therefore,
our objective is to identify the set of interesting orders for each ac-
tivity of the workflow. The interesting orders for an activity are
defined at the physical-level templates. Then, they are customized
per scenario.

Consider the example for the NotNullLT template, discussed
in Section 2, that corresponds to two physical implementations
FilterP

T and Sorted_filterP
T . The template NotNullLT com-

prises a parameter NN_attr, to be specified by the designer. The
interesting order for the template is NN_attr and it is customized
to the value of this attribute. If the data are sorted by the attribute
of the interesting order, i.e., by NN_attr, then both physical im-
plementations apply. Otherwise, only the implementation FilterP

T

is applicable.
In general, the interesting order of a sorter SX depends on its

position on the workflow and on the activities in the output of the

sorter. We discern two usual cases for sorters. The first case occurs
when a sorter activity is placed between two subsequent activities
a and b (e.g., activities 1 and 2 in Figure 2), the candidate attributes
X for orderings depend exclusively on activity b. In other words,
the interesting orders of activity b determine the ordering X im-
posed by the sorter SX . The second case occurs when a sorter
activity directly affects a source or a DSA relation, the output of
the respective relation should be examined. We already mentioned
that recordsets can forward their data to more than one destination.
Thus, we discover the interesting orders of the activities that re-
ceive data from the relation. Then, the interesting orders identified
are combined into a single set, under the condition that there is no
overlap of interesting orders, i.e., each interesting order is consid-
ered once in the set. Regarding this consideration, observe the ex-
ample of Figure 2. The fact relation T populates three aggregators.
The first one aggregates data by attribute A, so the interesting order
is {A}. The second aggregator has as interesting order the set {B},
while the third one has an interesting order {A, B}. Therefore, the
set of interesting orders for relation T is {{A}, {B}, {A, B}}.

Ascending vs. Descending Ordering of Data. For lack of space,
we simply mention that the appropriate ascending or descending or-
der is considered depending on the semantics of the activity that re-
ceives the sorted output of a sorter and refer the interested reader to
[7] for more details. For example, a filter of the form σA<1000(R)
(Figure 2) requires a sorter in ascending order for performance
gains. The order would be descending if the condition was σA>1000(R).

4. OBTAINING THE OPTIMAL PHYSICAL
SCENARIO

In this section, we first describe signatures, which are used as
string representations of physical-level scenarios and then we present
a method towards the identification of the best possible physical
implementation of a logical scenario.

Signatures. To efficiently implement any algorithm that gen-
erates states representing physical implementations of ETL work-
flows, we need a compact way to represent these flows. In this
paper, we extend the idea of representing an ETL scenario with a
string, called signature, originally introduced in [4], with (a) DSA
tables that may have more than one output, (b) more than one tar-
get recordsets, (c)the physical implementation of activities, and, (d)
any sorters artificially introduced in the workflow.

Definition. A signature is a string that represents a graph G =
(V, E) and it is formed using the following rules: (a) a physical
implementation p of a logical level activity a is denoted as a@p,
(b) the names of the activities that form a linear path are separated
with dots (“.”), (c) concurrent paths are delimited by a double slash
(“//”), while, each path is enclosed in parentheses, (d) whenever a
sorter that orders data according to attributes A,B is placed on an
edge (a, b) among activities a and b, the sorter is named a_b and
the signature contains the notation a_b(A, B) to convey the sorter,
and (e) a sorter introduced on table V that orders tuples according
to A,B is denoted as V !(A, B).

For example, one possible signature for the scenario depicted in
Figure 2 is:

((R.1.2)//(S.S!(A).3@HB.P)).4@NL.T.
↪→ (((5@SO.Z)//(6@SO.W))//(7@SO.V))

The signature shows that (a) data on S is sorted on attribute A,
(b) the aggregation of activity 3 is based on hashing (HB), (c) the
join activity 4 is based on nested loops (NL) and (d) the three last
aggregation activities are based on sorting (SO). The following
signature:

52

Algorithm: Exhaustive Ordering (EO)

Input: An logical graph GL = (VL,EL) with n nodes
Output: A signature SMIN having minimal cost

