
A study on the effect of a table’s involvement in
foreign keys to its schema evolution

Konstantinos Dimolikas1, Apostolos V. Zarras1, and Panos
Vassiliadis1[0000−0003−0085−6776]

Department of Computer Science and Engineering, University of Ioannina, Greece
{kdimolikas, zarras, pvassil}@cs.uoi.gr

Abstract. In this paper, we study the evolution of tables in a schema
with respect to the structure of the foreign keys to which tables are re-
lated. We organize a hierarchy of topological complexity for the structure
of foreign keys, based on a modeling of schemata as graphs, where tables
are classified in increasing order of complexity as: isolated (not involved
in foreign keys), source (with outgoing foreign keys only), lookup (with
incoming foreign keys only) and internal (with both kinds). Our study
reveals that this hierarchy reflects also the update behavior of tables:
topologically simple tables are more likely to have a life with few or zero
schema updates, whereas, topologically complex tables are more likely to
undergo high numbers of updates. Early versions of the database attract
the large majority of births of complex tables, as opposed to the simple
ones, demonstrating a pattern of reducing the introduction of complex,
heavily updated constructs in the schema as time progresses.

Keywords: Schema Evolution · Foreign Keys · Software Evolution.

1 Introduction

How is the structure of the foreign keys to which a table is related affecting
its behavior during schema evolution? In this paper, we study the evolution of
tables in a schema, from the perspective of their topology of foreign keys. We
study the histories of 6 relational schemata and we extract births and deaths of
the tables, as well as the intra-table updates (attribute additions, deletions, data
type and primary key updates) they went through from the subsequent versions
of their schema definition files. We also extract their foreign key relations, too.
We exploit the graph modeling of [9] to model tables as nodes and foreign keys as
directed edges, and thus treat a schema version as a graph. A Diachronic Graph
is the union of all the graphs of the different versions and the main tool we will
employ to relate the graph-based characteristics and the activity of tables.

Our first contribution lies in the introduction of a concise taxonomy of graph
topological patterns, classifying tables into (a) isolated (zero total degree), (b)
source (zero fan-in), (c) lookup (zero fan-out), and, (d) internal tables (with
both fan-in and fan-out degrees). All the degrees are measured over the afore-
mentioned Diachronic Graph. Our object of study has been the relationship of the



2 K. Dimolikas et al.

topological profile of tables with their evolutionary activity. We have discovered
that there is indeed a relationship and the hierarchy of topological complexity
actually relates to the behavior of tables. Specifically, our findings indicate that:

1. The topologically complex, internal tables demonstrate high intra-table schema
update activity and, at the same time, they are almost in their entirety born
in the initiating version of the database - in other words, subsequent versions
do not come with births of such topologically complex, internal tables.

2. At the other end of the complexity spectrum isolated tables undergo very
little or zero change and, despite the fact that a fair percentage of them is
present in the original version of the database, isolated tables are the most
likely to be added in subsequent versions of the history.

3. In-between the spectrum of isolated and internal tables, source tables appear
to be more similar to isolated, resisting change and being more likely to
appear later in the life of a database, and lookup tables being more similar
to the internal ones.

The above have (unexpectedly) revealed that evolutionary behavior is de-
pendent upon a hierarchy of topological complexity: more topologically complex
tables appear to be fewer, active and born only early, with the opposite behavior
to topologically simple tables. Our final contribution is that we discuss our ex-
planation of this observation, which we attribute to the gravitation to rigidity
phenomenon (i.e., the progressive aversion of developers to modify the schema),
along with its implications.

Outline. In Section 2 we survey related work. In Section 3, we delineate the
graph modeling used to represent schemata, the data sets and their preprocess-
ing. In Section 4 we relate the topological categories of the individual tables to
their activity and in Section 5 we conclude with a discussion of our results.

