
Query Management over Ad-Hoc Communities of Web Services

Apostolos Zmm, Panos Vassiliadis, Evaggelia Pitoura
Department of Computer Science, Univ. of Ioannina

451 IO Iounnina, Hellas, ht@://dmod.cs. uoi.gr/
{zarras, pvassil, pitoura)@cs. uoi.gr

Abstract
In this paper, we present CONSERV - a

middleware infiustructure for the development of
virtual databases in pervasive computing
environments. CUNSER V provides an SQL front-end
for posing and processing queries on information
provided by ad-hoc communities of web services
hosted by peers that urbitrarily join and leave the
system. The cornerstone of the proposed
infrastructure is the fact that we replace the
traditional treatment of databases us persistent
collections of record by the assumption that a
database relation is a collection of recordr
dynamically compiledfrom such ad-hoc sets ofpeers.
Each peer offers data to the relations through a
worl$ow of web services. Another aspect of our
approach is that we confine query processing over
specific sets of peers that we call communities.
Communities are defined based on the current
context of the peer initiating each quev. Since our
inffatructure departs fiom the traditional quey
processing strategies, we discuss query processing as
customized in CONSERV.

1. Introduction

Today it is immediately visible that the future of
distributed systems is aligned with the general idea of
pervasive and ubiquitous computing, which consists
of the gradual disappearance of stationary
workstations and the distribution of information and
computational power in the environment where the
users of those systems live and work. Typical
applications itre met in places like airports, railway
stations and shopping centers.

Passing fiom conventional dstributed systems to
mobile distributed systems for pervasive computing
involves the collaboration of a number of novel
technologies such as handheld computers, wireless
networks and sensor devises. This large variety of
technologies imposes the need for hgh
interoperability amongst the services that are
provided and used by the constituents of pervasive

0-7803-903281051$20.00 02005 IEEE

systems. Several emerging technologies for achieving
interoperability rely on the standard web service
architecture [l]. An equally important requirement
for pervasive systems is adaptability. The services
provided should be capable to adapt appropriately to
the constantly changing pervasive execution
environment. Achieving adaptability enables the
continuous fulfillment of the fimctionai and the
quality requirements of the users. Taking an example,
changes in the location of a user may result in
changes in the availability of the services provided
by the pervasive environment.

The term context is quite broad and it is defined in
[2] as anything that may influence the state of an
entitypluying aparticular role in a system. An entity
may be a human being, a location, a system element,
etc. In our case, we see a pervasive system as a
collection of peers providing a set of web services.
Hence, the context of a particular peer, in its
broadest'sense is the state of the peer itselfund the
states of the peers that communicate with it. This
particular definition of context is still aligned with
the most generic one that is given in [2]. In OUT case,
the entities are peers. Naturaliy, the state of a peer p
is influenced either by the peer itself (if, for instance,
the peer performs some internal computation), or by
the other peers that have access to the services
provided by p.

In this paper, we present the basic concepts of
CONSERV - Q middleware injastructure, which aims
at providing context-mare querying of information,
provided in a pervasive computing environment that
consists of ad-hoc communities of web services.

To acheve interoperability, the proposed
inftastructure relies on the standard web service
architecture for the realization of primitive services
that are provided and required by the peers of the
pervasive system. In principle, these primitive
services can be composed by the users of the system
towards the realization of complex workflows.
Workflows are realized using standard =-based
languages such as BPEL [3] and WSFL [4].

261

However, in a typical pervasive situation, the
users will not be sitting comfortabIy in front of their
workstation, having the ability to write down BPEL
or WSFL code. On the contrary, they will most
probably be in a situation where they will have to
quickly compose a workflow that satisfies an urgent
need by providing necessary information regarding
the users’ pervasive execution environment.
Moreover, the typical users of pervasive systems will
not be experienced developers, familiar with BPEL
or WSFL,. Hence, we must provide them with more
simple means, which shall allow them to efficiently
perform their tasks. To this end, we rely on ideas
fiom the field of traditional databases. Typical
database query languages provide a classical
declarative way for managing and exploring
information stored in a database. In our case, the
database is substituted by information, stored
everywhere in the pervasive execution environment.
Hence, it is challenging to keep the same classical
fiont-end for managing and exploring this contextual
information.

In a nutshell, CONSERV explores two basic
concepts :

Providing a declarative, SQL-based front-end on
top of web-services, and
Confining the query results to the current context
of the wet through the concept of communities
of web services.

