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Abstract

Like all software maintenance, schema evolution is a process that can severely
impact the lifecycle of a data-intensive software projects, as schema updates can
drive depending applications crushing or delivering incorrect data to end users.
In this paper, we study the schema evolution of eight databases that are part of
larger open source projects, publicly available through open source repositories.
In particular, the focus of our research was the understanding of which tables
evolve and how. We report on our observations and patterns on how evolution
related properties, like the possibility of deletion, or the amount of updates that
a table undergoes, are related to observable table properties like the number of
attributes or the time of birth of a table.

A study of the update profile of tables, indicates that they are mostly rigid
(without any updates to their schema at all) or quiet (with few updates), es-
pecially in databases that are more mature and heavily updated. Deletions
are significantly outnumbered by table insertions, leading to schema expansion.
Delving deeper, we can highlight four patterns of schema evolution. The Γ
pattern indicating that tables with large schemata tend to have long durations
and avoid removal, the Comet pattern indicating that the tables with most up-
dates are the ones with medium schema size, the Inverse Γ pattern, indicating
that tables with medium or small durations produce amounts of updates lower
than expected, and, the Empty Triangle pattern indicating that deletions in-
volve mostly early born, quiet tables with short lives, whereas older tables are
unlikely to be removed. Overall, we believe that the observed evidence strongly
indicates that databases are rigidity-prone rather than evolution-prone. We call
the phenomenon gravitation to rigidity and we attribute it to the implied impact
to the surrounding code that a modification to the schema of a database has.
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1. Introduction

Databases evolve over time, both in terms of their contents, and, most im-
portantly, in terms of their schema. Schema evolution affects all the applications
surrounding a database, as changes in the database schema can turn the sur-
rounding code to be syntactically or semantically invalid, resulting in runtime
crashes, missing or incorrect data. Therefore, the understanding of the mechan-
ics of schema evolution and the extraction of patterns and commonalities that
govern this process is of great importance, as we can prepare in time for future
maintenance actions and reduce both effort and costs.

The emergence of free open-source software has greatly facilitated the re-
search in the area of schema evolution. Prior to the availability of schema
histories in open-source repositories (svn/ sourceforge / github), researchers
where unable to work with real world-data to understand how schemata evolve.
Remarkably, until the late 00’s, there was just a single case study on the topic
[1]. Lately, however, the research community has started to exploit the available
information [2, 3, 4, 5, 6], as open source repositories provide us with access to
the entire history of data-intensive project files, including the versions of the
files with the database schema definition.

In this context, we embarked in the adventure of uncovering the internal
mechanics of schema evolution, after having collected and analyzed a large num-
ber of database histories of open-source software projects. In [7], we have re-
ported on our findings for the compatibility of database schema evolution with
Lehman’s laws and show that whereas the essence of Lehman’s laws holds, the
specific mechanics have important differences when it comes to schema evolu-
tion. In this paper, which extends [8], we depart from the traditional study
of how schemata in their entirety evolve (e.g., how schema size grows, or how
the heartbeat of changes unfolds) [2, 3, 4, 5, 6, 7], and come with a different
contribution, that zooms into the details of the evolution of individual tables
rather than entire relational database schemata. So, in this work, we explore
how evolution-related properties, like the possibility of deletion, life duration,
or the amount of updates that a table undergoes, are related to observable table
properties like the number of attributes or the version of birth of a table. Our
guiding research questions and their answers follow.

Which tables eventually survive and which ones are deleted? Our
study has identified that there exist ”families” of tables whose survival or re-
moval is related to their characteristics.

• Wide survivors. The relation of schema size with duration revealed an-
other interesting pattern, which we call the Γ pattern: ”thin” tables, with
small schema sizes, can have arbitrary durations, whereas ”wide” tables,
with larger schema sizes, have high chances of survival.

• Entry level removals. The vast majority of deleted tables are newly born,
with few or no updates, quite often quickly removed and, also quite often,
all three of them.
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• Old timers: time is on my side. It is quite rare to see tables being removed
at old age; although each data set comes with a few such cases, typically,
the area of high duration is overwhelmingly inhabited by survivors!

The two last observations are combined in a pattern which we call the Empty
Triangle pattern, because of the shape of its scatterplot: if we study the cor-
relation of duration with birth, we see very few tables born after the original
versions of the database that (a) do not survive and (b) have a fairly long du-
ration. As most tables who are removed come with mostly short durations, the
resulting shape of the scatterplot forms an empty triangle; thus, the name of
the pattern.

Which tables are the ones that attract updates? Overall, it is safe to
say that low-change tables dominate the landscape. In fact, when we studied
the relation of life duration and amount of updates, we observed the inverse Γ
pattern which states that updates are not proportional to longevity: with the
exception of few long-lived, ”active” tables, all other types of tables come with
an amount of updates that is less than expected. These active tables with the
larger amount of updates are long lived, frequently come from the early versions
of the database and, unexpectedly, they are not necessarily the ones with the
largest schema size, but typically start as medium sized. Concerning the last
remark, our study of the correlation of schema size at the birth of a table with
its update profile revealed a pattern which we call the Comet pattern, due to
the vast majority of tables with small amount of change and narrow schema, as
well as the existence of medium-size tables with many updates and wide tables
with medium change.

Gravitation to rigidity. Several reasons work together to drive us to
the conclusion that, despite the existence of clearly observable revisions of per-
fective maintenance, databases are demonstrating less evolution activity than
”expected”: tables are mostly quiet, deletions are outnumbered by additions,
the tables who do not survive live short lives of low activity and frequently in
the early stages of the database, old timers do not get deleted, wide tables with
many attributes are scarcely removed, and few tables demonstrate ”hot” up-
date activity in ”mature” databases. All these observations combined together
bring out a tendency to avoid change and evolution, which we call gravitation to
rigidity. We attribute the above phenomena to the dependency magnet nature
of tables: the more dependent applications can be to their underlying tables,
the less the chance of removal is. Large numbers of attributes, or large number
of queries developed over time make both wide and old tables unattractive for
removal.

Importance of this work. To the best of our knowledge, this is the first
time that the profiling of the behavior of individual tables is performed, both
at (a) a large scale, in terms of data sets, and, (b) in depth, in terms of the
number and essence of the properties that we have studied. Our contributions
can be summarized as follows. First, this effort contributes to increasing our
knowledge on how tables evolve with specific patterns of change. To the best
of our knowledge, this is the first time that, we get to see patterns on which

3



tables survive, get removed, as well as how they change, based on solid evidence
(rather than gut feeling or the general impression of a database expert). Equally
important is our second contribution: after our study, we have data on the
gravitation to rigidity, as now, we have solid evidence that tables do not change a
lot. This brings up the danger of rigidity and places particular importance to all
the techniques that attack the problem of smooth co-evolution of data and source
code. Finally, we believe that in this paper, we also make a methodological
contribution, as we show how it is possible to delve into the particularities of
table evolution and extract patterns of change.

Roadmap. The rest of this paper is structured as follows. In Section 2
we present the experimental setup of our study. We present our findings in
Sections 3 and 4. In Section 5, we discuss threats to validity. In Section 6
we discuss related work. In Section 7, we conclude with a discussion on the
practical implications of our findings and open issues. All the material of this
research, including links to software and data, can be retrieved via http://www.

cs.uoi.gr/~pvassil/publications/2015_ER/.

2. Data Compilation and History Extraction

In this section, we present our experimental protocol, including the employed
data sets, their collection and their processing, as well as the measures that we
have computed for the life of each table in each of these data sets. We have
presented the data sets and the collection protocol in detail in [9]; here we give
a concise account of our actions and refer the interested reader to [9] for more
details.

2.1. Data sets

Our datasets include eight datasets that we collected, sanitized, and studied
using our open source SQL diff tool, Hecate. Those datasets include Content
Management Systems (CMS’s), Web Stores, along with Medical and Scientific
storages (see Fig. 1).

We have selected relational schemata to be studied for their evolution at the
logical level. These schemata are (a) embedded in open-source software, and
(b) have a significant amount of committed versions, along with a fairly long
history.

The software projects hosting the respective databases are described in more
detail in [9]. Also, all the datasets can be found in our group’s git: https:

//github.com/DAINTINESS-Group.

