
This article was downloaded by: [University of Ioannina]
On: 18 April 2012, At: 04:17
Publisher: Taylor & Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer
House, 37-41 Mortimer Street, London W1T 3JH, UK

International Journal of Computer Mathematics
Publication details, including instructions for authors and subscription information:
http://www.tandfonline.com/loi/gcom20

Neural network training and simulation using a
multidimensional optimization system
A. Likas a , D. A. Karras a & I. E. Lagaris a
a Department of Computer Science, University of loannina, P.O. Box 1186, GR, 45110,
loannina, Greece

Available online: 20 Mar 2007

To cite this article: A. Likas, D. A. Karras & I. E. Lagaris (1998): Neural network training and simulation using a
multidimensional optimization system, International Journal of Computer Mathematics, 67:1-2, 33-46

To link to this article: http://dx.doi.org/10.1080/00207169808804651

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.tandfonline.com/page/terms-and-conditions

This article may be used for research, teaching, and private study purposes. Any substantial or systematic
reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any form to
anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents
will be complete or accurate or up to date. The accuracy of any instructions, formulae, and drug doses
should be independently verified with primary sources. The publisher shall not be liable for any loss,
actions, claims, proceedings, demand, or costs or damages whatsoever or howsoever caused arising
directly or indirectly in connection with or arising out of the use of this material.

http://www.tandfonline.com/loi/gcom20
http://dx.doi.org/10.1080/00207169808804651
http://www.tandfonline.com/page/terms-and-conditions

Intern. J. Compursr Math., Vol. 67, pp. 33-46
Reprints available directly from the publisher
Photocopying permitted by license only

C 1998 OPA (Overseas Publishers Association)
Amsterdam B.V. Published under license

under the Gordon and Breach Scrence
Publishers imprint.

Pnnted in India.

NEURAL NETWORK TRAINING
AND SIMULATION USING A

MULTIDIMENSIONAL OPTIMIZATION
SYSTEM

A. LIKAS. D. A. KARRAS and I. E. LAGARIS

Department of Computer Science, University of Ioannina,
P.O. Box 1186- G R 45110 Ioannina, Greece

(Received 14 April 1997)

A new approach is presented to neural network simulation and training that is based on the use of
general purpose optimization software. This approach requires that the training problem should
be formulated as theminimization of acost functionof the network weights. Thiscost function is a
user written code called by the optimization system, which in turn provides the user with a variety
of minimization procedures that can be combined via user programmable minimization strate-
gies. Experimental results concerning several learning paradigms indicate that the approach is
very convenient and effective and leads to the discovery of efficient training strategies.

Keywords: Neural network simulation; template; Merlin; training strategy

1. INTRODUCTION

The increased interest in neural network research has led to the development
of many software simulators that provide the experimentation means for
training and testing the variety of the existing models. These simulators can
be classified into the following categories.

1 . Network specific simulators. They are specific to a particular neural
network type, most often multilayer perceptrons (MLPs), allowing the
user a limited choice of network's parameters. Their use is limited to the
application areas of the specific model implemented by them.

2. Template simulators. A template simulator can be mainly characterized
by its ease of use, basically through a well constructed graphical user

D
ow

nl
oa

de
d

by
 [

U
ni

ve
rs

ity
 o

f
Io

an
ni

na
]

at
 0

4:
17

 1
8

A
pr

il
20

12

34 A. LIKAS er a1

interface. One can select a network type from a pool of existing ones and
after easily specifying its architecture (number of layers, units, activation
function type etc.) can select its learning rule through a multitude of
different algorithms. The only flexibility allowed to the user is to easily
modify architectural and training parameters. However, new training
rules cannot be incorporated. Defined nets can usually be called from
high level languages like C, allowing nets to be incorporated in layered
applications. SNNS (although it lacks the feature of C code generation) is
a representative example of a powerful template simulator, which
probably affords the largest number of models and rules.