Begin1

S0 ← Compute_Signature2

Cost(S0)← Compute_Cost(S0), SMIN = S03

Let D be a dictionary that contains signatures and4

respective costs, add S0 and Cost(S0) to D
Let Γ = {γ1, γ2, . . . , γm} be the set of all possible5

combinations of candidate positions for sorters
Given a γ∈Γ, let Pγ ={pγ1 ,pγ2 ,. . . , pγk} be the set of6

possible positions of combination γ
Given a position pγ , let Ocs = {o1, o2, . . . , on} be the set7

of candidate sorters over pγ (including no sorter)
Foreach γ ∈ Γ {8

Foreach pγ ∈ Pγ {9

Foreach o ∈ Ocs {10

generate a new signature S′11

If (S′ /∈ D) {12

Cost(S′)← Compute_Cost(S′)13

Store S′ and Cost(S′) to D14

If (Cost(S′) < Cost(SMIN)) {15

SMIN = S′16

}}17

}}}18

Return SMIN19

End20

Figure 3: Algorithm Exhaustive Ordering

((R.1.2.2_4(A))//(S.S!(A).3@HB.P)).4@MJ.T.
↪→ (((5@SO.Z)//(6@SO.W))//(7@SO.V))

contains a sorter between activities 2 and 4, so that data are sorted
on attribute A for both sources and a Merge Join (MJ) takes place
for activity 4.

Obtaining the best physical implementation. The algorithm
Exhaustive Ordering (EO), depicted in Figure 3, takes as input an
initial logical-level graph GL = (VL,EL) with n nodes and gen-
erates all possible states that can be generated by placing all possi-
ble sorters over the candidate positions of the graph and by using
all possible combinations of the different physical implementation
for each activity. The algorithm proceeds in finding the state having
minimal cost and returns it as output.

In other words, algorithm EO generates the initial state, signa-
ture S0, by invoking the function Compute_Signature (line 2).
For the logical-to-physical mapping for the initial state, the physi-
cal implementation for each activity is randomly chosen among the
valid alternative implementations. Then, the cost of the initial sce-
nario is evaluated by the function Compute_Cost() (line 3). Both
S0 and its relevant cost are stored to dictionary D (line 4). The
algorithm needs to compute all possible combinations of positions
where sorters can be artificially introduced as described in the Sec-
tion 3 (line 8). Assuming the example of Figure 2, all combinations
of positions (a), (b), . . . , (f) constitute the set Γ (line 5). For each
such combination, e.g., {a, b, d}, the set Pγ involves the positions
that are the members of the set (Line 6). For each such position,
(line 9), the algorithm determines all candidate sorters that can be
inserted among graph nodes (all candidate sorters compose the set
Osc defined in line 7) and uses them to generate all possible sig-
natures that can be produced if one or more sorters are added to
the initial graph (line 10). Each new signature S′ produced corre-
sponds to a new scenario that differs from the original scenario in
the sense that (a) it contains one or more additional sorter activities

or (b) it contains alternative implementation methods for the activ-
ities (line 11). Then, if the new signature S′ does not already exists
in dictionary D (line 12), its cost is computed and added along with
the signature S′ to the dictionary (lines 13-14). Finally, the signa-
ture having the minimal cost (SMIN) is returned as the solution to
the problem.

For more details and explanations on implementation issues for
functions Compute_Cost() and Compute_Signature, we refer
the interested reader in [7].

5. EXPERIMENTS
In this section, we present a series of experiments for various

types of workflows. However, as far as we are aware of, in the
literature and practice there is a lack of standard benchmark or ex-
perimental setup for ETL workflows. In [8], we have introduced a
principled method of constructing ETL workflows, which we adopt
for the purposes of this paper. The main constructs of the experi-
mental method are a broad category of workflows, called Butter-
flies due to their shape. The following section briefly summarizes
the main ideas of [8]. Then, we present our experimental results.

5.1 Butterflies as an Experimental Method
A butterfly is an ETL workflow that consists of three distinct

components: (a) the left wing, (b) the body and (c) the right wing
of the butterfly. The left and right wings are two non-overlapping
groups of nodes which are attached to the body of the butterfly.
Specifically:

• The left wing of the butterfly includes one or more sources,
activities and auxiliary data stores used to store intermediate
results. This part of the butterfly performs the ETL process-
ing of the workflow and forwards the processed data to the
body of the butterfly.

• The body of the butterfly is a detailed warehouse (a.k.a. fact)
table that is populated with the cleansed and transformed data
produced by the left wing. Still, other structures like dimen-
sion tables can act as bodies of a butterfly, too.

• The right wing gets the data stored at the body and utilizes
them to support reporting and analysis activity. The right
wing consists of materialized views, reports, spreadsheets,
as well as the activities that populate them. In our setting, we
abstract all the aforementioned static artifacts as materialized
views.

