
�8   Journal of Electronic Commerce in Organizations, 6(1), �8-62, January-March 2008

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is 
prohibited.

AbstRACt

In this article, we deal with context-aware query processing in ad-hoc peer-to-peer networks. 
Each peer in such an environment has a database over which users execute queries. This database 
involves (a) relations which are locally stored and (b) virtual relations, all the tuples of which 
are collected from peers that are present in the network at the time when a query is posed. The 
objective of our work is to perform query processing in such an environment and, to this end, we 
start with a formal definition of the system model. Next, we formally define SQLP, an extension 
of SQL that covers the termination of queries, the failure of individual peers and the semantic 
characteristics of the peers of such a network. Moreover, we present a query execution algorithm 
as well as the formal definition of all the operators that take place in a query execution plan. 

Keywords: data integration; database management systems; information and communication; 
middleware;  mobile technologies; technologies

Context-Aware query
Processing in Ad-hoc 
Environments of Peers

Nikolaos Folinas, University of Ioannina, Greece
Panos Vassiliadis, University of Ioannina, Greece
Evaggelia Pitoura, University of Ioannina, Greece

Evangelos Papapetrou, University of Ioannina, Greece
Apostolos Zarras, University of Ioannina, Greece

IntRoDuCtIon
Nowadays, the synergy between network 
and database management systems provides 
opportunities for the integration and que-
rying of various heterogeneous sources of 
information, spread over an ad hoc network 
of peers. The fundamental topic of this 
article is the context-aware processing of 

queries in ad hoc networks of peers through 
Web services. We assume the existence of 
a set of peers who communicate with each 
other, thus forming a time varying ad hoc 
network of peers. For reasons of interoper-
ability, we also assume that these peers use 
Web services for their interactions. Each 
peer has a database where (a) data can be 

IGI PUBLISHING

This paper appears in the publication, Journal of Electronic Commerce in Organizations, Volume 6, Issue 1
edited by Mehdi Khosrow-Pour © 2008, IGI Global

701 E. Chocolate Avenue, Suite 200, Hershey PA 17033-1240, USA
Tel: 717/533-8845; Fax 717/533-8661; URL-http://www.igi-global.com

ITJ3971



Journal of Electronic Commerce in Organizations, 6(1), �8-62, January-March 2008   ��

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is 
prohibited.

locally stored, or (b) descriptions of data 
are present, in a form that allows their 
collection from the appropriate peers and 
their subsequent querying with traditional 
database mechanisms. The querying and/or 
collection of these data is dependent on 
the state of the peer network and on the 
knowledge that the peer has about this state; 
therefore, each time a query is posed, its 
processing must be adapted to this state. In 
other words, the state of the peer posing a 
query and, most importantly, the state of its 
surrounding network constitutes the context 
under which the query is processed.

Assume the case where several kinds 
of vehicles are driving in a highway. Each 
vehicle is a part of a global pervasive com-
puting environment where computations 
can be performed, data can be exchanged 
between computing devices of the envi-
ronment and information is interactively 
requested and presented to the users. Cars 
interact with each other through Web 
services, providing dynamically changing 
information regarding the vehicle’s loca-
tion, velocity and fuel deposit. Moreover, 
each vehicle comprises services that offer 
static information concerning its type and 
technical characteristics. On the highway, 
there exist exits to parking areas, which 
may include facilities such as gas stations, 
fast food restaurants, medical help, and 
shopping centers. Each one of these facili-
ties also comprises Web services, which 
range from simple ones, reporting the 
existence of the facility, to more complex 
ones providing information regarding, for 
instance, the price lists, the availability of 
certain goods or the number of patients 
waiting for medical help. The users of the 
facilities of the pervasive environment, for 
example, the drivers of the vehicles, can 
obtain information by posing queries to 
global information space of the environ-

ment. For instance, they may be interested 
in obtaining information like the closest 
gas station with a price of gasoline under 
2€/gallon, the closest Italian restaurant, or 
notifications for the average speed of all 
the cars ahead.

To facilitate the smooth operation of 
peers within the aforementioned environ-
ment, specific technical challenges must 
be addressed. A significant problem is the 
fact that traditional query processing must 
be reconsidered to adapt to the particulari-
ties of our computing environment. In this 
article, we are specifically interested in the 
problem of formally defining a declarative 
query language that enables the posing of 
queries over an ad hoc network of peers as 
well as the introduction of a mechanism for 
the transformation of declarative database 
queries to query execution plans.

First, we start with the theoretic for-
mulation of the problem. We construct a 
directed graph of peers, where each node 
corresponds to a peer and each edge to the 
physical connection among two peers. The 
graph of peers is time varying, since nodes 
and edges are added or invalidated as time 
passes. Apart from the possibility of com-
munication, which dictates the structure 
of the graph, peers are further organized 
in communities, based on their semantic 
similarity, or classes, based on the inter-
face of Web services they support. All our 
deliberations are based on the principle of 
local scope, that dictates that no peer has a 
global knowledge of the entire graph, and 
therefore, all its decisions must be made 
depending solely on the knowledge that this 
node has at a given time point. Specifically, 
the viewpoint of a peer is the subset of the 
graph known to this peer at a given time 
point and the communities of the peer are 
sets of peers whose publicized characteris-
tics fulfill a logical condition that classifies 



�0   Journal of Electronic Commerce in Organizations, 6(1), �8-62, January-March 2008

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is 
prohibited.

them into the appropriate community. The 
only classification that is not local is the 
class of each peer: we assume that a set of 
finite classes exists, each with an interface 
comprising a set of public Web service 
operations that all class instances support. 
Every peer is created as an instance of one 
of the globally known classes.

With respect to the relationships among 
peers, each peer plays both the role of the 
server and the role of the client in this envi-
ronment. As a server, the peer implements 
and exports the interface of Web service 
operations prescribed by its class. The other 
peers of the system can invoke these Web 
services at runtime. At the same time, the 
peer is responsible for answering queries 
posed by its users. In our framework, we 
discuss traditional database queries and, 
therefore, the peer hosts a relational data-
base where query processing takes place. 
The database includes different categories 
of relations. First, the database includes 
relations that obey the traditional assump-
tion that a database hosts locally stored 
relations, whose extents are finite sets of 
locally stored tuples. In this article, we 
extend this implicit assumption and assume 
that the extent of a relation can be spread 
among the peers forming the context of 
a peer. Therefore, only the description of 
the schema (or intention) of such a virtual 
relation is locally available, along with the 
description of the necessary Web services 
that must be invoked in order to locally col-
lect the relation’s extent before continuing 
query processing as usual. This collection 
procedure practically dictates that a work-
flow of Web services has to be executed for 
each peer of the viewpoint of the querying 
peer. Finally, a third category of relations 
involves hybrid relations, whose extent is 
partly locally stored and partly needs to be 
collected from the other peers.

The processing of queries in such an 
environment is inherently different to the 
traditional one. We have already mentioned 
the context-aware aspect of data collec-
tion for the population of virtual relations. 
Moreover, due to the volatile character 
of the state of the peer’s graph, it is quite 
probable that the viewpoint of a peer is an 
inaccurate reflection of the state of the peer 
graph. In other words, it is quite possible 
that the graph has changed since the last 
refreshment of the viewpoint of a peer. In 
fact, the graph can possibly change also 
during the execution of a query; therefore, 
the processing of a query must be inher-
ently designed to tolerate failures (i.e., Web 
service invocations that do not respond) 
and continue operating regularly. Also, 
due to the possible vastness of the graph, 
it is necessary to be able to stop collecting 
answers after a certain, satisfactory amount 
of information has been collected. Based 
on these fundamental differences with tra-
ditional query processing, we introduce an 
extension of SQL, SQLP that allows the user 
to exploit the context-dependent nature of 
the environment by specifying the peers of 
interest though abstract criteria that involve 
their location in the graph, their community, 
their class, or QoS characteristics, like, for 
example, their availability. The usage of 
virtual tables is transparent in SQLP. We 
exploit the previously introduced model to 
formally specify the semantics of SQLP.