2.2. Data preprocessing

For each data set, we gathered as many schema versions (DDL files) as we
could from their public source code repositories (cvs, svn, git). We have targeted
only changes at the database part of the project as they were integrated in the
trunk of the project. The files were collected during June 2013. For all of
the projects, we focused on their release for MySQL (except ATLAS Trigger,
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Figure 1: The datasets we have used in our study [7]

available only for Oracle). We collected all commits of the database at the time
of the trunk or master branch, and ignored all other branches of the project,
as well as any commits of other modules of the project that did not affect the
database. For each committed version, we have assigned a sequential version id
and also retained its Unix-time timestamp.

The files were then processed by our tool, Hecate, that allows the accurate
detection of changes between subsequent versions of the schema. For each tran-
sition between subsequent versions of the schema, Hecate detects: (a) changes at
the table-level, i.e., which tables were inserted and deleted and (b) updates at the
attribute-level, and specifically, for each affected table, the attributes inserted,
deleted, having a changed data type, or participation in a changed primary key.
Hecate is capable of performing this computation for the entire history of col-
lected versions; so, apart from a detailed transcript of the individual changes
between subsequent versions, Hecate also reports the aggregate statistics per
table for all the history of the database.

Hecate is also freely available as open source software via our group’s git:
https://github.com/DAINTINESS-Group.

2.3. Measures used

Given all these extracted data, we were able to detect, for each table (char-
acterized by its table name) the following characteristics:

• duration (in number of versions)

• birth and death (as version id)
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• the table’s schema size in three variants: (i) at its birth, (ii) at the end of
its lifetime (or the end of the data set, if the table survives until the last
studied version), and (iii) as an average schema size during its lifetime

• the total amount of updates at the attribute level performed to the ta-
ble – denoted as sum(updates) (to be crystal clear: for each table, for
each version of its lifetime, we added the measures obtained for the four
aforementioned categories of attribute updates into a single measure)

On top of these fundamental measures, other measures can be defined. In
particular, to classify the tables according to their update activity, we have de-
fined the following measure:

Average Transitional amount of Updates(ATU) = sum(updates)
duration

3. Table schema size, duration & updates

In this section, we study the relations between the tables’ schema size, du-
ration and updates. The rationale for selecting these properties is quite simple,
as we intended to use any information that we could automatically extract, to
relate properties that one could know at a given time of the life of a database,
with properties that could evolve over time. For example, at the time of birth
of a new table, the DBA knows the schema size. Is it possible to make a calcu-
lated guess on the possible amount of updates that one could expect the table
to sustain as well as its possible duration, given its number of attributes at
this point? Of course, one could select several other properties to extract and
study. We have chosen the most promising ones and, as the following subsec-
tions will show, our choice was rewarding, as there are indeed patterns that
one can observe based on these properties. In the rest of this section, we will
devote a subsection for the study of each pair of the three measures (schema
size, duration and updates). Before proceeding to this study, however, we will
present some findings on fundamental statistics for durations and schema sizes
(the statistics on the statistical profile of the updates will be covered in the
following section).

3.1. Fundamental statistics for table durations and schema size

We have analyzed the lifetime duration of all the tables in all the studied
datasets and we have observed that there is an interesting relation of durability
with table schema size. We have computed the durations (in number of ver-
sions) for each table in each dataset. Then, again for each table, we produced
a normalized measure of duration, by dividing the duration of the table by the
maximum table duration of its database 2. This results in all tables having a

2with the exception of OpenCart, this number coincides with the number of versions that
we have monitored
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Figure 2: Distribution of tables with respect to their normalized duration

normalized duration in the range of (0 . . . 1]. Then, in an attempt to simplify
intuition, we decided to classify tables in three categories: (i) short-lived (in-
cluding both the ones who were removed from the system at some point and
the ones whose short duration is due to their late appearance), (ii) tables of
medium duration and (iii) long lived tables. To avoid manually specifying the
limits for each of these categories, we used a k-means clustering [10] that, based
on the normalized duration of the tables, split the data set in three clusters, and
specifically at the values 0.33 and 0.77. The details of the breakdown appear
in Fig. 2, where we devote one column per category, along with the breakdown
of the long-lived category in two subclasses: (a) tables that live long, but not
throughout the entire lifetime of the database and (b) tables that live from
the very first till the last version that we have monitored (and thus, have a
normalized duration equal to 1.0).

A large percentage of tables lives short lives, in all datasets: with the excep-
tion of two data sets, in all other cases, more than 30% live short lives. A quite
large percentage of tables also lives long lives: in half the data sets the percent-
age of these tables lies within 30% - 40%, and in three others, long lived tables
exceed 50%. Interestingly, the number of long-lived tables that reach maximum
lifespan is more frequently than not higher than the number of long-lived who
do not. On average, this percentage reaches 20% of the total number of tables
studied!

Fig. 3 gives the statistical distribution of the average table schema size (i.e.,
the average number of attributes a table has throughout its lifetime). Typically,
the average table schema size has a very small deviation, as tables do not change
largely. Thus, the average size is pretty close to the respective max and min
size for the studied tables. On average, half of the tables (approx. 47%) are
small tables with less than 5 attributes. The tables with 5 to 10 attributes are
approximately one third of the tables’ population and the wide tables with more
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Figure 3: Distribution of tables with respect to their average schema size

than 10 attributes are approximately 17% of the tables. The first category has
quite a few outliers, both high and low (and a large standard deviation of
20%), whereas the two others do not really oscillate too much (with standard
deviations of 14 and 13%, respectively). Interestingly, the datasets with less
evolutionary activity (atlas, typo3 and biosql) are the ones concentrating outlier
values.

3.2. Relationship of the schema size at birth with the duration of a table

The first pair of measures that we have studied is the combination of schema
size at birth with table duration.

To illustrate the correlation of schema size and duration, we start with its
visual representation. Specifically, the first column of Fig. 4 gives the relation
of a table’s schema size (measured as the number of attributes of a table’s
schema at its birth and depicted in the x-axis of each of the scatterplots) with
duration (y-axis in the scatterplots), in three characteristic data sets, Atlas,
Coppermine and Mediawiki. We depict the graphical representation of this
relationship, again as a scatterplot, in Figure 5, for all the eight datasets that
we have studied (observe that we enrich the representation with two combined
dimensions, specifically, death-or-survival and update activity).

We observe a phenomenon that we call Γ pattern: tables with small schema
sizes can have arbitrary durations, whereas tables with larger schema sizes last
long.

3.2.1. ”If you’re wide, you survive”

Plainly put, the facts that the first column of Figure 4 and Figure 5 vividly
demonstrate are as follows. There is a large majority of tables, in all datasets,
whose size is between 0-10 attributes. We have visualized data points with
transparency in the figure; therefore, areas of intense color mean that they are
overpopulated with data points that fall on the same x,y coordinates. Many
of the data sets are limited to really small schema sizes: Biosql tables do not
exceed 10 attributes, Ensembl tables do not exceed 20 attributes and Atlas,
Mediawiki and Coppermine have one or two tables ”wider” than 20 attributes
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Figure 4: Correlation of schema size (number of attributes), duration (over versions) and
change (total number of changes) of all the tables in three datasets

(btw., observe the outlier table of 266 attributes in Atlas, too). Due to their large
percentage, narrow tables dominate the area near the vertical axis in the figures.
What is interesting however, is that their small schema size does not determine
their duration: this is depicted as a distribution of data points in parallel with
the y-axis for all the small sizes of a table’s schema. On the other hand, we
observe that whenever a table exceeds the critical value of 10 attributes in its
schema, its chances of surviving are high. As a side observation, we observe
that very often, the majority of ”wide” tables are created early on and are not
deleted afterwards.

3.2.2. Statistical evidence for the Γ pattern

To test the Γ pattern, we need to check the probability that a table with
wide schema survives. In what follows, first, we describe our terminology and
statistical profile of the data sets and then we assess the probability that wide
tables survive. We also offer a list of deviations from the pattern as well as some
conjectures on our observations.

Terminology. We consider a schema to be wide, when it is strictly above
10 attributes. The top band of durations (the upper part of the Γ shape) is
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Figure 5: The Γ pattern in all data sets
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Figure 6: Statistics on wide tables and their survival

determined as the range of values that is above 90% of the maximum duration
(i.e., the upper 10% of the values in the y-axis). We consider a table to have
been born early if its birth version is in the lowest 33% of versions; respectively,
late-comers are born after the 77% of the number of versions.

