
An Integrated Development and Runtime

Environment for the Future Internet

Amira Ben Hamida1, Fabio Kon5, Gustavo Ansaldi Oliva5,
Carlos Eduardo Moreira Dos Santos5, Jean-Pierre Lorré1, Marco Autili4,

Guglielmo De Angelis6, Apostolos Zarras3, Nikolaos Georgantas2,
Valérie Issarny2, and Antonia Bertolino6

1 Petals Link, France
2 Inria, France

3 University of Ioanina, Greece
4 Università degli Studi dell’Aquila, Italy

5 University of São Paulo, Brazil
6 Institute of the National Research Council of Italy

Abstract. The Future Internet environments raise challenging issues
for the Service-Oriented Architectures. Due to the scalability and hetero-
geneity issues new approaches are thought in order to leverage the SOA
to support a wider range of services and users. The CHOReOS project
is part of the European Community Initiative to sketch technological
solutions for the future ultra large systems. In particular, CHOReOS
explores the choreography of services paradigm. Within this project, a
conceptual architecture combining both the development and runtime
environments is realized. This chapter introduces the CHOReOS Inte-
grated Development and Runtime Environment, aka IDRE.

Keywords: SOA, Service, Choreography, MDA, Cloud & Grid, IDRE,
Governance, Middleware, Discovery, Access, TDD, V&V.

1 Context

Raising the Future Internet Challenges. The Future Internet (FI) context draws
a global environment populated with a plethora of services. Such services are
related to two - commonly identified by many FI initiatives - key FI dimensions,
the Internet of (traditional) Services and the Internet of Things. The latter di-
mension is expected to considerably change the way we perceive the Internet
today, by incorporating in it vast populations of physical objects or, from an-
other viewpoint, sensors and actuators linking to the physical world. We take
this SOA view of the FI one step forward by advocating choreographies of ser-
vices i.e., compositions of peer interacting services as the primary architectural
solution for leveraging and sustaining the richness and complexity of the FI. In
this context, three key challenges, namely, scalability, heterogeneity, and aware-
ness are raised. As already pointed out, the large scale of today’s Internet be-
comes ultra large scale (ULS) in the FI, in terms of numbers of devices, services,

F. Álvarez et al. (Eds.): FIA 2012, LNCS 7281, pp. 81–92, 2012.
c© The Author(s). This article is published with open access at SpringerLink.com



82 A. Ben Hamida et al.

things, users, requirements, and their infinite combinations within choreogra-
phies. Then, extreme heterogeneity is unavoidable in terms of the previous, and,
additionally, in terms of interaction protocols at different levels, data, semantics,
and related technologies. Third, awareness has to do with taking into account
user requirements as well as context in all its dimensions, physical, system, and
user context, as well as its volatility in the open, dynamic and mobile FI. The
CHOReOS project is part of the European Community Initiative to sketch tech-
nological solutions for the future ultra large systems. In particular, CHOReOS
explores the choreography of services paradigm.