3. Non-template simulators. These more advanced simulators allow the user
to define new ANN models or implement major modification to existing
models. For examples new activation functions and learning rules can be
specified. A feature of nearly all these simulators is the provision of a well
designed graphical interface, which allows unexpected behaviour of a
new model to be tracked and understood. The major characteristic of
non-template simulators is the lack of a well developed and documented
library to provide the means to build new models not from scratch.

The objective of this paper is to demonstrate a new approach to neural
network simulation and training, at least for the models whose training is
based on optimization methods. Within this methodology all the
architectural characteristics are integrated in the ANN cost function, which
should programmed by the user. The user may also provide the derivatives of
this function. Otherwise, numerical methods for derivative approximation
are involved. The variety of optimization techniques incorporated in the
system may be invoked and the many subtle implementation details of
optimization methods are hidden from the users. This fact constitutes the
main advantage of the proposed approach which is based on the use of the
MERLIN package for multidimensional minimization [I, 21.

It is well known that several types of neural network training problems
can be formulated as optimization problems that aim at minimizing a
suitably formulated function. This is true for every type of learning, i.e.
supervised, reinforcement and unsupervised learning. MERLIN has given us
the opportunity to easily test several minimization algorithms, assess their
effectiveness and discover appropriate combinations of methods that exhibit
superior minimization performance. More specifically, we have devised
effective strategies for supervised training of multilayer perceptrons and for
delayed reinforcement problems and in addition, we also provide
preliminary results on the unsupervised training of clustering networks.

D
ow

nl
oa

de
d

by
 [

U
ni

ve
rs

ity
 o

f
Io

an
ni

na
]

at
 0

4:
17

 1
8

A
pr

il
20

12

NEURAL NETWORK SIMULATION 35

In the next section the basic characteristics of the MERLIN optimization
environment are described. Section 3 describes a training strategy for
multilayer perceptrons while Section 4 presents an appropriate strategy for
training reinforcement neurocontrollers. Section 5 shows how MERLIN can
be used to train clustering networks and describes a set of candidate
unsupervised learning problems that may be examined using the proposed
approach. Finally Section 6 contains conclusions and directions for future
work.

2. MERLIN DESCRIPTION

MERLIN [l , 21 is a software package for multidimensional minimization that
handles the following category of problems:

Find a local minimum of the function:

under the conditions

xi E [a;, b;] for i = 1,2, . . . , N

Special merit has been taken for problems where the objective function can
be written as a sum of squares i.e:

MERLIN supports various minimization algorithms that can be divided into
two catogeries:

A) Methods that use only function values, and
0 B) Methods that use gradient information as well.

From category A, the SIMPLEX method [4], and a pattern search
method (termed ROLL [I]) are implemented. From category B, conjugate
gradient methods along with Quasi-Newton methods are the chosen ones.
Specifically the Fletcher-Reeves [5], Polak-Ribiere [6] and the Generalized
Polak-Ribiere [q are implemented from the conjugate gradient family and
the DFP [8] and several versions of the BFGS [9] method from the

D
ow

nl
oa

de
d

by
 [

U
ni

ve
rs

ity
 o

f
Io

an
ni

na
]

at
 0

4:
17

 1
8

A
pr

il
20

12

36 A. LIKAS et a1

Quasi-Newton (variable metric) family. The special Sum-of-Squares form, is
treated in addition with a Levenberg-Marquardt method [lo].

Generally speaking, methods that use derivatives, are more efficient.
However some problems correspond to objective functions that by nature
are non-differentiable and hence these methods will not work. Such a case is
described in Section 4, where the pole-balancing problem is solved by a
training strategy based on the SIMPLEX method.

An interesting and useful feature of the package is that it can approximate
the derivatives of the objective function numerically. In fact the gradient can
be approximated either via a forward difference formula, or more accurately
via a central difference two-point formula. An additional numerical
estimation option of high accuracy but computationally expensive uses a
six (or more) points in a symmetric finite difference formula to approximate
the gradient. The user may also provide his own code for the calculation of
the gradient. Moreover, since the calculation of the gradient is often quite
complicated. it is very common for the user written code to be erroneous. To
help the development of correct code for the gradient, there is a built-in
facility that allows the user to compare the results of his code against the
finite difference estimates.