The processing of the queries in this 
extended version of SQL requires also 
an extension of the mechanism of query 
execution. Traditional relational database 
management systems translate the declara-
tive SQL queries to procedural, execut-
able plans that are expressed in the form 
of left-deep trees of relational operators. 
Therefore, we introduce novel operators, 
specifically tailored for the support of Web 



Journal of Electronic Commerce in Organizations, 6(1), 38-62, January-March 2008   41

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is 
prohibited.

service invocation and composition, in 
order to populate the virtual tables. Then, 
query processing can continue as usual. We 
have also implemented a mechanism that 
allows us to determine the necessary set of 
peers that are supposed to participate in a 
query and to visually display the produced 
plans to the user.

This article is organized as follows: in 
the second section, we propose SQLP, an 
extension of SQL for ad hoc P2P systems. 
To this end, we define a system model; 
we investigate language requirements 
and propose the syntax and semantics of 
SQLP. In the third section, we extend the 
relational algebra with novel operators and 
algorithms in order to map SQLP queries to 
query plans. In the fourth section, we discuss 
implementation issues. Finally, in the fifth 
section, we discuss related work and in the 
sixth section, we conclude our results and 
discuss topics for future work.

SQL FOR PEERS: 
SYSTEM MODEL, 
REQUIREMENTS, SYNTAX 
AND SEMANTICS
In this section, we formally define the sys-
tem model. Then, we move on to formally 

define SQLP, an extension of SQL for ad 
hoc P2P systems.

System Model
A bird’s eye view of the system infrastruc-
ture is modeled by a graph G(V,E), compris-
ing a set of nodes V and a set of edges E 
(Figure 1). Each node in our system graph 
is a peer and each edge e = <u,v> stands 
for the fact that node u can communicate 
with node v. The notion ‘can communicate’ 
means that peer u can send data or make a 
request for data to v - in other words, the 
edge <u,v> implies that peer u assumes (a) 
knowledge of existence and (b) network 
connectivity with node v. The edges are 
directed in the sense that although node u 
can communicate with v, the inverse does 
not hold (an edge <v,u> would be required 
to demonstrate such a fact). This is quite 
frequent in modern ad hoc networks and 
deeply affects the design of efficient rout-
ing protocols (Abolhasan, Wysocki, ��Abolhasan, Wysocki, �� 
Dutkiewicz, 2004). In the sequel, we will. In the sequel, we will 
also refer to an edge between two nodes as 
a direct link. To discriminate between dif-
ferent nodes, each node is characterized by 
a globally unique identifier, peer id.

Figure 1. A system’s graph G(V,E)



�2   Journal of Electronic Commerce in Organizations, 6(1), �8-62, January-March 2008

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is 
prohibited.

As usually, a path between two nodes, 
say u1 and u2, is an acyclic sequence of 
consecutive edges belonging to E that 
connects these two nodes. The distance of 
two nodes, say u1 and u2, is the cardinality 
of the minimum set of edges required to 
reach node u2 through a path starting at u1. 
In other words, the distance of two nodes 
is defined by the number of hops involved 
in the connecting path, which is a typical 
assumption in ad hoc networks research. 
We will denote the distance of two nodes 
as distance(u1, u2).

It is quite important here to stress 
the following properties of the system’s 
graph: 

• The graph is time varying. In other 
words, nodes leave or enter the system 
as time passes. Furthermore, nodes 
move randomly, causing the destruction 
of existent links and the establishment 
of new ones. 

• No node has a full knowledge of the 
system's graph at any time point. On 
the contrary, it is important to design 
a system where each node has only a 
personal, restricted viewpoint of the 
graph. A fundamental principle in our 
deliberations is the locality of peer 
scope: Each peer must be designed to 
operate by exploiting its own knowl-
edge of a subset of the system, without 
counting on some higher-level author-
ity to provide a global viewpoint of the 
system. 

• It is also important that each node is 
designed to operate under the assump-
tion that its knowledge of the graph is 
both incomplete and (possibly) inac-
curate. This is a disadvantage related 
to the current networking technology 
for ad hoc networks (Chlamtac, Conti, 
& Liu, 2003). 

• The overall graph is not fully connected. 
In other words, it is not always possible 
to reach any node v of V, starting from 
another node u. 

Context = Viewpoint of a Node
At every time instant T, a node u is aware 
of a subset of the system’s graph, as it 
was configured at a previous time point 
T’≤T. This subset of the graph is called 
viewpoint of node v at time T and de-
noted by viewpoint(v,T). The subgraph 
viewpoint(v,T) is connected. This property 
is recursively defined as follows: 

1. v є viewpoint(v,T)
2. All nodes u that are connected to a 

node x, x є viewpoint(v,T) through an 
edge (x,u) belong to viewpoint(v,T). In 
other words, first, all nodes u that are 
connected to v through an edge (v,u) 
belong to viewpoint(v,T). Then, the 
nodes that can be reached from these 
ones are also added. This is recursively 
continued. 

Inaccuracy is inherent in this definition. 
Firstly, all the knowledge about direct links 
refers to a time point T’ in the past. This 
means that whatever changes have hap-
pened between T and T’ are obscure to v. The 
exact determination of time T’ depends on 
the implemented routing protocol. Second, 
it is obvious that even if the overall set of 
nodes is finite (which is not an assump-
tion that we have made so far), it is clear 
that it is impractical or even impossible to 
maintain all the knowledge for the graph 
for each node v. In fact this is the approach 
taken a large category of routing protocols 
known as on-demand routing protocols 
(Abolhasan et al., 2004).



Journal of Electronic Commerce in Organizations, 6(1), �8-62, January-March 2008   ��

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is 
prohibited.

Community
Apart from the physical connectivity among 
nodes, we can devise logical schemes for 
the connectivity of peers. In P2P termi-
nology, the network of peers that share 
similar semantical properties is called an 
overlay network (Androutsellis-Theotokis 
& Spinellis, 2004). In our setting, a com-
munity of nodes is a subset of V who shares 
the same semantical properties. Each peer 
defines its own communities. Formally, 
semantical proximity is captured by a 
formula in a first-order predicate calculus. 
The principle of locality of a peer’s scope 
imposes a design where each peer comprises 
a local set of communities, each defined as 
a subset of its viewpoint, upon fulfillment 
of the appropriate formula. Therefore, a 
community comm_name of a peer u is 
defined as: 

communitycomm_name(u)={ v | v є viewpoint(u,T) 
and  φcomm_name(v)=true}

with φ being a formula in a first-order 
predicate calculus that returns true or false 
given the properties of a node v.

Clearly, a node u can have many com-
munities and each node v in the viewpoint 
of u can belong to more than one commu-
nities of u. Moreover, assuming a simple 
community Unclassified that comprises 
all nodes that do not belong to any other 
community, the union of all communities 
of node u returns viewpoint(u,T), at a time 
point T. An interesting observation here 
is that if two or more nodes agree for a 
correspondence of communities, a P2P 
overlay is formed.

Web Services
Each node is equipped with a set of Web 
service operations that it publishes, there-
fore giving the possibility to the rest of the 

nodes to invoke them. Formally, each node 
u є V possesses a finite set of Web service 
operations WSu={wsu1, wsu2,…..,wsum} that 
are made public to the rest of the peers. 
In the sequel, we will not discriminate 
between the terms Web service operations 
and Web services.

Peer Classes
In the context of the integration of peers at 
a large scale, each peer has to resolve the 
problem of mapping the external interface 
of the other peers to its internal state. In 
other words, if a peer u is to invoke a Web 
service operation of another peer v, how 
does u decide the mapping of the operation’s 
parameters or the operation’s result to its 
internal state? Typically, there are two 
well-known extremes from the database 
community to handle this problem, as well 
as intermediate solutions.

• In the first extreme, a global schema 
is assumed. In distributed database 
systems (Ozsu & Valduriez, 1991), 
a global schema is assumed for the 
whole environment and each local 
database comprises a subset of the 
global schema. This approach requires 
a universal common agreement over 
a global schema (and the implicit 
semantics hidden behind it). We find 
this requirement too restrictive for a 
large-scale P2P environment that needs 
to be dynamically readjusted to novel 
peers that appear. 