Regarding the example of Figure 5, the body of the butterfly is
the fact table V . The left wing of the butterfly, includes the source
relations R and S, the DSA relation P , and the activities 1, 2, and 3.
The right wing of the butterfly includes the materialized aggregate
views Z and W , as well as the aggregation activities 4 and 5.

Balanced Butterflies. A butterfly that includes medium-sized
left and right wings is called a Balanced butterfly and stands for
a typical ETL scenario where incoming source data are merged to
populate a warehouse table along with several views or reports de-
fined over it. Figures 2 and 5 are examples of this class of butter-
flies. Still, we have constructed several butterfly variants, in order
to cover other real-world cases, too, where there is no symmetry be-
tween the left and the right part. We classify these variants accord-
ing to their graph structure (see Figure 4(b)). In terms of graphical
notation, the bodies of the butterflies are underlined. The two fun-
damental wing components can be either Lines or Combinations,
which we present right ahead.

Lines. Lines are sequences of activities and recordsets such that:
(a) no recordsets are directly linked; and (b) all activities have ex-

53

R s |

S

W... ...

(c) primary flow

|

X

R

|

V

S

Z W

Y

...

...

... s

s

(d) tree

R s

?

| V

S

W?

...

...
...

(b) wishbone(a) linear workflow

R s ?V W

(e) flat hierarchy - fork

?VR s

?

Z

W

Y...

?

...

...

...

(f) right – deep hierarchy

Vs

?

R
s

? T

Z
X

WY
...

?

?

V

l1

l2

ln

… …

r1

r2

rm

left wing right wing

body

Figure 4: Butterfly components and classes

actly one input and one output, i.e., unary activities. In these work-
flows, nodes form a single data flow.

Combinations. A combinator activity is a binary activity that
merges parallel data flows through some join (e.g., a relational join,
or diff operation) or union variant. A combination is built around a
combinator with lines or other combinations as its inputs. We dif-
ferentiate combinations as left-wing and right-wing combinations.

Left-wing combinations are constructed by lines and combina-
tions forming the left wing of the butterfly. The left wing contains
at least one combination. The inputs of the combination can be:

• Two lines. Two parallel data flows are unified into a single
flow using a combination. These workflows are shaped like
the letter Y and we call them Wishbones.
• A line and a recordset. This refers to the practical case where

data are processed through a line of operations, some of which
require a lookup to persistent relations. In this setting, the
Primary Flow of data is the line part of the workflow.
• Two or more combinations. The recursive usage of combi-

nations leads to many parallel data flows. These workflows
are called Trees.

Observe that in the cases of trees and primary flows, the target
warehouse acts as the body of the butterfly (i.e., there is no right
wing). This situation covers (a) fact tables without materialized
views and (b) the case of dimension tables that also need to be
populated through an ETL workflow.

Right-wing combinations are constructed by lines and combina-
tions on the right wing of the butterfly. These lines and combina-
tions form either a flat or a deep hierarchy.

• Flat Hierarchies. These configurations have small depth (usu-
ally 2) and large fan-out. An example of such a workflow is
a Fork, where data are propagated from the fact table to the
materialized views in two or more parallel data flows.
• Right - Deep Hierarchies. To push the experiments to their

limits, we employ configurations with right-deep hierarchies.
These configurations have significant depth and medium fan-
out. Figure 4 (f) shows a right-deep hierarchy with depth 6.

General issues. In the above analysis as well as in the examples
introduced so far, in order to simplify the presentation, we have
considered activities such as filters and aggregations. In practice,
more complex and composite activities are also used; e.g., pivot,
difference, slowly changing dimensions (SCD), and so on. In ad-
dition, nowadays, most commercial ETL tools support activities
with more than one output; e.g., splitter and switch. Our principled

R σA>300

γA

|A=A V

S

Z

WP

1

2

3 4

5

γA

γB

100k

100k

10k

30k

30k

3k

6ksel2=0.3
p2=0.001

sel1=0.1
p1=0.001

sel3=0.0001
p3=0.001

sel5=0.2
p5=0.001

sel4=0.1
p4=0.001

Figure 5: Balanced butterfly

method for constructing ETL workflows supports any generic type
of activity [8]. However, for consideration of space, in the rest of
the paper we will not elaborate more on this issue.