Addressing the Future Internet Challenges. In this paper, we provide a com-
prehensive solution to the above particularly challenging issues. We realize the
CHOReOS Integrated Development and Runtime Environment, aka IDRE. We
exploit sophisticated research domains from the Service-Oriented Architecture
(SOA) realm, including Service Discovery, Access and Composition as well as
SOA Governance, together with the Model Driven Engineering (MDE) paradigm
and the Cloud & Grid paradigms [9]. Building on MDE principles, the CHOReOS
development process enables going from very high-level user requirements for ser-
vice choreographies down to highly heterogeneous realizations of the final chore-
ographies, where incompatibilities of the participating services are compensated
for. It is worth noting that in the CHOReOS terminology (traditional) Ser-
vices and the Internet of Things, become, respectively, the Internet of Business
Services (IoBS) and the Internet of Thing-based Services (IoTS). To deal with
environments where IoBS and IoTS coexist in a transparent way, CHOReOS
IDRE relies on the integration, interoperability and large scale distribution ca-
pabilities provided by the Enterprise Service Bus middleware paradigm, which
we extend and enhance to cope with the very heterogeneous deployment and
interaction semantics and platforms of both types of services. Additionally, we
develop sophisticated service discovery mechanisms in order to offer registration,
classification, query and retrieval mechanisms adapted to the ULS populations
of Business Services and Thing-based Services. Scalability issues are also consid-
ered at the levels of service access and provisioning, choreography deployment
and need for computation, as well as management of vast populations of services
and their data, where we exploit Cloud and Grid capabilities for offering a pow-
erful and elastic platform of resources. Finally, we rely on the fundamentals of
the Governance and Verification & Validation (V&V) domains for ensuring the
quality of services and choreographies at both design and run time. Both func-
tional and non-functional properties of services and choreographies are assessed,
augmenting in this way our awareness of the composed choreographies. In this
chapter, we introduce the IDRE conceptual view, detailing its subsystems and
their respective functionalities. The remainder of the chapter is as follows. We
provide an overview of the CHOReOS IDRE in Section 2. Section 2 is dedicated
to the choreography synthesis. In Section 4, we detail the CHOReOS middle-
ware. Section 5 introduces the Governance and V&V framework. Finally, we
conclude in Section 6.



An Integrated Development and Runtime Environment for the FI 83

2 CHOReOS IDRE Overview

The CHOReOS IDRE relies on a modular SOA where a number of coarse-grained
subsystems are integrated to support the overall development, from design to
implementation, together with deployment and execution, of services choreogra-
phies in the FI. CHOReOS embeds the following subsystems: the CHOReOS
Development Environment, the eXecutable Service Composition (XSC), the eX-
tensible Service Discovery (XSD), the eXtensible Service Access (XSA), Cloud
and Grid Middleware, Governance and V&V Framework and finally the Moni-
toring (See Figure 1).

Fig. 1. CHOReOS IDRE Overview

3 CHOReOS Development Environment

ULS choreographies of services need to be created and analyzed with the aim of
coping with the FI environments. For this purpose, the CHOReOS project pro-
vides a dedicated development environment (See Figure 2). Therefore, a model-
driven development process is realized. First, thanks to dedicated Requirements
Specification Tools the user requirements specification is captured. The final
output of the requirements specification activity is a choreography specification
(in the BPMN2.0 language), which serves as input to the next phases of the
overall process. Second, the Synthesis Processor operates an automated synthe-
sis of specific software entities, namely Coordination Delegates, that coordinate
the collaboration among the services so as to enact the choreography in a fully
distributed way. These are executed on top of the CHOReOS Middleware (See
Section 4). Third, the development process ends with the scalability analysis
performed by the Choreography Analyzer.



84 A. Ben Hamida et al.

Fig. 2. CHOReOS Development Process

3.1 Requirements Specification Tools

The Requirements Specification Tools are mainly responsible for enabling do-
main experts to specify functional and quality requirements on services and
service-based applications, and in turn, to enable the domain expert to produce
a first draft choreography specification. First, the Specification Expressing Tool
and DataBase provide the domain expert with service consumer requirements
and associated attributes. The service consumer specifies requirements using a
structured approach facilitated by mobile tools – such as the iPhone app (ap-
plication). There can be many service consumers with many user needs. The
expressed requirements are recorded in a DataBase along with attributes for
quality, priority and situation. Associated with the requirements is a quality
model, which relates the user requirements on service-based applications to QoS
on services aggregated in these applications. Second, the Requirements Manage-
ment and Analysis Tool provides the domain expert with requirements manage-
ment and analysis functions. These functions are provided to help the domain
expert to pull out individual requirements in order to form a set of require-
ments for choreography. Third, the Requirements Engine executes a matching
and grouping algorithm to cluster the service consumer and domain expert ex-
pressed requirements. A ‘calculate similarity’ algorithm, enables the requirement
comparison for similarity using natural language processing techniques. The out-
put from this component is grouped requirements for choreographies. Finally,
the Matching Tool and User Task Model Database are responsible for matching
the requirements on the choreography specification to user task models using a
matching tool. A set of CTT (Concur Task Trees) task models, describing struc-
tured activities that are often executed during the interaction with a system are
defined and stored in a database. Finally, the prioritized quality-based require-
ments and user task models are then associated with choreography strategies,
which are expressed in the form of patterns by the choreography designer. The
final output of this process is a first draft choreography specification and a set
of associated requirements to inform the discovery of abstract services.