• An intermediate approach would be to 
hardcode all mappings among all peers. 
Still, this approach is too labor-inten-
sive and clearly unable to scale up to 
the full extent of a P2P environment. 

• In the second extreme, semi-automated 
techniques for schema matching have 
recently appeared in the literature. In 



��   Journal of Electronic Commerce in Organizations, 6(1), �8-62, January-March 2008

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is 
prohibited.

the context of the schema-mapping 
problem, where the mapping among 
two schemata must be discovered, 
semi-automated techniques have been 
proposed (Madhavan, Bernstein, Doan, 
& Halevy, 2005). Nevertheless, a cer-
tain degree of training and supervision 
is required for a mapping to be derived 
and --to the best of our knowledge-- 
there is no fully automated, fast method 
for this purpose. Therefore, although 
this technology would resolve the scal-
ability problem and the ad hoc nature 
of the P2P environment, we cannot rely 
on its effectiveness for the moment. 

To resolve the aforementioned prob-
lems of (a) scalability, (b) ad hoc nature of 
the environment and (c) schema mapping 
discovery, we resort to an intermediate solu-
tion that provides a reasonable balance to 
all the aforementioned issues. We classify 
peers to peer classes, with the members of 
each class exporting the same Web service 
operations. In other words, we assume a fac-
tory for each class, specifying the interface 
for each deployed instance.

We assume a traditional tree-based 
hierarchy of classes. Each subclass has a 
single superclass, whose interface it ex-
tends. All instances of the subclass are also 
instances of the superclass. Each node (a) 
directly belongs to exactly one class and (b) 
indirectly belongs to all the classes of the 
path that starts in the root and ends in its 
containing class in the tree of the class hier-
archy. We call the set of nodes that directly 
belong to a class immediate extent and the 
set of nodes that indirectly belong to a class 
(due to its subclasses) the extended extent. 
Classes that do not have any descendants 
are called base, or leaf classes. We denote 
the interface of a class C by interface(C) 

and its immediate and extended extents as 
extenti(C) and extente(C).

In Figure 2 we can see the base classes 
VW, BMW, TOYOTA, SHELL, BP, HOTEL, 
and RESTAURANT with their respective 
nodes. In Figure 3 we can also observe the 
superclass CARS on top of the classes VW, 
BMW and TOYOTA and a class GAS STA-
TION as a superclass of SHELL and BP.

The aforementioned problems of inte-
gration are resolved in a balanced fashion. 
With respect to the scale-up of the envi-
ronment, the integration problem is only 
dependent on the number of peer classes 
and not on the number of their instances. 
Although we anticipate a reasonably small 
number of peer classes, still the problem of 
integration is present. We assume a hard-
coded, intermediate solution between pairs 
of classes. This does not necessarily require 
that all classes be mapped to each other; 
the only effect of the absence of a mapping 
would be that two instances belonging to 
non-reconciled classes could not query each 
other without a total failure of the system. 
Moreover, it is straightforward to devise 
mechanisms for incremental updates of 
class mappings for the deployed instances, 
so that, as new classes are added and the 
interfaces of old classes are updated, the 
deployed instances are informed on the 
new situation. With respect to the ad hoc 
nature of the P2P environment, the prob-
lem of class integration is orthogonal and 
not affected. The last problem, discovery 
of schema mappings is resolved at the 
factory level (although we recognize that 
we still need the same amount of coding 
effort as in traditional mediator-wrapper 
environments).



Journal of Electronic Commerce in Organizations, 6(1), �8-62, January-March 2008   ��

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is 
prohibited.

Difference between Classes and 
Communities
The class of a node is an inherent property 
of the node, determined once and for all at 
the creation of the node, mainly for inte-
gration purposes, whereas the community 
(or communities) to which it belongs is a 
potentially time varying property that is de-
termined individually by the other peers and 
is mainly used for querying purposes.

Clock
Each peer has its own clock. The clocks 
of the peers are not necessarily synchro-
nized.

Peer Database
Each peer has a database, which comprises a 
set of relations. Each relation has a schema 
or intention comprised of a finite set of 
distinct attribute names. Also, each relation 
has an extension, which is a finite subset 
of the Cartesian product of the domains of 
the attributes of the relation’s schema. The 
relations of a peer’s database are classified 
in the following categories:

• Locally stored (or local) relations: 
Local relations are relations whose 
extension involves tuples that are lo-
cally stored at the peer that carries the 
relations’ database. In other words, 

Figure 2. Base classes with their corresponding nodes

Figure 3. A hierarchy of classes with their corresponding nodes



�6   Journal of Electronic Commerce in Organizations, 6(1), �8-62, January-March 2008

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is 
prohibited.

local relations are exactly the same as 
in traditional relational databases.

• Virtual relations: Virtual relations are 
relations whose schema is fixed and 
locally known, but whose extension 
is not locally stored in the database of 
the peer. On the contrary, the extension 
of a virtual relation is collected from 
the appropriate peers at query time. 
Practically, this means that each time 
a user poses a query involving a virtual 
relation, the peer determines the set of 
peers who are to be contacted (along 
with the appropriate sequence of Web 
service operations of these peers that are 
to be invoked), collects the respective 
tuples, transforms them to the schema 
of the virtual relations, and, finally, 
stores (or “materializes”) them. Then, 
query processing can be performed as 
usual.

• Hybrid relations: Hybrid relations are 
variants whose extension includes both 
locally stored tuples and tuples to be 
collected from other peers. 

Each tuple collected for a relation be-
longing to the last two categories is tagged 
with a timestamp, produced by the clock of 
the node that receives the incoming tuple. 
The timestamp corresponds to the trans-
action time of the tuple, that is, the exact 
time point of its entrance to the receiver’s 
database. A tuple’s timestamp will be used 
for caching purposes.

Peer Characteristics
Each peer is characterized by several 
properties that can either be determined 
by the peer itself or by the class to which 
it belongs. Specifically, the characteristics 
that we adopt are: 

•  (Average) Availability, that is, the 
probability that the peer is operational 
at a given time instant. 

• (Average) Response Time, that is, the 
average time needed for a Web service 
operation of the peer to execute. 

Peer’s System Catalog
Each node u needs a system catalog for its 
proper operation. The catalog includes use-
ful information about the nodes known to u. 
Specifically, this information refers to:
 
• Class of the other nodes. 
• Communities of the other nodes. 
• Distance from other nodes. 
• Node characteristics, like availability, 

and response time.

Results Collection from other 
Peers
In this subsection we discuss issues of 
tuple collection for the virtual and hybrid 
relations. First, we formally introduce 
workflows of Web service operations. 
Next we discuss how the mapping of the 
workflow’s result to a peer’s relation is 
performed and finally, we formalize issues 
of result materialization.

Workflow wfu.R(ui)
Assume a peer u that poses a query and 
invokes Web service operations from a set 
of peers u1, u2,….., uz in order to collect 
their tuples. In principle, it is quite pos-
sible that the requested information from a 
certain peer can only be obtained after the 
invocation of a workflow of Web service 
operations (rather than a single operation). 
For example, assume that a peer using the 
European metric system collects the ve-
locities of other peers of class CAR, and a 
certain class of cars returns miles instead 
of kilometers. The conversion can be per-



Journal of Electronic Commerce in Organizations, 6(1), �8-62, January-March 2008   ��

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is 
prohibited.

formed through a simple BPEL workflow. 
We denote each of these workflows as wfu.

R(ui), with 1 ≤ i ≤ z. Each such workflow 
w is an acyclic directed graph Gw(Vw,Ew), 
with operations being modeled as nodes and 
edges being the representatives of control 
passing. Edges are tagged with the condi-
tions under which they are fired at runtime. 
Each workflow has also a flat relational 
schema that includes a set of attributes 
that result from the possible un-nesting 
of the XML elements of the final message 
delivered by the workflow. Finally, the 
workflow has an extension, dynamically 
created at runtime, that instantiates the 
aforementioned schema.