2 Related Work

Related work in the area of studying schema evolution has been initiated mainly
in the turning of the millennium, due to the existence of Free Open Source
Software (FOSS) projects that contained databases for their operation. Till then,
it was very hard for the research community to have the necessary data to study
-let alone publish the findings-in the area of schema evolution. A single case is
found in [5] . During the last decade, several works appeared that mainly studied
the growth of schemata [2],[3], [13] [4], [1]: we know by now that schemata grow
slowly over time, and, in fact with decreasing rate [4], and alterations of change
(mostly table insertions and updates) with long periods of calmness [6], [7]. The
study of individual tables has been performed in [11], [12], [10] revealing several
survival and growth patterns.

To the best of our knowledge, the first work that studied how foreign keys
evolve in the context of schema evolution of relational databases is [8] and its
long version, [9]. The study was mainly done from the macroscopic, schema-level
point of view and revealed that the evolution of foreign keys depends a lot on



Foreign keys’ effect to schema evolution 3

the idiosyncrasy of the database itself. In some cases, foreign keys are treated
as an integral part of the system, evolving along with their tables, whereas
in some other cases, only a small subset of the tables is involved in foreign
keys, while birth and death of foreign keys is mostly out of synch with the
respective table events. The extremity of this treatment is demonstrated in two
data sets where the foreign keys where completely removed from the schema.
Another serious problem observed was that within the 20 data sets collected,
the mere existence of foreign keys was evident in only 7 of them. In [9], the
way that the total degree of the graph modeling affects survival is discussed too:
high degree tables are survivors (with removed tables being mostly low or zero
degree) and active. The current paper differentiates itself from the related work
as it complements the macroscopic observations of [9] on how the entire schema
evolves, with observations at the level of individual tables, and characterizes the
evolution of individual tables with respect to their graph characteristics, and in
particular, classes of their graph topology.

3 Background and Experimental Setup

In this section, we discuss our underlying graph model for schemata with foreign
keys, our data sets and tool, the classification of tables in topological categories,
and the handling of the problem of tables with more than one label in their
history.

3.1 Modeling as a Graph and the Diachronic Graph

We follow the modeling of [9], which we also quote here for completeness. We
treat a relational schema as a set of relations, along with their foreign key con-
straints. A relation is characterized by a name, a set of attributes and a primary
key. A foreign key constraint is a 1:1 mapping between a set of attributes S in
a relation, RS , called the source of the foreign key, and a set of attributes T
in a relation RT , called the target of the foreign key. At the extensional level,
the semantics of the foreign key denote a subset relation between the instances
of the source and the instances of the target attributes. We model a database
schema as a directed graph G(V ;E), with relations as nodes and foreign keys as
directed edges, originating from their source and targeted to their target. The
Diachronic Graph of the history of a schema is the union of all the nodes and
edges that ever appeared in the history of the schema.

3.2 Data sets and their preprocessing

We base our study to the 6 data sets of [8], [9] (Fig. 1). Our set includes CMS’s,
resource management toolkits and scientific databases. Two of the datasets,
SlashCode and Zabbix, demonstrate the explicit removals of foreign keys from
the schema, with the former also introducing foreign keys late in the schema
history. We have decided to work only with the periods where foreign keys were



4 K. Dimolikas et al.

Fig. 1. Statistics for the datasets used in our study [8], [9]

present in the schema (versions 74 to 260 for Slaschcode and 1 to 150 for Zab-
bix), since no table could possibly have any topological properties outside these
periods. All the metrics reported have been obtained via our Parmenidian Truth
tool that models, visualizes and quantifies the evolution of schemata with foreign
keys. Both due to the identical nature of the data sets and their processing, and
the lack of space, we refer the reader to [8], [9] for a discussion of the threats
to validity for the scope (Free Open Source Software), external, and measure-
ment validity. Both our tool and our data are publicly available for the research
community at our Github repository https://github.com/DAINTINESS-Group.

3.3 The topological categories of tables

In this subsection, we present the topological categories of tables based on their
references to and from other tables. Fig. 2 depicts the distribution of tables
over the combination of their in- and out-degrees at the Diachronic Graph for
the 6 datasets. In the sequel, we introduce the different topological categories,
or labels, which are determined on the basis of the topology of the Diachronic
Graph (Fig. 3).

