
Assessing Software Reliability at the Architectural LevelApostolos Zarras and Valerie IssarnyInriaDomaine de Voluceau - Rocquencourt - 78153 Le Chesnay - Franceemail: fApostolos.Zarras, Valerie.Issarnyg@.inria.frAbstractModeling software architectures has been proved to be bene�cial for facilitating the inter-action among di�erent stake-holders involved in the software development process, separatingdesign concerns, promoting software reuse and evolution. However, it is still not clear whethersoftware architecture description is compulsory for analyzing qualities like performance and re-liability. Trying to clear out the previous question, this paper justi�es the necessity of softwarearchitectural modeling towards assessing software reliability.1 IntroductionResearch results in the �eld of software architecture showed that modeling software architecturesallows to clearly separate di�erent design concerns, it promotes software reuse and evolution [4].Finally, modeling software architectures eases the interaction among di�erent stake-holders involvedin the software development process. However, it has been stated [4] that software reliability andperformance can not be assessed at the architectural level. In this position paper we argue thatsoftware reliability and performance are mainly assessed at the architectural level. Regardingperformance, a preliminary modeling method was proposed in [7]. This position paper focuseson the reliability aspect. More speci�cally, Section 2 details the steps of a method, proposed formodeling software reliability. As it comes out, those steps are mainly performed at the architecturallevel and formal software architecture description is essential towards accomplishing them. Section 3summarizes the outcome of this position paper.2 Modeling ReliabilityFormally, software reliability is the probability that a software system is performing successfullyits required functions for the duration of a speci�c mission pro�le [6]. Calculating reliability is,however, not a new challenge. Several techniques were proposed in the past years for addressingthis issue [6]. Although di�erent from each other, those techniques can be put under the commonbasis of a general reliability modeling method based on software architecture description. The stepsof the method are detailed in the remainder of this section, �rst for the simple case of a softwaresystem that can not be repaired, and then for the more complex case of a repairable one.



2.1 Modeling non-repairable software systemsBased on the de�nition of reliability given at the beginning of this section, the �rst step that mustbe performed towards modeling the reliability of a non-repairable software system is to model thesystem itself. More speci�cally, the structure and the behavior of the system must be preciselydescribed in a way that is well understandable for all the di�erent actors that participate in theoverall development and evaluation process. To achieve the former, any architecture descriptionlanguage would do. However, the software architecture community recently identi�ed Uml as acandidate for describing software architectures in a standard way. Uml class diagrams can beused to describe components and connectors, object diagrams can be used to describe one or moreruntime con�gurations of the particular system. Moreover, state-chart diagrams, collaborationdiagrams can be used for delineating the behavior of the overall system, and the behaviors of theindividual architectural elements that constitute it. Speci�c examples of such Uml descriptionscan be found in [2, 3].To exemplify the method presented in this position paper, we use the example of a softwaresystem that consists of a Corba server providing some services. The example system furthercomprises a legacy system (e.g. IBM CICS) used by the Corba server towards serving servicerequests coming from external Corba clients. Since the legacy system does not belong to theCorba \world", communication between the Corba server and the legacy cannot be achieveddirectly. To deal with the previous problem, two replicas of a Corba facade are used. The facadeexports a Corba interface that matches the speci�cation of the legacy system. Based on thisstructure the Corba server di�uses a request to the facade components which in turn call, at-most-once, the corresponding functionality provided by the legacy. Figure 1, gives an overview ofthe runtime con�guration of the system.

