
Service Substitution Revisited

Dionysis Athanasopoulos∗†, Apostolos V. Zarras∗ and Valerie Issarny†
∗ Dept. of Computer Science, University of Ioannina (UoI), Greece

Email: {dathanas,zarras}@cs.uoi.gr
† INRIA-Rocquencourt, Domaine de Voluceau, France

Email: Valerie.Issarny@inria.fr

Abstract—In this paper we propose a framework that re-
duces the complexity of service substitution. The framework
is based on two substitution relations and corresponding
theorems. The proposed relations and theorems allow orga-
nizing available services into groups. Then, the complexity of
retrieving candidate substitute services for the target service
and generating corresponding adapters scales up with the
number of available groups, instead of scaling up with the
number of available services.

I. INTRODUCTION

Service substitution is a key issue towards dealing with the

independent evolution of services along with their variation

in quality (e.g. performance, availability, reliability) [1], [2],

[3]. Research efforts that focus on service substitution can

be divided in two categories. The first category consists

of abstraction-based approaches that propose development

methodologies and frameworks that allow developing from
scratch client applications, which use service abstractions
that are mapped into alternative concrete services [4],

[5], [6]. The second category comprises adapter-based ap-

proaches, which deal with existing client applications that
use concrete services [7], [8], [9], [10], [11], [12], [13].

The basic concept in this case is to derive a mapping
between the target service that should be substituted and

a substitute service that offers similar functionality through

a different interface. Based on such a mapping, an adapter

is generated, which allows accessing the functionality of

the substitute service through the original target interface,

without modifying the client application code.

While considering adapter-based approaches the follow-

ing issue is raised: the effort and time required by the service
substitution process scales up with the number of available
services that should be examined as potential candidate
substitutes of the target service. This problem is a serious

drawback towards a practical service substitution approach

if we consider that the service substitution process involves

human intervention to validate the mapping between target

and substitute services.

In this paper, we share the objective of adapter-based
approaches. However, our specific goal is to reduce the

effort and time required to achieve this objective. To this

end, we propose a hybrid approach that borrows ideas from

abstraction-based approaches so as to handle the complexity

of service substitution. The proposed approach relies on a

formal foundation that comprises two substitution relations

and corresponding substitution theorems, which are inline

with the Liskov substitution principle (LSP) [14] (Section

2). Based on the proposed relations and theorems, avail-

able services are organized into groups, characterized by

abstractions, called profiles. Then, the complexity of service

substitution scales up with the number of available profiles,

instead of scaling up with the number of available services

(Section 3).

The long version of this paper with de-

tailed definitions and proofs can be found

http://www.cs.uoi.gr/∼zarras/papers/C23.pdf

II. SUBSTITUTION FRAMEWORK

A conceptual model of the proposed framework is given

in Figure 1. The service substitution relations manager
(S2RM) recovers substitution relations, regarding available

services that are progressively registered in the framework

and serves as a registry that manages this information.

S2RM further enables retrieving candidate services that

may substitute a given target service in a particular service

substitution scenario. The service substitution adaptation
manager (S2AM) is responsible for generating adapters.

Without loss of generality we assume that services follow the

W3C standard services architecture. According to this stan-

dard, a service provides an interface (i.e. a PortType) which

consists of a set of operations. An operation corresponds to

a particular service functionality, whose execution requires

at most one input message and provides as a result at most

one output message. An input/output message may consist

of a set of distinct parts, each one of which is characterized

by a particular XML type. Inspired by various semantic

service description languages and frameworks (e.g. OWL-

S1, SWSO2, WSMO3), we assume that the framework’s

registry is organized into different categories. Each category
comprises a set of service profiles. A service profile is

characterized by a process model, which consists of a set of

processes. A process corresponds to a functionality, which

is characterized by a set of input elements and a set of

1http://www.w3.org/Submission/OWL-S/
2http://www.daml.org/services/swsf/1.0/swso/
3http://www.wsmo.org/

