2008 IEEE Congress on Services 2008 - Part I

Dynamic Service Substitution in Service-Oriented Architectures

Manel Fredj
INRIA-Rocquencourt
Manel.Fredj @inria.fr

Nikolaos Georgantas
INRIA-Rocquencourt
Nikolaos.Georgantas @inria.fr

Valerie Issarny
INRIA-Rocquencourt
Valerie.Issarny @inria.fr

Apostolos Zarras
Department of Computer Science
University of Ioannina - Greece
zarras@cs.uoi.gr

Abstract

The problem we deal with in this paper is the dynamic
substitution of stateful services that become unavailable
during the execution of service orchestrations. Previous
research efforts focusing on the reconfiguration of conven-
tional distributed systems enable the substitution of system
entities with other prefabricated passive entities that serve
as a backup. Nevertheless, the problem of service substitu-
tion is far more complex. In SOA, we can assume the pos-
sible existence of several semantically compatible services
capable of performing the same or similar tasks. How-
ever, each one of them constantly serves requests and can-
not be considered as a passive backup for other services.
Therefore, we propose the SIROCO middleware platform,
enabling the runtime, semantic-based service substitution.
The basic concepts of SIROCO are discussed along with an
experimental evaluation of our first prototype. Our find-
ings show that SIROCO provides the necessary means for
achieving dynamic service substitution with a reasonable
expense on the execution of service orchestrations.

1. Introduction

In Service Oriented Architecture (SOA), services evolve
independently. A service may be deployed, or un-deployed
at anytime. Its implementation along with its interface may
change without prior notification. The particular problem
we deal with in this paper is the reconfiguration of a set of
executing orchestrations upon the unavailability of a ser-
vice that is required for the execution of these orchestra-
tions. The goal of the reconfiguration is the dynamic sub-
stitution of the unavailable service with an available one.
Dealing with the dynamic substitution of stateless services
is more or less straightforward. Thus, we concentrate on the

978-0-7695-3286-8/08 $25.00 © 2008 IEEE
DOI 10.1109/SERVICES-1.2008.52

101

worst case that involves the dynamic substitution of stateful
services. According to the standard WS-Resource Frame-
work [7], we assume that service state descriptions may be
provided, along with the service interface descriptions.

In the field of dynamic reconfiguration of conventional
distributed systems, several approaches tackle the issue of
substituting an entity with another prefabricated backup en-
tity [5, 3, 6, 9, 1, 2]. However, the problem of service substi-
tution is far more complex. In SOA, we can assume the pos-
sible existence of several semantically compatible services
capable of performing the same or similar tasks. However,
each one of them constantly serves requests and cannot be
considered as a passive backup for other services. There-
fore, the reconfiguration process that we are after consists
of: (1) discovering candidate substitute services out of a
set of semantically compatible services that can be used in
place of a service, which becomes unavailable, and (2) try-
ing to identify amongst them the one that can be used as
an actual substitute; in the best case the selected substitute
service must be such that the current state of its resources
can be synchronized with the state of the resources used by
the service that is substituted. Based on the above, our con-
tribution is SIROCO, a middleware infrastructure that en-
ables the reconfiguration of service orchestrations upon the
unavailability of services used in these orchestrations.

The rest of this paper is structured as follows. Section 2
discusses our approach for dynamic substitution of stateful
services in SOA. Section 3 provides our conclusions.

2. Reconfiguration in SOA

In conventional distributed systems, dynamic reconfig-
uration relies on a generic reconfiguration cycle, which
provides an abstract view of various reconfiguration ap-
proaches that have been proposed in the past (the interested
reader may refer to [10] for a more detailed survey). Con-

IEEE
computer
psouety

ceptually, the basic entities involved in the reconfiguration
process of proposed approaches are the Reconfigurable Sys-
tem (RS), its Context or Environment (CE), and the Recon-
figuration Management System (RM).

In the problem that we investigate, the configuration of a
SOA-based RS consists of a set of executing orchestrations
that combine the functionalities of a set of services. The
CE comprises Web services that have been independently
developed and deployed in certain sites. Certain of these
services may potentially serve as candidate substitutes of
services used in the orchestrations of RS.

