
Query Management over Ad-Hoc Communities of Web Services 

Apostolos Zmm, Panos Vassiliadis, Evaggelia Pitoura 
Department of Computer Science, Univ. of Ioannina 

451 IO Iounnina, Hellas, ht@://dmod.cs. uoi.gr/ 
{zarras, pvassil, pitoura)@cs. uoi.gr 

Abstract 
In this paper, we present CONSERV - a 

middleware infiustructure for the development of 
virtual databases in pervasive computing 
environments. CUNSER V provides an SQL front-end 
for posing and processing queries on information 
provided by ad-hoc communities of web services 
hosted by peers that urbitrarily join and leave the 
system. The cornerstone of the proposed 
infrastructure is the fact that we replace the 
traditional treatment of databases us persistent 
collections of record by the assumption that a 
database relation is a collection of recordr 
dynamically compiledfrom such ad-hoc sets ofpeers. 
Each peer offers data to the relations through a 
worl$ow of web services. Another aspect of our 
approach is that we confine query processing over 
specific sets of peers that we call communities. 
Communities are defined based on the current 
context of the peer initiating each quev. Since our 
inffatructure departs fiom the traditional quey  
processing strategies, we discuss query processing as 
customized in CONSERV. 

1. Introduction 

Today it is immediately visible that the future of 
distributed systems is aligned with the general idea of 
pervasive and ubiquitous computing, which consists 
of the gradual disappearance of stationary 
workstations and the distribution of information and 
computational power in the environment where the 
users of those systems live and work. Typical 
applications itre met in places like airports, railway 
stations and shopping centers. 

Passing fiom conventional dstributed systems to 
mobile distributed systems for pervasive computing 
involves the collaboration of a number of novel 
technologies such as handheld computers, wireless 
networks and sensor devises. This large variety of 
technologies imposes the need for hgh 
interoperability amongst the services that are 
provided and used by the constituents of pervasive 
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systems. Several emerging technologies for achieving 
interoperability rely on the standard web service 
architecture [l]. An equally important requirement 
for pervasive systems is adaptability. The services 
provided should be capable to adapt appropriately to 
the constantly changing pervasive execution 
environment. Achieving adaptability enables the 
continuous fulfillment of the fimctionai and the 
quality requirements of the users. Taking an example, 
changes in the location of a user may result in 
changes in the availability of the services provided 
by the pervasive environment. 

The term context is quite broad and it is defined in 
[2] as anything that may influence the state of an 
entitypluying aparticular role in a system. An entity 
may be a human being, a location, a system element, 
etc. In our case, we see a pervasive system as a 
collection of peers providing a set of web services. 
Hence, the context of a particular peer, in its 
broadest'sense is the state of the peer itselfund the 
states of the peers that communicate with it. This 
particular definition of context is still aligned with 
the most generic one that is given in [2]. In OUT case, 
the entities are peers. Naturaliy, the state of a peer p 
is influenced either by the peer itself (if, for instance, 
the peer performs some internal computation), or by 
the other peers that have access to the services 
provided by p. 

In this paper, we present the basic concepts of 
CONSERV - Q middleware injastructure, which aims 
at providing context-mare querying of information, 
provided in a pervasive computing environment that 
consists of ad-hoc communities of web services. 

To acheve interoperability, the proposed 
inftastructure relies on the standard web service 
architecture for the realization of primitive services 
that are provided and required by the peers of the 
pervasive system. In principle, these primitive 
services can be composed by the users of the system 
towards the realization of complex workflows. 
Workflows are realized using standard =-based 
languages such as BPEL [3] and WSFL [4]. 
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However, in a typical pervasive situation, the 
users will not be sitting comfortabIy in front of their 
workstation, having the ability to write down BPEL 
or WSFL code. On the contrary, they will most 
probably be in a situation where they will have to 
quickly compose a workflow that satisfies an urgent 
need by providing necessary information regarding 
the users’ pervasive execution environment. 
Moreover, the typical users of pervasive systems will 
not be experienced developers, familiar with BPEL 
or WSFL,. Hence, we must provide them with more 
simple means, which shall allow them to efficiently 
perform their tasks. To this end, we rely on ideas 
fiom the field of traditional databases. Typical 
database query languages provide a classical 
declarative way for managing and exploring 
information stored in a database. In our case, the 
database is substituted by information, stored 
everywhere in the pervasive execution environment. 
Hence, it is challenging to keep the same classical 
fiont-end for managing and exploring this contextual 
information. 