The philosophy followed for Merlin construction was similar to that
usually adopted for building operating systems shells. The system idles
expecting an input command. Once this is entered (by the user), it is
identified and if it is a valid command it is executed. Upon its completion the
system idles again and so on so forth. This structure is very important since it
permits the programmability of minimization strategies. In fact, a language
has been defined [3] to control the MERLIN system and the associated
compiler has been implemented. The MERLIN Control Language (MCL)
supports all the MERLI-N commands plus commands to control loops,
conditions and branching. For simple problems one does not need to use
MCL, however in problems where an algorithrmc strategy is needed, MCL
programming is instrumental. Via MCL one can code very easily global
optimization procedures (for instance stochastic ones) for problems where
local minima do not represent acceptable solutions. In addition using MCL,
one can handle non-linear constraints by employing penalty and bamer
methods. Other facilities offered that may be useful are one-dimensional
plots, confidence intervals for the parameters (for the case of the Sum of
squares form, where the maximum likehood notion is meaningful), fking
one or more parameters to a certain value, freeing previously fixed para-
meters, imposing box constraints on the parameters, etc.

D
ow

nl
oa

de
d

by
 [

U
ni

ve
rs

ity
 o

f
Io

an
ni

na
]

at
 0

4:
17

 1
8

A
pr

il
20

12

NEURAL NETWORK SIMULATION 37

3. TRAINING OF MLPs

Minimizing the MLP error function in realistic problems is a difficult task
since the many layers, the multitude of training patterns and the variety of
categories cast a very complex landscape with wide plateaus and narrow
valleys [12]. There is no single algorithm that can be used as a panacea to
solve such optimization problems. Algorithms that use gradient information
perform well only at regions of the parameter space where the function is
smooth, while algorithms using only function values may be effective at
regions where the derivatives are not well defined. From this point of view,
the main weak point of the existing MLP training procedures is the use of a
single optimization algorithm. Through the use of MERLIN we were able to
discover a novel multi-algorithm optimization procedure governed by a
strategy that exploits the virtues and strengths of the participating
algorithms. This renders the procedure efficient and robust and although
it is an established approach in the field of optimization, it has never been
employed in MLP training before. This new methodology has been
implemented within the novel simulating approach defined in the previous
sections.

The suggested procedure uses three different algorithms, specifically the
quasi-Newton BFGS, the Polak-Ribiere (PR) conjugate gradient algorithm
and a pattern search method (ROLL) that uses only function values. Pattern
search methods have not been used in MLP training so far. Since the above
algorithm employs no derivatives it is expected to be effective at the regions
with plateaus of the weight space where the BFGS and PR techniques that
use gradient information fail to perform. Since the ROLL method is not
widely known we provide a brief description for it. Let E(W1, W2 , . . . , W%)
be the error function in MLPs with Wj corresponding to the weight
variables. Let, also, W e = (W f , W ; , . . . , Wh) be the current point in the
optimization process of E and Ec=E(Wc). Finally, let S, be a step
associated with each free variable Wi.

1. Pick a trail point: W,! = W; for all j # i and W : = Wf + Si
2. Calculate E+ = E(Wt).
3. If E+ < Ec set W c = W', Ec=E+ and &=asi. Then, go to step 8.
4. If E+ > = Ec pick another trail point as: W,! = W; for all j # i and

w: = Wf - si.
5. Calculate E- = E(W').
6. If E- < Ec set W c = W', Ec=E- and Si= -asi. Then, go to step 8.

D
ow

nl
oa

de
d

by
 [

U
ni

ve
rs

ity
 o

f
Io

an
ni

na
]

at
 0

4:
17

 1
8

A
pr

il
20

12

38 A. LIKAS et a1

7. If E- > = E, calculate an appropriate step by: Si = -112 Si (E+ - E-)/
(E+ + E-2Ec).

8. Proceed with step 1 for the next value of i.

In the above, a > 1, is a user set factor (in our experiments a=3.0). If
after looping over all variables there is no progress, a line search is
performed in the direction S= (SI , S2, . . . , S,). The above procedure is
repeated until a present number of calls to the objective function is reached.

