
July–September 1998 5

Remote procedure calls and
Java Remote Method
Invocation

Jim Waldo
Sun Microsystems
jim.waldo@sun.com

REMOTE PROCEDURE CALL SYSTEMS have been around
since Andrew Birrell and Greg Nelson first proposed them in
1984.1 During the intervening 15 years, numerous evolution-
ary improvements have occurred in the basic RPC system,
leading to improved systems—such as NCS2—that offer pro-
grammers more functionality or greater simplicity. The Com-
mon Object Request Broker Architecture from the Object
Management Group3 and Microsoft’s Distributed Common
Object Model4 are this evolutionary process’s latest out-
growths.

With the introduction of Java Developer’s Kit release 1.1,
a third alternative for creating distributed applications has
emerged. The Java Remote Method Invocation system has
many of the same features of other RPC systems, letting an
object running in one Java virtual machine make a method call
on an object running in another, perhaps on a different phys-
ical machine.

On the surface, the RMI system is just another RPC mech-
anism, much like Corba and DCOM. But on closer look, RMI
represents a very different evolutionary progression, one that
results in a system that differs not just in detail but in the very
set of assumptions made about the distributed systems in
which it operates. These differences lead to differences in the
programming model, capabilities, and way the mechanisms
interact with the code that implements and built the distrib-
uted systems.

RPC system assumptions

To understand the differences between RMI and more stan-
dard RPC mechanisms such as Corba and DCOM, let’s exam-
ine the different systems’ underlying assumptions concerning
their operating environment. These assumptions structure the
thinking of the system’s designers and the resulting system’s
functionality.

Corba and DCOM (and earlier systems in the RPC evolu-
tionary line) were built on assumptions of heterogeneity. These
mechanisms assume that the distributed system contains
machines that might be different, running different operating

systems. The machines’ instruction sets might differ. Indeed,
data representations might differ from one machine to another.

This heterogeneity is the central problem that systems such
as Corba were designed to solve. As their solution, these systems
introduced proxies on each machine that could process infor-
mation passing from one member of the distributed system to
another. The processing converted the information from the for-
mat known by one member into a format known by the other.

The proxy on the client (calling) side became known as a stub,
while the proxy on the server (receiving) side became known
as the skeleton. Stubs are compiled into the calling code and con-
vert any call into some machine-neutral data representation (a
process called marshaling) that gets transmitted to the receiving-
machine skeleton. This skeleton will translate the transmitted
information into the appropriate data types for that machine (a
process known as unmarshaling), will identify the code that
needs to be called with that information, and will make the call.
Skeletons also marshal any return values, transmitting them
back to the stub that made the call, which will unmarshal those
values and return them to the calling code.

Stub and skeleton production happens automatically, based
on language and machine-neutral interface-definition language
descriptions of the calls that can be made. An IDL definition
describes the procedures or methods that can be called over the
network and the information that passes to and from those pro-
cedures or methods. From such a description, the programmer
can invoke an IDL compiler that will produce stub and skele-
ton source code for marshaling, transmitting, and unmarshal-
ing this data. This code can then be compiled for the target
machine and linked into the appropriate application code.

Having a machine-neutral IDL also lets such systems deal with
heterogeneous languages. Different IDL compilers can trans-
late the remote interfaces defined through the IDL into stubs
and skeletons for different implementation languages. Because
the exchanged data’s on-the-wire format is the same no matter
what language is used, stubs generated by one compiler can send
procedure or method calls (along with parameters) to a skeleton
generated by a compiler for a different target language.

This approach has considerably simplified the building of

Spotlight: OO Systems

.

distributed applications. However, it has limitations. The lan-
guage-neutral nature of these systems limits the kinds of data
that can travel between processes to the basic data types that
can be represented in all the target languages, to references to
remote objects, and to structures made up of basic data types
and references to remote objects. Although the complexity of
network data representations are hidden from the program-
mer, the programmer must face the complexity of mapping
from the IDL to the implementation-language data types.
Finally, the life-cycle management of data sent, either as a para-
meter or a return, requires complex conventions or explicit
reference counting, both of which are subject to programmer
error that can cause memory leaks or referential integrity loss.

Perhaps this approach’s greatest limitation, however, is the
static nature of the information that can pass over the network.
Systems built this way depend on the stub and skeleton match-
ing, allowing the receiving process to interpret the sent infor-
mation. This in turn requires that the receiving process know
exactly what the sending process places on the wire. In object-
oriented terms, no polymorphism is al-
lowed—the transmitted object’s type (or
its reference type) cannot be a subtype
of the type expected by the skeleton. If a
process passes an instance or a reference
to such a subtype, the system converts it
to a reference of the exact type that the
skeleton expects.

RMI system
assumptions
The Java RMI system is built on an
entirely different set of assumptions.
Heterogeneity is not the major problem. Indeed, it is not a
problem at all, because RMI assumes that the client and the
server are both Java classes running in a Java virtual machine,
which makes the network a homogeneous collection of (vir-
tual) machines.

The RMI system takes homogeneity one step further and
assumes that all objects constituting the distributed system are
written in Java. RMI’s designers made this single-language
assumption to simplify the overall system, placing RMI in the
evolutionary line of language-centric systems such as Oberon
and the Modula-3 Network Object system. With this single-
implementation language assumption, the RMI system does
not need a language-neutral IDL. RMI simply uses the Java
interface construction to declare remotely accessible inter-
faces. A remote interface in RMI is one that extends the marker
interface java.rmi.Remote.