Specifically, CONSERV consists of two main
subsystems, deployed on the side of each peer that
contributes in the community of web services:

The query processor subsystem is in charge of
parsing and executing user queries. The query
processor takes contextual information into
consideration, in order to construct, optimize and
eventually execute corresponding execution trees
over peer communities of web services.
The responsibilities of the context manager
subsystem comprise the management of a
constantly changing directory of peers, the
identification of the peers that constitute the
targets of the user’s queries and the
determination of web service workflows that
must be performed towards performing these
queries.

The goal of th is paper is to explore the research
issues raised by such a system. Rather than delving
into one specific technical issue, the focus is on the
general inf”cture and the interplay of the various
components.

The remainder of this paper is structured as
follows. In Section 2, we present a motivating

example, which is used throughout this paper to
exemplify our approach. In Section 3, we present the
general architecture of CONSERV. In Sections 4 and
5 , we discuss, respectively, the query processor and
the context manager subsystems. In Section 6, we
discuss several implementation issues of CONSERV.
In Section 7, we present related work. Finally, in
Section 8, we summarize our contribution and outline
our future research directions.

2. Motivating example

Several kinds of vehicles are driving on the
highway fiom Marseilles to Barcelona. Each vehicle
comprises web services, providing dynamically
changing information regarding the vehicle’s
Iocation, velocity and fuel deposit. Moreover, each
vehicle comprises services that offer static
information concerning its type and technical
characteristics. On the highway, there exist exits to
parking areas, which may include facilities such as
gas stations, fast food restaurants, medical help, and
shopping centers. Each one of these facilities
comprise web services, which range fkom simple
ones, reporting the existence of the facility, to more
complex ones providing nformation regarding for
instance the price lists, the availability of certain
goods or the number of patients waiting for medical
help.

Figure 1. Motivating example.

The drivers of the vehicles may usdquery several
of the services provided during the drive. For
instance, they may be interested in obtaining the
following information:
(a) The closest gas-station with a price of gasoline

(b) The closest Italian restaurant.
under 2 €/gallon.

262

(c) Notification for the average speed of all the cars
ahead.

3. The CONSERV architecture

3.1. Overview

In a broader sense, we view a pervasive
computing environment as a collection of peers, i.e.,
Units of data or computation, distributed over the
web. The peers may execute on either stationary
workstations or mobile devises. A peer provides web
services to the pervasive environment. It further
requires using web services provided by other peers.

"he peers of the system are organized into
communities. Communities can be seen as groups of
relevant peers. Peers are connected to other related
peers through links, thus forming an overlay network
of peers. The links between two peers do not
necessarily correspond to physical communication
links, that is, two peers connected to each other may
be far away in the physical network. Instead, the
distance between peers may be a chatactetization of
their relevance; the smaller the distance, the more
relevant the peers. A community consists of peers
that may use each others' services through a path in
the overlay network of a maximum of n-links. The
peers in the community of a peer are called its
neighbors.

The number of links is a property that may be
customized for each particular application, developed
on top of CONSERV. The definition of community is
generic. It may be based on actual network
reachability between the peers. For instance, in an
ad-hoc network, we may consider as the community
of a peer the set of all peers that can be reached by it
in n-hops.

The main objective of the CONSERV architecture
is the facilitation of the answering of queries over
communities of peers. The cornerstone of the
CONSER V architecture is the fact that we replace the
traditional treatment of databases as persistent
collections of tuples by the assumption that a
database relation is a collection of tuples
&narnicuIly compiled fiom an ad-hoc communi@ of
peers, each ofering tuples to the relation through a
workjIow of web services.

3.2. Peer databases

In our hmework, a peer may support database
management facilities. To this end, each peer
comprises a database, several relations, along with

their schemata and data. Naturally, a database
relation is instantiated by a set of tuples (i.e., a
relation instance). A fundamental difference of
relations in our h e w o r k , as opposed to their
traditional treatment, involves their classification as
(a) locally stored (i.e., in the traditional fashion), (b)
virtual, and (c) hybrid relations. Locally stored
relations are materialized and lie within a peer's
permanent storage device. Virtual reladions are
collections of tuples populated at runtime through the
invocation of the appropriate web services of peers in
the community. Hybrid relations comprise a locally
stored part and a virtual part, that is, they consist of
both data residing Iocally and data coming from other
peers.