In a nutshell, CONSERV explores two basic 
concepts : 

Providing a declarative, SQL-based front-end on 
top of web-services, and 
Confining the query results to the current context 
of the wet through the concept of communities 
of web services. 

Specifically, CONSERV consists of two main 
subsystems, deployed on the side of each peer that 
contributes in the community of web services: 

The query processor subsystem is in charge of 
parsing and executing user queries. The query 
processor takes contextual information into 
consideration, in order to construct, optimize and 
eventually execute corresponding execution trees 
over peer communities of web services. 
The responsibilities of the context manager 
subsystem comprise the management of a 
constantly changing directory of peers, the 
identification of the peers that constitute the 
targets of the user’s queries and the 
determination of web service workflows that 
must be performed towards performing these 
queries. 

The goal of th is  paper is to explore the research 
issues raised by such a system. Rather than delving 
into one specific technical issue, the focus is on the 
general inf”cture and the interplay of the various 
components. 

The remainder of this paper is structured as 
follows. In Section 2, we present a motivating 

example, which is used throughout this paper to 
exemplify our approach. In Section 3, we present the 
general architecture of CONSERV. In Sections 4 and 
5 ,  we discuss, respectively, the query processor and 
the context manager subsystems. In Section 6, we 
discuss several implementation issues of CONSERV. 
In Section 7, we present related work. Finally, in 
Section 8, we summarize our contribution and outline 
our future research directions. 

2. Motivating example 

Several kinds of vehicles are driving on the 
highway fiom Marseilles to Barcelona. Each vehicle 
comprises web services, providing dynamically 
changing information regarding the vehicle’s 
Iocation, velocity and fuel deposit. Moreover, each 
vehicle comprises services that offer static 
information concerning its type and technical 
characteristics. On the highway, there exist exits to 
parking areas, which may include facilities such as 
gas stations, fast food restaurants, medical help, and 
shopping centers. Each one of these facilities 
comprise web services, which range fkom simple 
ones, reporting the existence of the facility, to more 
complex ones providing nformation regarding for 
instance the price lists, the availability of certain 
goods or the number of patients waiting for medical 
help. 

Figure 1. Motivating example. 

The drivers of the vehicles may usdquery several 
of the services provided during the drive. For 
instance, they may be interested in obtaining the 
following information: 
(a) The closest gas-station with a price of gasoline 

(b) The closest Italian restaurant. 
under 2 €/gallon. 

262 



(c) Notification for the average speed of all the cars 
ahead. 

3. The CONSERV architecture 

3.1. Overview 

In a broader sense, we view a pervasive 
computing environment as a collection of peers, i.e., 
Units of data or computation, distributed over the 
web. The peers may execute on either stationary 
workstations or mobile devises. A peer provides web 
services to the pervasive environment. It further 
requires using web services provided by other peers. 

"he peers of the system are organized into 
communities. Communities can be seen as groups of 
relevant peers. Peers are connected to other related 
peers through links, thus forming an overlay network 
of peers. The links between two peers do not 
necessarily correspond to physical communication 
links, that is, two peers connected to each other may 
be far away in the physical network. Instead, the 
distance between peers may be a chatactetization of 
their relevance; the smaller the distance, the more 
relevant the peers. A community consists of peers 
that may use each others' services through a path in 
the overlay network of a maximum of n-links. The 
peers in the community of a peer are called its 
neighbors. 

The number of links is a property that may be 
customized for each particular application, developed 
on top of CONSERV. The definition of community is 
generic. It may be based on actual network 
reachability between the peers. For instance, in an 
ad-hoc network, we may consider as the community 
of a peer the set of all peers that can be reached by it 
in n-hops. 

The main objective of the CONSERV architecture 
is the facilitation of the answering of queries over 
communities of peers. The cornerstone of the 
CONSER V architecture is the fact that we replace the 
traditional treatment of databases as persistent 
collections of tuples by the assumption that a 
database relation is a collection of tuples 
&narnicuIly compiled fiom an ad-hoc communi@ of 
peers, each ofering tuples to the relation through a 
workjIow of web services. 