Fig. 2 shows the strong presence of isolated tables, i.e., tables with no in-
citing edges and zero total degree, in 4 of the 6 datasets. Moreover, in 2 of
these datasets, namely Castor and SlashCode, zero degree tables constitute an
overwhelming majority.

Leaving isolated tables aside, the next most populous category consists of
source tables with no incoming references and at least one outgoing foreign key.
This category of tables includes populations varying from 19% to 62%.

The third category includes tables with only incoming references, so we refer
to them with the label lookup. In the 6 datasets, there is a small group of tables
that lie in this category, not exceeding the value of 36%, and in 5 out of the 6
data sets they are less than 20% of the tables. However, due to their ” reusable”
nature, they typically achieve degrees much higher than the source tables.

The last category contains tables that have both in- and out-degrees. We refer
to this category as internal tables. By definition, internal tables come with the
most complicated topological structure. Although Fig. 2 shows that this category
is not very large, it comes with interesting properties, as we will demonstrate in
the sequel.

https://github.com/DAINTINESS-Group


Foreign keys’ effect to schema evolution 5

Fig. 2. Breakdown of tables wrt In- and Out-Degrees at the Diachronic Graph

3.4 Table Labeling For Multi-Label Nodes

Having introduced the topological categories, the next issue to resolve was the
labeling of the tables. Given just a single graph as input, the labeling of the tables
is straightforward with a single pass over the nodes, as the categories are disjoint
and independent of a node’s neighborhood.

The problem arises when the entire history of a schema is concerned. In this
case, the input to the problem is a sequence of graphs. Then, it is possible that
there are tables that change label throughout their history and as a result we
end up with the following categories of tables with respect to their labels:

– Single label tables, which have a unique topological label throughout their
entire lives.

– Multi-label tables, which have more than one label during their existence in
the dataset.

Fig. 4 presents the distribution of tables between the ones with a single
label and those with more than one label. Apart from Zabbix, in the rest of the
datasets, the large majority of tables have a single label in their lives.

A problem that arises is that we would like to relate the labels of the tables to
their activity profile and a multi-labeling scheme would not facilitate a statistical
study along these lines. So fundamentally, we want to address the problem: can
we assign a single topological label to a table in a way that does not invalidate
our statistical analysis and characterizes a table as accurately as possible? To
address this problem, we have manually inspected the tables with change-of-
category and decided to assign a single label to each of them, since their number
is so small that would not entail any major loss of information. We have distilled
the phenomena of label changes for a table in 6 categories.



6 K. Dimolikas et al.

Fig. 3. Table Categories Based on the Topology of the Diachronic Graph

Fig. 4. Distribution of Tables over the Single and Multi-labels Categories

1. Changes that include an ephemeral transition to a different category and the
return to the former category.

2. Changes from the isolated category to a different category.

3. Changes soon after the table’s ”birth”.

4. Changes leading to labels assigned for a short period in terms of the number
of versions.

5. Changes caused by changing self-references to the table.

6. All other changes.

The resolution of multiple labels into a representative, single label has been
straightforward. See Fig. 5 on the categories and the rules for their resolution.

4 Research Findings

In this Section, we relate the topological category of a table to its behavioral
characteristics in order to assess whether the former is correlated to the latter.



Foreign keys’ effect to schema evolution 7

Fig. 5. Rules for Tables’ Categories Determination

4.1 Birth

In this subsection we investigate if the birth versions of the tables are related
to their topological categories. We are particularly interested in the relationship
between the probability that a table is born in the originating version of the
schema history and the topological category it belongs to, as, based on previous
findings, a large percentage of the schema was created at the very early stages
of the schema’s history. In this context, we can formulate the relevant research
question as follows:

Research Question: how is the topological category of a table related to the
probability of being born in the originating version of the schema history?