2009 IEEE/ACM International Conference on Automated Software Engineering

1527-1366/09 $29.00 © 2009 IEEE

DOI 10.1109/ASE.2009.58

543

2009 IEEE/ACM International Conference on Automated Software Engineering

1527-1366/09 $29.00 © 2009 IEEE

DOI 10.1109/ASE.2009.58

557

2009 IEEE/ACM International Conference on Automated Software Engineering

1527-1366/09 $29.00 © 2009 IEEE

DOI 10.1109/ASE.2009.58

557

2009 IEEE/ACM International Conference on Automated Software Engineering

1527-1366/09 $29.00 © 2009 IEEE

DOI 10.1109/ASE.2009.58

555

2009 IEEE/ACM International Conference on Automated Software Engineering

1527-1366/09 $29.00 © 2009 IEEE

DOI 10.1109/ASE.2009.58

555

output elements. An input/output element is characterized

by a particular XML data type.
A service profile comprises a set of strong service sub-

stitution relations (S3Rs). Each S3R maps the operations

of the interface of an available service to the processes of

the process model that characterizes the service profile. In

a sense, the main purpose of S3Rs is to associate, via a

common profile, groups of services for which substitution

involves simple renaming of operations and restructuring of

the constituent parts of input and output messages. S3Rs

are used for generating service adapters for pairs of services

that are related with a common service profile. Moreover,

different service profiles that belong in the same category

may be related with weak service substitution relations
(WS2Rs). Each WS2R maps processes of a service profile

to processes of another service profile that requires fewer

and/or more generic inputs to produce more and/or more

specific outputs. The terms generic and specific are used

here to refer to the particular data types of the inputs/outputs.

WS2Rs allow generating adapters between pairs of services

that are S3R-related with different WS2R-related profiles.

Figure 1. Conceptual model of the substitution framework.

Substitution Relations & Theorems: The Liskov Substi-

tution Principle (LSP) [14] defines basic correctness rules,

which guarantee that instances of a type T used in a

particular software can be substituted by instances of an-

other type S. Clearly, certain of these rules (e.g. invariants

and history rules that refer to state properties) cannot be

verified for services. In the definitions of our substitution

relations we mainly consider the LSP contra-variance and

co-variance rules [14]. Hence, the proposed relations rely

on equivalence and subtyping relations between the XML

types involved in the specification of services interfaces and

profiles. Several efficient algorithms/mechanisms that have

been proposed in the past can be employed for reasoning

about equivalence and subtyping relations between XML

types (we specifically used [15]). However, to keep our

base approach generic, we do not make any assumptions

on a particular mechanism. As opposed to this, we assume

that the proposed framework relies on an extensible set of

XML types and corresponding equivalence and subtyping

relations. Initially, this set comprises the standard XML data

types hierarchy, where subtyping is realized based on the

standard XML extension and restriction mechanisms. The

set can be populated progressively with further equivalence

and subtyping relations, during the registration of available

services and the substitution scenarios that take place.

Definition 1 - Strong Service Substitution Relation

(S3R):: A service S : PortType is S3R-related with a

service profile P : Profile if there exist one-to-one and

onto mappings between: (1) the operations of S and the

processes of P , (2) the input message parts of each operation

of S and the inputs of the operation’s corresponding process

of P and (3) the output message parts of each operation of

S and the outputs of the operation’s corresponding process

of P , such that the types of the mapped data are equivalent.

Concerning the LSP principle, we can prove that any two

services that are S3R-related with the same profile may

serve as candidate substitutes for each other because the

input/output messages of their operations are equivalent.

In general, message equivalence is stronger than the co-

variance and contra-variance rules of LSP. More formally,

the following theorem holds.

Theorem 1: For a pair of services Si, Sj : PortType and

a profile P : Profile such that (Si →S3R P) ∧ (Sj →S3R

P) there exist one-to-one and onto mappings between: (1)

the operations of Si, Sj , (2) the input message parts of

the mapped operations and (3) the output message parts of

the mapped operations, such that the types of the mapped

message parts are equivalent.

Proof: The mappings can be constructed by synthe-

sizing one-to-one and onto mappings derived from the

Si →S3R P relation with inverse mappings derived from

the Sj →S3R P relation (see long version).

Definition 2 - Weak Service Substitution Relation

(WS2R):: A service profile PT is WS2R-related with a

service profile PS if there exist one-to-one (not necessar-

ily onto) mappings between (1) the processes of PT and

PS , (2) the inputs of PS and PT and (3) the outputs

of PT and PS , such that the types of any two mapped

inputs/outputs are equivalent, or compliant with the LSP

contra-variance/covariance rules.

Roughly, the fact that the mapping between the inputs of

PS and PT is not necessarily onto implies that PS may have

fewer inputs than PT . On the other hand, since the mapping

between the outputs of PT and PS is not necessarily onto,

PS may have more outputs than PT . Moreover, the inputs

of PS may be of a more generic type, while the outputs of

PS may be of a more concrete type. Regarding the LSP

principle, we can prove that if two services ST , SS are

S3R-related with two WS2R-related profiles PT and PS ,

respectively, then SS may serve as a candidate substitute of

544558558556556

ST .