3.2. Peer databases 

In our hmework, a peer may support database 
management facilities. To this end, each peer 
comprises a database, several relations, along with 

their schemata and data. Naturally, a database 
relation is instantiated by a set of tuples (i.e., a 
relation instance). A fundamental difference of 
relations in our h e w o r k ,  as opposed to their 
traditional treatment, involves their classification as 
(a) locally stored (i.e., in the traditional fashion), (b) 
virtual, and (c) hybrid relations. Locally stored 
relations are materialized and lie within a peer's 
permanent storage device. Virtual reladions are 
collections of tuples populated at runtime through the 
invocation of the appropriate web services of peers in 
the community. Hybrid relations comprise a locally 
stored part and a virtual part, that is, they consist of 
both data residing Iocally and data coming from other 
peers. 

Formally, a database is defined as a set of 
relations. As usual, a relation is characterized by (a) a 
name, (b) a schema, i.e., a finite set of attributes, (c) 
an instance, i.e., a f ~ t e  subset of the Cartesian 
product of the domains of the attributes of the 
schema, and (d) a type, ranging in the set of values 
(local, virtual, hybrid). No global schema is 
assumed, and each peer has its own relations. 
Whereas the local schema is fixed, the contents of the 
relations are not. Coming back to our reference 
example, we assume that the peer po carries the 
database of Fig. 2. 

Virtual relations 
CARS ( I D , PLATE, BRAND, VEL ) 

GAS-STATIONS (g, PRICE, FACILITIES), 
SID references SITES (SID) 
HOTELS (g, PRICE-SINGLE, PRICE- 
DOUBLE, FACILITIES), 
SID references SITES (SID) 
RESTAURANTS (m, TYPE, MENU, PARKING), 

I SID references SITES (SID) 
Figure 2. Database scheme of peer po. 

The CARS relation describes neighboring cars by a 
CONSERV-generated identifier, their plate number, 
their brand and their current velocity in Km/h. A 
typical tuple in this relation would be the following: 

BRANDS relation describes technical characteristics of 
different kinds of cars that may circulate along with 
po. These characteristics incIude the brand that 
uniquely identifies a particular kind of cars, the 
country that constructs these cars and the metrics 
system (e.g., SI, CGS, etc.) used in these cars 

(12345, HPX7864, RENAULT, 105). The 
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towards measuring car related features such as 
velocity. A typical tuple in this relation would be the 
following: (RENAULT, FRANCE, SI). The CARS 
relation is virtual because its contents depend on the 
contextual information that comes ffom pO’s 
neighboring cars. Information stored in the BRANDS 
relation does not depend on the pervasive 
environment; it simply encapsulates a constant part 
of po’s knowledge on the pervasive environment. The 
MAPS relation describes the parts of a map that are 
depicted over the screen of the car. Each part 
comprises a set of coordinates for its upper and lower 
points and a bitmap figure stored as a binary large 
object in the database of the car. Finally, a set of 
hybrid relations involving useful sites is stored in the 
database of the peer. The relations are hybrid, since 
the database has a set of locally stored, well-known 
sites (e.g., monuments, well-known hotels, etc.) as 
well as a set of sites discovered as the peer travels. 
Also, some of the information of the locally stored 
tuples (e.g., hotel prices) can be updated when the 
sites are in the neighborhood of the peer. The relation 
SITES is acting as a super-class table of the three 
other hybrid relations; still, the scheme that we 
employ is a pure relational one. 

3.3. Processing queries 

Queries are posed against the database of a peer. 
The ‘’use? that issues a query need only know the 
names and schemata of the relations being used; the 
nature of the relations and the workflows necessary 
for the collection of the values of the virtual relations 
are transparent to the user. 

The query is expressed in standard SQL (i.e., the 
nature of the involved relations is transparent to the 
user) and the collection of tuples is automatically 
performed by the system. Figure 3 depicts the 
different stages of query processing for user queries. 
First, the SQL query is parsed by the que9 
processor. As in traditional DBMSs, the query 
processor receives a declarative SQL query and 
produces a procedural execution free to be issued 
against the underlying data. In our case, the 
execution tree involves the integration of information 
coming fkom different peers. 