Fig. 6 depicts the potential the tables of each topological category have to
exist in the first version of their schema’s history. As we want to perform statis-
tical analyses, Egee is omitted due to its very small size. The patterns that we
encounter with reference to the probability of tables being ”born” in the earliest
version of their schema can be summarized as follows:

– The tables of the internal category are 100% certain to be ”born” in the
originating version in three out of the five datasets. In BioSQL and Zabbix,
although the overall population of the internal tables is not present in the
first version, the probability for an internal table to be born at v0 is 67%
for both data sets. Overall, there is no doubt that internal tables are almost
entirely early born and it is really highly unlikely to see internal tables being
born later in the life of a schema.

– Lookup tables have higher probabilities to be ”born” in the first version
compared to the respective average probability, and in fact, their majority
is present at the first version of the schema for 4 out of 5 data sets.



8 K. Dimolikas et al.

Fig. 6. Probability to be ”born” in the First Version per Topological Category (blue
italics: lower than average, red bold: higher than average, both by at least 10%)

– Coming to source tables, the probability for a source table to be introduced in
the first version of its dataset’s history is, approximately, in accordance with
the average probability and, in all datasets, it is lower than the respective
potential of the lookup tables. In 2 out of 5 data sets, this probability is
lower than the average probability of being born at v0. This signifies that
it is easier for DBA’s to add new source tables to the database during the
evolution of the schema than it is to add lookup and internal ones.

– The tables of the isolated category have the lowest potential for being ”born”
in the originating version of their datasets, in four of the five datasets. Equiv-
alently, we can claim that it is easier to add tables of this category over the
course of a database’s schema evolution than introducing tables of any other
category.

The common features among the datasets related to the probability for a ta-
ble to be ” born” in the originating version if it belongs to a certain topological
category are supported to some extent by the statistical evidence that assess the
independence of the birth version from the topological categories. Specifically,
we performed the Chi-square and Fisher statistical tests by utilizing a contin-
gency table consisted of four rows representing the topological categories and
two columns corresponding to tables born in the first version and those that are
not. The p-values that do not exceed the limit of 5% are 4.74E-02 for Atlas,
1.36E-02 for SlashCode and 3.22E-02 for Zabbix.

To sum up, we observe that internal and lookup tables are more likely to be
born in the originating version of their dataset’s history, which, expressed in
a different way, means that it is quite unlikely that they are ” born” after this
version. In contrast, source tables follow the trend of the general population and
isolated tables are the ones with higher chances to be born in versions succeeding
the originating one.



Foreign keys’ effect to schema evolution 9

Fig. 7. Distribution of Tables per Activity Class (for each data set, the largest value
is in red bold and the smallest in blue italics

4.2 Activity

The next issue that we are interested in is that of the update profile of the tables
with respect to their topological categories. To ease the process of analyzing the
update behavior of the tables with respect to their topological categories we
utilize the activity classes defined in [11], which are summarized as follows:

– Rigid tables experience no updates throughout their entire life in the dataset.
– Quiet tables are tables with the total number of updates not exceeding the

value of 5 and the Average Transitional Update (ATU) to be less than 0.1.
– Active tables are tables which undergo more than 5 updates and have an

ATU higher than 0.1.

The Average Transitional Update (ATU) of a table is defined as the fraction
of the sum of updates the table undergoes throughout its life over its duration
[11]. The updates include attribute addition, deletion, change of data type and
change of primary key.

Research Question: is there a relationship between the topological category of
a table and its update activity?

Fig. 7 presents the distribution of the tables over the aforementioned activity
classes. Tables tend to be mostly rigid and quiet. Next, we examine the impact
of the topological categories of the update activity of the tables. The upper part
of Fig. 8 depicts the probability for a table of a certain topological category to
develop a certain update activity during its existence in its dataset. We outline
the most interesting information derived from this figure in the following list:

– Isolated tables experience no or few updates with a probability that is higher
than 82%. Overall: isolated tables are mostly rigid and very ralely active!