&
Executio% Adaptatio?
Engine Manager
Monitoring] . . £ II
Manager ServiceRegistry [~

Reconfigurable
Orchestrations

Reconfiguration Manager

Figure 1. Overview of SIROCO.

SIROCO (Fig. 1) offers a RM which consists of a
service-registry that manages information concerning Web
services that are available in CE, a BPEL execution-engine
that executes RS orchestrations, a monitoring-manager
that inspects the execution of these orchestrations and an
adaptation-manager that dynamically reconfigures the or-
chestrations when necessary. Without loss of generality, in
this paper we assume that RM is in charge of executing all
the orchestrations that involve the services that are available
in CE. However, the proposed approach can be extended
in a quite straightforward way towards a coordinated set of
RMs that deal with service substitutions.

2.1. Information managed by RM

The information managed by the SIROCO RM consists
of (1) BPEL descriptions of the RS orchestrations, (2) SA-
WSDL descriptions of the services used in these orchestra-
tions and (3) SA-WSDL descriptions of services that may
be used for the reconfiguration of the RS orchestrations.

With BPEL [4], service orchestrations are specified as
workflow-structured sets of activities. BPEL supports the
specification of fault handling and compensation activities.
Such application-specific activities may serve for handling
the unavailability of a service. In general, we see these facil-
ities as complementary to our middleware-layer transparent
approach.

Besides BPEL descriptions, RM manages the service
SA-WSDL description(s) [8]. In SIROCO, we employ se-

102

([QueryState o)
o — —— ,"---ii"""_-_. T ——
(owl:Thing) <Héa— OperationBehavior J
2 - — e \T.‘r-.i;_;l___

"(UpdateState)

Figure 2. SIROCO OWL annotations.

mantic annotations provided by SA-WSDL to categorize
semantically compatible Web services with respect to an
OWL ontology managed by the SIROCO service-registry.
Moreover, we employ semantic annotations for service op-
erations in order to distinguish between read and write op-
erations, respectively annotated with ‘QueryState’ and ‘Up-
dateState’(Fig. 2). This distinction serves for enriching a
BPEL orchestration with activities requesting the SIROCO
monitoring-manager to checkpoint (if possible) the state of
Web services before the execution of activities that invoke
operations which change the Web services’ state (i.e., Up-
dateState-annotated operations). Checkpointing is possi-
ble if there exist descriptions of the resources used by the
services involved. Such descriptions are specified using
a WS-ResourceProperties document [7]. Providing WS-
ResourceProperties documents along with service descrip-
tions is not mandatory in SIROCO. Nevertheless, SIROCO
takes advantage of this information, if available, to find the
best substitute for an unavailable service.

2.2. SOA Reconfiguration

RS normal execution. As in conventional distributed sys-
tems, during this phase RS executes normally. In our case,
this means that, during this phase RS may provide as input
to RM, descriptions of orchestrations that should be exe-
cuted. Given a novel orchestration description along with
abstract SA-WSDL descriptions (i.e., semantically anno-
tated WSDL descriptions that do not contain any binding
information) of the services required for the execution of
this orchestration, a number of preparatory steps are per-
formed by RM before executing the orchestration.

First, the service-registry is searched for Web services
that can be used for the execution of the orchestration. The
service-registry maintains a set of service catalogs. Each
catalog corresponds to a different semantic category of ser-
vices, characterized by an OWL semantic class. The partic-
ular ontology that characterizes an RS should be provided
during the setup phase of SIROCO. Each service catalog
is progressively populated (during the lifetime of RS) with
concrete SA-WSDL descriptions of services (i.e., seman-
tically annotated WSDL descriptions that contain binding
information) that are available in CE.

The discovery of services that can be used for the execu-
tion of the novel orchestration is followed by the enrichment

of the orchestration activities with additional checkpoints.
Technically, the checkpointing activities send towards the
service GetResourceProperties messages with respect to the
WS-ResourceProperties document of the service. As a re-
sult, reply messages containing the state of the service are
returned back to the BPEL execution-engine. Then, the en-
gine forwards the state to the monitoring-manager, which
stores it persistently.