There are several steps to be taken towards the 
construction of the execution tree: 

Identification of the peers to be probed for 
tuples. To facilitate this task, there is a direclmy 
of known peers in the community of the peer 
serving the question and a peer manager that 
ultimately determines which peers are to be 
contacted. 

Identification of the workflows of web services 
that need to be invoked for each peer. In the 
simplest case, each relation in the local database 
is linked to the execution of one or more web 
services in remote peers. Each of these web 
services, in tum, returns a message that 
corresponds to one, several, or all the attributes 
of the relation that we wish to populate. In more 
complicated cases, it is quite possible that we 
need to transform, merge, cleanse or, in any 
case, process this incoming information before 
propagating it further towards the local relation. 
Hence, in general, we need a workflow of web 
service operations in order to obtain the tuples 
fiom each peer. The complexity of the workflow 
may vary along with the overhead introduced 
during its execution. The determination of this 
workflow is performed by the workjfi’ow resolver. 
In CONSERV, we weat such workflows as 
connected digraphs comprising at least a 
fountain start node and a sink end node. 

The peer’s directory, the peer’s manager and the 
workflow resolver fom the context manager 
subsystem, which together with the query processor 
constitute the overall CONSERV architecture. In the 
remainder of the paper, we discuss further details and 
various policies supported by these subsystems. 

Figure 3. The CONSERV architecture. 
4. Query processor 
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The query processor constructs a first execution 
tree, by employing information regarding which 
peers are to be contacted and how. The algorithm for 
achieving this is given in Table 1. 

Table I. Constructing an execution tree. 
Algorithm ConstructExecutionTree 
Input: an SQL query Q over hybrid relations and a 
finite set of web service workflows IT 
Output: an execution tree 
Begin 

For each hybrid relation in the FROM clause of the 
query construct a sub tree as follows: 

1. The leaves of the tree are (a) web 
services at the peers, or (b) the locally 
stored parts of the hybrid relation 

2. The root of the subtree is a UNION 
operator that collects the information 
fkom the different parts 
Local parts of the hybrid relation are 
directly connected to the root 
For each peer leaf p, the end node of 
the workflow f, (belonging to r) is 
connected to the UNION node and the 
start node is connected to the peer p. 

The rest of the tree is constructed following the 
traditional SQL parsing algorithm. First, joins are 
placed on top of the UNION nodes, followed by 
selections, projections, groupings and orderings. 

3. 

4. 

End. 

Coming back to our motivating exampIe, assume 
that a peer po is driving fiom Marseilles to 
Barcelona. The database relations at peer po are as 
depicted in Fig. 2. The relation CARS is virtual; it 
describes neighboring cars of po, while the relation 
BRANDS is local since information stored in the 
BRANDS relation does not depend on the pervasive 
environment. 

In Fig. 4, we depict an example of how the query 
processor works. At the left part of the figure we see 
the original SQL statement. At the middle of the 
figure, the original execution tree is depicted. 
Observe that the tree has a distributed part (under the 
UNION node) and a local part (everything above the 
UNION part). 

While the collection of data is realized in a 
distributed manner, joins, selections, projections, 
groupings and orderings are performed locally by the 
query processor. Nevertheless, there are chances for 
obt;uning the answers a lot faster than this, by 
distributing some of the operations. Therefore, once 
the originating execution tree over the different peers 

is constructed, it is propagated to the query 
optimizer. Then, the final query execution tree is 
produced and executed over the involved peers. The 
results are calculated and returned to the issuing peer. 
An optimized tree for our example is shown at the 
right part of Fig. 4. 

Figure 4. Query processing example. 

Assume now that two neighboring cars p1 and p2 
are in the same community with po. Peer p1 provides 
a web service that includes the get-state0 
operation, returning an XML message with the 
attributes [PLATE NUM, BRAND, VELOCITY J and 
peer p2 provides a-web service that includes the 
get-velocity ( 1  operation that provides its 
velocity in mileshour and the get-brand0 
operations that provides its brands. 

Figure 5. Answering a query by employing 
different workflows, per different peer types. 

The mapping between the local peer’s relation and 
the web services provided by the peers handles the 
following technical problems. 