Formally, a database is defined as a set of
relations. As usual, a relation is characterized by (a) a
name, (b) a schema, i.e., a finite set of attributes, (c)
an instance, i.e., a f ~ t e subset of the Cartesian
product of the domains of the attributes of the
schema, and (d) a type, ranging in the set of values
(local, virtual, hybrid). No global schema is
assumed, and each peer has its own relations.
Whereas the local schema is fixed, the contents of the
relations are not. Coming back to our reference
example, we assume that the peer po carries the
database of Fig. 2.

Virtual relations
CARS (I D , PLATE, BRAND, VEL)

GAS-STATIONS (g, PRICE, FACILITIES),
SID references SITES (SID)
HOTELS (g, PRICE-SINGLE, PRICE-
DOUBLE, FACILITIES),
SID references SITES (SID)
RESTAURANTS (m, TYPE, MENU, PARKING),

I SID references SITES (SID)
Figure 2. Database scheme of peer po.

The CARS relation describes neighboring cars by a
CONSERV-generated identifier, their plate number,
their brand and their current velocity in Km/h. A
typical tuple in this relation would be the following:

BRANDS relation describes technical characteristics of
different kinds of cars that may circulate along with
po. These characteristics incIude the brand that
uniquely identifies a particular kind of cars, the
country that constructs these cars and the metrics
system (e.g., SI, CGS, etc.) used in these cars

(12345, HPX7864, RENAULT, 105). The

263

towards measuring car related features such as
velocity. A typical tuple in this relation would be the
following: (RENAULT, FRANCE, SI). The CARS
relation is virtual because its contents depend on the
contextual information that comes ffom pO’s
neighboring cars. Information stored in the BRANDS
relation does not depend on the pervasive
environment; it simply encapsulates a constant part
of po’s knowledge on the pervasive environment. The
MAPS relation describes the parts of a map that are
depicted over the screen of the car. Each part
comprises a set of coordinates for its upper and lower
points and a bitmap figure stored as a binary large
object in the database of the car. Finally, a set of
hybrid relations involving useful sites is stored in the
database of the peer. The relations are hybrid, since
the database has a set of locally stored, well-known
sites (e.g., monuments, well-known hotels, etc.) as
well as a set of sites discovered as the peer travels.
Also, some of the information of the locally stored
tuples (e.g., hotel prices) can be updated when the
sites are in the neighborhood of the peer. The relation
SITES is acting as a super-class table of the three
other hybrid relations; still, the scheme that we
employ is a pure relational one.

3.3. Processing queries

Queries are posed against the database of a peer.
The ‘’use? that issues a query need only know the
names and schemata of the relations being used; the
nature of the relations and the workflows necessary
for the collection of the values of the virtual relations
are transparent to the user.

The query is expressed in standard SQL (i.e., the
nature of the involved relations is transparent to the
user) and the collection of tuples is automatically
performed by the system. Figure 3 depicts the
different stages of query processing for user queries.
First, the SQL query is parsed by the que9
processor. As in traditional DBMSs, the query
processor receives a declarative SQL query and
produces a procedural execution free to be issued
against the underlying data. In our case, the
execution tree involves the integration of information
coming fkom different peers.

There are several steps to be taken towards the
construction of the execution tree:

Identification of the peers to be probed for
tuples. To facilitate this task, there is a direclmy
of known peers in the community of the peer
serving the question and a peer manager that
ultimately determines which peers are to be
contacted.

Identification of the workflows of web services
that need to be invoked for each peer. In the
simplest case, each relation in the local database
is linked to the execution of one or more web
services in remote peers. Each of these web
services, in tum, returns a message that
corresponds to one, several, or all the attributes
of the relation that we wish to populate. In more
complicated cases, it is quite possible that we
need to transform, merge, cleanse or, in any
case, process this incoming information before
propagating it further towards the local relation.
Hence, in general, we need a workflow of web
service operations in order to obtain the tuples
fiom each peer. The complexity of the workflow
may vary along with the overhead introduced
during its execution. The determination of this
workflow is performed by the workjfi’ow resolver.
In CONSERV, we weat such workflows as
connected digraphs comprising at least a
fountain start node and a sink end node.

The peer’s directory, the peer’s manager and the
workflow resolver fom the context manager
subsystem, which together with the query processor
constitute the overall CONSERV architecture. In the
remainder of the paper, we discuss further details and
various policies supported by these subsystems.

Figure 3. The CONSERV architecture.
4. Query processor

264

The query processor constructs a first execution
tree, by employing information regarding which
peers are to be contacted and how. The algorithm for
achieving this is given in Table 1.