Mapping of Other Peers’ Web 
Services to Virtual Relations
In this paragraph, we formally discuss the 
mechanism that allows peers to collect 
tuples from the peers of their viewpoint. 
Assume a peer u that poses a query and 
invokes Web service operations from a set 
of peers u1, u2,….,uz in order to collect their 
tuples. The application of the workflow 
wfu.R(ui) results to a set of tuples under the 
schema (B1, B2, …., Bm), possibly after a 
set of XML un-nesting operations. Assume 
R(A1, A2,…., An) to be the schema of R, the 
mapping between the two schemata is a 
function fmap, with fmap: (A1, A2,…., An) × (B1, 
B2, …., Bm)  {true, false}. We impose the 
constraint that for each Ai, 1 ≤ i ≤ n, there 
exists at most one Bj, 1 ≤ j ≤ m, to which 
Ai is mapped. As usual, all attributes of the 
workflow schema that are not mapped to the 
schema of the target relation are projected 
out, whereas all the relation’s attributes that 
are not populated by the workflow are filled 
with NULL values. The following example 
clarifies the aforementioned process. As-
sume the relation R(E_ID, E_SALARY, 
E_AGE) in the database of node u and 

let the workflow that is mapped to R for 
node v have the schema (ID,AGE,NAME). 
The workflow provides no information on 
salaries and the database does not store any 
data on names. Therefore, our mappings 
resulting to true are:

 fmap(E_ID,ID)=true,
 fmap (E_AGE,AGE)=true,

with the rest of all the other possible map-
pings of the Cartesian product of the two 
schema being evaluated to false. The trans-
formation at an instance level is simple: (a) 
we project out all unnecessary workflow 
attributes, (b) we introduce NULL-valued 
attributes for the relation’s attributes for 
which no workflow attribute exists, (c) we 
appropriately re-order the attributes of the 
workflow schema to match the relation’s 
attributes and (d) we populate the target 
table.

Full-Partial Materialization
Whenever a workflow is executed for a 
certain peer and the produced results are 
successfully stored at the extent of the 
target virtual relation, we say that we have 
materialized these results. The fact that the 
results of a certain workflow for peer ui have 
been materialized at the relation R of peer u 
is denoted as (wfu.R(ui)). Full materialization 
for a relation R of a peer u is the state of a 
query when all workflows for all the peers 
that have been selected to populate R have 
been successfully executed. We denote full 
materialization by M(u.R). Assuming Vall 
as the set of these identified peers, we can 
formally define full materialization as M(u.
R)= U (wfu.R(ui)), with ui є Vall. 

Partial materialization
For a relation R of a peer u is the state of 
a query when the workflows for a clean 



�8   Journal of Electronic Commerce in Organizations, 6(1), �8-62, January-March 2008

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is 
prohibited.

subset of the peers that have been selected 
to populate R have been successfully ex-
ecuted. We denote partial materialization 
by Mp(u.R). Assuming Vall be the set of the 
peers that have been selected to participate 
in the population of R, and Vi as the set of 
the peers whose results have been success-
fully materialized, we can formally define 
partial materialization as M(u.R)= U (wfu.

R(ui)), with ui є Vi, Vi ⊂ Vall.

SQLP: An Extension of sql for Ad 
hoc P2P networks
In this section, we discuss the extension 
of SQL that we introduce. The proposed 
language SQLP (SQL for Peers) implements 
all the aforementioned requirements. Figure 
4 presents the general structure of an SQLP 
query. We use [...] to refer to optional parts 
of the language and the expression *AND/

OR* to signify that different clauses can 
be connected through one of these logical 
connectors. 

Querying the Graph of Peers
Assume a query Q submitted at node u at 
the time point T. Let {R1, R2, …, Rn} be 
the relations that participate in the FROM 
clause of the query. Then, we can write the 
query as: Q(R1, R2, …, Rn). Without loss 
of generality, we can assume that the first 
k relations R1, R2, …, Rk, k ≤ n, are virtual 
or hybrid. In order to be able to define the 
semantics of the query properly we need 
to materialize these relations and then, ex-
ecute the query over their collected extent 
as usually. Nevertheless, before specifying 
this semantics, we need to define the fol-
lowing concepts.

Figure 4. The generic syntax of a query in SQLP



Journal of Electronic Commerce in Organizations, 6(1), �8-62, January-March 2008   ��

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is 
prohibited.

Peers of Interest
The query Q, posed over peer u is divided 
in three parts. The first part is composed of 
the traditional SQL clauses, the second part 
comprises the clauses of our extension that 
occur after the keyword WITH that have 
the purpose of determining which peers are 
to be contacted, and the third part concerns 
the timing of the query.

 The second part of the query depends 
on criteria like the horizon of the query 
of the graph of the viewpoint of peer u 
(HORIZON), QoS characteristics (AVAIL-
ABILITY, RESPONSE_TIME), the class of 
the peers (CLASS) and the age of the stored 
tuples in the virtual relations (i.e., if a peer 
has been recently contacted, as specified 
by the AGE clause, it is not necessary to 
contact it again). Remember that, due to the 
nature of the interaction among peers, it is 
not feasible to simply broadcast a request 
for tuples; on the contrary, specific Web 
service operations must be invoked on the 
specific port types of the peers.

 In terms of semantics, we divide the 
second part into atomic conditions, logically 
connected through the connectors AND and 
OR. Assuming that these atomic conditions 
are C1, C2, …, Cr, the non-traditional part 
of the query can be rewritten in a disjunc-
tive normal form, that is, a disjunction of 
conjunctive conditions.

The interesting aspect of this part is that 
a preparatory query must be performed over 
the system catalog to determine specifically 
which peers must be contacted in order to 
materialize the virtual relations. Contacting 
a peer means that for each virtual/hybrid 
relation in the FROM clause of the query 
the execution of the appropriate workflow 
must be initiated. In terms of semantics, 
each atomic condition specifies a set of 
peers of the viewpoint of u that qualify to 
be contacted. Given an atomic condition 

C, we define the set of peers of interest 
Vu(C) to be the set of peers that belong to 
the catalog of peer u that fulfill C. Specifi-
cally, given a time point T for a query Q 
containing C,

Vu(C) = { v | v є viewpoint(u,T): 
 C(v) = true }.

 We do not involve timepoint T to avoid 
overloading the notation. Having defined 
the peers of interest for an atomic condition, 
it is straightforward to obtain the set of peers 
of a composite condition in disjunctive 
normal form: the intersection of the peers 
of interest of the atomic conditions produces 
the peer sets of each conjunct; these sets 
are subsequently ORed to produce the final 
set of peers of interest of the query, which 
are to be contacted.

Now, we are ready to define the seman-
tics of each individual clause concerning the 
determination of the peers of interest.

• HORIZON: The condition of the 
HORIZON clause determines the peers 
of interest on the basis of the position 
in the graph, or their semantical char-
acteristics. The clause allows several 
possibilities to the users. Assuming that 
the condition of the HORIZON clause 
is C1, and VHu(C1) is the resulting set 
of peers of interest, we can specify 
VHu(C1) for each of the following pos-
sibilities that SQLP offers: 
1. The only peer of interest is the local 

querying peer (C1: LOCAL)
 VHu(C1)= { u }
2. The peers of interest are the ones of 

a certain community of the peer (C1: 
COMMUNITY <C_NAME>)

 VHu(C1)= { v | v є viewpoint(u,T): 
v є community(C_NAME,u) }



�0   Journal of Electronic Commerce in Organizations, 6(1), �8-62, January-March 2008

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is 
prohibited.

3. A radius of a certain number of 
hops dictates the peers of interest 
(C1: HOPS θ value, with θ є { = 
,<,≤,>,≥ }) 

 VHu(C1)= { v | v є viewpoint(u,T): 
distance(u,v) θ value, with θ є { = 
,<,≤,>,≥ }} 

4. A set of peer ids, that is, a set of 
specifically requested peers, de-
termines the peers of interest (C1: 
PEERS={peer1, peer2, …., peern 
}) 

 VHu(C1)= { v | v є viewpoint(u,T): 
v є {peer1, peer2, …., peern }}

 All the necessary information for the 
evaluation of any of the aforementioned 
atomic conditions is found in the system 
catalog of u.

