
Navigating Through the Archipelago of Refactorings

Apostolos V. Zarras
Department of Computer
Science & Engineering
University of Ioannina

Greece
zarras@cs.uoi.gr

Theofanis Vartziotis
Department of Computer
Science & Engineering
University of Ioannina

Greece
tvartzio@cs.uoi.gr

Panos Vassiliadis
Department of Computer
Science & Engineering
University of Ioannina

Greece
pvassil@cs.uoi.gr

ABSTRACT
The essence of refactoring is to improve software quality via
the systematic combination of primitive refactorings. Yet,
there are way too many refactorings. Choosing which refac-
torings to use, how to combine them and how to integrate
them in more complex evolution tasks is really hard. Our vi-
sion is to provide the developer with a ”trip advisor” for the
archipelago of refactorings. The core idea of our approach is
the map of the archipelago of refactorings, which identifies
the basic relations that guide the systematic and effective
combination of refactorings. Based on the map, the trip ad-
visor makes suggestions that allow the developer to decide
how to start, assess the possible alternatives, have a clear
picture of what has to be done before, during and after the
refactorings and assess the possible implications.

Categories and Subject Descriptors
D.2.3 [Software Engineering]: Coding Tools and Tech-
niques—Object-Oriented Programming

Keywords
Refactoring map, Refactoring composition, Refactoring rec-
ommendation

1. INTRODUCTION

Refactoring is risky ... You start digging in the
code. Soon you discover new opportunities for
change, and you dig deeper. The more you dig,
the more stuff you turn up ... and the more
changes you make. Eventually you dig yourself
into a hole you can’t get out of. To avoid dig-
ging your own grave, refactoring must be done
systematically ... Erich Gamma

Problem. The above quote, taken from E. Gamma’s for-
ward in M. Fowler’s book [4], highlights the importance of

refactoring in a systematic way. To this end, in [4], Fowler
(with contributions by Beck, Brand, Opdyke and Roberts)
introduced a well known catalog of 72 refactorings. Yet,
developers -even developers of refactoring tools- are not in-
clined to using tools to automate the refactoring of their
code [8, 6], as choosing which refactorings to use, how to
combine them and how to integrate them in more complex
evolution tasks is really hard. The need of systematic usage
and the management of a very large space of options are rea-
sons that make the task hard. To address the vastness and
complexity of the refactorings space, Fowler [4] had already
grouped the 72 refactorings in six groups (see also Section 2
for details). Even so, exactly due to the inherent intercon-
nection of these refactorings, the space of options before,
during and after a refactoring is still large. Specifically, in
Fowler’s catalog, the documentation of each refactoring in-
cludes discussions that reflect relations with other refactor-
ings which could be combined with the target refactoring,
towards having more effective results. The ”hidden” rela-
tions, refer to refactorings that could be performed before,
or after the target refactoring. The ”hidden” relations also
concern alternative refactorings that could be performed in-
stead of the target refactoring, or constituent refactorings
that can be used to realize the target refactoring. Overall,
in Fowler’s catalog there are more than 100 implicit relations
between refactorings (see Sec. 2 for details).

We believe that refactoring should be addressed with a
fresh look, compared to the existing landmark view of [4].
We should accept that refactorings, in practice, are inher-
ently more complex than what Fowler said. We should also
accept that when dealing with refactorings, the developer
is not facing just one refactoring in isolation, but rather,
a composition of them, with unclear outcomes, side-effects
and alternatives.

State of the art. Currently, although refactoring is an
active research area, the state of the art is simply not aligned
with the aforementioned concerns. The focus of the state of
the art is on techniques for (semi)automated refactoring.
Certain techniques consider a single refactoring (e.g., [3, 1]),
while certain others provide support for a limited subset of
refactorings (e.g., [5, 9]). Various data mining (e.g., [3]) and
optimization techniques (e.g., [5]) have been employed to
automate refactoring. According to [2] the state of the art
provides automated support only for 27% of the refactorings
that are given in Fowler’s catalog. The interested reader may
refer to [7] and [2] for two detailed surveys on refactoring.