Table I. Constructing an execution tree.
Algorithm ConstructExecutionTree
Input: an SQL query Q over hybrid relations and a
finite set of web service workflows IT
Output: an execution tree
Begin

For each hybrid relation in the FROM clause of the
query construct a sub tree as follows:

1. The leaves of the tree are (a) web
services at the peers, or (b) the locally
stored parts of the hybrid relation

2. The root of the subtree is a UNION
operator that collects the information
fkom the different parts
Local parts of the hybrid relation are
directly connected to the root
For each peer leaf p, the end node of
the workflow f, (belonging to r) is
connected to the UNION node and the
start node is connected to the peer p.

The rest of the tree is constructed following the
traditional SQL parsing algorithm. First, joins are
placed on top of the UNION nodes, followed by
selections, projections, groupings and orderings.

3.

4.

End.

Coming back to our motivating exampIe, assume
that a peer po is driving fiom Marseilles to
Barcelona. The database relations at peer po are as
depicted in Fig. 2. The relation CARS is virtual; it
describes neighboring cars of po, while the relation
BRANDS is local since information stored in the
BRANDS relation does not depend on the pervasive
environment.

In Fig. 4, we depict an example of how the query
processor works. At the left part of the figure we see
the original SQL statement. At the middle of the
figure, the original execution tree is depicted.
Observe that the tree has a distributed part (under the
UNION node) and a local part (everything above the
UNION part).

While the collection of data is realized in a
distributed manner, joins, selections, projections,
groupings and orderings are performed locally by the
query processor. Nevertheless, there are chances for
obt;uning the answers a lot faster than this, by
distributing some of the operations. Therefore, once
the originating execution tree over the different peers

is constructed, it is propagated to the query
optimizer. Then, the final query execution tree is
produced and executed over the involved peers. The
results are calculated and returned to the issuing peer.
An optimized tree for our example is shown at the
right part of Fig. 4.

Figure 4. Query processing example.

Assume now that two neighboring cars p1 and p2
are in the same community with po. Peer p1 provides
a web service that includes the get-state0
operation, returning an XML message with the
attributes [PLATE NUM, BRAND, VELOCITY J and
peer p2 provides a-web service that includes the
get-velocity (1 operation that provides its
velocity in mileshour and the get-brand0
operations that provides its brands.

Figure 5. Answering a query by employing
different workflows, per different peer types.

The mapping between the local peer’s relation and
the web services provided by the peers handles the
following technical problems.

As far as peer p1 is concerned, a CONSERV-
generated id is generated and added to the
incoming tuple through a tuple constructor.

265

As far as peer p2 is concerned, a tuple
constructor is generated at pols side as a
placeholder for the res& of the invocation of
the two services of p2, miledhour are converted
to Km/hour and a NULL value along with a
system generated id must be produced and added
to the incoming tuple.

The h s t f?om the above points is realized by the
upper workflow of Fig. 5, while the second point is
reallzed by the lower worknow of Fig. 5 . Selecting
the appropriate workflows for each kind of peers is a
responsibility of the workj7uw resolver, which is part
of the context manager, discussed in Section 5.

5. Context manager

There are several technical issues regarding the
way communities of web services are formed to
answer queries. In this section, we discuss these
issues and the approach followed in the CONSERV
inhtructure. Moreover, we explain the role of
communities in their management.

5.1. Managing communities

In the CONSERV hfhtructure, the result of a
query depends on which peers belong to the
community of the peer that poses the query. Thus,
determining the list of neighboring peers to be bound
for answering the query is a central part of query
processing.
Various policies regarding how information about

the members of each community is maintained may
be followed by the peer managers (Fig. 3). At one
end, there is a single peer per community that
comprises a peer manager, which maintains the peer
directory, that is, the members of its community. At
the other end, each peer may comprise a peer
manager that maintains a local directory with the set
of its neighboring peers. Between these two
extremes, membership infomation may be
distributed among all members of the community.

Another technical issue that also arises here is the
refreshment of the content of the peer directory.
Several policies may be followed in CONSERV to
accomplish this task:

Always-update. The peer directory is kept up-to-
date. When a peer leaves its current community
or enters a new one, the peer directory is updated
to reflect the new membership information. This
is a form of push-based update, in the sense that
it is initiated by the departing (entering) peer.

Lazy-update. The peer directory is updated only
on demand when a peer poses a query and its
neighboring peers must be determined.
Periodic-update. The peer dixectory is refieshed
at pre-specified time intervals. This can be either
push or pull-based. In the pull-based case, the
directory update is initiated by the peer holding
the directory to be refieshed, while in the push-
based case, the update is initiated by each peer
that communicates its position to the related
directories.