In what follows we give a rather detailed account of the proposed Multi
ALgorithm Optimization (MALO) strategy that was coded in MCL.

Initialization: Pick at random an initial set of weights all in [-I, 11.
Set the maximum allowed number of calls to the error function.
Set the target value (a satisfactory value for the error function) Eo.
Set the value for the rate of progress r. (We used r = 1/100).

Step (1):
Step (2):

Step (3):

Step (4):

Step (5):
Step (6):

Step (7):

Step (8):

Test the number of calls to decide whether to stop or not.
Determine and fix the non-influential weights. These weights w
have the property I ;E E , where E > 0 a small present value,
i.e. the error function is not very sensitive to changes in these
weights. This step adds efficiency since at this point these weights
are not important.
Apply in succession the BFGS and the ROLL algorithms (this
adds efficiency and robustness since these two methods are
successful for different types of landscapes).
Redetermine the non-influential weights and fix them (tempora-
rily fixing non-influential weights is beneficial since, due to
dimensionality reduction, the optimization problem becomes
easier).
Test if Eo has been reached to decide whether to stop or not
If the relative rate of progress per call (l/Noc) AE/E 5 r
enhance the weight range as b = min (d, b, a) = (Noc = Number
of calls).
Apply the PR method (Usually it is less efficient than BFGS, but
performs less bookkeeping operations).
Repeat from step (1).

In order to demonstrate the efficiency of our approach in MLP training
we considered two real problems, since the increasing demand for high
performance neural networks in real world applications renders obsolete
any research based only on artificial benchmarks like XOR etc. Both real
problems wer'e selected from the Proben 1 real world benchmark collection

D
ow

nl
oa

de
d

by
 [

U
ni

ve
rs

ity
 o

f
Io

an
ni

na
]

at
 0

4:
17

 1
8

A
pr

il
20

12

NEURAL NETWORK SIMULATION 39

[14], since they are considered especially difficult and hence suitable for
testing. In the first problem the approval of a credit card to a customer
should be predicted, while in the second the diabetes of Pima Indians should
be diagnosed. There are 51 (8) inputs, 2 outputs and 690 (768) examples
divided randomly three times in 345 (384), 173 (192) and 172 (192) patterns
for training, validating and testing respectively, hence forming cardl, card2
and card3 (diabetesl, diabetes2 and diabetes3) tasks. In Table I we compare
the results obtained in these six tasks by our Multi-Algorithm Optimization
(MALO) methodology against to those obtained by the offline Back-
propagation (Off-BP) (learning-rate = 0.01, momentum = 0.05) and the
Polak-Ribiere Conjugate gradient method (PR-BP), according to Probenl
specifications concerning architectures, error measures and number of runs.
MALO clearly outperforms the other methods as well as the RPROP
algorithm used in Probenl in terms of training average error reduction
(notice an improvement of 16-90% regarding the best results obtained in
Probenl [14] with no-shortcut architectures).

4. A STRATEGY FOR TRAINING REINFORCEMENT
NEUROCONTROLLERS

Another learning category where the MERLIN optimization system has been
proved very useful is the case of delayed reinforcement learning. In this
framework, a system receives input from its environment, selects and
executes a sequence of actions, and at the end, receives a reinforcement
signal, namely a grade for the made decision. A broad class of reinforcement
problems is related with task of controlling a system in such a way, so that
its state variables always remain within prescribed ranges. In the case where
one or more state variables violate this restriction, the action selection
system is penalized by receiving a "penalty" reinforcement signal. Examples

TABLE I Comparative results of different methodologies in MLP training

Problem Average (60 runs) training/vdidation/test error

MALO

card 1 0.98/8.44/10.10
card 2 0.78/10.60/14.85
card 3 0.75/8.55/12.98
diabetes 1 12.05/15.47/16.25
diabetes 2 10.35/16.80/17.94
diabetes 3 10.04/17.47/15.88