Vision. Our vision is to arm the developer with a ”trip
advisor” for the vast space of refactorings that will allow the

Figure 1: The full-fledged map of the archipelago of refactorings.

developer (a) to decide how to start, (b) assess the possible
alternatives and combine refactorings effectively, (c) have a
clear picture of what has to be done before, during and after
the refactorings and assess the possible implications.

2. APPROACH
Overall, our study of Fowler’s catalog brought out more

than 100 relations between refactorings. In order to rep-
resent them concretely, we have introduced the map of the
archipelago of refactorings, which is a graph with nodes rep-
resenting Fowler’s refactorings and edges representing their
relations (details coming right away on edges). In Figure 1,
we give a full-fledged view of the map. The size of the nodes
and the tone of their colour indicate their importance in the
map, concerning the total amount of relations (i.e., the sum
of the node fan-in and fan-out) they are involved in.

The archipelago map is a cornerstone of our approach, as
the refactoring trip advisor adapts the map to the develop-
ers’ context and helps them navigate through the archipelago
of refactorings, by providing practical advice concerning the
systematic and effective combination of refactorings.

What is the map of the archipelago of refactor-
ings? In detail, the map is a graph that consists of 72
nodes, one for each refactoring included in Fowler’s catalog.
The in-depth study of Fowler’s catalog, and specifically the

mechanics of each refactoring, revealed 3 different kinds of
relations between refactorings, which correspond to different
types of edges between the nodes of the map:

• Succession: A succession relation, represented as a
solid unidirectional edge between two refactorings, sig-
nifies that it would be useful for the developer to per-
form the source refactoring, before the target refactor-
ing. Equivalently, it also means that it would be use-
ful to perform the target refactoring, after the source
refactoring.

• Part-of : A part-of relation, denoted as a dotted uni-
directional edge between two refactorings, means that
the developer could employ the target refactoring for
the realization of the source refactoring.

• Instead-of : A instead-of relation, represented as a dashed
bidirectional arrow between two refactorings, means
that depending on the circumstances the developer can
consider using either one of the related refactorings, in-
stead of the other.

Clearly, the archipelago map is a very complex graph (its
name is, of course, indicative of its nature). The complexity
of the graph highlights the amount of information and the

Figure 2: Zoom out: A usable view of the
archipelago map at the region level.

Figure 3: Zoom in: Composing Methods region.

mental effort that is required from the developers, for the
effective combination of refactorings.

Thus, to ease navigation, we divide the map in 6 major
subgraphs, which we call regions. The regions correspond
to the 6 different categories of refactorings that are iden-
tified in Fowler’s catalog: Composing Methods consists of
refactorings that allow to package code properly in methods;
Moving Features concerns refactorings that focus on respon-
sibility assignment; Organizing Data consists of refactorings
that make working with data easier; Simplifying Condition-
als offers refactorings that deal with the complexity of con-
ditional logic; Simplifying Method calls provides refactorings
that make method prototypes easier to understand and use;
Dealing with Generalization consists of refactorings that im-
prove class hierarchies.

In Figure 2, we give a zoom-out of the map that depicts
the region-level organization of refactorings. Succession,
part of, and instead of relations between regions signify that
corresponding relations exist between the refactorings that
are included in these regions. On the other hand, Figure 3
zooms into the Composing Methods region.

How to navigate through the archipelago of refac-
torings? Using the map of the archipelago of refactorings
involves adapting it into a specific context, i.e., a piece of
code to be refactored. For instance, suppose you are about

to reorganize the code of the visualizeEvolutionHisto-

ryData() method that is given in Listing 1. The method
visualizes software evolution history data. The code of the
method is long and complex. To deal with this problem
you plan to use the Extract Method refactoring, from the
Composing Methods region. The relations at the level of
the Composing Methods region (Figure 3) tell you that the
extraction will be easier if before that you try to reduce the
amount of local variables used in the code, via refactorings
like Inline Temp and Replace Temp with Query. Less local
variables will result in fewer parameters for the methods that
will be extracted [4]. However, even before that, the map
says that you should try to clean up local variables that serve
more than one purpose by employing the Split Temporary
Variable refactoring. Nevertheless, if the method extraction
is too difficult due to the high number of variables and the
messy code, the map suggests using Replace Method with
Method Object, instead of Extract Method. In our example,
Inline Temp can be applied in the case of the versionsList

variable, while Replace Temp with Query makes sense for
startDate, endDate, lifetimeDuration, and year.