• Quality of service: The clauses 
concerning the AVAILABILITY and 
RESPONSE TIME of the peers of inter-
est aim to guarantee a certain level of 
quality of service for the peer posing 
a query. 

• CLASS: It is possible that we only need 
to query the peers of a certain class. 
Classes carry both structural typing 
information (as they statically define 
the interface of their instances), but also 
semantic information (as collections 
of semantically—therefore structur-
ally—similar instances). In SQLP, it 
is easy to specify an atomic condition 
that restricts the peers of interest to a 
certain class, by giving a condition of 
the form C4: CLASS = class_name. As-
suming VCu(C4) the result set of peers 
of interest, and class(v) a function that 
returns the class of each peer from the 
system catalog of the querying peer, 
the resulting set of peers of interest is 
formally defined as: 

 VCu(C4) = { v | v ∈ viewpoint(u,T): 
class(v) = class_name }

• AGE: Apart from the constraining of 
peers where their properties are taken 
as criteria for their inclusion in the re-
sulting set of peers of interest, we can 
perform some form of caching in the 
extents of the collected tuples for virtual 
or hybrid relations. In other words, as-
suming that a peer is frequently queried, 
it is not obligatory to pay the price of 
invoking its Web service operations, 
executing the data transformation 
workflow and materializing the same 
results again and again, but rather, it 
is resource efficient to cache its previ-
ous results. The AGE clause of SQLP 
provides the possibility of specifying 
a maximum caching age for incoming 
tuples in a virtual/hybrid relation. 

• Query Timing: Having clarified the 
general mechanism for the determi-
nation of peers of interest, we move 
on to provide the specification for the 
timing of queries. Fundamentally, we 
have two modes of operation: ad hoc 
or continuous. Each mode has its own 
tuning parameters: 
• If the query is continuous, this 

means that the user is continuously 
notified on the status of the query 
result. 

• If the query is ad hoc, the query 
eventually has to terminate. Dif-
ferently from traditional query 
processing (which operates on 
finite sets of always available, 
locally stored tuples), we need to 
tune the conditions that signify 
termination of a query that has 
been late to complete its operation, 
either due to peer failures, or the 
size of the peer’s graph. To capture 



Journal of Electronic Commerce in Organizations, 6(1), �8-62, January-March 2008   �1

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is 
prohibited.

these exceptions, we can terminate 
a query upon (a) the completion of a 
timeout period of execution, (b) the 
materialization of a certain amount 
of tuples that the user judges as 
satisfactory for his information, 
or (c) the collection of responses 
from a certain percentage of peers 
that were initially contacted. In all 
these cases, the execution of the 
workflows whose results have not 
been materialized is interrupted, 
the rest of the query is executed as 
usual and the user is presented with 
a partial—still, non-empty—an-
swer. 

Query Execution
At this point we can describe the exact set 
of steps for executing a query. Suppose that 
at random time T, a query Q is performed 
by node u. Let {R1, R2, …., Rn} be the rela-
tions involved in query Q. Then the query 
can be written in the form: Q(R1, R2, …., 
Rn). We can assume that the relations R1, 
R2, …., Rk, with k ≤n are virtual or hybrid, 
without any impact on the generality. All 
tables R1, R2, …., Rk must be filled with 
tuples. The procedure is the same for all 
tables; therefore we will present it only 
for table R1.

The first step is to determine the set 
of target peers for node u that performs 

the query (Vu(C)), by evaluating C over 
the set of peers belonging the viewpoint 
of u (viewpoint(u)). C comprises of the 
conditions located at the clauses AGE, HO-
RIZON, AVAILABILITY, RESPONSE_
TIME and CLASS.

Let Vu(C) = { u1, u2, ...., um }. For each 
node of Vu(C) the appropriate Web services 
are invoked in order to require the appropri-
ate tuples. Let also wfu.R1(u1), wfu.R1(u2), …., 
wfu.R1(um), be the appropriate workflows of 
the peers belonging to Vu(C).

The schema of each workflow is 
matched to the schema of relation R1, 
which is the target relation. In the follow-
ing, the clause TIMING is evaluated to 
determine the execution mode of the query 
(continuous or ad hoc) and the completion 
condition of the query. The next step is to 
attempt the execution of wfu.R1(ui) and then 
perform a full or partial materialization of 
R1, which is located in u, according to the 
query completion condition, which was 
mentioned before. Table R1 is populated 
with the appropriate tuples and is ready 
to be queried. The same procedure is 
performed for all other virtual or hybrid 
tables. Therefore all tables of u are ready 
to be queried. At this point the query of u is 
performed over tables R1, R2, …., Rn based 
on traditional database methodology.

Figure 5. Graph configuration for query posing
Distance_under_5km Distance_Over_5km

5
43

2

1



�2   Journal of Electronic Commerce in Organizations, 6(1), �8-62, January-March 2008

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is 
prohibited.

Examples
In the rest of this section, we will present 
examples of SQLP. Assume a peer network 
of the topology of Figure 5, consisting 
of 5 peers, each representing a car in the 
highway. Queries are posed to peer p1, 
that classifies the rest of the peers in two 
communities, (a) the community of dark-
shaded close peers (Distance_Under_5km) 
and (b) the community of light-shaded, 
distant peers (Distance_Over_5km). Peer 
p1 is informed on the existence and con-
nectivity of the rest of the peers through the 
underlying routing protocol that operates 
as a black box in our setting.

Peer p1 carries a database consisting 
of two relations with the following sche-
mata: 

CARS(ID, PLATE, BRAND, VEL) 
BRANDS(BRAND, COUNTRY, MET-
RIC_SYSTEM)

The first relation describes the informa-
tion collected from the peers contacted (and 
mainly serves queries about the velocity of 
the cars in the context of the querying peer). 
This relation CARS is virtual: each time a 
query is posed, tuples must be collected 
from the context of peer p1 to populate it. 
The attribute BRAND is a foreign key to the 
relation BRANDS that is static and locally 
stored. Primary keys are underlined and the 
semantics of the attributes are the obvious 
ones. In the sequel, we give examples of 
SQLP queries over the abovementioned 
environment.

Example 1
By this example we illustrate different 
situations where we can determine the peer 
nodes to which the query is addressed. Dif-
ferent strategies may be used for choosing 
the peers to query. In any case the decision 

is based on characteristics of the peers such 
as availability, response time, class of Web 
services implemented, and so forth. Peer p1 
wishes to know the license number, veloc-
ity and manufacturing country of all cars 
belonging to its community. Furthermore, 
the peer that poses the query wishes to limit 
it to those peers that: (a) are located no more 
than 5 Km away (Distance_Under_5km), 
(b) their availability is more than 60%, (c) 
their response time is less than 4 seconds 
and finally, (d) implement the European 
class of Web services. The syntax of the 
examined query is depicted in Figure 6.

Example 2
 Peer p1 wishes to know the license number, 
velocity and manufacturing country of all 
cars. The peer also wishes to complete the 
query when more than 70% percent of the 
target peers have replies successfully (Fig-
ure 7). To determine the target peers, the 
requesting peer selects the peers based on 
its catalog and according to their response 
time. The execution of the query stops 
when the requested percentage of 70% in 
our case is satisfied.

Example 3
Peer p1 wishes to know the license number, 
velocity and manufacturing country of all 
cars. The peer also wishes to complete the 
query when more than 5 tuples have been 
collected for the relation CARS (Figure 
8). The requesting peer contacts each peer 
that appears in its catalog. This procedure 
ends when the count of currently collected 
tuples becomes greater or equal to the 
posed limit.