All data sets include wide tables, with percentages that typically range be-
tween 6% and 17%, with two exceptions: (i) Biosql without any wide tables
at all (and therefore, excluded from the rest of this discussion), and, (ii) typo3
with a 47% of wide tables in its schema.

Research Question: What is the probability that whenever a table is wide,
its chances of surviving are high? The percentage of tables with a wide schema
that have survived is presented in the fifth column of Figure 6 (overwhelmingly
in green font color). Apart from the two data sets with the largest history,
Ensembl and Mediawiki, all the rest of the data sets confirm the hypothesis with
a percentage higher than 85%. The two exceptions are as high as 50% for their
support to the hypothesis.

Exceptions. There are deviations (not exactly exceptions) to the Γ pattern.
Specifically, we can count Biosql out of consideration as no table exceeds 10
attributes. The two datasets that are the longest in duration, Ensembl and
Mediawiki also have very few tables exceeding the limit 10 attributes; moreover,
in each of these cases, 3 of the wide tables died. The Typo3 data set is more of
an exception as it comes with several late born survivors, and thus it reminds
quite a lot a C shape. Overall, although we consider the issue of exceptions
important, we believe that (a) the discrepancies are not major and (b) the basic
pillar of the pattern that is summarized as ”if you ’re wide, you survive” is
strongly supported by our experimental evidence.

Conjectures. We conjecture that the explanation for the ”if you ’re wide,
you survive” part of the Γ pattern is due to the impact a table deletion has:
the wider a table, the higher a chance it acts as a fact table, frequently ac-
cessed from the queries in the applications surrounding the database. Thus,
its removal incurs high maintenance costs, making application developers and
administrators rather reluctant to remove it.
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3.2.3. Accompanying phenomena and observations

Apart from the essence of the Γ pattern, our data collection allows us to put
more research questions. Specifically, we have assessed the following research
questions:

Research Question: What is the probability that wide tables are frequently
created early on and are not deleted afterwards? A typically large subset of
the wide-and-survivor tables has also been created early. The sixth column of
Figure 6 (labeled ”Early Born and Survivors”) demonstrates the percentage of
early born, wide, survivor tables over the set of wide tables. Impressively, we
see that in half the data sets the percentage is above 70% and in two of them
the percentage of these tables is one third of the wide tables.

Research Question: What is the probability that whenever a table is wide,
its duration frequently lies within the top-band of durations (upper part of Γ)?
Finally, we also study the probability that a wide table belongs to the upper
part of the Γ. This is depicted in the last column of Figure 6. We observe that
there is a very strong correlation between the two last columns of the figure; in
fact, the Pearson correlation is 88% overall, and 100% for the datasets with high
percentage of early born wide tables (appearing in blue font color in the figure).
Overall, the data are clearly bipolar on this pattern: half the cases answer the
research question positively, with support higher than 70%, whereas the rest of
the cases clearly disprove it, with very low support values.

In all data sets, if a wide table has a long duration within the upper part
of the Γ, this deterministically signifies that the table was also early born and
survivor. All three properties coexist in 100% of all data sets. In other words,
there is a subset relationship and all tables fulfilling the criteria for the last
column of Figure 6 also fulfill the criteria for the penultimate one. Plainly:

If a wide table is in the top of the Γ line, it is typically (deterministically in
our data sets) an early born survivor.

3.3. Relationship of the schema size at birth with the number of updates of a
table

In this subsection, we study the correlation of schema size at birth and
amount of updates for the tables of the studied data sets.

As in the previous subsection, we start with the discussion of the scatterplots
that visually represent this correlation. Remember that we use one scatterplot
per data set, with each point of the scatterplot referring to a table of the respec-
tive schema. Data points are visualized with transparency to allows us to see
the population’s density. If we observe the scatterplots at the middle column
of Figure 4, as well as Figure 7, we can see the relation of a table’s schema size
at its birth (depicted in the x-axis of each of the scatterplots) with the amount
of change the table undergoes (y-axis in the scatterplots). There are two main
clusters in the plots: (a) a large, dense cluster close to the beginning of the
axes, denoting small size and small amount of change, and, (b) a sparse set of
outliers, broken in two subcategories: (b1) medium schema size tables typically
demonstrating medium to large amounts of changes and (b2) ”wide” tables with
large schema sizes demonstrating small to medium amount of change.
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Figure 7: The Comet pattern in all data sets
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Figure 8: Statistics of schema size at birth and sum of updates for the studied data sets

We refer to this distribution of a core group near the beginning of the axes
along with two tails outside it as the comet pattern. We have chosen this term
as the real-world comets are composed of (a) a central part, called nucleus, (b)
a surrounding cloud of particles around the nucleus, called coma, and two tails:
(c) a white dust tail and (d) a blue gas tail, of electrically charged gas (see
http://spaceplace.nasa.gov/comet-nucleus/en/ for more).

3.3.1. The comet’s nucleus and tails

The first ”nucleus” cluster is typically contained within a box of size 10×10
(i.e., no more than 10 attributes typically result in no more than 10 changes).
This is attributed to the small pace of change that tables undergo (cf. Sec. 4), re-
sulting in small probabilities of attribute updates for narrow tables. At the same
time, in most of the datasets, the tables with the largest amount of change are
not necessarily the largest ones in terms of attributes, but tables whose schema
is on average one standard deviation above the mean. Typically, medium sized
tables demonstrate all kinds of change behaviour as they cover the entire y-axis,
whereas the (few) tables with large schema size demonstrate observable change
activity (i.e., not zero or small), which is found little below the middle of the
y-axis of the plot in many cases.

3.3.2. Statistical evidence for the Comet pattern

Before assessing the Comet pattern, it is worth presenting some basic statis-
tics on schema size and amount of updates that we have measured for all our
data sets (see Figure 8). We have measured the fundamental statistical prop-
erties (mean, max, standard deviation, median and mode) for both the schema
size at birth and the sum of updates for all data sets (outliers, as described in
the figure, have been removed to avoid distorting the statistical measures with
extremities).

To assess the comet pattern we have statistically assessed three measurable
quantities. Specifically, we have measured (a) the percentage of the population
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Figure 9: Comet pattern: the percentage of the population that lies within the 10×10 box

that lies within the 10×10 box (at most 10 attributes in schema and 10 updates
in their lifetime), (b) the schema size at birth of the tables that eventually
demonstrate a large number of updates in their lifetime and (c) the update
behavior of tables with large schema sizes.

Research question: What percentage of the population comes with narrow
schema size and quiet update behavior? (equivalently: what happens at the nu-
cleus of the comet?) We present the data answering this question in Figure 9.
Typically, around 70% of the tables of a database is found within the 10×10
box of schema size at birth × sum of updates (value 10 is not counted as part
of the box for neither dimension). In two cases, the percentage rose above 75%
and in a single case (Typo3) the population of tables were split in half. Overall,
our statistical assessment says that around 70% of the tables of a database are
typically found inside the narrow-and-quiet box.

Research question: What tends to be the schema size of tables with large
amounts of updates? (equivalently: can we verify that the tail of the comet con-
cerning top amounts of updates concerns medium sized schemata?) As already
mentioned, we have computed the sum of updates performed to each table of
each data set. Here, for every dataset, we selected the top 5% of tables in terms
of this sum of updates. We averaged the schema size at birth of these top 5%
tables. The resulting numbers are depicted in the Figure 10. With the exception
of phpBB, which is quite biased in its statistics, in all the other data sets, the
average schema size for the top 5% of tables in terms of their update behavior
is close to one standard deviation up from the average value of the schema size
at birth. It is also noteworthy that in 5 out of 8 cases, the average schema of
the top tables in terms of sum of updates is within 0.4 and 0.5 of the maximum
value (on average, it reaches 48% of the maximum value – practically, the mid-
dle of the domain) and never above 0.65 of it. Overall, based on this evidence,
we can conclude that tables with large numbers of updates tend to typically have
medium schema sizes.

A second noteworthy observation is shown in the bottom line of the table, in
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Figure 10: Comet pattern: Tables with large amounts of updates tend to have medium schema
sizes

italic grey font, where we have computed the Pearson correlation of each column
with the average schema size of the top changers: observe how extremely strong
is the correlation of the maximum value, the standard deviation of the entire
data set and the average of the top changers.