– The likelihood for a source table to undergo no or few changes throughout its
life is at least 82% in all datasets, apart from BioSQL. Source tables follow
quite closely the overall pattern of the dataset, and they tend to be mostly
quiet or rigid, and rarely active.



10 K. Dimolikas et al.

– Activity shifts ”rightwise” in Fig. 8, when it comes to lookup tables. Again,
lookup tables are mostly quiet, but now, the odds are more in favor of being
active, compared to the average behavior and compared to the probability of
being rigid. In 3 out of 5 data sets, active lookup tables surpass 35%. Overall,
lookup tables are more prone to changes both with respect to categories of
less topological complexity and with respect to the average behavior (which
is expected, since the categories of low topological complexity are the most
numerous ones).

– Internal tables are mostly active! With the exception of Castor, having just
one internal table, in all other cases, the majority of active internal tables is
absolute. In other words, the internal tables are expected to be mostly active,
with a probability higher than in any other activity category!

The bottom part of Fig. 8 presents the probability for a table with a certain
activity profile to belong to a specific topological category. In a nutshell, we can
identify the subsequent commonalities among the datasets:

– Rigid tables are mostly isolated, or source, in the case where isolated tables
do not really exist in the dataset. The probability for a rigid table to be
lookup is much lower compared to average and almost zero to be internal in
4 of the 5 data sets.

– It is fairly straightforward to observe that the distribution of the quiet tables
over the topological categories is in agreement with the aggregate one in all
datasets. In three of the five datasets, quiet tables are likely to belong to
the source category, with the exceptions of Castor and SlashCode, in which
quiet tables tend to be isolated.

– Active tables are mostly inclined towards higher topological complexity. In
all data sets, (even in BioSQL where the distribution follows the average
distribution of the entire data set very closely), the chances for an active
table to belong to a topologically complex category are much higher than
average. It is as if an attracting force is pulling active tables to the rightmost
columns of higher topological complexity.

The statistical evidence provided by Chi-square and Fisher tests is fairly
strong. We utilized a contingency table of four rows, each for a topological cat-
egory, and three columns for the different activity classes. The p-values derived
from these tests are below the critical value of 5% in four of the five datasets
(except Biosql), ranging from 9.6E-05 (Zabbix) to 3.89E-02 (Castor). The statis-
tical results confirm that tables with different topological categories are subjects
to different amounts of updates. Altogether, we established that the topological
category of a table is related to its update activity. Isolated and source tables are
inclined towards zero or few updates in their lifetime, lookup tables with few or
many changes and internal tables with an inclination to active lives with many
updates.

Why do active tables change? The answer is that they grow in schema
size, i.e., in number of attributes. We studied schema resize to see how attribute
additions and deletions affect tables. In terms of their number of attributes, 2% -



Foreign keys’ effect to schema evolution 11

F
ig
.
8
.

P
ro

b
a
b
il
it

y
fo

r
a

T
a
b
le

o
f

a
T

o
p

o
lo

g
ic

a
l

C
a
te

g
o
ry

to
D

ev
el

o
p

S
p

ec
ifi

c
U

p
d
a
te

A
ct

iv
it

y
a
n
d

v
ic

e
v
er

sa



12 K. Dimolikas et al.

6% of tables shrink, 25% - 47% of tables increase, and 50% - 69% remain stable.
Compared to the average probability of resize, we observe two different patterns
that are consistent in all datasets: (a) isolated and source tables follow the
average probability for size reduction, have higher probability for size steadiness
and lower for size expansion, and, (b) lookup and internal tables have a potential
for size reduction lower than the average with few exceptions, a probability for
size steadiness below the average and a higher likelihood for size expansion.

5 An Unexpected Finding and Lessons Learned

The purpose of this research was to uncover patterns in the evolutionary behavior
of tables with respect to their relationship with foreign keys, in order to derive
useful knowledge on how developers evolve tables. In the process, we encountered
patterns that were rather unexpected, although explainable in retrospect.