5.2. Timing of queries

Given that the members of each community (and
thus the results of a query) change during query
evaluation and execution, we need io specify the
validity of each result set. Let pq be the peer issuing
the query at time instance tinit and tresult be the
time the results are received by ps. Let C, (p4)
denote the community of pq at time instance t and let
sR be the set of peers that participated in the
execution of the query. We introduce the following
quality measure:

for t E [tinitr tresult]. The validity measure
characterizes how fir is the set of peers that actually
participated in the computation of the results fiom the
set of peers that belonged to the community of ps at
some time instance t during query execution. For
instance, t may be set equal to tinit or tresult. In the
former case, we evaluate the query validity with
respect to the time the user issued the query, whereas
in the latter, we evaluate the query with respect to the
time that the results are presented to the user.

The tracing of the members of a community is
done in a peer directory. There are two ways to
manage the peer directory: (a) a single centralized
directory keeps track of the peers in each community
and @) each peer retains a local directory for th is
purpose. Although in CONSERV we follow the latter
approach, we provide a generic computation model
that abstracts fiom the particularities of such a
choice.

Providing an estimation of the validity of query
results that can be attained in a system such as
CONSERV further involves identifying the members
of sR. To achieve this, we rely on the three validity
metrics, namely snapshot, interval and single-site
validity, introduced in [5] for computing aggregate
queries in dynamic networks, such as in peer-to-peer

266

(p2p) and sensor networks. Snapshot validity requires
that the set of peers sR contributing to a virtual
relation are members of the community of ps at some
point instance t during the execution of the query,
that is sR = ct(pq) for some t E [tinit, tresultJ.
Znrervd vdidity requires that sR includes peers that
were members of the community of ps at some time
instance (not necessarily the same for all of them),
during query execution. Single-site validity restricts
sR to those peers that were reachable during query
execution. It can easily be shown that neither
snapshot nor interval validity can be attained in a
setting such as ours where dynamic updates are
possible. Thus, we aim at single-site validity.

5

Figure 6. Time axis for the real world, the
directory and the querying peer.

We assume that there are two distinct phases in
the evaluation of a query following the construction
of the optimized query execution tree. In Phase 1, the
set s, of peers that are involved in the execution of
the query is identified. During Phase 2, each peer in
s, is contacted, evaluates locally the corresponding
web service workflow and returns the results to the
issuing peer.

AAer the completion of each phase, it is possible
to compute the validity of the query results attained
using the three update policies (always, lazy and
periodic). The three policies affect the set s,
computed during the first phase. We assume a
relaxed asynchronous model, where there is a
m a x i " delay 6 between any two peers. Let tl, tl
> tinit, be the time instant, Phase I starts (i.e., the
optimized execution tree is constructed).

For Phase 1, we get singe-site validity with
respect to peers reachable by the directory. In
particular, the set s, includes peers reachable from

the directory that were members of the community of
p4 during some htervd IT,, Tz], where TI and T2
depend on the update policy. Next, we compute T,
and T~ for each update policy. With the dways-
update policy, the set s, corresponds to the peers that
were members of the community during [tl, tl +
d I . With the lazy-update policy, there is an overhead
for updating the directory, let this be U time units.
The set s, is the set of peers that are members of the
communityduring[t, t U, tl + U t 61.Letp be
the period of the periodic update policy. In this case,
the set s, is the set of peers that are members of the
~0"unitydUring [tl - (tl + 6) mod P, tl +
6 - ((t l + 6) mod P)] .

Phase 2 is initiated with the appropriate s, as
defmed above. We assume a simple evaluation
model, where each site in s, is contacted directly by
ps and returns the results to it. Let t2 be the time
instant when Phase 2 starts. For the always-update
and the periodic policies, t2 = tl + 26 . For the
lazy-update policy we have, t2 = tl + U + 26.
During this phase, a subset of peers in s, is contacted
namely those peers that were reachable from p,
during [t z , t,,,,lt~.Thus, sR = { p : p E s, and
p reachable kom p, during [t2, tresultl .

In Fig. 6, an example is presented for the lazy-
update policy. It depicts a peer p,, the real world
(referring to the community of peer ps), and the peer
directory that t lus community (including pg)
employs. At time point Lit, peer pp contacts the
directory to learn the members of its community. We
assume that ps takes an interval 6 to reach the
directory. The directory responds to p, after a
processing time U with a list of neighboring peers.
Then, p, contacts these peers with a query, at time
point t2. Unfortunately, in the meanwhile, the
configuration of the community has changed, with
peer p4 joining and peer p2 leaving the community.
By the time the query is completed at time point
tresult, iis validity has decreased to 50%.