Research question: What tends to be the update behaviour of tables with
wide schema size at birth? (equivalently: can we verify that the tail of the comet
concerning wide schemata concerns medium amounts of updates?) We have also
studied the update behavior of the tables with the largest schemata. For each
data set, we have taken the top 5% in terms of schema size at birth and observed
the relationship of their update behavior contrasted to the update behavior of
the rest of the data set. The resulting numbers are depicted in Figure 11.

As in the previous examination, we isolated the top 5% of tables with respect
to their schema size at birth (which we also call top-wide tables) and averaged
the amount of their updates. The penultimate column in Figure 11 depicts the
detailed numbers. The average value for this metric is close to the 38% of the
domain of values for the sum of updates (i.e., slightly below the middle of the
y-axis of Figure 7, measuring the sum of updates for each table). The average
value over all data sets is 38% – dropping to 37% if we exclude the two extreme
outlier cases. In 5 out of 8 cases, the average amount of updates for the top-wide
tables is within 35% - 45% of the maximum value for the amount of updates.
Moreover, in 4 out of 8 of the data sets, the table with the largest amount of
updates was included in the set of top-wide tables. In one case (phpBB), the
table was top 1 with respect to both categories.

On the left hand side of Figure 11, observe that the total amount of updates
per table comes with a (very) large standard deviation. The mean value of
updates is very low in all cases, due to the large percentage of the population

16



Figure 11: Comet pattern: Tables with wide schemata tend to have medium amounts of
updates

leading quiet lives. The standard deviation, at the same time, is practically
twice the mean value, practically meaning quite different statistical profiles for
the studied tables.

3.4. Relationship of the duration with the number of updates of a table

Finally, we have studied the correlation of duration and amount of updates
for the tables of the studied schemata.

As in the previous cases, we first discuss the visual properties of the respec-
tive scatterplots, and then move on to present the statistical evidence supporting
the reported pattern. The last column of Figure 4, as well as Figure 12, demon-
strate the relation of a table’s duration (depicted in the x-axis of each of the
scatterplots) with the amount of change the table undergoes (y-axis in the scat-
terplots). We observe a phenomenon that we call the Inverse Γ pattern: tables
with small duration undergo small change, tables with medium duration undergo
small or medium change, and, long-lived tables demonstrate all kinds of change
behavior.

3.4.1. Inverse Γ: a first glimpse of gravitation to rigidity

The vast majority of tables have ”calm” lives, without too much change
activity; therefore, there is a high chance that a table will be low in the y-axis
of the plot. In detail, all the scatterplots present three clusters: The absence
of extremities means that a short lifetime cannot really produce anything but
small (typically close to zero) change; medium duration has some higher chance
of producing change in the range of 5 to 10 changes; and high amounts of change
are only found in tables with long lives. Still, instead of a full triangle, the chart
demonstrates mainly an inverse Γ: there is a striking scarcity of tables with
mid-sized durations and mid-range change that would be part of the diagonal,
or fill the interior of the triangle (visual clue: color intensity in our charts is
an indicator of population density, due to overlapping semi-transparent points).
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Figure 12: The Inverse Γ pattern in all data sets
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The majority of tables having quiet, calm lives, pushes the triangle to become
an inverse Γ.

3.4.2. Statistical evidence for the Inverse Γ pattern

The Inverse Γ pattern comes with a simple observation: small and medium
durations come with small amounts of change whereas large duration exhibit all
kinds of change. Although the scatterplots show this pattern vividly, we have
also performed a small transformation of data to simplify the representation
of the pattern. To this end, we have divided the duration axis into ranges
(”buckets”), in sizes of 10, and counted the average value of each bucket (as a
representative) as well as the maximum value, as an indicator of the skyline of
values. We graphically depict these two measures for all data sets in Figure 13.
Apparently, the best possible indicator for explaining the Inverse Γ is the skyline
of values, expressed by the maximum value per bucket (i.e., the value of the
table with the maximum number of updates within the bucket). This skyline
gives the outline of the upper part of the scatterplot. The skyline clearly shows
that the maximum amount of updates is not linearly related with duration, but
rather that almost every bucket does not exceed a low height of updates, with
the exception, of course, of high durations. When we observe the relationship
of max and average amount of updates we can see that they go hand-in-hand
in almost all occasions, in all the buckets, again with a single exception to this
rule, which is -almost always- the bucket with highest durations. In this case,
the maximum value significantly deviates from the average. Overall, we can
argue that -with a few exceptions- we see large amounts of updates only in large
durations, whereas, typically, the average amount of updates is small.

Exceptions. There are exceptions to the Inverse Γ pattern. Biosql shows
an empty triangle pattern; however it comes with a rather small number of
45 revisions, along with large numbers of (green) rigid survivors found at the
bottom of the triangle. Ensembl, a data set with a high amount of deletions
in its profile, comes with two peaks instead of one, at high durations (although
this does not really disprove the essence of the patter, but only the geometrical
expression that we have used to express it). Ensembl also has a very large
number of deleted tables of medium duration that demonstrate medium amounts
of activity. Mediawiki has a few survivor tables, born at later stages of the
database (and thus, of medium duration), that escape the ”gravitation towards
rigidity” pattern and demonstrate medium amounts of updates. The rest of the
data sets seem to abide by the Inverse Γ pattern with almost single outlier points.
A noteworthy exception is phpBB that demonstrates its maximum activity in
the middle of the x-axis: this is a single outlier table that eventually died and
exceeded all others by an order of magnitude for the large majority and a scale
factor of 1.5 with respect to the second highest. Atlas and Typo3 have also a
single outlier late-comer survivor with high activity profile.

Conjectures about the gravitation to rigidity. We believe that the Inverse Γ
pattern is a quite vivid demonstration of the gravitation towards rigidity ten-
dency in the lives of tables. Because of the shape of our diagrammatic represen-
tation, where we put the amount of change in the y-axis, we observe a tendency
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Figure 13: Skyline and average lines for the Inverse Γ pattern
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of the tables to be ”attracted”/”gravitated” to the lowest possible values, close
to the horizontal axis. Although this is a just metaphor, it appears as if there
is a gravitation force pulling them towards zero change, with very few of them
escaping the force. However, there are several statements that can be made
here:

• We do not observe a triangle shape in our scatterplots. An empty triangle
would mean that duration is linearly related with the amount of updates
(we see an empty triangle in Biosql, in Figure 12). A filled triangle would
signify that tables live lives of reasonable update behavior: a filled pattern
means there are variations in the update behavior of the tables, related to
other factors rather than duration, along with the simple statistical rule
that the more you live, the higher the probability to change (which would
result to the diagonal of the triangle acting as a simple statistical limit of
how high change can go). We see a pale attempt for a filled triangle in
Mediawiki. We do not observe neither of these patterns at large, but on
the contrary, we mostly observe a gravitation to rigidity for the medium
and low durations.

• There is an interesting counter argument to be made here. In our scatter-
plots, we observe that long durations demonstrate both (a) a high number
of tables and (b) a spread of the points throughout all the height of the
vertical axis. In other words: is it just randomness? Is it possible that the
amount of change is due to other factors and this is why, the more tables
a point in the x-axis has, the more spread it demonstrates? Clearly, one
could consider suggesting such an argument for the high durations. But
at the same time, why then, it does not hold for the other durations too?
Even if the amount of tables with medium durations is small, why then
they do not typically create an empty triangle, or a vertical line of points
in the scatterplot, like the one that takes place at the highest durations?
Why is it that even the high durations have a high concentration of values
at the low values of the y-axis, thus resulting in a significant deviation of
the average from the maximum value in Figure 13?

• We believe that, overall, there is indeed a tendency to avoid change in the
schema of a table – which we call ”gravitation to rigidity”. We conjec-
ture that the gravitation to rigidity is due to the reluctance of developers
to interfere with the structure of the tables. Again, we attribute this
tendency to the dependency magnet nature of the database: changes in
the database schema affect the surrounding code, multiplying thus the
maintenance impact and cost.