Example 4
Peer p1 wishes to know the license number, 
velocity and manufacturing country of all 
cars. The peer also wishes to complete the 



Journal of Electronic Commerce in Organizations, 6(1), �8-62, January-March 2008   ��

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is 
prohibited.

query within a timeout of 7 seconds (Figure 
9). The requesting peer contacts each peer 
that appears in its catalog. This procedure 
ends when the timeout is reached. 

quERy PRoCEssIng foR 
SQLP quERIEs
In this section, we deal with the problem 
of mapping the declarative SQLP queries 

Figure 6. Query 1

SELECT    CARS.PLATE,CARS.VEL,BRANDS.COUNTRY
FROM    CARS, BRANDS
WHERE    CARS.BRAND=BRANDS.BRAND
WITH
HORIZON   COMMUNITY Distance_Under_5km AND
AVAILABILITY  > 60% AND
RESPONSE_TIME < 4.0 AND
CLASS    = ‘european’

SELECT  CARS.PLATE,CARS.VEL,BRANDS.COUNTRY
FROM  CARS, BRANDS
WHERE  CARS.BRAND=BRANDS.BRAND
WITH
TIMING  AD-HOC PEERS_PERCENTAGE > 70%

Figure 7. Query 2

SELECT  CARS.PLATE,CARS.VEL,BRANDS.COUNTRY
FROM  CARS, BRANDS
WHERE  CARS.BRAND=BRANDS.BRAND
WITH
TIMING  AD-HOC AMOUNT_TUPLES > 5

Figure 8. Query 3

SELECT  CARS.PLATE,CARS.VEL,BRANDS.COUNTRY
FROM  CARS, BRANDS
WHERE  CARS.BRAND=BRANDS.BRAND
WITH
TIMING  AD-HOC TIMEOUT > 7

Figure 9. Query 4



��   Journal of Electronic Commerce in Organizations, 6(1), �8-62, January-March 2008

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is 
prohibited.

to executable query plans. As already 
mentioned, the execution of traditional 
SQL queries relies on their mapping to 
left-deep trees whose leaves are database 
relations, internal nodes are operators of the 
relational algebra and edges signify pipeline 
of the results of a node to another. Clearly, 
since we raise fundamental assumptions of 
traditional database querying, such as the 
finiteness and locality of tuples as well as 
the conditions under which a query termi-
nates, we need to extend both the set of 
operators that take part in a query and the 
way the query tree is constructed. In this 
section, we start by introducing the novel 
operators for query processing. Next, we 
discuss how we algorithmically determine 
the set of peers of interest and, finally, we 
discuss the execution of a query.

novel operators
In this subsection, we start with the opera-
tors that participate in SQLP query plans. We 
directly adopt the Project, Select, Group, 
Order, Union, Intersection, Difference and 
Join operators from traditional relational al-
gebra and move on to define new operators. 
First, we discuss operators that are used to 
construct the set of peers of interest. Then, 
we present the operators that actually take 
part in a query plan. 

• Operators applicable to the catalog 
of a peer: 
• Check_Tables: Operator Check_

Tables determines whether the 
tables belonging to the FROM 
clause of a query are virtual, hybrid 
or local. The input to the operator 
is the FROM clause of the query 
and the output is the same list of 
tables, each annotated with the 
category to which it belongs. 

• Check_Peers: This is a composite 
operator that applies the procedure 
mentioned in the second section 
for the determination of a set of 
peers out of a condition in dis-
junctive normal form. All clauses 
of the form HORIZON, AVAIL-
ABILITY, RESPONSE_TIME 
and CLASS are evaluated over 
the catalog through a Check_Peers 
operator and the set of peers of 
interest is determined by combin-
ing the results of these operators 
through the appropriate Unions 
and Intersections. 

• Check_Age: The Check_Age 
operator is also an operator used 
to determine the set of peers of 
interest. For each relation that hosts 
transaction time and producing 
peer attributes, an invocation of 
the Check_Age operator scans the 
extent of the relation, and identi-
fies the appropriate tuples and their 
peers. The output is passed to the 
appropriate Difference operator 
that subtracts the identified peers 
from the previously determined set 
of peers of interest. 

• Operators that participate in query 
plans: 
• Call_WS: This operator is respon-

sible for dynamically determining 
which Web service operation, over 
which port type, of a specific peer 
must be invoked. Each Web service 
of a peer to be invoked is practi-
cally wrapped by this operator. The 
result is collected and forwarded 
to the operator managing the 
execution of a workflow of Web 
services. 

• Wrapper_Pop: This operator 



Journal of Electronic Commerce in Organizations, 6(1), �8-62, January-March 2008   ��

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is 
prohibited.

is used in order to support the 
monitoring and execution of the 
workflow of Web services that 
populate a virtual or hybrid table. 
For each peer contacted in order 
to populate a certain virtual/hybrid 
relation, a Wrapper_Pop operator 
is introduced. Once the final XML 
result has been computed, its tuples 
are transformed to the schema of 
the target relation. 

• Fill: A Fill operator is introduced 
for each virtual relation. The op-
erator takes as input all the results 
of the underlying Wrapper_Pop 
operators (one for each peer of 
interest) and coordinates their ma-
terialization. Also, Fill checks the 
necessary conditions concerning 
the timing and termination of the 
query and, whenever termination 
is required, it signals its populating 
operators appropriately. 

• ExAg (Execute Again): This 
operator is useful only in continu-
ous queries and practically restarts 
query execution whenever the 
query period is completed. 

Construction of the query tree
In this paragraph we discuss a simple al-
gorithm to generate the tree of the query 
plan. Assume that a query is posed to peer 
p1 and its viewpoint comprises n peers, 
specifically p1, p2, ..., pn. The algorithm 
for the construction of the query tree is a 
bottom up algorithm that builds the tree 
from the leaves to the top and is described 
as follows: 

1. We discover the virtual or hybrid rela-
tions that participate in the query. A 
specific sub-tree will be constructed 
for each of them. 

2. We determine the set of peers of inter-
est. For each peer that participates in 
the population of a certain relation, 
the leaves of the respective sub-tree 
are nodes representing the peer to be 
contacted. To keep the tree-like form of 
the plan, each peer can be replicated in 
each sub-tree to which it participates; 
nevertheless, each peer can also be 
modeled by a single node without any 
significant impact to the execution of 
the query. 

3. We introduce a Wrapper_Pop for each 
peer that coordinates all the Call_WS 
operators that pertain to the operations 
of the peer. Between the peer node and 
the Wrapper_Pop, we introduce the 
appropriate Call_WS operators. 

4. For each virtual or hybrid relations we 
introduce a Fill operator that combines 
the output of all the respective Wrap-
per_Pop operators; therefore it is their 
immediate ancestor. 

5. Having introduced the Fill operators, 
the virtual or hybrid relations can be 
materialized and act as local ones. 
Therefore, the rest of the query tree is 
built as in traditional query process-
ing. 

6. If the query is continuous, we add an 
appropriate ExAg operator at the top.

Execution of a query though the 
query tree
The execution of the query follows a simple 
strategy. First, we materialize the virtual/hy-
brid relations. Then, we execute the query as 
usual. Clearly, although this is not the best 
possible strategy for all cases (especially 
when only non-blocking operators are 
involved), we find that performing further 
optimizations is an orthogonal problem, 
already dealt in the context of blocking 
operators for streaming data (Babcock et al., 



�6   Journal of Electronic Commerce in Organizations, 6(1), �8-62, January-March 2008

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is 
prohibited.

2002). Therefore, in this article we consider 
only this baseline strategy since all relevant 
results can directly be introduced in the 
optimizer module of a peer. Specifically, 
the set of steps to follow for the execution 
of the query are: 

1. All the Call_WS operators are acti-
vated and the appropriate services are 
invoked. 

2. The Wrapper_Pop operators collect 
the incoming XML results and queue 
them towards the appropriate Fill op-
erators that further push them towards 
the extents of the relations in the hard 
disk. This is performed in a pipelined 
fashion. 

3. Once all virtual/hybrid relations have 
been materialized, the rest of the query 
plan is a traditional left-deep tree that 
executes as usual. 
 

Example
In the following, we discuss the construc-
tion of the query plan for the query of 
Figure 10.