5.2 Experimental results
In this section, we experimentally evaluate the proposed approach

using different classes of ETL workflows. All the experiments were
conducted on an Intel(R) Pentium(R) M running at 1,86 GHz with 1
GB RAM and the machine has been otherwise unloaded during ex-
periments. For lack of space, in this subsection we present detailed
results for balanced and right-deep butterflies only. In Section 5.3,
we briefly describe our findings for the rest butterfly classes. For
more details on our experimental analysis, we refer the interested
reader in [7].

Balanced Butterflies. First, we start with “equi-weight” bal-
anced butterflies. The workflow characteristics for the scenario of
Figure 5 are: (a) number of nodes = 11, (b) time to discover opti-
mal scenario = 28 sec, and (c) total number of generated signatures
= 181.

Figure 6 shows the 10 signatures having the lowest total cost for
the scenario. Observe that the optimal physical representation for
this butterfly contains a sorter on edge 1_3 and a sorter on table
S. Observe also that this scenario has a highly selective left wing.
Thus, the introduction of a sorter is beneficial even for the source
data of S. Furthermore, the difference between the 10th solution
and the optimal signature is small (in particular 17%).

Overhead of Sorters. Figure 6 presents the number of sorters
contained in each of the aforementioned top-10 signatures, the cost
of the sorters, and the percentage of sorters’ cost. Observe that the
cost of the sorters is significant for the best solution (70% as per-
centage). This means that the addition of the two sorters minimizes
the cost of the rest of the activities so much, that the total cost of
the entire scenario is minimized, so that this solution is definitely a
winner compared to the best possible solution without any sorters.
The fluctuation of the sorter’s overhead, nevertheless, is impres-

54

Figure 6: Results for balanced butterfly

Data volumes on relation V 1/3*|R| 1/5*|R| 1/7*|R|

No. of different solutions in
top-10 list 0 6 4

Change at optimal solution No No Yes

Total cost (Optimal) 2.562.774 6.166.805 2.518.853

Total cost (Avg(Top-10)) 2.882.293 6.644.516 2.597.239

Total cost (10th) 3.003.573 7.444.406 2.714.168

Optimal 0 3.604.031 -43.922

Avg(Top-10) 0 3.762.223 -285.054
Difference
in total cost

10th 0 4.440.834 -289.405

Optimal 0 141% -2%

Avg(Top-10) 0 131% -10%
Difference
in total cost

(%)
10th 0 148% -10%

Figure 7: Impact of selectivity

sive: the overhead ranges from 6% (for the second best solution) to
approximately 70% for the best, third and fourth solution. This is
due to the balanced nature of the butterfly, which has many candi-
date positions for the introduction of sorters: therefore, the results
of a combination of sorters can produce significant variances.

Effect of Input Size. In the reference scenario, each of the sources
R and S contains 100,000 rows. We have experimented by varying
the size of data extracted from each source to 200,000 rows. This
experiment returns the same 8 solutions out of the top-10 list pro-
duced by the reference scenario. A general observation is that the
total cost of the optimal solution in all cases is practically linearly
dependent upon the input size. This observation holds also for the
average cost of the top-10 signatures and the 10th solution.

Effect of the Overall Selectivity of the Workflow. In this set of
experiments, the selectivity values of the workflow are modified in
such a way that small, medium or large data volumes pass through
the butterfly’s body. Specifically, we appropriately tune the selec-
tivities, so that the ratio of the data of table V over the input data is:
0.1, 0.3, 0.5 or 0.7.

Observe that the latter case of 1/7 ∗ |R| data reaching table V,
is the representation of a butterfly configuration with a highly se-
lective left wing. The differences in total cost of the optimal solu-
tion, average and 10th solution are negative. This means that this
is cheaper than 1/3 ∗ |R|. Since the volume of data reaching V is
small, a sorter can be placed on this table without causing a severe
increase in total cost. In fact, the optimal solution for the 1/7 ∗ |R|
case contains a sorter on the data of table V. Thus, we can con-
clude that highly selective left wings of butterflies highly favor the
butterfly’s body as a good candidate position for a sorter.

Right-Deep Butterflies. Another type of workflow under con-
sideration is a Right - Deep Hierarchy. We illustrate a reference
Right-Deep scenario in Figure 8 with the following characteristics:

R σA>300

1

sel1=0.1
p1=0.001

V γB,C

64k
sel2=0.8

p2=0.001

2
T

YγB,C

p6=0.001

6

sel6=0.7

56k

σA<500

3

sel3=0.6
p3=0.001

U γB

sel4=0.7
p4=0.001

4

Z80k 38.4k 26.88k

YγB

p5=0.001

5

sel5=0.7

44.8k

Figure 8: Right-deep butterfly

(a) number of nodes = 13, (b) time to discover optimal scenario =
14 sec, and (c) total number of generated signatures = 49.