4. Matters of life and death

Having examined how the schema size, duration and total amount of update
of a table are related, in this section, we investigate how the duration and
update activity of tables are related to their birth and death. We will devote

21



a subsection to our findings concerning top-changers and another subsection
to tables that are removed. As we will see, in both cases, update behavior
and survival seem to be strongly related to properties like birth and duration.
Before this, however, we will start our account of findings with the study of
the distribution of tables to classes formed by the combination of the possible
profiles of (a) update activity and (b) survival or death of a table.

4.1. Statistical profile on the correlation of update activity with survival

In this subsection we study how tables are statistically distributed in classes
formed by combining their update behavior and their survival or removal. The
question is important as it allows us to put all subsequent findings in context.

To classify tables to profiles of update activity we decided to move one step
further than using the sum of updates that a table has undergone. This is
due to the fact that it is theoretically possible that a table with a short life
might not have the possibility of obtaining a large sum of updates, although his
change activity is intense within this short life span. So, we define the Average
Transitional amount of Update (ATU) as the fraction of the sum of updates that
a table undergoes throughout its life over its duration. Equivalently, one can
think of this measure as the average number of schema updates of a table per
transition. Thus, the average transitional update of a table practically measures
how active or rigid its life has been by normalizing the total volume of updates
over its duration.

To form the space of update profile × survival profile, we need to define the
classes for each dimension.

To address the survival vs death separation task, we will employ the following
terminology:

• survivor is a table that was present in the last version of the database
that we examine, and,

• non-survivor refers to a table that was eventually eliminated from the
database.

We also discriminate the tables with respect to their update profile as follows:

• Active tables or top-changers are the ones with (a) a high average tran-
sitional update, exceeding the empirically set threshold of 0.1, and, (b) a
non-trivial volume of updates, exceeding the also empirically set limit of
5 updates.

• Rigid tables are the ones with no change at all; we will also refer to the
ones that did not survive as sudden deaths, as they were removed without
any previous change to their schema.

• Quiet tables are the rest of the tables, with very few updates or average
transitional update less than 0.1. For the tests we made, discriminating
further within this category did not provide any further insights.

22



Figure 14: Table classification concerning the average amount of updates per version for all
data sets (∗Opencart reports only on the tables born after transition 17)

Then, the space produced by update profile × survival profile has six possible
classes. We have classified all tables of all data sets to these classes and report
our findings in Fig. 14. In Fig. 14, we group measurements separately for (a)
non-survivors, (b) survivors, and (c) overall. Within each of these groups, apart
from the overall statistics, we also provide the breakdown for tables with (a)
no changes, (b) quiet change, and (c) active change. Each cell reports on the
percentage of tables of a data set that fall within the respective subcategory.
We have slightly manipulated a single dataset, for the sake of clarity. OpenCart
has an extreme case of tables renamings, involving (a) the entire schema at
transitions 17 and 18 and (b) massive renamings in transitions 23 and 35. As
these massive renamings involved 108 of the 236 tables of the monitored history,
we decided to exclude the tables that were dead before transition 23 from our
study, so that their change does not overwhelm the statistics. For example, after
the aforementioned short period, only 14 tables were removed in the subsequent
130 revisions.

Clearly, quiet tables dominate the landscape. If we observe the non-survivors,
the percentage of tables in each of the categories is typically dropping as the
probability of change rises: sudden deaths are the most frequent, quiet non-
survivors come second, and third, a very small percentage of tables in the vicin-
ity of 0-6% dies after some intense activity. In the case of the survivors, the
percentage of rigid tables is often substantial, but, with the exception of ph-
pbb, the landscape is dominated by quiet tables, typically surpassing 30% of
tables and reaching even to 60% of the tables for a couple of data sets. Things
become quite interesting if one focuses on the more mature data sets (copper-
mine, ensemble, mediawiki, opencart) whose profile shows some commonalities:
in contrast to the rest of the datasets, active survivors are a small minority
(approx. 5%) of the population, and similarly, active tables over both survivors
and non-survivors attain a percentage that is less than 15%. So, as the database
matures, the percentage of active tables drops (as already mentioned, evolution
activity seems to calm down).

It is also noteworthy that despite similarities, and despite the obvious fact
that at least two thirds of the tables (in the mature databases: 9 out of 10)
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lead quiet lives, the internal breakdown of updates obliges us to admit that each
database (and developer community) comes with its own update profile.

Figure 15: Update profile with respect to survival-vs-death injected in the study of total
change over duration (top) and duration over birthday (bottom)

4.2. Table birth, duration & updates

In this subsection, we report on our findings concerning the study of the
update profile of tables, and specifically, on patterns related to the character-
istics of top changers, and in particular, their birth, duration and survival. As
usually, we start with an exemplary demonstration of how these characteristics
interrelate and then proceed to establish the observed patterns via statistical
profiling.

In Figure 15 we present the most interesting insights from the Mediawiki
data set. We have chosen Mediawiki as a fairly representative dataset, as it
comes with both a non-negligible amount of removed tables, a large duration,
and, a fairly large number of tables (72). Our findings are discussed below.
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Figure 15 demonstrates a concentration of survivor top-changer tables at high
durations. In fact, the statistical processing of our data reveals that very often,
top-changers are born early, live long, have high average transitional update and,
consequently a large amount of total update.

The two arguments that we can make on this phenomenon are detailed as
follows.

• Surviving top-changers live long. Observe the top chart of Figure 15:
the vertical line of the inverse Γ in long durations, as well as its nearby
region are being populated by survivors; the vertical line demonstrates
that several of the top-changers are very long lived. Remember that the
top-changers are the ones with the highest average transitional update,
i.e., their update is normalized over their duration. This is quite different
from the total amount of update that is depicted in the y-axis of the chart:
in other words, it is theoretically possible (and in fact, there is indeed such
a case in the Mediawiki example, found close to the beginning of the axes)
that a short lived table with relatively low total updates is a top-changer.
In practice, however, longevity and high average transitional update are
closely related.

• Concerning the top-changers, there is an interesting correlation of high up-
date activity, overall change, duration and birthdate: most (although not
all) top-changers are born early, live long, have high average transitional
update and, consequently a large amount of total update. Of course, there
exist tables born early who survive and have lower update activity and
top-changers that violate this rule; however, in all data sets, it is quite
uncommon to observe top-changers outside the ”box” or early birth and
long duration.

4.2.1. Statistical evidence for the properties of top-changers

Terminology. We consider a table to have been born early if its birth version
is in the lowest 33% of versions; respectively, late-deaths take place after the 77%
of the number of versions. Durations follow the same pattern: short durations
are in the lowest 33% of durations and long durations in the upper 23% (strictly
higher than the 77% of the maximum duration). The term ”few updates” refers
to quiet and rigid tables.

Research Question: What is the probability that a top changer table is born
early - lives long - survives? The data of Figure 16 demonstrate the relationship
of duration, survival and birth data vividly.

• In all data sets, active tables are born early with percentages that exceed
75%

• With the exceptions of two data sets, active tables survive with percentage
higher than 70%. In Mediawiki the percentage is 60% and in Ensemble,
where too many tables die, the percentage is 48%
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Figure 16: Top changers: early born, survivors, often with long durations, and often all the
above

• The probability of an active table having a long duration is higher than
50% in 6 out of 8 data sets.

• Interestingly, the two last lines of Figure 16 are identical. Probing into the
data, the study revealed that (a) the active tables with long duration and
(b) the active tables that are born early, survive and have a long duration
are exactly the same sets in all data sets! In other words:

– An active table with long duration has been born early and survived
with probability 100%

– An active, survivor table that has a long duration has been born
early with probability 100%

4.3. Table death, duration & updates

We have been interested a lot for the case of removed tables. Which are the
common characteristics of tables that die? Interestingly, one can say that the
tables that are removed from the schema are quiet, early born, short lived, and
quite often all three of them.

In Figure 17 we see the correlation of birth, duration, survival and update
activity in a single diagram, for all eight data sets.