The preparation for the execution of the checkpoints-
enriched orchestration ends up by parsing the orchestra-
tion description towards the construction of (1) an abstract
control-flow dependency graph (CDG), and (2) an abstract
dataflow dependency graph (DDG) which shall serve for the
potential reconfiguration of the orchestration. The nodes
in both graphs are the basic BPEL activities of the orches-
tration. Typically, in the control-flow graph a dependency
from an activity a to an activity b denotes that the execution
of a precedes the execution of b. In the dataflow graph, a de-
pendency from an activity a to an activity b denotes that the
output produced by a as a result of interacting with a service
is utilized by b as input for interacting with the same or an-
other service. The CDG and DDG are given as input to the
adaptation-manager. Finally, the BPEL execution-engine
takes in charge of instantiating the novel orchestration. In
general, the BPEL execution-engine may be engaged in the
concurrent execution of multiple orchestrations that com-
bine available Web services. The same service may be used
in more than one orchestration.

A cause for reconfiguration occurs. This phase takes
place upon the unavailability of a service involved in the
executing orchestrations, requiring thereby a RS reconfigu-
ration. While the BPEL execution-engine of SIROCO exe-
cutes RS orchestrations, interaction with the Web services
is realized through the use of the standard JAXRPC mecha-
nism. For each activity of an orchestration, the execution-
engine checks for standard JAXRPC exceptions (e.g., Re-
moteException, AXISFault, etc.) that may be thrown while
the activity attempts to interact with a Web service. If such
an exception is caught, the SIROCO adaptation-manager is
notified.

Preparing the reconfiguration. This phase begins when
the SIROCO adaptation-manager is notified about the oc-
currence of an exception in the execution of an orchestra-
tion. The adaptation-manager checks the set of executing
orchestrations for other affected orchestrations. The set
of affected orchestrations consists of the orchestration that
failed to interact with the service, and a subset of other or-
chestrations whose descriptions comprise activities that in-
teract with the unavailable service. The adaptation-manager
blocks the execution of the affected orchestrations to pre-
vent the occurrence of further exceptions.

103

Planning the reconfiguration actions. With the affected
orchestrations blocked, the goal of this phase is to dis-
cover candidate substitute services that may replace the
unavailable service. To this end, the adaptation-manager
requests the service-registry for a list of substitute candi-
dates. Following, the service-registry looks for the cata-
log corresponding to the OWL semantic class that charac-
terizes the SA-WSDL description of the unavailable ser-
vice. Within this catalog it searches for SA-WSDL descrip-
tions of services whose WSDL interface matches the inter-
face of the unavailable service. The result set of this task
is divided in two categories. The first category contains
descriptions of services whose WS-ResourceProperties de-
scriptions exactly match the WS-ResourceProperties de-
scription of the unavailable service, while the second cat-
egory contains all the other services with matching inter-
faces. If the unavailable service is not accompanied with
a WS-ResourceProperties description, the first category of
services is empty.

Reconfiguring the system. Given the set of candidate
substitute services that resulted from the previous phase, the
adaptation-manager tries to select one service out of the set
that can actually substitute the unavailable service. First, the
adaptation-manager queries the monitoring-manager for the
latest state obtained from the unavailable service; the lat-
est state is the result of a checkpointing activity that took
place during the failed orchestration, or some other affected
orchestration. Following, the adaptation-manager iterates
over the 1st category of services; for each service it tries to
synchronize the current state of the service with the state of
the unavailable service. The semantics of state synchroniza-
tion is specific to the services involved and must be defined
with respect to the WS-ResourceProperties description that
characterizes the services. The state synchronization task
involves sending a SetResourceProperties message to the
candidate substitute service. The result of sending a SetRe-
sourceProperties message (i.e., the state synchronization) to
the candidate substitute service may be successful or not.
In the latter case, the adaptation-manager proceeds with the
next service from the 1st category of candidate substitute
services. If the state synchronization fails for all candidate
services of the 1st category, a service from the 2nd category
is randomly selected.