As far as peer p1 is concerned, a CONSERV- 
generated id is generated and added to the 
incoming tuple through a tuple constructor. 
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As far as peer p2 is concerned, a tuple 
constructor is generated at pols side as a 
placeholder for the res& of the invocation of 
the two services of p2, miledhour are converted 
to Km/hour and a NULL value along with a 
system generated id must be produced and added 
to the incoming tuple. 

The h s t  f?om the above points is realized by the 
upper workflow of Fig. 5, while the second point is 
reallzed by the lower worknow of Fig. 5 .  Selecting 
the appropriate workflows for each kind of peers is a 
responsibility of the workj7uw resolver, which is part 
of the context manager, discussed in Section 5.  

5. Context manager 

There are several technical issues regarding the 
way communities of web services are formed to 
answer queries. In this section, we discuss these 
issues and the approach followed in the CONSERV 
inhtructure. Moreover, we explain the role of 
communities in their management. 

5.1. Managing communities 

In the CONSERV hfhtructure, the result of a 
query depends on which peers belong to the 
community of the peer that poses the query. Thus, 
determining the list of neighboring peers to be bound 
for answering the query is a central part of query 
processing. 
Various policies regarding how information about 

the members of each community is maintained may 
be followed by the peer managers (Fig. 3). At one 
end, there is a single peer per community that 
comprises a peer manager, which maintains the peer 
directory, that is, the members of its community. At 
the other end, each peer may comprise a peer 
manager that maintains a local directory with the set 
of its neighboring peers. Between these two 
extremes, membership infomation may be 
distributed among all members of the community. 

Another technical issue that also arises here is the 
refreshment of the content of the peer directory. 
Several policies may be followed in CONSERV to 
accomplish this task: 

Always-update. The peer directory is kept up-to- 
date. When a peer leaves its current community 
or enters a new one, the peer directory is updated 
to reflect the new membership information. This 
is a form of push-based update, in the sense that 
it is initiated by the departing (entering) peer. 

Lazy-update. The peer directory is updated only 
on demand when a peer poses a query and its 
neighboring peers must be determined. 
Periodic-update. The peer dixectory is refieshed 
at pre-specified time intervals. This can be either 
push or pull-based. In the pull-based case, the 
directory update is initiated by the peer holding 
the directory to be refieshed, while in the push- 
based case, the update is initiated by each peer 
that communicates its position to the related 
directories. 

5.2. Timing of queries 

Given that the members of each community (and 
thus the results of a query) change during query 
evaluation and execution, we need io specify the 
validity of each result set. Let pq be the peer issuing 
the query at time instance tinit and tresult be the 
time the results are received by ps. Let C,  (p4) 
denote the community of pq at time instance t and let 
sR be the set of peers that participated in the 
execution of the query. We introduce the following 
quality measure: 

for t E [tinitr tresult]. The validity measure 
characterizes how fir is the set of peers that actually 
participated in the computation of the results fiom the 
set of peers that belonged to the community of ps at 
some time instance t during query execution. For 
instance, t may be set equal to tinit or tresult. In the 
former case, we evaluate the query validity with 
respect to the time the user issued the query, whereas 
in the latter, we evaluate the query with respect to the 
time that the results are presented to the user. 

The tracing of the members of a community is 
done in a peer directory. There are two ways to 
manage the peer directory: (a) a single centralized 
directory keeps track of the peers in each community 
and @) each peer retains a local directory for th is  
purpose. Although in CONSERV we follow the latter 
approach, we provide a generic computation model 
that abstracts fiom the particularities of such a 
choice. 

Providing an estimation of the validity of query 
results that can be attained in a system such as 
CONSERV further involves identifying the members 
of sR. To achieve this, we rely on the three validity 
metrics, namely snapshot, interval and single-site 
validity, introduced in [ 5 ]  for computing aggregate 
queries in dynamic networks, such as in peer-to-peer 
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(p2p) and sensor networks. Snapshot validity requires 
that the set of peers sR contributing to a virtual 
relation are members of the community of ps at some 
point instance t during the execution of the query, 
that is sR = ct(pq)  for some t E [tinit, tresultJ. 
Znrervd vdidity requires that sR includes peers that 
were members of the community of ps at some time 
instance (not necessarily the same for all of them), 
during query execution. Single-site validity restricts 
sR to those peers that were reachable during query 
execution. It can easily be shown that neither 
snapshot nor interval validity can be attained in a 
setting such as ours where dynamic updates are 
possible. Thus, we aim at single-site validity. 