1. Step 1: The query involves two tables, 
CARS and BRANDS. The application 
of the operator CHECK_TABLES over 
the two relations results in the deter-
mination that the first is a hybrid one 
and the second a locally stored one.

2. Step 2: The operator CHECK_PEERS 
is applied to the catalog of peer p1, in 
order to determine the peers of interest 
of the query. Taking into consideration 
the age of tuples found in relation 
CARS and the system catalog, the peer 
p1 decides that the peers of interest are 
peers 2 and 8.

3. Step 3: The operator CALL_WS is 
applied over each peer of interest. 

4. Step 4: For each peer over which a 
CALL_WS is applied, we apply the 
operator WRAPPER_POP to coordi-
nate the execution of its operations.

5. Step 5: The operator FILL is applied for 
the result of each WRAPPER_POP.

6. Step 6: The rest of the query plan is 
constructed as usual, with the only 
difference that the sub-tree of relation 
CARS is the one constructed in the 
previous steps. 

SELECT    CARS.PLATE,CARS.VEL,BRANDS.COUNTRY
FROM    CARS, BRANDS
WHERE    CARS.BRAND=BRANDS.BRAND
WITH
AGE     < 5 AND
HORIZON   COMMUNITY DISTANCE_UNDER_5KM AND
TIMING    CONTINUOUS PULL_BASED_PERIOD = 7 AND
AVAILABILITY  > 60% AND
RESPONSE_TIME < 3.0 AND
CLASS    = ‘european’

Figure 10. Query for which the plan is to be constructed



Journal of Electronic Commerce in Organizations, 6(1), �8-62, January-March 2008   ��

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is 
prohibited.

IMPlEMEntAtIon
Figure 12 shows the full-blown architec-
ture required to support our approach for 
context-aware query processing in ad hoc 
environments of peers. The elements shown 
in the figure are divided with respect to the 
client and the server roles played by peers. 

To play the client role, a peer comprises a 
traditional query processing architecture, 
involving a parser, an optimizer and a query 
processor. A local database and the system 
catalog complement the ingredients of the 
client part of a peer. Playing the server role 
amounts in publishing a set of Web services, 

Figure 11. Query plan for the aforementioned query of Figure 10

Client	side Server	side

Query Optimizer

Query Execution

Parser

Query
Results

Query

Local
DB

System
Catalog

Catalog Update

Application
Server

= Web Service Operation

Figure 12. System architecture



�8   Journal of Electronic Commerce in Organizations, 6(1), �8-62, January-March 2008

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is 
prohibited.

hosted by an application server, which is 
responsible for their proper execution. 
As usual, whenever a query is posed, the 
parser is the first module that is fired. The 
optimizer produces alternative plans out 
of which the best, with respect to a given 
cost model, is chosen. The query execution 
engine executes the query over the local 
database and returns the results.

Our first prototype implementation 
does not currently support the query opti-
mizer subsystem. Instead, standard query 
plans are produced after parsing the user 
queries. The query execution subsystem in-
cludes a mechanism that allows visualizing 
the aforementioned plans. Figure 11 gives 
a visualized execution plan through the Yed 
tool that graphically presents graphs. 

Populating and updating the contents 
of the system catalog is done either stati-
cally, or dynamically. In the former case, 
the peer is responsible for updating the 
catalog through a catalog-specific API. The 
static update of the catalog takes advantage 
of the possible availability of peer-specific 
dynamic service discovery mechanisms. 
Such mechanisms may be exploited by the 
peer itself which takes further charge of 
updating the catalog accordingly.

The dynamic catalog update is realized 
by the catalog update subsystem, which 
relies on WSAMI, a middleware platform 
for mobile Web services (Issarny et al., 
2005). WSAMI provides the naming &   
directory service that allows the dynamic 
discovery of Web services provided in 
mobile computing environments. Specifi-
cally, WSAMI is based on an SLP server 
– that is, an implementation of the standard 
SLP (http://www.openslp.com) protocol-- 
for the discovery of networked entities in 
mobile computing environments. 

RElAtED woRk
The work that is closely related with the 
proposed approach for context-aware query 
processing over ad hoc environments of 
peers can be categorized into work concern-
ing the fundamentals of heterogeneous da-
tabase systems, context-aware computing 
and approaches that specifically focus on 
context-aware service-oriented computing. 
The prominent approaches that fall in the 
aforementioned categories are briefly sum-
marized in the remainder of this section. 

heterogeneous Database systems
Our approach for querying of ad hoc en-
vironments of peers bears some similarity 
with the traditional wrapper-mediator ar-
chitectures used in heterogeneous database 
systems (Roth & Schwarz, 1997; Haas et al., 
1997). Such systems consist of a number of 
heterogeneous data sources. The user of the 
system has the illusion of a homogeneous 
data schema, which is actually realized by 
the wrapper-mediator architecture. In par-
ticular, each data source is associated with 
a wrapper. The wrapper encapsulates the 
data source under a well-defined interface 
that allows executing queries. Each user 
query is translated by the mediator into 
data source specific queries, executed by 
corresponding wrappers. As opposed to 
traditional heterogeneous database systems, 
in the environments we examine the roles 
of users and data sources are not discrete. 
Each peer is a heterogeneous data source 
offering information to other peers that play 
the role of the user. Therefore, each peer may 
eventually serve as a data source and a user 
issuing queries. Analogous to the wrapper 
elements in our case is the Web services that 
give access to peers playing the role of data 
sources. Analogous to the mediator element 
is the hybrid relation mapping procedure 



Journal of Electronic Commerce in Organizations, 6(1), �8-62, January-March 2008   ��

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is 
prohibited.

that executes workflows on Web services. 
In simple words, a traditional heterogeneous 
database system is a “1 mediator to N wrap-
pers architecture.” An ad hoc environment 
of peers in our case is an “N mediator to N 
wrappers architecture.”

Another fundamental difference be-
tween the environments we examine and 
traditional heterogeneous database systems 
is that in our case the cardinality and the 
contents of the set of data sources may 
constantly change. 

Context-Aware Computing and 
Infrastructures
In Dey (2001), context is defined as any 
information that can be used to character-
ize the interaction between a user and an 
application, including the user and the 
application. Several middleware infra-
structures follow this definition toward 
enabling context reasoning and manage-
ment (Fahy & Clarke, 2004; Chen, Finin, 
& Joshi, 2003; Chan & Chuang, 2003; 
Capra, Emmerich, & Mascolo, 2003; Gu, 
Pung, & Zhang, 2005; Roman et al., 2002). 
Amongst these approaches, CASS (Fahy & 
Clarke, 2004) bears some similarity with 
our approach, since context is modeled in 
terms of a relational data model. However, 
in our approach we do not assume central-
ized information management and virtual 
relations are dynamically compiled.  

Context-Aware service-oriented 
Computing
In general, the integration of context-aware-
ness and service-orientation just began to 
gain the attention of the corresponding 
research communities. In Keidl & Kemper 
(2004), for instance, the authors introduce 
ways for associating context to Web service 
invocations. In Maamar, Mostefaoui, & 
Mahmoud (2005) the authors go one step 

further by examining the problem of cus-
tomizing Web service compositions with 
respect to contextual information. Web 
service execution is customized according 
to different types of context. Similarly, in 
Zahreddine & Mahmoud (2005) the authors 
propose a framework for dynamic context-
aware service discovery and composition. 
Specifically, contextual information regard-
ing the technical characteristics of user de-
vices is used towards discovering services 
that match these characteristics.