Figure 9 shows the 10 signatures having the lowest total cost.
The optimal physical representation for this scenario contains a
sorter on table V that orders data according to attributes B, C.

In Figure 9 we also depict the sorter costs for the top-10 solu-
tions. Interestingly, although the number of activities is small (only
6 activities in a graph of 13 nodes) the best solutions typically con-
tain sorters. This is an interesting result since it highlights the pos-
sibility of exploiting sorters in recordset-heavy configurations. The
sorter costs remain significant in the range 20% - 60% for the top-
10 list.

Effect of Complexity (Depth and Fan-out) of the Right Wing. In
this set of experiments (Fig. 10), we vary the following metrics: the
size, the depth, and the average fan-out (w.r.t. the recordsets) of the
butterfly’s right wing. Then, we measure the candidate positions
for sorters and the completion time of the exhaustive algorithm.
Observe that the third case of Figure 10 contains 14 nodes on the
right wing, whereas the fourth case 15 nodes, still the latter has 6
times larger completion time than the former. This is due to the
fact that the third case contains a small number of candidate posi-
tions for sorters compared to the fourth case. The only factor that
increases the completion time of the third case is the number of
possible physical implementations of each activity. The outcome
of these experiments is that the depth and the average fan-out do
not play a determinant role to the completion time, whereas the
number of candidate positions for sorters plays a certain role and
the critical factor is ultimately, the size of the right wing.

Completion time and early termination. Clearly, the comple-
tion time of the exhaustive algorithm is exponential to the size of
the butterfly. Practically though, during our experiments we have
observed that the number of involved sorters in the good solutions
does not exceed the number of intermediate DSA relations in the
graph. In all categories of workflows, the optimal signature is found
relatively early in the execution of the exhaustive algorithm; i.e.,
the signature with minimal cost is usually found in the first 50-60
signatures produced by the algorithm. The explanation is that after
adding relatively few sorters, if more sorters are added to the work-
flow, any benefits gained from cheaper physical implementations
due to the first sorters are outweighed by the extra sorting cost.

55

Figure 9: Results for right-deep butterfly

Case 1 2 3 4

Right wing size (nodes) 8 10 14 15
Depth 4 6 4 6

Avg(Fan-out) 2 0.8 2.3 2
Candidate positions 2 3 3 6

for sorters
Completion time (sec) 5 14 59 311

Figure 10: Effect of Depth and Fan-out

5.3 Findings for specific categories of
butterflies

Balanced butterflies. The general case of butterflies is charac-
terized by many candidate positions for sorters. Overall, the intro-
duction of sorters appears to benefit the overall cost. The body of
the butterfly is a good candidate to place a sorter, especially when
the left wing is highly selective.

Butterflies with a right-deep hierarchy. These butterflies be-
have similarly to the general case of balanced butterflies. The size
of the right wing is the major determinant of the overall comple-
tion cost of our algorithms due to the large number of candidate
positions for sorters.

Lines. The generated space of alternative physical representa-
tions of a linear scenario is linear to the size of the workflow (with-
out addition of sorters). In our experiments we have observed that
due to the selectivities involved, the left wing might eventually de-
termine the overall cost (and therefore, placing filters as early as
possible is beneficial, as one would typically expect).

Butterflies with no right wing. In principle, the butterflies that
comprise just a left wing are not particularly improved when sorters
are involved. In particular, the introduction of sorters in Wishbones
and Trees does not lead to the reduction of the total cost of the
workflow. However, there are certain cases, in trees, where sorters
might help - provided that the data pushed through the involved
branch has a small size or a large number of activities share the
same interesting order.

Forks. Sorters are highly beneficial for forks. This is clearly
anticipated since a fork involves a high reusability of the butter-
fly’s body. Therefore, the body of the butterfly is typically a good
candidate for a sorter.

6. RELATED WORK
Previous efforts on the optimization of ETL workflows propose a

set of transitions that generate equivalent logical workflows, pos-
sibly with lower cost, by changing the execution order of logical
activities [4, 5]. Physical properties are not considered in this line
of work, though.