5 

Figure 6. Time axis for the real world, the 
directory and the querying peer. 

We assume that there are two distinct phases in 
the evaluation of a query following the construction 
of the optimized query execution tree. In Phase 1, the 
set s, of peers that are involved in the execution of 
the query is identified. During Phase 2, each peer in 
s, is contacted, evaluates locally the corresponding 
web service workflow and returns the results to the 
issuing peer. 

AAer the completion of each phase, it is possible 
to compute the validity of the query results attained 
using the three update policies (always, lazy and 
periodic). The three policies affect the set s, 
computed during the first phase. We assume a 
relaxed asynchronous model, where there is a 
m a x i "  delay 6 between any two peers. Let tl, tl  
> tinit, be the time instant, Phase I starts (i.e., the 
optimized execution tree is constructed). 

For Phase 1, we get singe-site validity with 
respect to peers reachable by the directory. In 
particular, the set s, includes peers reachable from 

the directory that were members of the community of 
p4 during some htervd IT,, Tz], where TI and T2 
depend on the update policy. Next, we compute T, 
and T~ for each update policy. With the dways- 
update policy, the set s, corresponds to the peers that 
were members of the community during [tl, tl + 
d I . With the lazy-update policy, there is an overhead 
for updating the directory, let this be U time units. 
The set s, is the set of peers that are members of the 
communityduring[t, t U, tl + U t 61.Letp be 
the period of the periodic update policy. In this case, 
the set s, is the set of peers that are members of the 
~0"unitydUring [tl - (tl + 6 )  mod P, tl + 
6 - ( ( t l  + 6 )  mod P ) ] .  

Phase 2 is initiated with the appropriate s, as 
defmed above. We assume a simple evaluation 
model, where each site in s, is contacted directly by 
ps and returns the results to it. Let t2 be the time 
instant when Phase 2 starts. For the always-update 
and the periodic policies, t2 = tl + 26 .  For the 
lazy-update policy we have, t2 = tl + U + 26. 
During this phase, a subset of peers in s, is contacted 
namely those peers that were reachable from p, 
during [ t z ,  t,,,,lt~.Thus, sR = { p :  p E s, and 
p reachable kom p, during [t2, tresultl . 

In Fig. 6, an example is presented for the lazy- 
update policy. It depicts a peer p,, the real world 
(referring to the community of peer ps), and the peer 
directory that t lus  community (including pg) 
employs. At time point Lit, peer pp contacts the 
directory to learn the members of its community. We 
assume that ps takes an interval 6 to reach the 
directory. The directory responds to p, after a 
processing time U with a list of neighboring peers. 
Then, p, contacts these peers with a query, at time 
point t2. Unfortunately, in the meanwhile, the 
configuration of the community has changed, with 
peer p4 joining and peer p2 leaving the community. 
By the time the query is completed at time point 
tresult, iis validity has decreased to 50%. 

Another technical issue that results from the 
dynamic nature of the environment is query 
termination. Typically, a query is considered to be 
successfidly completed when all relevant peers reply. 
However, as we have just shown, the fundamental 
assumption that each query will eventually terminate 
does not necessarily hold. Consequently, in the 
CONSERV fi-arnework, a query requires a 
termination condition for each of the operators that 
constitute the query expression. This can involve a 
timeout, the number of tuples collected, the 
percentage of virtual relations that were successfully 
populated or a combination of the above. 
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Additional issues related to the timing of queries 
arise in the case of continuous queries. For a 
continuous query, the contents of the relation are 
continuously modified according to the state of the 
community peers. We discriminate two cases: 

Periodic (or pull-based) refieshmenilt: In this 
case, the peer posing the query periodically polls 
its community to collect tuples. Note that this 
corresponds to resubmitting the query and that 
the community, i.e. the set of peers, that each 
time receives the query may be different. 

e Push-based querying, where each of the 
contributing peers notifies the peer that posed 
the query, whenever one of the tuples that it 
contributes changes value. 

5.3. Workflow resolution 

A central issue in query processing is determining 
how the virtual and hybrid relations are to be 
populated. This relates to how the peers carrying 
hgments of the virtual parts of the relations will be 
contacted, that is, how the workflows of web services 
are formed. In our setting, this resolution is 
facilitated through the usage of profiles and rules for 
peers. 