:LegacySystem

server:CorbaServer

legacy

f1:CorbaFacade f2:CorbaFacade

CorbaLegacyIntrf

Service

Coord

LegacyInterf

CorbaLegacyIntrf

Figure 1: Example: Software system con�guration in UmlAfter the system's architecture is well-de�ned, the next step towards modeling reliability is togive a mission statement [5]. A mission statement identi�es success criteria, which in other wordsis an abstract description of the behavior expected by the system. In Uml, the previous can beachieved though the de�nition of use case diagrams describing the system behavior as manifestedto external users of the system. Following our example scenario, the system is supposed to provideservices to external users through the use of a legacy system. Figure 2, gives the corresponding usecase diagram. 2



functionality
LegacySystem

user

functionality

extension points

CorbaServer

"uses"Figure 2: Example: Abstract system behavior in UmlThe third step of the reliability modeling method comprises mapping the expected, abstractlyde�ned, system behavior into a concrete one supported by a subset of the architectural elementsthat constitute the software system. In Uml, the previous step corresponds to the construction ofa collaboration diagram (or possibly a sequence diagram), describing a speci�c interaction betweenobjects that make up the system con�guration, which satis�es the required behavior. In termsused by the software architecture community, we could say that the behavior described in thecollaboration diagram re�nes the one described in the use case diagram. Furthermore, it should benoted that the collaboration diagram originates from the object diagram that describes the overallsystem con�guration. Figure 3 depicts a concrete behavior provided by the software system usedin our example. This behavior satis�es the abstract one given in Figure 2.
1.2.1:Coord:ping(f1_ok)

:LegacySystem

1: Service:op()

1.1.1:LegacyInterf:op() [! f1_ok]1.2.2:LegacyInterf:op()

1.2:CorbaLegacyIntrf:op()

user

f1:CorbaFacade f2:CorbaFacade

server:CorbaServer

legacy

1.1:CorbaLegacyIntrf:op()

LegacyInterf

Figure 3: Example: Concrete system behavior in UmlHence, based on the collaboration diagram it is now possible to identify the architectural el-ements that are necessary towards accomplishing the speci�ed mission. Following, the next steptowards modeling reliability is to approximate the failure rate, Mean Time To Failure (MTTF), andreliability for each one of those elements. The typical technique for accomplishing the previous taskcomprises testing for a rather long period the various architectural elements needed to accomplish amission and monitoring potential failures. The traces resulted from monitoring are then analyzed soas to determine a function that properly describes the overall distribution of failures. Finally, basedon the failure distribution, deriving the failure rate, MTTF, and reliability is straight-forward.At this point one may argue that a signi�cant part of the work needed for assessing reliabilityis performed during this last step which involves testing and does not have to do with modelingthe architecture of the system. However, when looking a bit closer to this process, it is clear thatthe failure distribution approximation is basically the approximation of the failure behavior of theelements that make up a system. Consequently this relates to the semantics of those elements and3



it is still part of modeling the architecture of the given system. Hence, the failure behavior of anarchitectural element comprises its failure rate, MTTF and reliability parameter.Assuming that in the general case a failure is an event generated by an architectural element,describing it in Uml can be done with the use of a \signal classi�er". More speci�cally, a \signal"class describing failures generated by a particular architectural element would include attributesthat correspond to the failure rate and MTTF. Going back to our example scenario, Figure 4, givesthe de�nition of the signal classes that describe the failure behaviors of the individual componentsthat constitute the overall system architecture.
failure-rate:Real = 1*e^(-4)
mtbf:Real = 1/failure-rate mtbf:Real = 1/failure-rate

failure-rate:Real = 1*e^(-7)failure-rate:Real = 1*e^(-4)
mtbf:Real = 1/failure-rate

failure parameters failure parameters failure parameters

reliability = ... reliability = ... reliability = ...