Object-relational optimization has also provided results for queries
with methods. Hellerstein deals with left-deep or bushy relational
query plans [1]; however, ETL workflows have more complex struc-

ture and functionality, and therefore, do not necessarily meet the as-
sumptions made by Hellerstein. The exploitation of orderings starts
with the paper of P. Selinger et al. [3] that exploits existing order-
ings in the data (in the form of interesting orders) in the context
of query optimization. Still, the intentional introduction of new or-
derings has not been considered per se. Furthermore, while many
of the studies consider the generation of plans without unneces-
sary, overlapping order or group operators, they rely on functional
dependencies and predicates applied over data, without handling
orders more abstractly [2, 6, 9]. Thus, this line of work is orthog-
onal to our problem, since these results can be plugged-in to our
algorithm in a straightforward fashion.

7. CONCLUSIONS
In this paper, we have dealt with the problem of determining the

best possible physical implementation of an ETL workflow, given
its logical-level description and an appropriate cost model as in-
puts. We have experimented with artificially introducing sorters in
the physical representation of the workflow that allow the usage
of a richer set of order-dependent implementations for each logical
activity to improve the overall workflow performance. The long
version of the paper [7] includes further results when failures are
considered for the execution of the workflows.

Future work can follow in terms of linking the results of this
work with the appropriate scheduling policy in the execution en-
gine. Also, the usage of hash-groups can be considered as an alter-
native to the usage of orderings, mainly for real-time ETL.

8. REFERENCES
[1] J. M. Hellerstein. Optimization Techniques for Queries with

Expensive Methods. ACM Trans. Database Syst., 23(2):113–157,
1998.

[2] T. Neumann and G. Moerkotte. An Efficient Framework for Order
Optimization. In ICDE, pages 461–472, 2004.

[3] P. G. Selinger, M. M. Astrahan, D. D. Chamberlin, R. A. Lorie, and
T. G. Price. Access Path Selection in a Relational Database
Management System. In SIGMOD, pages 23–34, 1979.

[4] A. Simitsis, P. Vassiliadis, and T. K. Sellis. Optimizing ETL Processes
in Data Warehouses. In ICDE, pages 564–575, 2005.

[5] A. Simitsis, P. Vassiliadis, and T. K. Sellis. State-Space Optimization
of ETL Workflows. IEEE Trans. Knowl. Data Eng.,
17(10):1404–1419, 2005.

[6] D. E. Simmen, E. J. Shekita, and T. Malkemus. Fundamental
Techniques for Order Optimization. In SIGMOD, pages 57–67, 1996.

[7] V. Tziovara. Order-Aware ETL Workflows. Master’s thesis, University
of Ioannina. Available as a TR at http://www.cs.uoi.gr, 2006.

[8] P. Vassiliadis, A. Karagiannis, V. Tziovara, and A. Simitsis. Towards a
Benchmark for ETL workflows. In QDB’07 (in conj. with VLDB’07),
2007.

[9] X. Wang and M. Cherniack. Avoiding Ordering and Grouping In
Query Processing. In VLDB, pages 826–837, 2003.

56

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Academy
 /AgencyFB-Bold
 /AgencyFB-Reg
 /Alba
 /AlbaMatter
 /AlbaSuper
 /Algerian
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /BabyKruffy
 /BaskOldFace
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BlackadderITC-Regular
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BradleyHandITC
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Castellar
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chick
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Croobie
 /CurlzMT
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversMT
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /EstrangeloEdessa
 /Fat
 /FelixTitlingMT
 /FootlightMTLight
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Freshbot
 /Frosty
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GlooGun
 /GloucesterMT-ExtraCondensed
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /Jenkinsv20
 /Jenkinsv20Thik
 /Jokerman-Regular
 /Jokewood
 /JuiceITC-Regular
 /Karat
 /Kartika
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /MaturaMTScriptCapitals
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MSOutlook
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /OCRAExtended
 /OldEnglishTextMT
 /Onyx
 /PalaceScriptMT
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Papyrus-Regular
 /Parchment-Regular
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /Playbill
 /Poornut
 /PoorRichard-Regular
 /Porkys
 /PorkysHeavy
 /Pristina-Regular
 /PussycatSassy
 /PussycatSnickers
 /Raavi
 /RageItalic
 /Ravie
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /ScriptMTBold
 /ShowcardGothic-Reg
 /Shruti
 /SnapITC-Regular
 /Square721BT-Roman
 /Stencil
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Vrinda
 /Webdings
 /WeltronUrban
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