Peers with common interfaces (i.e., peers 
exporting the same set of web services) are organized 
into peer classes. Each peer is aware of the interface 
of a specific set of classes. Such information is 
maintained in a class projle. A rule is a mapping of 
the form: 

(relation fragment, peer class) => web service workjlow 
The semantics of the mapping is that once the 

profile of a neighboring peer is resolved, then, 
depending on the intemal relation to be queried, a 
specific web service workflow is employed. It is 
possible that instances of a peer class can populate a 
subset of the attributes of an internal relation. The 
term relation fragment refers to the subset of the 
attributes of the intemal relation that pertains to the 
information returned by the web service workflow of 
a rule. 

Naturally, this kind of meta-infomation would 
probably be impossible to hard-code for all potential 
peers. Therefore, the role of classes is crucial, since 
they act as classes of peers, all exporting the same 
interface. 

In our motivating example, in Fig. 7, we have 
seen that peer po contacts its two neighboring peers 
differently. This is due to the fact that peer p1 
belongs to the class European cur and peer pz 
belongs to the class American car. 

Peer p1 provides a web service that includes the 
get - state 0 operation, returning an XML 
message with the attributes 
[PLATE NUM, BRAND, VELOCITY]. The rule for 
the mapping is: 

(CARS (PLATE, BRAND,VEL) , "European car") 
=> get-state ( 1  

+ Peer p2 provides a web service that includes the 
get velocity() operation that provides its 
velocity in mileshour and the get-brand() 
operations that provides its brands. The rule for 
the mapping is: 

(CARS (VEL,BRAND) , "American car") 
= ~ t u p l e [ g e t ~ v e l o c i t y ~ ~ , g e t ~ b ~ ~ ~ d o l  

Rules and profles are managed by the peer 
manager and used by the workflow resolver. 
Naturally, other schemes can also be devised, 
especially if we keep scalability and evolution in 
mind. For example, a super-peer acting as a web 
service repository can inform interested peers on the 
interfaces of the peers of their comm~~&~.  

Another issue that needs to be clarified is the 
locality of the execution of the workflows of web 
services. Workflows comprise specific operations to 
be executed; therefore, once the operations involved 
in a workflow are resolved, the only pending issue is 
the monitoring of the whole execution. By default, 
this is handled by the local peer, although one can 
envision schemes where a third party is employed for 
this task. 

Still, if a certain service can be obtained by more 
than one peer (e.g., both the local and the queried 
peer can perform a translation of miles to 
kilometers), a decision must be made about which 
particular operation will ultimately be invoked. The 
role of the workflow resolver further includes 
resolving such ambiguities. 

6. Implementing CONSERV over JXTA 

The development of the fmt prototype of the 
CONSERV infrastructure is based on JXTA [6]. 
JXTA is a lightweight platform, capable of 
supporting the organization of p2p communities. 
JXTA peers may execute on either stationary or 
mobile devices and they communicate through the 
exchange of XML messages. In the particular case of 
CONSERV, the messages further conform to the 
SOAP format, as imposed by the web service 
standard architecture [l]. JXTA provides a variety of 
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primitive services on top of which we build 
CONSERV. Specifically, CONSERV relies on the 

0 The Membership service, whch allows peers to 
create, join and leave communities (groups is the 
exact term used in JXTA). 
The Pipe service, which allows peers to create 
pipe connections between them. A pipe is the 
basic message exchange mechanism provided by 
ETA.  
The Discovery service, which enables peers to 
discover peer groups and pipes. 

In our fjrst CONSERV prototype, we assume that 
each peer contains a local peer directory, managed by 
a locally deployed peer manager. Whenever a peer 
intends to join a community it follows the steps 
below: 
0 First, the peer queries, through the peer manager, 

the JXTA DiscoveIy service for available 
communities. 
Based on the results of this query, the peer 
selects one (or more) community to join. 
Finally, the peer joins the community, using the 
Membership service. 