"signal"
CorbaServerFailure

"signal" "signal"
LegacyFacadeFailure LegacySystemFailure

Figure 4: Example: Modeling component failures in UmlThe very last step of the reliability modeling method is to calculate the overall reliability of thesystem. The collaboration diagram describing the concrete system behavior is signi�cant in orderto accomplish this step. Given the collaboration diagram it is straight-forward how to derive areliability block diagram (RDB) and apply RBD analysis [5] so as to calculate the overall systemreliability. In our example, from the collaboration diagram shown in Figure 3, it is obvious thatthe system works correctly as long as the Corba server and the legacy work correctly, and if eitherof the facades works correctly. Hence, the reliability of the overall system is:RSystem = RCorbaServer � (RFacade1 +RFacade2) � RLegacySystem2.2 Modeling repairable software systemsModeling reliability of a repairable software system is a slightly more complicated case. In prin-cipal, a software system can be repaired by the removal of faulty architectural elements or by thesubstitution of faulty architectural elements with spared ones. Hence, to model reliability in thiscase it should be possible to model that the con�guration of a software system changes dynamically.In the �eld of software architecture, the con�guration of a system is usually modeled as a setof component instances that interact through connector instances. To capture the fact that someof those components are operational while others have failed we slightly modify this de�nition; acon�guration comprises two di�erent sets of components: the �rst set contains component instancesthat operate normally; the second set contains failed component instances. Based on the previousde�nition, modeling a component failure amounts to moving the component that fails from the �rstset into the second one. In the same spirit, modeling the substitution of a faulty component witha spare one amounts to adding the spare component into the set of operational components andremoving the faulty component from the set of the failed components. Hence, repairing a systemcan be interpreted as changing the state of the system's con�guration. Consequently, modeling arepairable system imposes that the underlyingmodeling method should enable specifying transitionsthat take the system con�guration from one state to another one by removing or substituting faultycomponents. Uml provides state-chart diagrams, allowing to describe a sequence of states that anobject goes through during its lifetime in response to received stimuli. In our case, the object isthe con�guration of the system and the stimuli are failures modeled as signals.4



faulty = {0}
correct= {f1, f2, legacy, server}

state a

faulty = {f1}
correct = {f2, legacy, server}

state b

faulty = {0}
correct = {f3, f2, legacy, server}

state cLegacyFacadeFailures() LegacyFacadeRepair()Figure 5: Example: Software system con�guration state chart in UmlReturning to the example scenario, let us assume that the system con�guration is initiallyin a state where all components work as expected. Figure 5 gives a subset of all possible statetransitions that result from the initial state (state (a) in the �gure). In particular, state (b) is thestate where the legacy facade f1 has failed. The (a) to (b) transition is caused by a signal of typeCorbaFacadeFailure (see Figure 4) which happens with a rate of 1�e�4 failures per sec. State (c) isthe state we get when the failed facade f1 is substituted by a spare f3. Summarizing, modeling allpossible con�guration state transitions the way previously proposed, enables deriving, in a straightforward manner, a Markov chain and applying Markov analysis to calculate the reliability of theoverall system [1].3 SummaryThis position paper claims that assessing reliability can be achieved at the architectural level. Tojustify this claim this paper proposed a method for modeling reliability of a software system thatcan be either repairable or not. In both cases, it is clear that the subsequent steps of the proposedmethod are realized at the architectural level. Moreover, accomplishing each one of those stepsstrongly requires the formal description of the system's software architecture.References[1] R. Butler and W. Ricky. The SURE Approach to Reliability Analysis. IEEE Transactions onReliability, 41(2), June 1992.[2] C. Hofmeister, R.L. Nord, and D. Soni. Describing Software Archtiecture with UML. InProceedings of of the 1st Working Conference on Software Architecture, pages 145{159. IFIP,1999.[3] N. Medvidovic and D.S. Rosenblum. Assessing the Suitability of a Standard Design Method.In Proceedings of of the 1st Working Conference on Software Architecture, pages 161{182. IFIP,1999.[4] N. Medvidovic and R. Taylor. Separating Fact from Fiction in Software Architecture. InProceedings of the 3rd International Software Architecture Workshop, pages 105{108, November1998.[5] NASA. Reliability Block Diagrams and Reliability Modeling. Technical report, NASA GlennResearch Center, May 1995. http://www-osma.lerc.nasa.gov/rbd/rbdtut.html.[6] M. Shooman. Software Engineering - Design/Reliability/Management. McGraw-Hill, 1983.[7] B. Spitznagel and D. Garlan. Architecture-Based Performance Analysis. In Proceedings of theInternational Conference on Software Engineering and Knowledge Engineering, June 1998.5