A topological hierarchy and its evolutionary behavior. After observ-
ing that different topological categories differ in their evolution, we came at an
unexpected finding: there is a hierarchy of topologically increasing complexity
reflected on how tables are evolved by developers of FOSS projects.

Top. Complexity Hierarchy : Isolated→ Source −→ Lookup→ Internal (1)

We have discovered that the complexity spectrum that results from this hi-
erarchy relates to the behavior of tables. On the high end of the complexity
spectrum, the internal tables demonstrate quite a different life than the isolated
tables at the other end of it. Complex internal tables demonstrate high activ-
ity –which means the undergo attribute additions, deletions and type updates–
whereas isolated tables undergo very little if zero change. Remember that we
are studying data sets with hundreds of commits spanning into several years of
monitoring. At the very same time, internal tables are almost totally born at
the earliest version of the database history: in other words, there are no inter-
nal, topologically complex, and, probably active, tables born after the initiation
of the database. The phenomenon is quite opposite for isolated tables: despite
the fact that a fair percentage of them is present in the original version of the
database, isolated tables are the most likely to be added in subsequent versions
of the history. As time passes, it appears as if people are disinclined to add more
complex structures to their database! In-between the spectrum of isolated and
internal tables, source tables appear to be more similar to the isolated ones,
resisting change and being more likely to appear later in the life of a database,
and lookup tables being more similar to the internal ones. Last but not least,
let us mention that isolated and source tables are the most populous categories
whereas lookup and internal tables are progressively smaller in numbers.

In a nutshell, this study reveals the existence of a complexity spectrum ranging
from (a) a populous, rigid, easily born, topologically simple end, all the way to (b)
a less populous, active (due to attribute additions), early born (and not later),
topologically complex end.



Foreign keys’ effect to schema evolution 13

Why is this happening? As also noted in the past [12], [8], the main force
that seems to govern schema evolution, at least in the Free Open Source Software
(FOSS) setting that we study, is gravitation to rigidity, due to the difficulty of
altering the schema of a database when surrounding code is built upon it. The
same seems to be observed here too: (a) inactive, topologically simple tables
are much more populous and easy to create than complex and active ones; (b)
very few tables change topological category (Fig. 4), with most changes in the
ephemeral or short-lasting categories of label-changes; (c) different topological
categories seem to have different evolutionary behaviors – specifically, most of
the activity of the high-end of the complexity spectrum is due to the addition of
attributes to the existing structures, quite differently from the lower end of the
spectrum, where administrators are more inclined towards building new tables.

We conjecture that an explanation for this difference in behavior is the avoid-
to-break-the-code principle: adding new information via new tables, which can
later be removed if not useful, does not result in the necessity to update the
surrounding code that queries and updates the existing tables. This leads to
maintenance-by-addition and simplifies the life of developers, at the expense,
of course, of increasing the size of the schema and fragmenting the information
into many tables. So, developers augment the database with simple topologies,
and if complex topologies need expansion, this is done via attribute injection.
A second reason that we conjecture affects the evolutionary profile of tables, is
the deployment of projects. Remember we are studying FOSS projects, built to
be selected by other organizations. Once a FOSS project has been adopted and
deployed by an organization, future upgrades might result in the change of the
schema too. Upgrading the schema in the presence of existing data is a painful
experience, and simple structures and maintenance-by-addition reduce this pain.

Guidelines based on our findings. Apart from advancing our knowledge
with solid evidence, our empirical study on how schema evolution relates to
foreign keys in FOSS projects addresses several audiences, as it provides both
(a) maintenance clues to curators and evaluators of FOSS projects, and, (b)
insights on the adaptability of the relational model to the research community.

Curators. Project curators can expect that the tendency of the schema in the
future will be to expand in terms of (a) topologically simple structures and (b)
injection of attributes to early-born, complex topological structures. Enforcing
maintenance-by-addition will allow lower impact to the surrounding code. In
the FOSS universe, where development is not as strictly controlled as in closed
projects, it is necessary to reserve cycles and time for schema cleanup and ap-
plication refactoring to avoid the unregulated management of the schema.