Once these steps are completed, the peer is a 
member of the selected community. However, the 
peer’s Iocal directory must be organized into classes 
of peers with compatible interfaces. This 
hctionality is not directly supported by JXTA. To 
work around this problem, we use the notion of 
pipes. First, we describe the initialization of the local 
directory of a peer. Each peer that joins a community 
creates a different input pipe for every web service it 
provides. Each input pipe is identified by the JXTA 
peer identifier and by the URI of the WSDL service 
specification. Each input pipe is then published using 
the E T A  Discovery service. Following, the peer 
queries the E T A  Discovery service for input pipes 
that provide compatible interfaces, i.e., input pipes 
that have the same URI. The peer issues one query 
per different class of peers and the results are stored 
in different sub directories within the local peer 
directory. 

Once the local directory of a peer has been 
initialized, it is ready for use. As time passes, the 
community around a peer is modified. As already 
discussed in Section 5.1, the update of the local 
directory may take place according to three different 
policies. E T A  provides primitive support that 
facilitates their realization. To implement the always- 
update policy, CONSERV peer managers register in 
the Discovery service as Discovery listeners, 
providing a particular call-back service, which is 

following : 

invoked upon the occurrence of a new pipe 
advertisement. The realization of the periodic-update 
and the lazy-update policies is much simpler. The 
CONSERV peer managers contact the Discovery 
service for new pipe advertisements, either 
periodically or right before issuing a query for 
contextuaI information. 

7. Related work 

To our knowledge, CONSERV is the fust attempt 
to employ web services over peers as a substitute to 
relational databases. Therefore, in this section, we 
review research results that serve more as a 
background, rather than as alternatives to our 
approach. 

Data integration is an old problem, addressed by 
the database community for a long time [7, 8, 91. 
Although several research efforts exist, we believe 
that the focus of the research community so far is not 
directly relevant to the CONSERV approach, since 
the fundamental assumptions underlying earlier 
approaches focus on data sources as data providers 
and not ad-hoc, autonomous peers in a p2p 
h e w o r k .  Still, we mention a few prominent works 
that appear to be closer to the CONSERV 
Mework.  An excellent survey of problems 
typically occurring in the context of data integration 
is found in [lo] (still, with a special focus on data 
warehousing). In [ 1 I] the author discusses the issue 
of generic model management, with a focus on 
mapping different models to each other. 

Query processing in a disaibuted setting has been 
extensively studied in the database community [12, 
131. An important research problem is how to 
combine the workflows involved in the execution of 
the queries and the algorithms empIoyed in 
distributed query processing in our setting. The 
workload balancing/optimization of the peers 
executing services is also an area where existing 
results [14, 151 can be exploited by the CONSERV 
architecture. 

Communities of peers are usually organized in 
terms of Semantic Overlay Networks (SONs). 
Different kinds of SONs have been proposed so far. 
Structured SONs [16, 171 assume that the peers are 
ConceptualIy connected into specific topologies. 
Based on these topological constraints, they provide 
guarantees on the overall cost for performing queries. 
Unstructured SONs [lX, 19, 201 provide no such 
guarantees as they do not impose any topological 
constraints. On the other hand, they are simpler to 
manage in the presence of peer join and leave 
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actions. Extending the CONSERV technique for 
constructing communities of peers with SONS is a 
challenging issue. 

8, Conclusions and future work 

In this paper, we have presented CONSERV - a 
middieware infrastructure for the development of 
virtual databases that enable rhe management of 
contextual information, spread in pervasive 
computing environments. The contextual information 
we deal with is provided by ad-hoc communities of 
web services offered by peers that arbitrarily join and 
leave the pewasive computing environment. 
CONSERV provides an SQL fiont-end for the 
answering of queries. The cornerstone of the 
proposed in€rastructure is the fact that we replace the 
traditional treatment of databases as persistent 
colIections of tuples by the assumption that a 
database relation is a collection of tuples dynamically 
compiled fiom an ad-hoc set of peers. Each peer 
offers tuples to the relation through a workflow of 
web sentices. 

CONSERV raises many issues for future work. In 
terms of performance, a central issue is deriving 
efficient workflow execution plans, coupled with 
appropriate algorithms for updating the peer 
"triunity. In terms of dependability, it is important 
to construct workflow execution plans by taking into 
accouut the mobile nature of peers, which may cause 
failures. Regarding the management of context, we 
plan to extend the notion of community exploring 
various aspects of context. 
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