• There is a large concentration of the deleted tables in a cluster of tables
that are newly born, quickly removed, with few or no updates. Few deleted
tables demonstrate either late birth, or long durations, or high average
transitional update, or large number of updates (Mediawiki shows just a
couple of them in each of the first two categories). In the triangle formed in
the bottom figure by the two axes and the line of survivors, the diagonal of
survivors is expected: if you are a survivor, the earlier you have been born,
the more you live. The really surprising revelation of the triangle, however,
is that (a) the diagonal is almost exclusively made from survivors, and, (b)
the triangle is mainly hollow ! Theoretically, it is absolutely legitimate for
non-survivors to have long durations and to be born in the middle of the
database lifetime: if there was not a pattern of attraction of non-survivors
to the beginning of the axes we could legitimately see non-survivors in the
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Figure 17: The empty triangle pattern for all data sets

area of the diagonal and, of course, a uniform spread in the interior of the
triangle. In fact, in the case of Mediawiki, we do see a couple (but just
a couple) of such cases for both the aforementioned possibilities. Overall,
we find that the hollowness of the triangle is an unexpected revelation
and, so, we refer to the pattern as the Empty Triangle pattern.

• It is quite rare to see tables being removed at old age; although each data
set comes with a few such cases, typically, the area of high duration is
overwhelmingly inhabited by survivors! See the upper part of Fig. 15 for
the Mediawiki data set, showing just a couple of deleted tables with high
durations.
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4.3.1. Statistical evidence for the relationship of age and probability of removal

Terminology. We consider a table to have been born early if its birth version
is in the lowest 33% of versions; respectively, late-deaths take place after the 77%
of the number of versions. Durations follow the same pattern: short durations
are in the lowest 33% of durations and long durations in the upper 23% (strictly
higher the 77% of the maximum duration). The term ”few updates” refers to
quiet and rigid tables.

Research Question: What is the probability that a table that is removed is
short-lived? Early-born? What is its update profile? We have tried to answer
the above questions, and of course, their combinations. Figure 18 summarizes
our findings. In all the data sets but one (phpBB) the tables that are removed
are tables with few updates at an overwhelming percentage (over 85% in 6
out of 8 cases). In all data sets, these tables have been born early too (in
all cases except for mwiki, the percentage of early born tables as a fraction
over the population of removed tables reaches at least 70%). Short lived tables
demonstrate a slightly different profile, as we have a bipolar situation: one the
one hand, the three datasets with very few dead tables, specifically coppermine,
phpBB and typo3, have zero or very few removed tables with short durations,
and, on the other hand, in all the other data sets, the percentage of tables who
die after a short life exceeds 75%. The situation’s bipolarity is clear when we
take the combination of properties: in the ”rigid” data sets, with the few table
removals, there are no tables that are early born, short lived and with quiet
lives, whereas in the rest of the data sets the percentage of such tables ranges
within 43% and 71% (in half the data sets more than 50%). These numbers are
simply significant, as here we combine three properties in our test and in half
the data sets the absolute majority of the population of dead tables satisfies the
test’s predicate. In other words, it is fair to say that in databases where it is not
uncommon to see tables being removed, it is very probable that removed tables
are simultaneously quiet, early born, and short lived.

Figure 18: Dead tables are: quiet, early born, short lived, and quite often all three of them
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Research Question: What is the probability that a table of long duration is
removed? Observe the last part of Figure 18. In all but one of the data sets,
there is no occurrence of an old timer being removed! The pattern is not trivial
or easy to ignore: the numbers of tables with long duration, in absolute terms,
are really high, ranging from 12 to 86 tables. This kind of rigidity seems to be
one of the strongest patterns that we have observed overall in our deliberations.

Exceptions. Exceptions to the pattern of the empty triangle do exist. In
the case of Typo3, the diagonal is closely followed by a set of medium-change
tables. This is mainly attributed to the fact that there is a short period of 5
transitions, around transition 70 during which almost all table deletions take
place. Opencart has the characteristic of massive renamings that removed all the
old tables until transition 34. After that, there are a few targeted restructurings
of sudden deaths. Ensembl is the only data set with a heavy deletion oriented
character (52% of tables removed). In the case of Ensembl, although the area
close to the diagonal has just a couple of deleted tables, there are two differences:
(a) the attraction to the beginning of the axes last quite longer than every other
data set (a box of 135x135) and (b) there are several tables born around the
middle of life of the data set that eventually die, having been fairly active and
quite long-lived (approximately 200 transitions).

Conjectures. We believe (although cannot prove) that both the empty trian-
gle pattern and the survival of old-timers have to do with the cost of removing
a table after some time: applications have been built around it and the main-
tenance cost to the surrounding queries shrinks the possibility of removal.

5. Scope of the study and threats to validity

5.1. Scope of the study

Our study has a well-specified scope. We have chosen datasets as represen-
tatives of a population with the following properties:

• the databases of study are part of open-source software projects (and not
proprietary ones)

• as Figure 1 clearly demonstrates, the chosen schemata come with substan-
tially long history in terms of time (on average the length of the chosen
projects is close to 8 years).

Having framed our scope, we are also very careful to stress what our study
does not cover and should not be part of the possible generalizations that one
can make:

• We should be very careful to not overgeneralize any findings to propri-
etary databases or physical schemata. We stress that our study has been
performed on databases being part of open-source software. This class of
software comes with a specific open modus operandi in terms of commit-
ting changes and distributing maintenance work. Thus, we should be very
careful to not overgeneralize findings to proprietary databases.
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• We would also like to stress that we work only with changes at the logical
schema level and ignore physical-level changes like index creation or change
of storage engine. We do not take properties of the intentional level (e.g.,
number of rows, or disk size) into consideration either.

5.2. Measurement and data treatment reliability

Can our measurements be trusted? Is it possible that we erroneously assess
the amount of change for the studied data sets?

Overall, we believe we have a good data extraction and measurement process
without interference or manipulation of the input from our part.

• We have tested our “delta extractor”, Hecate, to parse the input correctly
& adapted it during its development; the parser is not a full-blown SQL
parser, but robust to ignore parts unknown to it.

• Hecate provides a fully automated counting for the studied measures. Of
course, all subsequent analysis was performed by humans; yet, we have
checked and rechecked for errors in spreadsheet formulae (which were, of
course, corrected)

• We have not interfered with the input. The only exception was a handful
of cases that where adapted in the Coppermine data set to avoid over-
complicating the parser; other than that we have not interfered with the
input at all. We believe that there is no serious threat to validity from
the point of view of the manipulation of data.

5.3. External validity

External validity refers to the possibility of generalizing the findings of a
study to a broader context. Can we generalize out findings broadly?

Overall, we believe we have given a specific scope to our data and we are quite
confident with our results, as we have covered a fairly large number of databases,
from a variety of domains that seem to give consistent answers to our research
questions – of course, with all the exceptions that we have mentioned in our
previous discourse.

To support the external validity of our study, we will address several concerns
that can be raised.

Represented population. Is the population represented by our data sets well
defined?

Concerning the scope of our study and its clarity, we have been very clear
from the previous subsection, on defining the scope and framing the possible
generalizations. We are very careful to warn the reader against generalizing our
findings in the wrong context (closed development environments, physical parts
of the schema or other). In terms of precision, all our data sets belong to the
specified population.

Representativeness of our data sets. Are our data sets representative enough?
Is it possible that the observed behaviors are caused by sui-generis characteristics
of the studied data sets?
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We have a fairly large number of eight studied data sets – at least at the
extent of what a single study can span. To address variety and avoid a monothe-
matic study, we have chosen to encompass in our study datasets from different
domains (specifically, physics, biomedicine, and CMS’s). The schema size of the
involved data sets varies too: we have schemata ranging from 22 to 114 tables.
Also, the amount of growth, although always positive varies too. Moreover,
although we have chosen data sets with a large history in terms of time, the
history in terms of committed changes to the database schema varies too: the
number of number of versions spans from rather few (40) to quite many (500+).
Overall, although one could possibly construct a valid argument that applica-
tion areas or initial properties can affect the way databases evolve (e.g., CMS’s
can behave differently than scientific databases), in this paper we have focused
on patterns that we found common in all data sets. So, we are confident for our
results from this perspective.

To avoid possible counter-arguments, we also stress that we are very cautious
to avoid declaring any laws of universal application. We do support our findings;
at the same, we believe that from an epistemological point of view it is only
appropriate to wait from several more studies, preferably conducted by several
research groups, other than ours, to verify that these patterns hold by and large
as laws.