Another technical issue that results from the
dynamic nature of the environment is query
termination. Typically, a query is considered to be
successfidly completed when all relevant peers reply.
However, as we have just shown, the fundamental
assumption that each query will eventually terminate
does not necessarily hold. Consequently, in the
CONSERV fi-arnework, a query requires a
termination condition for each of the operators that
constitute the query expression. This can involve a
timeout, the number of tuples collected, the
percentage of virtual relations that were successfully
populated or a combination of the above.

267

Additional issues related to the timing of queries
arise in the case of continuous queries. For a
continuous query, the contents of the relation are
continuously modified according to the state of the
community peers. We discriminate two cases:

Periodic (or pull-based) refieshmenilt: In this
case, the peer posing the query periodically polls
its community to collect tuples. Note that this
corresponds to resubmitting the query and that
the community, i.e. the set of peers, that each
time receives the query may be different.

e Push-based querying, where each of the
contributing peers notifies the peer that posed
the query, whenever one of the tuples that it
contributes changes value.

5.3. Workflow resolution

A central issue in query processing is determining
how the virtual and hybrid relations are to be
populated. This relates to how the peers carrying
hgments of the virtual parts of the relations will be
contacted, that is, how the workflows of web services
are formed. In our setting, this resolution is
facilitated through the usage of profiles and rules for
peers.

Peers with common interfaces (i.e., peers
exporting the same set of web services) are organized
into peer classes. Each peer is aware of the interface
of a specific set of classes. Such information is
maintained in a class projle. A rule is a mapping of
the form:

(relation fragment, peer class) => web service workjlow
The semantics of the mapping is that once the

profile of a neighboring peer is resolved, then,
depending on the intemal relation to be queried, a
specific web service workflow is employed. It is
possible that instances of a peer class can populate a
subset of the attributes of an internal relation. The
term relation fragment refers to the subset of the
attributes of the intemal relation that pertains to the
information returned by the web service workflow of
a rule.

Naturally, this kind of meta-infomation would
probably be impossible to hard-code for all potential
peers. Therefore, the role of classes is crucial, since
they act as classes of peers, all exporting the same
interface.

In our motivating example, in Fig. 7, we have
seen that peer po contacts its two neighboring peers
differently. This is due to the fact that peer p1
belongs to the class European cur and peer pz
belongs to the class American car.

Peer p1 provides a web service that includes the
get - state 0 operation, returning an XML
message with the attributes
[PLATE NUM, BRAND, VELOCITY]. The rule for
the mapping is:

(CARS (PLATE, BRAND,VEL) , "European car")
=> get-state (1

+ Peer p2 provides a web service that includes the
get velocity() operation that provides its
velocity in mileshour and the get-brand()
operations that provides its brands. The rule for
the mapping is:

(CARS (VEL,BRAND) , "American car")
= ~ t u p l e [g e t ~ v e l o c i t y ~ ~ , g e t ~ b ~ ~ ~ d o l

Rules and profles are managed by the peer
manager and used by the workflow resolver.
Naturally, other schemes can also be devised,
especially if we keep scalability and evolution in
mind. For example, a super-peer acting as a web
service repository can inform interested peers on the
interfaces of the peers of their comm~~&~.

Another issue that needs to be clarified is the
locality of the execution of the workflows of web
services. Workflows comprise specific operations to
be executed; therefore, once the operations involved
in a workflow are resolved, the only pending issue is
the monitoring of the whole execution. By default,
this is handled by the local peer, although one can
envision schemes where a third party is employed for
this task.

Still, if a certain service can be obtained by more
than one peer (e.g., both the local and the queried
peer can perform a translation of miles to
kilometers), a decision must be made about which
particular operation will ultimately be invoked. The
role of the workflow resolver further includes
resolving such ambiguities.

6. Implementing CONSERV over JXTA

The development of the fmt prototype of the
CONSERV infrastructure is based on JXTA [6].
JXTA is a lightweight platform, capable of
supporting the organization of p2p communities.
JXTA peers may execute on either stationary or
mobile devices and they communicate through the
exchange of XML messages. In the particular case of
CONSERV, the messages further conform to the
SOAP format, as imposed by the web service
standard architecture [l]. JXTA provides a variety of

268

primitive services on top of which we build
CONSERV. Specifically, CONSERV relies on the

0 The Membership service, whch allows peers to
create, join and leave communities (groups is the
exact term used in JXTA).
The Pipe service, which allows peers to create
pipe connections between them. A pipe is the
basic message exchange mechanism provided by
ETA.
The Discovery service, which enables peers to
discover peer groups and pipes.