Theorem 2: For any two services ST ,

SS and profiles PT , PS such that,

(ST →S3R PT) ∧ (SS →S3R PS) ∧ (PT →WS2R PS)
there exist one-to-one mappings between (1) the operations

of ST and SS , (2) the input message parts of the mapped

operations and (3) the output message parts of the mapped

operations, such that the types of any two mapped

input/output message parts are equivalent, or compliant

with the LSP contra-variance/covariance rules, respectively.

Proof: The mappings can be constructed by synthe-

sizing one-to-one and onto mappings derived from the

ST →S3R PT relation with one-to-one mappings derived

from the PT →WS2R PS and inverse mappings derived from

the SS →S3R PS relation (see long version).

Figure 2. Examples of S3R and WS2R relations.

Figure 2 gives examples of related profiles and ser-

vices. Observe that the CiteseerWS service, inspired

by the Citeseer4 publications search engine, is S3R-

related with a basic profile for publications search en-

gines, named BasicPublSearchEng. Specifically, the

cis operation of the service can be mapped to the

search process. Similarly, another simple publications

search service inspired by CSBib5 is also S3R-related

with the BasicPublSearchEng profile. Based on The-

orem 1, these two services may serve as candidate sub-

stitutes for each other; this becomes evident by observ-

ing that the input and output message parts of the two

services are equivalent since all of them are of the

basic XML string type. The GoogleScholarWS ser-

vice, inspired by GoogleScholar6, is S3R-related with

an advanced profile for publications search engines,

named AdvPublSearchEng. This profile is WS2R-

related with the BasicPublSearchEng profile. Specifi-

cally, the search process of the AdvPublSearchEng
profile is mapped to the search process of the

BasicPublSearchEng profile. Moreover, the query

4http://citeseer.ist.psu.edu/
5http://liinwww.ira.uka.de/bibliography/Misc/index.html
6http://scholar.google.com/advanced scholar search

input of the BasicPublSearchEng search process can

be mapped to the words input, or to the authors input

of the AdvPublSearchEng search process, since their

types are equivalent (choosing between alterative mappings,

derived by the framework, is up to the users that vali-

date the mappings). Similarly, the types of the outputs of

both search processes are equivalent. Based on Theorem

2, we can conclude that CiteseerWS or CSBibWS may

serve as candidate substitutes of the GoogleScholarWS
service; the advanced_scholar_search operation of

GoogleScholar can be mapped, via the WS2R and S3R

relations, to the cis operation of Citeseer, or to the search
operation of CSBib.

Organizing Services: To register a new service in the

registry managed by the S2RM component (Figure 1), the

service provider has to choose an already existing category

of services, or create a new one in collaboration with the

framework administrator. In the former case, the registration

of the new service is followed by the establishment of

S3R relations amongst the new service and the profiles

that constitute the selected category and the generation of

corresponding mappings between the service interface and

the profiles processes, inputs and outputs. In the absence

of S3R relations, a newly created profile is inserted in the

selected category. The new profile is generated with respect

to the interface of the new service. Moreover, the new

service profile comprises a S3R relation that associates it

with the registered service. Finally, the insertion of the new

profile in the given category further involves the potential of

establishing appropriate WS2R relations between the new

profile and previously existing ones and the generation of

corresponding mappings (see long version for details on the

service registration algorithm).

In our example, suppose that the search engines category

of the framework is initially empty. Then, Figure 2 gives

the result of registering the CSBib service, followed by

Citeseer and GoogleScholar. Initially, the registration of CS-

Bib results in the creation of the BasicPublSearchEng
profile, which is generated based on the CSBibWS in-

terface (naming the profile and manipulating further doc-

umentation details is assisted by the service provider).

According to Definition 1, Citeseer is found S3R-related

with BasicPublSearchEng. Hence, the registration of

Citeseer results in the insertion of the new S3R relation that

associates it with BasicPublSearchEng. Finally, based

on Definition 2, the AdvPublSearchEng profile (gener-

ated based on the GoogleScholarWS interface) is found

WS2R-related with BasicPublSearchEng. Therefore,

during the registration of GoogleScholar the aforementioned

WS2R relation is established.