Completing the reconfiguration. The goal of this phase
is to put the affected orchestrations back to normal execu-
tion. This task highly depends on the outcome of the pre-
vious phase. In particular, if the adaptation-manager dis-
covered a service substitute in the 1st category of candidate
services, the execution of all the affected conversations is
resumed from the points where they were stopped (i.e., from
the activities that were blocked or failed).

3. Conclusion

In this paper we presented the SIROCO middleware plat-
form that enables the dynamic substitution of stateful ser-
vices during the execution of service orchestrations. As op-
posed to conventional dynamic reconfiguration approaches,
the SIROCO reconfiguration process enables semantic-
based service substitution of running orchestrations. To as-
sess the basic concepts of SIROCO, an experimental eva-
luation of our first prototype shows that SIROCO provides
the necessary means for achieving dynamic service substi-
tution with a reasonable expense on the execution of service
orchestrations.

Nevertheless, the problem of dynamic service substitu-
tion involves further challenging issues for future research.
Up to now, in SIROCO we select candidate substitute ser-
vices whose state descriptions exactly match the state de-
scriptions of unavailable services. To further improve our
approach we investigate the issue of identifying similari-
ties between service state descriptions towards a systematic
mechanism for performing service state transformations.
Finally, we work towards a mechanism for the distributed
coordination of multiple SIROCO middleware instances.

References

[1] C.Bidan, V. Issarny, T. Saridakis, and A. Zarras. A Dynamic
Reconfiguration Service for CORBA. pages 35-42, 1998.

[2] G.S. Blair, L. Blair, V. Issarny, P. Tuma, and A. Zarras. The
Role of Software Architecture in Constraining Adaptation in
Component-Based Middleware Platforms. pages 164-184,
2000.

[3] K. M. Goudarzi and J. Kramer. Maintaining Node Consis-
tency in the Face of Dynamic Change. In Proceedings of
the 3rd IEEFE International Conference on Configurable Dis-
tributed Systems, pages 62—-69, 1996.

[4] IBM, Microsoft Corporation and BEA. Business Process
Execution Language for Web Service (BPEL4WS) v.1.0.
Technical report, IBM, Microsoft Corporation, BEA, 2002.
http://www.ibm.com/developerworks/webservices/library/ws-
bpel/.

[5] J. Kramer and J. Magee. The Evolving Philosophers Prob-
lem: Dynamic Change Management. /EEE Transactions on
Software Engineering, 16(11):1293-1306, 1990.

[6] N.Minsky, V. Ungureanu, W. Wang, and J. Zhang. Building
Reconfiguration Primitives into the Law of a System. pages
62-69, 1996.

[7] OASIS. Web Services Resource Properties (WS-
ResourceProperties). ~ Technical report, OASIS, 2004.
http://docs.oasis-open.org/wsrf/2004/06/wsrf-WS-
ResourceProperties-1.2-draft-04.pdf.

[8] W3C. Semantic Annotations for
XML Schema. Technical report,
http://www.w3c.org/TR/sawsdl.

WSDL and
W3C, 2007.

104

[9] I. Warren and I. Sommerville. A Model for Dynamic Config-
uration which Preserves Application Integrity. pages 81-88,
1996.

[10] A. Zarras, M. Fredj, N. Georgantas, and V. Issarny. Rigor-
ous Development of Complex Fault-Tolerant Systems, vol-
ume 4157, chapter Engineering Reconfigurable Distributed
Software Systems: Issues Arising for Pervasive Computing,
pages 364-386. LNCS, 2006.

Acknowledgments. This work is partly supported by the MobWS
GSRT grant for Cooperation in S&T areas with European countries. It was
co-funded by the EU in the framework of the project Support of Computer
Science Studies in the University of Ioannina of the Operational Program
for Education and Initial Vocational Training of the 3rd Community Sup-
port Framework of the Hellenic Ministry of Education, funded by national
sources and by the (ESF). This research is further partly supported by the
European IST PLASTIC project 1(EU-IST-026955).