In our fjrst CONSERV prototype, we assume that
each peer contains a local peer directory, managed by
a locally deployed peer manager. Whenever a peer
intends to join a community it follows the steps
below:
0 First, the peer queries, through the peer manager,

the JXTA DiscoveIy service for available
communities.
Based on the results of this query, the peer
selects one (or more) community to join.
Finally, the peer joins the community, using the
Membership service.

Once these steps are completed, the peer is a
member of the selected community. However, the
peer’s Iocal directory must be organized into classes
of peers with compatible interfaces. This
hctionality is not directly supported by JXTA. To
work around this problem, we use the notion of
pipes. First, we describe the initialization of the local
directory of a peer. Each peer that joins a community
creates a different input pipe for every web service it
provides. Each input pipe is identified by the JXTA
peer identifier and by the URI of the WSDL service
specification. Each input pipe is then published using
the E T A Discovery service. Following, the peer
queries the E T A Discovery service for input pipes
that provide compatible interfaces, i.e., input pipes
that have the same URI. The peer issues one query
per different class of peers and the results are stored
in different sub directories within the local peer
directory.

Once the local directory of a peer has been
initialized, it is ready for use. As time passes, the
community around a peer is modified. As already
discussed in Section 5.1, the update of the local
directory may take place according to three different
policies. E T A provides primitive support that
facilitates their realization. To implement the always-
update policy, CONSERV peer managers register in
the Discovery service as Discovery listeners,
providing a particular call-back service, which is

following :

invoked upon the occurrence of a new pipe
advertisement. The realization of the periodic-update
and the lazy-update policies is much simpler. The
CONSERV peer managers contact the Discovery
service for new pipe advertisements, either
periodically or right before issuing a query for
contextuaI information.

7. Related work

To our knowledge, CONSERV is the fust attempt
to employ web services over peers as a substitute to
relational databases. Therefore, in this section, we
review research results that serve more as a
background, rather than as alternatives to our
approach.

Data integration is an old problem, addressed by
the database community for a long time [7, 8, 91.
Although several research efforts exist, we believe
that the focus of the research community so far is not
directly relevant to the CONSERV approach, since
the fundamental assumptions underlying earlier
approaches focus on data sources as data providers
and not ad-hoc, autonomous peers in a p2p
h e w o r k . Still, we mention a few prominent works
that appear to be closer to the CONSERV
Mework. An excellent survey of problems
typically occurring in the context of data integration
is found in [lo] (still, with a special focus on data
warehousing). In [1 I] the author discusses the issue
of generic model management, with a focus on
mapping different models to each other.

Query processing in a disaibuted setting has been
extensively studied in the database community [12,
131. An important research problem is how to
combine the workflows involved in the execution of
the queries and the algorithms empIoyed in
distributed query processing in our setting. The
workload balancing/optimization of the peers
executing services is also an area where existing
results [14, 151 can be exploited by the CONSERV
architecture.

Communities of peers are usually organized in
terms of Semantic Overlay Networks (SONs).
Different kinds of SONs have been proposed so far.
Structured SONs [16, 171 assume that the peers are
ConceptualIy connected into specific topologies.
Based on these topological constraints, they provide
guarantees on the overall cost for performing queries.
Unstructured SONs [lX, 19, 201 provide no such
guarantees as they do not impose any topological
constraints. On the other hand, they are simpler to
manage in the presence of peer join and leave

269

actions. Extending the CONSERV technique for
constructing communities of peers with SONS is a
challenging issue.

8, Conclusions and future work

In this paper, we have presented CONSERV - a
middieware infrastructure for the development of
virtual databases that enable rhe management of
contextual information, spread in pervasive
computing environments. The contextual information
we deal with is provided by ad-hoc communities of
web services offered by peers that arbitrarily join and
leave the pewasive computing environment.
CONSERV provides an SQL fiont-end for the
answering of queries. The cornerstone of the
proposed in€rastructure is the fact that we replace the
traditional treatment of databases as persistent
colIections of tuples by the assumption that a
database relation is a collection of tuples dynamically
compiled fiom an ad-hoc set of peers. Each peer
offers tuples to the relation through a workflow of
web sentices.