PR-BP

8.83/8.75/10.40
8.47/10.95/15.10
7.50/8.58/13.40

14.10/15.80/16.81
13.32/17.05/18.40
13.79/17.95/16.35

D
ow

nl
oa

de
d

by
 [

U
ni

ve
rs

ity
 o

f
Io

an
ni

na
]

at
 0

4:
17

 1
8

A
pr

il
20

12

40 A. LIKAS et al.

of such kinds of problems are the pole balancing problem, teaching an
autonomous robot to avoid obstacles, the ball and beam problem [13] etc.

A category of reinforcement learning techniques are the direct ones that
consider only the action model (in order to provide the action policy) and
optimization methods must be employed to adjust the parameters of the action
model so that a stochastic integer-valued function is maximized. This function
is actually proportional to the number of successful decisions (i.e. actions that
do not lead to the receipt of penalty signal). In our case the action model has
the architecture of a multilayer perceptron with input units accepting the
system state at each time instant, and sigmoid output units providing output
values pi in the range (0,l). Based on these values the specification of the
action to be taken is made either stochastically or deterministically.

Training is performed in cycles with each cycle starting with the system
placed at a random initial position and ending with a failure signal. The
number of time steps of the cycle constitutes the performance measure to be
optimized by appropriately adjusting the parameters of the action network.
In practice, when the length of a cycle exceeds a preset maximum number of
steps, we consider that the controller has been adequately trained. This is
used as a criterion for terminating the training process. There is also the
possibility of unsuccessful training termination which occurs when the
number of unsuccessful cycles (i.e. function evaluations without reaching
maximum value) exceeds a preset upper bound.

Since the function to be optimized is integer-valued, gradient-based
optimization techniques cannot be employed. A previous reinforcement
learning approach that follows the direct strategy uses genetic algorithms to
perfom optimization with very good results in terms of training speed
(required number of cycles) [15]. In our case, we have considered the
derivative-free optimization procedures provided by MERLIN. Among
them, the SIMPLEX method has been found to be very effective. The
simplex algorithm (or polytope algorithm) starts with an initial simplex,
which is subsequently adapted in order to reach the area of a minimum and,
finally, it is shrinked around the minimum point.

The initial simplex may be constructed in various ways. At this point
MERLIN has been found very useful since it gave us the capability to test
several construction schemes of the initial polytope. The approach we
followed was to pick the first vertex at random. The rest of the vertices were
obtained by line searches originating at the first vertex, along each of the n
directions. This initialization scheme proved to be very effective for the pole
balancing problem. Other schemes such as, random initial vertices or
constrained random vertices on predefined directions, etc, did not work well.

D
ow

nl
oa

de
d

by
 [

U
ni

ve
rs

ity
 o

f
Io

an
ni

na
]

at
 0

4:
17

 1
8

A
pr

il
20

12

NEURAL NETWORK SIMULATION 4 1

4.1. Solving the Pole Balancing Problem

The simplex-based delayed reinforcement training scheme was tested on the
well-studied pole balancing problem. In this problem a single pole is hinged
on a cart that may move left or right on a horizontal track of finite length. The
pole has only one degree of freedom (rotation about the hinge point). The
control objective is to push the cart either left or right with a force so that the
pole remains balanced and the cart is kept within the track limits. At each
time instant the status of the system is described by the following variables:
the horizontal position of the cart (x), the cart velocity (x), the angle of the
pole (8) and the angular velocity (8) and the action network decides the
direction and magnitude of force Fto be exerted to the cart. It is assumed that
a failure occurs when 181 > I2 degrees or 1x1 > 2.4m and that training has
been successfully completed if the pole remains balanced for more than
120000 consecutive time steps. We are concerned with the case where the
magnitude is fixed (IF1 = ION) and the controller must decide only the
direction of the force at each time step. Obviously the control problem is more
difficult compared to the case where any value for the magnitude is allowed.
Details concerning the equations of motion of the cart-pole system can be
found in [I 1, 15, 131. These motion equations are unknown to the controller.