1 public ChartPanel visualizeEvolutionHistoryData (){

2

3 ArrayList <VersionInfo > versionsList = history.getVersions ();

4 DefaultCategoryDataset objDataset = new DefaultCategoryDataset ();

5 int [][] versionsPerYear;

6 int startDate= versionsList.get(0).yearOfDate ();

7 int endDate = versionsList.get(versionsList.size() -1).yearOfDate ();

8 int lifetimeDuration = endDate -startDate +1;

9 versionsPerYear = new int[lifetimeDuration][2];

10

11 for(int i=0; i < lifetimeDuration; i++){

12 versionsPerYear[i][0] = startDate + i;

13 }

14

15 for(int i=0; i < versionsList.size(); i++){

16 int year = versionsList.get(i).yearOfDate ();

17 for(int j=0; j < lifetimeDuration; j++){

18 if(versionsPerYear[j][0] == year){

19 versionsPerYear[j][1]++; break;

20 }

21 }

22 }

23

24 for(int i=0; i < lifetimeDuration; i++){

25 String xAxisLabel = "’"+(versionsPerYear[i][0] -2000);

26 objDataset2.setValue(versionsPerYear[i][1], "Year Versions"

, xAxisLabel);

27 }

28

29 JFreeChart objChart = ChartFactory.createBarChart(

30 "Versions per Year Bar Chart", "Version ID", "Versions",

31 objDataset , PlotOrientation.VERTICAL ,

32 true , true , false);

33

34 return new ChartPanel(objChart);

35 }

Listing 1: Running example.

Listing 2 gives the outcome of the whole refactoring pro-
cess. Replace Temp with Query, results in 4 new meth-
ods, getYearOfFirstVersion(), getYearOfLastVersion(),
getLifetimeDuration(), and getYearOfRelease(). Then,
the first and the second loop of the original code (Listing 1)
are extracted in initializeVersionsPerYear() and popu-

lateVersionsPerYear(), while the rest of the code is ex-
tracted in createVersionsPerYearDataSet().

The relations at the region-level (Figure 2) tell you how
to combine different categories of refactorings. For instance,
the refactoring of the Composing Methods region can be
combined with refactorings from the Moving Features re-
gion. More specifically, the map says that after the extrac-
tion of new methods you should check whether certain of
them (possibly along with other features) could be moved
across classes. In our example, all the methods that have
been extracted manipulate evolution history data; hence, it
makes sense to move these methods to the History class.

1 public ChartPanel visualizeEvolutionHistoryData (){

2 int [][] versionsPerYear = initializeVersionsPerYear ();

3 populateVersionsPerYear(versionsPerYear);

4 return createVersionsPerYearDataSet(versionsPerYear);

5 }

6

7 private int [][] initializeVersionsPerYear () {

8 int [][] versionsPerYear = new int[getLifetimeDuration ()][2];

9 for(int i=0; i < getLifetimeDuration (); i++){

10 versionsPerYear[i][0] = getYearOfFirstVersion () + i;

11 }

12 return versionsPerYear;

13 }

14

15 private void populateVersionsPerYear(int [][] versionsPerYear) {

16 for(int i=0; i < history.getVersions ().size(); i++){

17 for(int j=0; j < getLifetimeDuration (); j++){

18 if(versionsPerYear[j][0] == getYearOfRelease ()){

19 versionsPerYear[j][1]++; break;

20 }

21 }

22 }

23 }

24

25 private int getLifetimeDuration () {

26 return getYearOfLastVersion ()-getYearOfFirstVersion ()+1;

27 }

28

29 private int getYearOfLastVersion () {

30 return history.getVersions ().get(

31 history.getVersions ().size() -1).yearOfDate ();

32 }

33

34 private int getYearOfFirstVersion () {

35 return history.getVersions ().get(0).yearOfDate ();

36 }

37

38 private int getYearOfRelease () {

39 return history.getVersions ().get(i).yearOfDate ();

40 }

Listing 2: Running example - Refactored.