Retrieving Services: To retrieve a set of services that may

substitute a target service used in a client software the client

application developer provides as input the target service and

a selected category C that may contain information about

545559559557557

relevant services. Based on the interface of the target service,

a corresponding profile, targetP, is generated in a straightfor-

ward way. Following, the retrieval procedure iterates over the

set of profiles that belong to C towards locating a profile P
such that target →S3R P , or targetP →WS2R P . If such

a profile is found, any of the services that are S3R related

with P can be used as substitutes for target (according to

Theorems 1, 2). The retrieval procedure returns as output

these services, along with the mappings that relate their

interfaces with the interface of the target service (see long

version for details on the service retrieval algorithm).

In our example, assume that the target service is

GoogleScholar. Given the situation established in Figure 2,

the retrieval procedure shall find (based on Definition 2) that

the profile, generated from the GoogleScholarWS inter-

face, is WS2R-related with the BasicPublSearchEng
profile. Then, according to Theorem 2, the services that are

S3R-related with this profile (i.e. Citeseer, CSBib) may be

selected, towards substituting GoogleScholar in the client

code.

Generating Adaptors: Substituting the target service with

a retrieved substitute service, adaptee, consists of generating

an adapter that maps invocations of operations, offered by

the target service interface, into invocations of correspond-

ing operations, provided by the adaptee service interface.

The mappings of operations and input/output message parts

are given to the S2AM component (Figure 1). Technically,

the generated adapter is also a W3C service; the generated

code that implements the mappings of input/output message

parts may involve: (1) simple type casting operations, if the

types of the message parts are standard XML types, or (2)

more complex conversions, if the types of the message parts

are user-defined complex XML types.

Figure 3. Example adapter for GoogleScholar and Citeseer.

In our example, the adapter of Figure 3 is gen-

erated in the case where the target service is

GoogleScholar and the retrieved adaptee is Citeseer;

its realization is based on the mappings retrieved ac-

cording to Theorem 2. Briefly, the implementation of

the advanced_scholar_search operation invokes the

cis operation of the Citeseer service. The as_q in-

put message part of the advanced_scholar_search

operation is mapped to the query input message part

of the cis operation, while the remaining input mes-

sage parts (i.e. as_authors, as_ylo, as_yhi) of

advanced_scholar_search are ignored.

III. EVALUATION

To assess the proposed approach we performed two sets

of experiments. In both sets we compared the proposed

approach, against a typical adversary inspired by service

substitution approaches that do not rely on the organization

proposed in Section 2. The adversary assumes a registry of

available services and tries to retrieve all possible candidate

substitutes for a given target service. The basic criterion for

retrieving a candidate substitute is that there exist one-to-

one and onto mappings between the operations, the input

message parts and the output message parts of the target

and the substitute service, such that the types of the mapped

elements are equivalent. In the first set of experiments,

our goal was to compare the effort required for the re-
trieval of candidate substitute services, in the case where
this task involves human intervention towards inspecting

and validating equivalence and subtyping relations, between

user-defined input/output data types. Hence, in this set we

measured the number of input/output data type comparisons

performed in our substitution scenarios. In the second set

of experiments, our goal was to compare the time required
for the retrieval of candidate substitute services, in the case
where this task is fully automated, i.e. the services involved

in the substitution scenarios were using input/output data

of standard XML types. In both sets of experiments the

cardinality of available services in the registries varied in

the range [15, 120]. The available services offered up to

8 operations. The operations had one output message part

and the number of input message parts varied in the range

[4,8]. The services were generated by randomly selecting

data types with a uniform distribution, from corresponding

hierarchies that we developed for the purpose of our experi-

ments. In all cases, the generation process was such that the

services could be organized in 15 groups, characterized by

corresponding profiles and S3R relations. The cardinality

of WS2R relations between profiles ranged up to 4. In

both sets of experiments we randomly generated 500 target

services, which served as input to the proposed approach

and the adversary. The experiments were performed on a

P-IV 1.67GHz, 2GB RAM.

Figure 4(a) (1st set) gives the the mean (over the 500

target services used) number of input/output type checks

performed to retrieve candidate substitute services. In the

case of the proposed approach, the number of input/output

type checks remained quite stable, since the number of

profiles that group available services was stable in our

experimental setup, while in the case of the adversary the

required number of type checks scaled up with the number of

services. Similarly, in Figure 4(b) (2nd set) we can observe

546560560558558

(a) 1st set.

(b) 2nd set.

Figure 4. Experimental results.

that the mean time required for the retrieval of candidate

substitute services in the proposed approach remained stable,

while in the adversary it scaled up with the number of

available services.