FOSS Evaluators. When selecting a software projects for adoption, an eval-
uator may use our toolset to analyze the schema history of the schema, in order
to see how actively maintained it is, and via what kind of changes. An evaluator
will need to also assess the threats posed by the absence of (a) foreign keys and
(b) maintenance actions from the side of the curators.

Researchers. We believe that the main recipients for this line of work are
the members of the research community, much more than the other categories.



14 K. Dimolikas et al.

The reason is that the nature of the situation boils down to the fundamentals of
the relational model and how relational databases can be coupled to surrounding
applications. We, as the research community, need to come up with more flexible
ways of building applications on top of databases and/or tools that accurately
highlight the points of maintenance in the surrounding code, in the event of
schema evolution.

References

1. Cleve, A., Gobert, M., Meurice, L., Maes, J., Weber, J.H.: Understanding database
schema evolution: A case study. Sci. Comput. Program. 97, 113–121 (2015)

2. Curino, C., Moon, H.J., Tanca, L., Zaniolo, C.: Schema evolution in wikipedia:
toward a web information system benchmark. In: Proceedings of ICEIS 2008 (2008)

3. Lin, D.Y., Neamtiu, I.: Collateral evolution of applications and databases. In: Pro-
ceedings of the Joint International and Annual ERCIM Workshops on Principles
of Software Evolution (IWPSE) and Software Evolution (Evol) Workshops. pp.
31–40. IWPSE-Evol ’09 (2009)

4. Qiu, D., Li, B., Su, Z.: An empirical analysis of the co-evolution of schema and
code in database applications. In: Proceedings of the 2013 9th Joint Meeting on
Foundations of Software Engineering. pp. 125–135. ESEC/FSE 2013 (2013)

5. Sjøberg, D.: Quantifying schema evolution. Information and Software Technology
35(1), 35–44 (1993)

6. Skoulis, I., Vassiliadis, P., Zarras, A.: Open-source databases: Within, outside, or
beyond Lehman’s laws of software evolution? In: 26th International Conference on
Advanced Information Systems Engineering (CAiSE 2014), Thessaloniki, Greece,
June 16-20, 2014. (2014)

7. Skoulis, I., Vassiliadis, P., Zarras, A.V.: Growing up with stability: How open-
source relational databases evolve. Information Systems 53, 363–385 (2015)

8. Vassiliadis, P., Kolozoff, M., Zerva, M., Zarras, A.V.: Schema evolution and foreign
keys: Birth, eviction, change and absence. In: Proceedings of 36th International
Conference on Conceptual Modeling (ER 2017), Valencia, Spain, November 6-9,
2017. pp. 106–119 (2017)

9. Vassiliadis, P., Kolozoff, M., Zerva, M., Zarras, A.V.: Schema evolution and foreign
keys: a study on usage, heartbeat of change and relationship of foreign keys to table
activity. Computing 101(10), 1431–1456 (2019)

10. Vassiliadis, P., Zarras, A.V.: Schema evolution survival guide for tables: Avoid
rigid childhood and you’re en route to a quiet life. Journal of Data Semantics 6(4),
221–241 (2017)

11. Vassiliadis, P., Zarras, A.V., Skoulis, I.: How is life for a table in an evolving
relational schema? birth, death and everything in between. In: Proceedings of 34th
International Conference on Conceptual Modeling (ER 2015), Stockholm, Sweden,
October 19-22, 2015. pp. 453–466 (2015)

12. Vassiliadis, P., Zarras, A.V., Skoulis, I.: Gravitating to rigidity: Patterns of schema
evolution - and its absence - in the lives of tables. Information Systems 63, 24–46
(2017)

13. Wu, S., Neamtiu, I.: Schema evolution analysis for embedded databases. In: Pro-
ceedings of the 2011 IEEE 27th International Conference on Data Engineering
Workshops. pp. 151–156. ICDEW ’11 (2011)


	 A study on the effect of a table's involvement in foreign keys to its schema evolution 