We are strong advocates of the openness and reusability of data, software
and results. All our data sets and software are openly available at our group’s
site at Github (https://github.com/DAINTINESS-Group) and all our results
are also available at the paper’s companion web site (http://www.cs.uoi.gr/

~pvassil/publications/2015_ER/) to be reused and put to the test by the
scientific community.

5.4. Internal validity

Internal validity refers to the case where a dependent variable’s behavior is
related to the behavior of an independent variable via a cause-effect relation-
ship. In our case, we wish to be clear that (a) we perform an exploratory study
to observe frequently occurring phenomena within the scope of the aforemen-
tioned population and (b) we are very careful to avoid making strong causation
statements!

In several places in our text, we conjecture on the causes for a particular phe-
nomenon. However, we have not performed any kind of controlled experiment
or study to be able to support causation arguments by data. This is simply
not the case we are making in this paper. Moreover, we would also like to add
that it is indeed quite possible that our correlations hide hidden, confounding
variables. Overall, we would like to be crystal clear that matters of causation
are outside the scope of our study and we make no such arguments.

6. Related work

The first empirical study on the evolution of database schemas has been
performed in the 90’s [1]. The author monitored the database of a health man-
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agement system for a period of 18 months. The results of the study showed that
all the tables of the schema were affected and the schema had a 139% increase
in size for tables and 274% for attributes. The author further observed a signif-
icant impact of the changes to the related queries. Interestingly, the author also
reports the observation of a particular inflating period during the construction
of the system where almost all changes were additions, and a subsequent period
where additions and deletions where balanced.

With the proliferation of open source software, certain other efforts were
able to investigate the evolution of databases, along with the applications that
depend on them. The second empirical study [2] was performed much later than
the previous one. In this study, the authors analyzed the database back-end of
MediaWiki, the software that powers Wikipedia, for a period 4.5 years. The
results showed a 100% increase in schema size. However, 45% of changes did
not affect the information capacity of the schema (but were rather index adjust-
ments, documentation, etc.). The authors further provided a statistical study
of lifetimes, change breakdown and version commits. This line of research was
based on PRISM (recently re-engineered to PRISM++ [11]), a change manage-
ment tool.

In [5], the authors worked with 4 case studies and performed a change fre-
quency and timing analysis, which showed that the database schemas tend to
stabilize over time, with more change at the beginning of their lifetime and a
convergence to a more stable schema later. In [3], two case studies revealed that
schemas and source code do not always evolve in sync.

In [6], the authors investigated ten case studies. The authors report that
change is focused both (a) with respect to time and (b) with respect to the
change profiles of tables . In terms of timing, 7 out of the 10 databases reached
60% of their schema size within 20% of their early lifetime. Also, change is
frequent in the early stages of the databases, with inflationary characteristics;
then, the schema evolution process calms down. In terms of change profiles, it
is interesting that 40% of tables do not undergo any change at all, and 60%-90%
of changes pertain to 20% of the tables (in other words, 80% of the tables live
quiet lives). The most frequently modified tables attract 80% of the changes.
Similarly to other studies, the authors assessed the degree to which code and
database schema are in sync. The authors report that there is a large percent-
age of cases where the two artifacts are out of sync. Finally, it is noteworthy
that according to the authors, database schemata evolve frequently during the
application lifecycle, with schema changes causing a significant amount of code
level modifications: each atomic change at the schema level is estimated to re-
sult in 10 – 100 lines of application code been updated; and a valid database
revision results in 100 – 1000 lines of application code being updated.

Recently, we studied the applicability of Lehman’s laws of software evolution
in the case of database schemas [7, 9]. In this line of work we report on evidence
that schemas grow so as to satisfy new requirements. However, this growth does
not evolve linearly or monotonically, but with periods of calmness and short
periods of focused maintenance activity. After a sufficient amount of changes,
the schema size reaches a more mature level of stability.
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Whereas previous work has mostly focused on the macroscopic study of the
entire database schema, in this line of work, we zoom into the lives of tables. We
study the relationship of table duration, survival and update activity with table
characteristics like schema size, time of birth etc. To the best of our knowledge,
this is the first time that such findings appear in the related literature. The
current paper extends [8] with detailed discussions of the observed patterns and
their statistical profile, along with side observations that were omitted from the
conference version due to lack of space.

7. Discussion of findings and open issues

To conclude our deliberations, we take a quick tour of our findings, also
discussed from the viewpoint of their practical consequences. We complement
this discussion with open issues for further research.

Figure 19: Summary of findings

7.1. Summary of findings

7.1.1. The Γ Pattern

The Γ pattern states: tables with small schema sizes can have arbitrary
durations, whereas tables with larger schema sizes last long. In a nutshell, our
findings around the Γ pattern can be summarized as follows:

• In 6 out of 8 cases, whenever a table exceeds the critical value of 10 at-
tributes in its schema, there is at least an 85% probability that it survives.
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• In 5 out of 8 cases, the probability that wide tables are frequently created
early on and are not deleted afterwards exceeds 50% (more than 70% in
4 cases).

• Whenever a table is wide, there is a bipolar pattern on its duration: in
half the data sets, the duration of wide tables lies within the top-band of
durations (upper part of Γ) with support higher than 70%, whereas the
rest of the cases clearly disprove it, with very low support values.

• If a wide table is in the top of the Γ line, it is typically (deterministically
in our data sets) an early born survivor.

7.1.2. The Comet Pattern

The Comet pattern states: (a) a large, dense cluster close to the beginning
of the axes, denoting small size and small amount of change, and, (b) a sparse
set of outliers, broken in two subcategories: (b1) medium schema size tables
typically demonstrating medium to large amounts of changes and (b2) ”wide”
tables with large schema sizes demonstrating small to medium amount of change.
In summary, the research findings concerning the Comet pattern are as follows:

• Around 70% of the tables are typically found inside a 10×10 narrow-and-
quiet ”nucleus” box in the schema size × update activity space.

• Tables with large numbers of updates tend to typically have medium
schema sizes at birth (”upper comet’s tail”): In all but one data set,
the average schema size for the top 5% of tables in terms of their update
behavior is, on average, close to half the maximum value of schema size
at birth (also close to one standard deviation up from the average value
of the schema size at birth).

• Tables with large schema sizes at birth tend to typically have medium
numbers of updates (”lower comet’s tail”): The amount of updates for
the top 5% of tables with respect to their schema size at birth is typically
close to the 38% of the domain of values for the sum of updates.

7.1.3. The Inverse Γ Pattern: Gravitation to Rigidity

The Inverse Γ pattern states: tables with small duration undergo small
change, tables with medium duration undergo small or medium change, and,
long-lived tables demonstrate all kinds of change behavior.

7.1.4. Quiet tables dominate

We have studied how tables are distributed in the the space produced by
update profile × survival profile.

• If we observe the non-survivors, as the probability of change rises, there
are less tables in each category: sudden deaths are the most frequent, quiet
non-survivors come second, and third, a very small percentage of tables in
the vicinity of 0-6% dies after some intense activity.
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• In the case of the survivors, the percentage of rigid tables is often sub-
stantial, but, with the exception of phpbb, the landscape is dominated by
quiet tables, typically surpassing 30% of tables and reaching even to 60%
of the tables for a couple of data sets. Active survivors are also a substan-
tial percentage, but with a bipolar pattern: for the more mature data sets,
active survivors are a small minority (approx. 5%) of the population.

• Overall, independently of survival: Clearly, quiet tables dominate the land-
scape. Also, as the database matures, the percentage of active tables drops
and ranges lower than 15%.

7.1.5. Top-changers’ profile

The statistical profile of tables with high average amount of updates per
transition, also known as top-changers, reveals that very often, top-changers
are born early, live long, and due to their high average transitional update come
with a large amount of updates. Specifically, the probabilities that a top changer
table is born early - lives long - survives are as follows:

• In all data sets, active tables are born early with percentages that exceed
75%

• With the exceptions of two data sets, active tables survive with percentage
higher than 70%. In Mediawiki the percentage is 60% and in Ensemble,
where too many tables die, the percentage is 48%

• The probability of an active table having a long duration is higher than
50% in 6 out of 8 data sets.