IV. CONCLUSION

In this paper, we proposed a framework that reduces

the complexity of the service substitution problem. Our

experimental results highlighted the aforementioned benefit.

Currently, we work towards a reverse engineering process

that would allow to improve the organization of services

into groups, by recovering service abstractions from a set

of available services [6]. The proposed framework may

be extended to account for mismatches in the order of

operations; it may also be combined with keywords-based

and QoS-based search techniques.

ACKNOWLEDGMENT

This work is done within the context of the ForeverSOA

team as part of by the ”Equipes Associees” Program of

INRIA. The work is partially supported by the CONNECT

project (www.connect-forever.eu), which acknowledges the

financial support of the Future and Emerging Technologies

(FET) programme within the ICT theme of the Seventh

Framework Programme for Research of the European Com-

mission, under grant agreement number 231167. Finally, we

acknowledge the support of the UoI Research Committee.

REFERENCES

[1] E. D. Nitto, M. D. Penta, A. Gambi, G. Ripa, and M. Villani,
“Negotiation of Service Level Agreements: An Architec-
ture and a Search-Based Approach,” in Proceedings of the
5th International Conference on Service-Oriented Computing
(ISOC’07), 2007.

[2] F. Raimondi, J. Skene, and W. Emmerich, “Efficient Online
Monitoring of Web Service SLAs,” in Proceedings of the 16th
ACM SIGSOFT International Symposium on Foundations of
Software Engineering (FSE’08), 2008.

[3] L. Baresi, C. Ghezzi, and S. Guinea, Studies in Computational
Intellligence. Springer, 2006, vol. 42, ch. Towards Self-
healing Compositions of Services.

[4] L. Melloul and A. Fox, “Reusable Functional Composition
Patterns for Web Services,” in Proceedings of the IEEE
International Conference on Web Services (ICWS), 2004.

[5] Y. Taher, D. Benslimane, M.-C. Fauvet, and Z. Maamar,
“Towards an Approach for Web Services Substitution,” in
Proceedings of the 10th International Database Engineering
and Applications Symposium (IDEAS), 2006.

[6] D. Athanasopoulos, A. Zarras, and V. Issarny, “Towards the
Maintenance of Service Oriented Software,” in Proceedings
of the 3rd CSMR Workshop on Software Quality and Main-
tenance (SQM’09), 2009.

[7] S. R. Ponnekanti, “Application-Service Interoperation With-
out Standardized Service Interfaces,” in Proceedings of the
1st IEEE International Conference on Pervasive Computing
and Communications (PerCom), 2003.

[8] S. R. Ponnekanti and A. Fox, “Interoperability Among In-
dependently Evolving Web Services,” in Proceedings of the
5th ACM/IFIP/USENIX International Middleware Conference
(MIDDLEWARE), 2004.

[9] M. Colombo, E. D. Nitto, and M. Mauri, “SCENE: A Service
Composition Execution Environment Supporting Dynamic
Changes Disciplined Through Rules,” in Proceedings of the
4th International Conference on Service Oriented Computing
(ICSOC’06), 2006.

[10] D. Ardagna, M. Comuzzi, E. Mussi, B. Pernici, and P. Ple-
bani, “PAWS: A Framework for Executing Adaptive Web-
Service Processes,” IEEE Software, vol. 24, no. 6, pp. 39–46,
2007.

[11] H. R. M. Nezhad, B. Benatallah, A. Martens, F. Curbera, and
F. Casati, “Semi Automated Adaptation of Service Interac-
tions,” in Proceedings of the International World Wide Web
Conference (WWW’07), 2007.

[12] A. Zisman, G. Spanoudakis, and J. Dooley, “A Framework
for Dynamic Service Discovery,” in Proceedings of the 23rd
IEEE/ACM International Conference on Automated Software
Engineering (ASE), 2008.

[13] O. Moser, F. Rosenberg, and S. Dustdar, “Non-Intrusive Mon-
itoring and Service Adaptation for WS-BPEL,” in Proceed-
ings of the 17th International World Wide Web Conference
(WWW’08), 2008.

[14] B. Liskov and J. Wing, “A Behavioral Notion of Subtyping,”
ACM Transactions on Programming Languages and Systems
(ACM TOPLAS), vol. 16, no. 6, pp. 1811–1841, 1994.

[15] S. Chawathe and H. Garcia-Molina, “Meaningful Change
Detection in Structured Data,” in Proceedings of the ACM
SIGMOD International Conference on Management of Data,
1997.

547561561559559