CONSERV raises many issues for future work. In
terms of performance, a central issue is deriving
efficient workflow execution plans, coupled with
appropriate algorithms for updating the peer
"triunity. In terms of dependability, it is important
to construct workflow execution plans by taking into
accouut the mobile nature of peers, which may cause
failures. Regarding the management of context, we
plan to extend the notion of community exploring
various aspects of context.

Acknowledgement
This research was h d e d by the program
"Pythagoras" of the Operational Program for
Education and Initial Vocational Training of the
Hellenic Ministry of Education under the 3d
Community Support Framework and the European
Social Fund.

References
[I] W3C. Web Services Architecture. http://www.w3.org/

mws-arcw
[2] A. K. Dey. Understanding and Using Context. In

Personal and Ubiquitous Computing, vol. 5 , no. 1, pp,
67,2001.

[3] Business Process Execution Language for Web
Service @FELAWS) v. 1.0. http://www.ibm.com/
developerworkdwebservicesflibrarylws-bpell

[4] WSFL. http://www-306.ibm.comlso~are/solutions/
webservices/pWSFL.pdf

M. Bawa, A. Gionis, H. Garcia-Molina, R. Motwani.
The Price of Validity in Dynamic Nehvorks. In
Proceedings of ACM SIGMOD 2004.
SUN. Project JXTA v2.0: Java Programmer's Guide.
http://www.jxtaorgldocs/JxtaProgGuide_v2.3 .pdf.
G. Wiederhold. Mediators in the Architecture of
Future Information Systems. IEEE Computer, vol. 25,
no. 3, pp. 38-49, 1992.
A. Y. Levy, D. Srivastava, T. Kirk. Data Model and
Query Evaluation in Global Information Systems.
Journal of intelligent Information System, vol. 5 no.

H. Garcia-Molina, Y. Papakonstantinou, D. Quass, A.
2, pp. 121-143, 1995.

Rajaraman, Y. Sagiv, J. D. Ullman, V. Vassalos, 5.
Widom. The TSIMMIS Approach to Mediation: Data
Models and Languages. Journal of Intelligent
Information Systems, vol 8, no. 2, pp. 117-132, 1997.

101 D. Calvansese, G. deGiacomo, M. Lenzerini, D.
Nardi, R. Rosati. Source Integration. In Matthias
Jarke, Maurizio Lenzerini, Yannis Vassiliou, Panos
Vassiliadis (eds.). Fundamentals of Rata Warehouses.
Springer-Verlag, 2000.

111 P. A. Bemstein. Applying Model Management to
Classical Meta Data Problems. In Proceedings of the

Biennial Conference on Innovative Rata Systems
Research (CIDR03), pp. 5-8,2003.

[I21 D. Kossmann. The State o f the Art in Distributed
Query Processing. ACM Computing Surveys, vol. 32,
no. 4, pp. 422449,2000.

[13] M. T. &su, P. Valduriez. Principles of Distributed
Database Systems. Prentice-Hall, 199 1

[14]M. Gillmann, G. Weikum, W. Wormer. Worknow
Management with Service Quality Guarantees. In
Proceedings of ACM SIGMUD, pp. 228-239,2002.

[15] M. Gillmann, J. WeiBenfels, G. Weikum, A. Kraiss.
Performance Assessment and Configuration of
Enterprise-Wide Workflow Management Systems.
Enterprise-Wide and Cross-Enterprise Workflow
Management, pp. 18-24, 1999.

[16] S. Ratnasamy, P. Francis, M. Handley, R. Karp, S.
Shenker. A Scalable Content-Addressable Network. In
Proceedings of ACMSIGCOMM, 2001.

[17] I. Stoica, R. Moms, D. Karger, M. F. Kaashoek, H.
Balakrishnan. Chord. A Scalable Peer-to-Peer Lookup
Service for Intemet Applications. In Proceedings of
ACM SIGCOMM, 2001.

[18] E. Pitoura, S. Abiteboul, D. Pfoser, G. Samaras, M,
Vazirgiannis. DBGlobe: A Service Oriented P2P
System for Global Computing. In Sigmod Record, vol.
32, no. 3,2003.

[19] G. Koloniari and E. Pitoum Filters for XML-based
Service Discovery in Pervasive Computing.
Computer Journal: Special Issue on Mobile and
Pervasive Computing, in press.

[20] G. Koloniari and E. Pitoura. Content-Based Routing
of Path Queries in Peer-to-Peer Systems. In
Proceedings of EDBT, 2004.

270

http://www.w3.org
http://www.ibm.com
http://www.jxtaorgldocs/JxtaProgGuide_v2.3