Within the population of active tables, survival and being born early (conse-
quently: longevity, too) go hand-in-hand:

• An active table with long duration has been born early and survived with
probability 100%

• An active, survivor table that has a long duration has been born early
with probability 100%

7.1.6. The Empty Triangle Pattern

The Empty Triangle pattern says that few deleted tables demonstrate either
late birth, or long durations, or high average transitional update, or large number
of updates, resulting in a practically hollow triangle in the birth × duration
space. At the same time, there is often a large concentration of deleted tables in
a cluster of tables that are newly born, quickly removed, with few or no updates,
whereas ”old-timer” tables of long durations are scarcely removed.

Dead tables come with:

• few updates at an overwhelming percentage (over 85% in 6 out of 8 cases);
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• early birth (in all cases except for one, the percentage of early born tables
as a fraction over the removed ones reaches at least 70%);

• short life in half the cases: datasets with very few dead tables, have zero
or very few removed tables with short durations, whereas, in all the other
data sets, the percentage of tables who die after a short life exceeds 75%;

• a bipolarity in the combination of the three properties altogether: in the
”rigid” data sets, with the few table removals, there are no tables that are
early born, short lived and with quiet lives, whereas in the rest of the data
sets the percentage of such tables ranges within 43% and 71% (in half the
data sets more than 50%).

In other words, it is fair to say that in databases where it is not uncommon to see
tables being removed, it is very probable that removed tables are simultaneously
quiet, early born, and short lived. At the same time, it is quite rare to see tables
being removed at old age; although each data set comes with a few such cases,
typically, the area of high duration is overwhelmingly inhabited by survivors!

7.2. Practical considerations

Assume you are the chief architect of a large information system. Evolution
is inevitable, maintenance takes up to 70% of resources that are always limited,
time is pressing and you have to keep the system up to date, correct, without
failures and satisfactory for the users. In this subsection, we relate the key
findings of our study with guidelines on designing and building both tables and
applications that access them, so as to sustain the evolution of the database part
gracefully.

Encapsulate change via views. Top changers are typically born early
and last long. Deleted tables, although quiet, are also born early and last short;
consequently, these deletions typically take place early in the lifetime of the
project. Although the majority of tables live quiet lives, the ones that depart
from the typical path of a quiet survivor can cause a lot of maintenance effort.

To address change, we suggest the usage of views as an evolution-buffering,
”API-like” mechanism between applications and databases.

Mask your applications from tables prone to change (e.g., newly born
tables with high probability of change or deletion) as much as possi-
ble, especially at the early versions of the database where most of the
deletions take place. To this end, use views as a buffering mecha-
nism between the database and the applications that masks change in
several evolution scenarios like renamings, table splitting or merging,
etc.

As a side note, we would also like to put a word of caution to the reader. As
the Γ pattern suggests that wide tables survive, a concerned designer might be
tempted to denormalize the database schema in order to come up with survivor
wide tables. We strongly denounce table denormalization as a solution that
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reduces the number of potentially evolution-prone, thin tables by introducing
few, artificially wide, reference tables. Normalization and foreign keys is a
fundamental mechanism for ensuring data integrity; its avoidance hides the
danger of data inconsistencies. Rather, we suggest that virtual views are defined
to mask joins and aggregations from the developers.

Graceful, quiet expansion: databases live quiet lives. Although
each database comes with its own idiosyncracy, still, we can coarsely say that
databases expand over time. Typically, table deletions take place in earlier
stages of the database life, whereas table additions take place throughout all
the life of the database. Deletions will occur in later stages too, in a form of
perfective maintenance of the schema, but still, they take place with less in-
tensity. If we zoom from the database to the table level, we can see that most
tables lead quiet lives with few updates (remember: additions and deletions
of attributes, data type and key changes). Medium-rated change is scarcely
present too: in fact, the inverse Γ pattern states that updates are not propor-
tional to longevity, but rather, only few top-changer tables deviate from a quiet,
low-change profile.

Overall, we have named this tendency towards quiet lives gravitation to
rigidity and we have attributed it to the dependency magnet nature of
databases: applications are built on top of the database, and even minor changes
impact the application code, both syntactically and semantically, requiring sig-
nificant maintenance effort.

Should we stay assured that things are fine with this situation? We believe
that rigidity is a major concern for a software module, as it leads to large effort
and cost for any necessary maintenance, and often, to strange design decisions
/ hacks in order to reduce it. It would be really desirable if code and schema
had the elasticity to adapt easily to new requirements, debugging and perfec-
tive maintenance. Until we employ our DBMS’s with built-in mechanisms that
facilitate this flexibility, however, our only remedy to the problem is tracking of
the dependencies between the application code and the database (see [12] for
our take on the problem). This allows the easy highlighting of impacted parts
of the code and the possibility of automatic rewritting of the application.

Plan for a quiet expansion of the schema! The database is augmented
with new tables all the time; at the same time, although most ta-
bles lead quiet lives and do not grow much, some top-changers are
”change attractors”. To address the database expansion, try to sys-
tematically use metadata rich facilities involving the interdependen-
cies of applications and tables to be able to locate where the code
should be maintained for added, deleted or modified attributes and
tables.

7.3. Open Issues (quoting the wisdom of Leonardo da Vinci’s notebooks)

Possibilities for follow-up work are immense. We will try to summarize the
major areas where we think that the research community can make contribu-
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tions. At the same time, we will also make a critical discussion on the risks that
these research paths pose, too.

Can the patterns be turned to laws? Clearly, a first important desideratum
would be to uncover the hidden mechanism that drives the evolution of the
schema and to provide causation statements (i.e., laws of the form ” a change
in quantity X causes a related change in quantity Y ”). Time and again in this
paper, we have attributed the patterns of change, the gravitation to rigidity, and
the profile of the parts of the database that do evolve more frequently, to the
dependency between application code and supporting database. To our point of
view, the key to understanding the hidden mechanisms behind schema evolution
is to go deep in detail in the study of specific cases on how external requirements,
application code and database schema jointly co-evolve. However, this task
comes with an increased level of difficulty. On the one hand, the open-source
nature of the available schema histories means that developer communities can
be spread geographically and without a tight rhythm of development. On the
other hand, in closed environments, there is always the difficulty to obtain access
to the schema and its history, and be allowed to publish the results for the rest
of the community. Overall, the difficulty of the task calls for a larger research
program rather than a single study: to be certain of laws rather than observed
patterns, we would need a set of in-depth studies, preferably from independent
groups, before we can claim knowledge of the specific mechanics behind the
evolution of software in general, and schemata in particular. This work, being
an observatory effort on actual cases, has been a first step in a long path based
on the premise that wisdom is the daughter of experience, but, as truth was the
only daughter of time, long and hard work by many will be required before the
laws of schema evolution are unveiled to us.

Can we predict change? Clearly, there is always the ambitious scientific goal
of having some ”weather forecast” for the forthcoming changes of a database.
However, as all the databases that we have studied have their own idiosyncracy
(e.g., see Fig. 14) we can safely argue that predicting change is quite more
complicated than the a posteriori study of the evolution of the schema. We
should warn younger readers on the level of risk this research encompasses:
although patterns do exist, we observe them a posteriori and at the macroscopic
level; it is still unclear if we can a priori, safely forecast at the detailed (table and
attribute) level, which part of a schema will change and how. To start with, it is
still unclear if there is an underlying mechanism dictating how and when changes
take place. Moreover, despite the heroic battle of perfective maintenance against
rigidity, most changes typically come from external requirements of a changing
world, which are, of course, really hard to automatically predict (if explicitly
expressed, they should better be taken as input to the forecasting problem). To
quote the master: Necessity is the theme and the inventress, the eternal curb
and law of nature.

Truth is so excellent, that if it praises but small things they become noble.
At a more technical level, one can also deal with the possibility of capturing
more types of changes (like renamings, normalization actions, etc) that have
not been part of our fully automated mechanism for transition extraction. The
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little experimental evidence that we have so far ([2]) suggests that this kind of
operations are a small fraction of the evolution actions that take place in the life
of a database. However, we cannot be sure without a thorough investigation.
In any case, identifying composite transitions (like e.g., renaming) requires ex-
tending our fully automatic change detection mechanism with semi-automatic
mechanisms where some expert user verifies the candidate changes that a tool
reports.

Every instrument requires to be made by experience. Finally, as already
mentioned, one could also work on the arguably feasible engineering goal of
having flexible structures for gluing applications to evolving database schemata,
thus minimizing application dependency and evolution impact.
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