According to the specifications of [15,11] the action network is a multi-
layer perceptron with four input units (accepting the system state), one
hidden layer with five sigrnoid units and one sigmoid unit in the output
layer. There are also direct connections from the input units to the
output unit. The specification of the applied force characteristics from the
output value y E (0, 1) was performed in the following way. To introduce a
degree of randomness in the function evaluation process, at the first ten
steps of each cycle the specification was probabilistic, i.e. F= ION with
probability equal to y. At the remaining steps the specification was
deterministic, i.e., if y > 0.5 then F= ION, otherwise F= -10N.

The simplex algorithm was very effective being able to balance the pole in
a relative few number of cycles (function evaluations) which was less than
1000 in many cases. Since the algorithm is deterministic its effectiveness
depends partly on the initial weight values. For this reason we have
employed an optimization strategy that is based on the simplex algorithm
with random restarts. The following strategy was implemented in MCL:
First simplex initialization takes place and then the simplex algorithm is run
for up to 100 function evaluations (cycles) and the optimization progress is
monitored. If a cycle has been found lasting more than 100 steps,
application of the polytope algorithm continues for additional 750 cycles,

D
ow

nl
oa

de
d

by
 [

U
ni

ve
rs

ity
 o

f
Io

an
ni

na
]

at
 0

4:
17

 1
8

A
pr

il
20

12

42 A. LIKAS et al.

otherwise we consider that the initial polytope was not proper and a random
restart takes place. A random restart is also performed when after the
additional 750 function evaluations a solution was not encountered.
Moreover, a maximum of 15 restarts was allowed.

For comparison purposes we have also implemented the Adaptive
Heuristic Critic (AHC) [l l] method which belongs to the category of
critic-based methods and assumes two separate models: an action model that
selects the action to be taken at each step current state. Both models are
implemented using feedforward neural networks that are trained on-line
through backpropagation with the error being determined using the method
of temporal differences [ll]. A series of 50 experiments were conducted for
each method and the average number of training cycles (function
evaluations) was 2250 for the proposed technique and 6175 for the AHC
method. Moreover, according to the results reported in [I!], the average
number of cycles for genetic reinforcement approach is 4097. It is clear that
the simplex-based training strategy implemented using the MERLIN
optimization environment exhibits significantly better performance with
respect to the AHC case and it also outperforms the genetic approach.

5. UNSUPERVISED TRAINING OF CLUSTERING NETWORKS

Another neural network area of significant importance where MERLIN
facilities can offer great convenience is the area of unsupervised training of
neural networks and especially the problem of training a neural network to
perform clustering, i.e. to organize unlabeled feature vectors into natural
groups and represent them compactly with one or more prototypes. Almost
any kind of unsupervised learning problem can be stated as an error
minimization problem where the quantity to be minimized is appropriately
formulated in order to satisfy the training objective.

Let X= { x l , ~ 2 , . . ., x,) (xi E RP) denote the set of unlabeled data and c
denote the number of clusters. In the case of hard clustering, clustering
networks are winner-take-all networks (Fig. 1), where each network unit
i(i= 1,. . ., c) in the competitive layer corresponds to a cluster center vi=
(vil,. . . ,v,,) whose coordinates vii can be considered as the weights of the p
inputs to unit i. The objective of training is to adjust the weights of each unit
(receptive fields) so that the clustering error J is minimized [16]:

J = min,d(xi, v,)

D
ow

nl
oa

de
d

by
 [

U
ni

ve
rs

ity
 o

f
Io

an
ni

na
]

at
 0

4:
17

 1
8

A
pr

il
20

12

KEURAL NETWORK SIMULATION

FIGURE 1 Clustering network.

where d (xi, v,) is the distance (usually Euclidean) between the vectors xi and
v,. Many training algorithms have been developed to minimize the above
clustering error. Most of them belong to the competitive learning frame-
work with appropriate modifications in order to overcome certain training
difficulties. Those algorithms operate on-line, in the sense that patterns are
presented to the network one at a time, and the appropriate weight
modifications take place at each step.