Finally, RMI’s Java-centric design lets the system capitalize
on the Java environment’s dynamic nature, letting code load
any time during execution. Rather than requiring, as do tradi-
tional RPC systems, that all code needed for communication
between processes be available at some time prior to that com-
munication, RMI makes aggressive use of dynamic code load-

ing, from stubs representing remote objects to real objects that
can pass from one part of a distributed system to another.

The ability to download code plays its most prominent role
in connection with the ability to pass full objects into and out
of an RMI call. Because of RMI’s single-language assumption,
the system allows almost any Java object to pass as a parame-
ter or return value in a remote call. Remote objects pass by ref-
erence, in effect, by passing a copy of the object’s stub code.
Nonremote objects are passed by value, creating a copy of the
object in the destination..

The objects that pass are real objects, not just the data that
makes up an object’s state. This distinction becomes impor-
tant if a subtype of a declared type passes from one member of
the distributed computation to another. Passing a subtype
object could result in receiving an unknown object. Because a
subtype can change the behavior of known methods in an
object, simply treating the object as an instance of a known
type might change the results of making a method call on that
object.

To avoid such a change, RMI uses a
variant of the Java Object Serialization
package to marshal and reconstruct
objects. This package will annotate any
object with enough information to iden-
tify the object’s exact type and its imple-
mentation code. When an object of a
previously unknown type is received as
the result of an RMI call, the system
fetches the code for that object, verifies
it, and dynamically loads it into the
receiving process.

Distributed computations therefore
can use all the standard object-oriented

design patterns that rely on polymorphism, because the object’s
behavior moves when the object moves. The receiving process
must simply define the set of methods that will be called on an
object that passes to it; how the object implements those meth-
ods can vary in ways that the receiving process need not know.
Although we generally discuss passing objects in conjunction
with nonremote objects that pass by value, it also affects the
way the RMI system can pass references to remote objects.
These references are themselves stub objects, generated by the
RMI compiler. However, unlike standard RPC IDL compil-
ers, these stubs are generated on the implementation class of
the object to which the stub refers. Rather than reflecting only
the declared remote interface, these stub objects support all
the remote methods that the remote object’s implementation
supports.

Stubs for remote objects therefore also load at runtime when
needed, and the stub will reflect the exact (remote) type of the
object for which the stub is a proxy. This changes the basic
notion of ownership and responsibility in the distributed appli-
cation. In systems such as Corba, the stub code is the respon-
sibility of the calling client and can be linked ahead of time
into that client. In the RMI system, the stub for a remote object

6 IEEE Concurrency

RMI’s Java-centric
design lets the system
capitalize on the Java
environment’s dynamic
nature, letting code
load any time during
execution.

.

originates with the object and can be different for any two objects with
the same apparent type. The system locates and loads these stubs at run-
time, when the system determines what the exact stub type is.

Such an association makes the stub an extension of the remote object in
the client’s address space, rather than something that is built into the client
as a way of contacting the remote object. This approach allows program-
mers using the system to build a variety of “smart” proxies. Such smart
proxies can cache certain values in the stub, avoiding the need to make
remote calls in certain cases. Indeed, because the stub loads dynamically
depending on the particulars of the remote-object implementation, stubs
for objects that have the same apparent class might be very different,
because the full implementation class of those objects might be very
different.

This points out what is perhaps the most fundamental difference
between most existing RPC systems and Java RMI. In most existing sys-
tems, the result of writing an IDL interface is a static wire protocol, which
defines the way the stub of one member of the distributed computation will
interact with the skeleton that belongs to another part of the distributed
computation. In the RMI system, the interaction point has moved into
the address space of the client of a remote object and is defined in terms
of a Java interface. That interface’s implementation comes from the remote
object itself, is dynamically loaded when needed, and can vary in remote
objects that appear, from the client’s point of view, to be of the same type
(because the client only knows that remote objects are of at least some
type).

REFERENCES
1. A.D. Birrell and B.J. Nelson, “Implementing Remote Procedure Calls,” ACM

Trans. Computer Systems, Vol. 2, No. 1, Jan. 1984, pp. 39–59.

2. T.H. Dineen et al., “The Network Computing Architecture and System: An
Environment for Developing Distributed Applications,” Proc. Summer Usenix
Conf., Usenix Assoc., Berkeley, Calif., 1987, pp. 385–398.

3. Common Object Request Broker: Architecture and Specification, Revision 2.1, Object
Management Group, Framingham, Mass., 1997.

4. The Component Object Model Specification, Microsoft, Redmond, Wash.;
http://www.microsoft.com/oledev/olecom/title.htm.

Jim Waldo is a senior staff engineer with Sun Microsystems, where he is the lead
architect for Jini, a distributed programming infrastructure for Java. He is also an
adjunct faculty member of Harvard University’s Department of Computer Sci-
ence, where he teaches distributed computing. He currently works in the area of
Java-centric distributed computing. He received his PhD in philosophy from the
University of Massachusetts at Amherst and also holds MA degrees in linguistics
and philosophy. He edited The Evolution of C++: Language Design in the Marketplace
of Ideas and writes the “Java Advisor” column for Unix Review. He is a member of
the IEEE and the ACM. Contact him at Sun Microsystems, 2 Elizabeth Dr., Clems-
ford, MA 01824-4195; jim.waldo@sun.com.

July–September 1998

.