ConClusIon AnD
futuRE woRk
In this article, we have dealt with con-
text-aware query processing in ad-hoc 
peer-to-peer networks. Each peer in such 
an environment has a database over which 
users want to execute queries. This database 
involves (a) relations which are locally 
stored and (b) relations which are virtual 
or hybrid. In the case of virtual relations, 
all the tuples of the relation are collected 
from peers that are present in the network 
at the time when the query is posed. Hybrid 
relations involve both locally stored tuples 
and tuples collected from the network. The 
collaboration among peers is performed 
through Web services. The integration of 
the external data, before they are locally 
collected to a peer’s database, is performed 
though a workflow of operations. We do not 
perform query processing in the traditional 
way, but rather, we involve context-aware 
query processing techniques that exploit 
the neighborhood of each peer and the Web 
service infrastructure that deals with the 
heterogeneity of peers. In this setting, we 
have formally defined the system model 
for SQLP, an extension of traditional SQL 
on the basis of contextual environment 
requirements that concern the termination 



60   Journal of Electronic Commerce in Organizations, 6(1), �8-62, January-March 2008

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is 
prohibited.

of queries, the failure of individual peers 
and the semantic characteristics of the peers 
of the network. We have precisely defined 
the semantics of the language SQLP. We 
have also discussed issues of data integra-
tion, performed through workflows of Web 
services. Moreover, we have presented an 
initial query execution algorithm as well 
as the typical definition of all the operators 
that can take place in a query execution 
plan. A prototype implementation that is 
implemented is also discussed. 

ACknowlEDgMEnt
This research is co-funded by the European 
Union - European Social Fund (ESF) & 
National Sources, in the framework of the 
program “Pythagoras II” of the “Opera-
tional Program for Education and Initial 
Vocational Training” of the 3rd Community 
Support Framework of the Hellenic Min-
istry of Education.

REfEREnCEs
Abolhasan, M., Wysocki, T., & Dutkiewicz, E. 
(2004). A review of routing protocols for mobile 
ad hoc networks. Ad Hoc Networks, 2, 1-22.

Androutsellis-Theotokis, S., & Spinellis, D. 
(2004). A survey of peer-to-peer content distri-
bution technologies. ACM Computing Surveys, 
36(4), 335-371.

Babcock, B., Babu, S., Datar, M., Motwani, R., 
& Widom, J. (2002, June). Models and issues in 
data stream systems. In Proceedings of the 21st 
ACM SIGACT-SIGMOD-SIGART Symposium 
on Principles of Database Systems (PODS’02) 
(pp. 1-16).

Capra, L., Emmerich, W., & Mascolo, C. 
(2003). CARISMA: Context - Aware Reflective 
Middleware System for Mobile Applications. 
IEEE Transactions on Software Engineering, 
29(10), 929-945.

Chan, A.T., & Chuang, S.-N. (2003). Mobi-
PADS: A reflective middleware for context-
aware mobile computing. IEEE Transactions on 
Software Engineering, 29(10), 1072-1085.

Chen, H., Finin, T., & Joshi, A. (2003). An 
ontology for context-aware pervasive comput-
ing systems. Knowledge Engineering Review, 
18(3), 197-207.

Chlamtac, I., Conti, M., & Liu, J. J.-N. (2003). 
Mobile ad hoc networking: Imperatives and 
challenges. Ad Hoc Networks, 1(1), 13-64.

Dey, A.K. (2001). Understanding and using 
context. Personal and Ubiquitous Computing, 
5(1), 4-7.

Fahy, P., & Clarke, S. (2004, June). CASS - Mid-
dleware for mobile context-aware applications. 
In Proceedings of the 2nd ACM SIGMOBILE 
International Conference on Mobile Systems, 
Applications and Services (MobiSys’04).

Gu, T., Pung, H.-K., & Zhang, D.-Q. (2005). 
A service-oriented middleware for building 
context-aware services. Journal of Network 
and Computer Applications, 28, 1-18.

Haas, L.M., Kossmann, D., Wimmers, E.L., & 
Yang, J. (1997, August). Optimizing queries 
across diverse data sources. In Proceedings of 
23rd International Conference on Very Large 
Data Bases (VLDB’97) (pp. 276-285).

Issarny, V., Sacchetti, D., Tartanoglou, F., 
Sailhan, F., Chibout, R., Levy, N., & Talamona, 
A. (2005). Developing ambient intelligence 
systems: A solution based on Web services. 
Journal of Automated Software Engineering, 
12(1), 101-137.

Keidl, M., & Kemper, A. (2004, March). A 
framework for context-aware adaptable Web 
services. In Proceedings of 9th International 
Conference on Extending Database Technology 
(EDBT ‘04) (pp. 826-829).

Maamar, Z., Mostefaoui, S., & Mahmoud, Q. 
(2005, January). Context for personalized Web 
services. In Proceedings of 38th IEEE Hawaii 



Journal of Electronic Commerce in Organizations, 6(1), �8-62, January-March 2008   61

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is 
prohibited.

International Conference on System Sciences 
(HICSS’05) (pp. 166.2).

Madhavan, J., Bernstein, P.A., Doan, A., & 
Halevy, A.Y. (2005, April). Corpus-based 
schema matching. In Proceedings of the 21st 
International Conference on Data Engineering 
(ICDE 2005) (pp. 57-68).

Ozsu, T., & Valduriez, P. (1991). Principles of 
distributed database systems. Prentice-Hall.

Roman, M., Hess, C.K., Cerqueira, R., Ran-
ganathan, A., Campbell, R.H., & Nahrstedt, 
K. (2002). Gaia: A middleware infrastructure 

to enable active spaces. IEEE Pervasive Com-
puting, 1(4), 74-83.

Roth, M.T., & Schwarz, P.M. (1997, August). 
Don’t scrap it, wrap it! A wrapper architecture 
for legacy data sources. In Proceedings of 23rd 
International Conference on Very Large Data 
Bases (VLDB’97) (pp. 266-275).

Zahreddine, W., & Mahmoud, Q.H. (2005, 
March). An agent-based approach to composite 
mobile Web services. In Proceedings of 19th 
International Conference on Advanced Infor-
mation Networking and Applications (AINA 
2005) (pp. 189-192).

Nikolaos Folinas received his Diploma in computer science from the Univ. of Ioannina in 2003. 
He immediately joined the MSc program of the Department of Computer Science in the University 
of Ioannina and received his MSc in 2006. 

Panos Vassiliadis received his PhD from the National Technical University of Athens in 2000. He 
joined the Department of Computer Science of the University of Ioannina as a lecturer in 2002. 
Currently, Dr. Vassiliadis is also a member of the Distributed Management of Data (DMOD) 
Laboratory (http://www.dmod.cs.uoi.gr/). His research interests include data warehousing, web 
services and database design and modeling. Dr. Vassiliadis has published more than 25 papers 
in refereed journals and international conferences in the above areas. 

Evaggelia Pitoura received her BSc from the University of Patras, Greece in 1990 and her MSc 
and PhD in computer science from Purdue University in 1993 and 1995, respectively. Since June 
2005, she is an associate professor at the Department of Computer Science of the University 
of Ioannina, Greece where she leads the distributed data management group. Her publications 
include more than 70 articles in international journals and conferences and a book on mobile 
computing. She has also co-authored two tutorials on mobile computing for IEEE ICDE 2000 
and 2003. She is recipient of the best paper award of IEEE ICDE 1999 and two “Recognition 
of Service Awards” from ACM.

Evangelos Papapetrou holds a diploma and a PhD degree in electrical & computer engineering 
from the Aristotle University of Thessaloniki, Greece. He is currently a lecturer in the Depart-
ment of Computer Science at the University of Ioannina, Greece. His research interests include 
routing in networks with periodic and/or stochastically varying topologies, IP networking, 
MANETs, QoS in wireless mobile systems. He has served as a reviewer in several journals and 
conferences. He has been involved in national as well as in European projects. He is a member 
of IEEE, ACM and the Technical Chamber of Greece.



62   Journal of Electronic Commerce in Organizations, 6(1), �8-62, January-March 2008

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is 
prohibited.

Apostolos Zarras received his BSc in computer science in 1994 from the Department of Computer 
Science, University of Crete. From the same department he received his MSc in distributed sys-
tems and computer architecture. In 1999 he received his PhD in distributed systems and software 
architecture from the University of Rennes I. From 2004 until now he holds a lecturer position 
at the Department of Computer Science of the University of Ioannina. Apostolos Zarras has 
published over 20 papers in international conferences, journals and magazines. He is currently 
a member of the IEEE computer society. His research interests include middleware, model-driven 
architecture development, quality analysis of software systems and pervasive computing.