Since we deal with an optimization problem it is straightforward to
consider the optimization capabilities provided by MERLIN. We consider as
many network units as the desirable number of clusters and employ
optimization strategies to minimize J, with the adjustable parameters being
the input weights to each cluster unit. In fact, this is the approach proposed
in [18] where simplex optimization procedure (provided by the Matlab
optimization package) was employed. A disadvantage of this approach is
that it does not fully exploit problem information since it is possible for the
training algorithm to move cluster centers outside the domain area where
the data points have been gathered. If mi and Mi denote the minimum and
maximum values at each dimension i(i= (1, . . ., p)), then the problem can be
transformed to a constrained minimization one:

minimize J with vg E [m j , Mi].

D
ow

nl
oa

de
d

by
 [

U
ni

ve
rs

ity
 o

f
Io

an
ni

na
]

at
 0

4:
17

 1
8

A
pr

il
20

12

44 A. LIKAS et al.

Then above problem can be easily handled by MERLIN by initially
restricting the range of each adjustable parameter using the margin
specification commands. In analogy with the supervised case, each function
evaluation required a pass through the training set in order for the value of
J to be computed. Therefore the approach can be classified as a batch
training one.

The technique was applied to the well-studied IRIS data [17] which is a
set of 150 data points in R ~ . Each point corresponds to one of three classes
and there are 50 points of each class in the data set. Of course in this case
class information was not taken into account during training. When three
clusters are considered, the minimum error value is Jmin= 78.9 [I81 in the
case where the Euclidean distance is considered. To tackle this clustering
problem we considered a network with three clustering units, each having
four inputs, ie. there were 12 training parameters. Each parameter value vii
was initialized in the range [mi, M,] according to the initialization scheme
proposed in [19]:

To perform minimization we considered both derivative-free and derivative-
based methods. In the latter case numerical computation of the gradient was
used.

All tested algorithms exhibited very good performance being able to easily
locate the global minimum. The number of function evaluations required
for each of the used optimization methods is presented in Table 11. It can be
observed that the gradient-based methods are faster despite the fact that the
gradient is numerically computed.

The above work constitutes only a first attempt to treat unsupervised
learning problem using MERLIN. There are many cases to be examined, like
for example the employment.of a different distance metric (for example the
Mahalanobis distance), the use of different types of clustering (fuzzy,

TABLE I1 Average number of function evaluations to
solve the IRIS clustering problem

Method Function Evaluations

BFGS
SIMPLEX
ROLL
CONGRA

D
ow

nl
oa

de
d

by
 [

U
ni

ve
rs

ity
 o

f
Io

an
ni

na
]

at
 0

4:
17

 1
8

A
pr

il
20

12

NEURAL NETWORK SIMULATION 45

possibilistic clustering), the use of reference vectors other than points (for
example lines or spheres) and the examination of MERLIN effectiveness in
training Radial Basis Function (RBF) networks. All these cases can be easily
treated with MERLIN and successful optimization strategies may be devised
to tackle difficult clustering cases.

6. CONCLUSIONS

An approach has been proposed to neural network experimentation and
training that is based on the employment of the MERLIN general purpose
optimization software [I , 21. Such an approach requires that the user defines
training as a minimization problem that is subsequently solved by invoking
the procedures provided by the optimization environment. The user need
not know exact details concerning the implementation of the procedures. In
addition the capability of programming appropriate combinations of
methods in terms of minimization strategies provides a very convenient
way to implement and experiment with multialgorithm methods. The
approach has been used in supervised, reinforcement and unsupervised
learning problems with very good results. In the first two cases it has led to
the development of novel effective training strategies, while in the
unsupervised case it has very easily provided the optimal solution to a
classical benchmark problem.

Future work will focus on the development of graphical user interfaces
that will provide a convenient way for the specification of the training
architecture and will automatically generate the code for the cost function to
be minimized. In addition we will continue to experiment with other kinds of
training problems as for example the training of recurrent neural networks
and fuzzy neural networks.