3. STATUS & NEXT STEPS
Up to this point, we have informally used the map in a

refactoring course to help inexperienced developers under-
stand and practice the overall refactoring philosophy, with
very positive feedback.

Figure 4: Overview of the refactoring trip advisor:
The yellow node indicates the target refactoring, red
nodes pinpoint refactorings that could be applied
before the target refactoring, green nodes suggest
refactorings to apply after the target one.

Our next steps focus on the development of the refactoring
trip advisor. Figure 4, gives a sketch of the trip advisor’s
modus operandi. Starting from the refactoring the devel-
oper is considering, the trip advisor shall employ the map
to detect possible alternative refactorings, and refactorings

that could be done before and/or after, within the working
code. Then, it will provide the developer with correspond-
ing suggestions, along with a explicative discussion for the
reasons for its advice and information about how to realize
the refactorings and how the result would look like.

To this end, our first concern is usability; we are look-
ing for scalable interactive, user-friendly map representa-
tions. Our second main concern is extensibility; we are af-
ter a flexible plug and play architecture that would allow
(a) registering user-specific refactoring templates that com-
bine elementary, Fowler-style refactorings (as related work
suggests), and, (b) reusing existing mechanisms that detect
refactoring opportunities. However, as already mentioned,
the existing mechanisms cover only 27% of Fowler’s refac-
torings, and it is also not sure that these mechanisms are
suitable for an on the fly recommendation system for refac-
toring. Thus, we reach to the third important issue that
completes our vision, the realization of fast, developer intu-
itive, heuristic-based mechanisms for the efficient detection
of refactoring opportunities.

4. REFERENCES
[1] G. Bavota, R. Oliveto, M. Gethers, D. Poshyvanyk, and

A. D. Lucia. Methodbook: Recommending Move
Method Refactorings via Relational Topic Models.
IEEE Transactions on Software Engineering,
40(7):671–694, 2014.

[2] J. A. Dallal. Identifying Refactoring Opportunities in
Object-Oriented Code: A Systematic Literature
Review. Information and Software Technology,
58(0):231 – 249, 2015.

[3] M. Fokaefs, N. Tsantalis, A. Chatzigeorgiou, and
J. Sander. Decomposing Object-Oriented Class
Modules Using an Agglomerative Clustering Technique.
In Proceedings of the IEEE International Conference on
Software Maintenance (ICSM), pages 93–101, 2009.

[4] M. Fowler. Refactoring: Improving the Design of
Existing Code. Addison-Wesley, 2000.

[5] M. Harman and L. Tratt. Pareto Optimal Search Based
Refactoring at the Design Level. In Proceedings of the
Genetic and Evolutionary Computation Conference
(GECCO), pages 1106–1113, 2007.

[6] M. Kim, T. Zimmermann, and N. Nagappan. An
Empirical Study of Refactoring Challenges and Benefits
at Microsoft. IEEE Transactions on Software
Engineering, 40(7):633–649, 2014.

[7] T. Mens and T. Tourwé. A Survey of Software
Refactoring. IEEE Transactions on Software
Engineering, 30(2):126–139, 2004.

[8] E. Murphy-Hill, C. Parnin, and A. Black. How We
Refactor, and How We Know It. In Proceedings of the
31st International Conference on Software Engineering
(ICSE), pages 287–297, 2009.

[9] F. Tip, R. M. Fuhrer, A. Kieżun, M. D. Ernst,
I. Balaban, and B. de Sutter. Refactoring Using Type
Constraints. ACM Transactions on Programming
Languages and Systems, 33:1–47, 2011.