References

[l] Evangelakis, G. A,, Rizos, J. P., Lagaris, I. E. and Demetropoulos, I. N. (1987). Merlin -
Portable System for Multidimensional Minimization, Computer Physics Communications,
46, pp. 402-412.

[2] Papageorgiou, D. G., Chassapis, C. S. and Lagaris, I. E. (1989). MERLIN-2.0 -
Enhanced and programmable version, Computer Physics Communications, 52, 241 -247.

[3] Chassapis, C. S., Papageorgioy D. G. and Lagaris, I. E. (1989). MCL - Optimization
Oriented Programming Language, Computer Physics Communications, 52, pp. 223 -239.

[4] Nelder, J. A. and Mead, R. (1965). A Simplex Method for Function Minimization,
Computer Journnl, 7, pp. 308 - 3 13.

[5] Fletcher, R. and Reeves, C. M. (1964). Function Minimization by Conjugate Gradients,
Computer Journal, 7, pp. 149 - 154.

D
ow

nl
oa

de
d

by
 [

U
ni

ve
rs

ity
 o

f
Io

an
ni

na
]

at
 0

4:
17

 1
8

A
pr

il
20

12

46 A. LIKAS er al.

[6] Polak, E. and Ribiere, G. (1969). Note sur la convergence de methodes de directions
conjugees Revue, Fr. Inf: Rech. Oper., 16-R1, pp. 35-43.

[7] Khoda, K. M.. Liu, Y. and Storey, C. (1992). Generalized Polak-Ribiere Algorithm, J. Of
Optimization Theory and Applications, 75, pp. 345 - 354.

[8] Fletcher, R. and Powell, M. J. D. (1963). A rapidly convergent descent method for
minimization, Computer Journal, 6. pp. 163- 168.

[9] Fletcher, R. (1970). A new approach to variable metric algorithms, Computer Journal, 13,
pp. 317-322.

[lo] More, J. (1977). The Leveberg-Marquardt Algorithm: Implementation and Theory,
Lecture Notes in Mathematics, 630, pp. 105- 116, Springer.

[l l] Anderson, C. W. (1989). Learning to Control an Inverted Pendulum Using Neural
Networks, IEEE Control Systems Magazine, 9(3), pp. 31 -37.

[I21 Haykin, S. (1994). A Comprehensive Foundation. Macmillan Publishing Company.
[13] Lin, C.-J. and Lin, C.-T. (1996). Reinforcement Learning for an ART-Based Fuzzy

Adaptive Learning Control Nerwork, IEEE Trans. On Neural Networks, 7(3), pp. 709-
731.

[14] Prechelt, L. (1994). PROBEN I: A set of Neural Network Benchmark Problems and
Benchmarking Rules, Tech. Report 21/94, September 30, 1994. Fakultat fur Informatik,
Universitat Karlshruhe, Germany.

1151 Whitley, D., Dominic, S., Das, R. and Anderson, C. W. (1993). Genetic Reinforcement
Learning for Neurocontrol Problems, Machine Learning 13, pp. 259-284.

[16] Kohonen, T. (1989). Self-organization and Associative Memory 3rd ed. Berlin: Springer
Verlag.

[I71 Anderson, E. (1935). The IRISes of the Gapse Peninsula, Bull. Amer. IRIS Soc., 59, . .

pp. 381-406.
[18] Hathaway, R. J. (1995). Optimization of Clustenng Criteria by Reformulation, IEEE

Trans. On Fuzzv Svztems, 3(2). DV. 241 -245. . , - A

[19] Karayiannis, N:, ~ i z d e k , J. C., Pal, N. R., Hathaway, R. J. and Pai, P. (1996). Repairs to
GLVQ: A New Family of Competitive Learning Schemes IEEE Trans. On Neural
Xetworks, 7(5), pp. 1062- 107 1.

D
ow

nl
oa

de
d

by
 [

U
ni

ve
rs

ity
 o

f
Io

an
ni

na
]

at
 0

4:
17

 1
8

A
pr

il
20

12