3.2 Synthesis Processing

Advancing the foundational background on software coordination via automated
coordinator synthesis [3,8,11], the Synthesis Processor subsystem is mainly re-
sponsible of synthesizing the coordination delegates that are in charge of suitably
coordinating, in a distributed way, the services participating to the choreogra-
phy. The approach starts from the BPMN2 choreography model and from the



An Integrated Development and Runtime Environment for the FI 85

set of discovered services. The first input comes from the refinement of the CTT
models and choreography patterns (and hence, the first draft choreography spec-
ification discussed in Section 3.1). The latter comes from the exploitation of the
service base management mechanisms described in Section 4.1. Thus, the synthe-
sis process assumes that the services into the registry/base have been discovered
so that they satisfy the local (to the service) functional and non-functional re-
quirements that have been specified for the choreography and, hence, can be
considered as potential candidates to participate in the global choreography
process. Finally, the choreography synthesis produces the coordination delegates
that will be then managed by the service composition engine for choreography
realization purposes presented in Section 4.2, hence accessing the participant
services through the service access subsystem presented in Section 4.3.

3.3 Choreography Analyzer

Given the ultra large scale of FI choreographies, automated analysis mechanisms
become necessary to support choreography evolvability. The Choreography Anal-
ysis component is mainly responsible for analyzing either a serialized BPMN2
choreography specification or the set of coordination delegates issued by the
synthesis process (Section 3.2). Two kinds of analysis are currently supported
and implemented in the form of subcomponents, namely choreography Scalabil-
ity prediction and choreography Stability and Interdependencies Analysis. In the
following, we describe each of these subcomponents. The Scalability Prediction
relies on two mechanisms: the QoS Prediction and the Scalability Analysis. The
QoS Prediction aims at estimating the behavior of the choreography (written in
BPMN2.0) regarding QoS parameters such as service response time, capacity,
reliability, availability of a composition, etc. The prediction takes into account
the choreography execution context (the number of user requests, the number of
concurrent choreographies, the available resources), but captures it in a single
state. In turn, the Scalability Analysis considers various possible states of the
choreography execution. It uses for this issue the QoS Prediction mechanism for
single state prediction and a mathematical model describing the dynamics of
changes in the choreography execution. The Stability and Interdependency An-
alyzer is primarily responsible for performing change impact analysis based on
the existing dependencies between choreography participants. In addition, the
component also applies the analysis to a set of concrete services and coordina-
tion delegates that realizes the choreography. The analyzer component relies on
model-to-model (M2M) transformations to obtain the dependency graph from
either a choreography BPMN2.0 specification or a set of coordination delegates.
Finally, the analyzer relies on graph analysis techniques to calculate a variety of
dependency-centric measures, including graph centralities [10] and stability.

4 CHOReOS Service-Oriented Middleware

The CHOReOS middleware targets two different but interrelated domains of
services: Business services and Thing-based services. Based on this inherent



86 A. Ben Hamida et al.

characteristic, the high-level architecture of the CHOReOS middleware com-
prises corresponding domain-specific mechanisms that support the discovery
of services, the access to services, and the execution of service compositions.
The specificities of the functionality offered by the domain-specific mechanisms
are hidden by corresponding unified “eXtensible” middleware mechanisms that
unify the access to the domain-specific middleware mechanisms. In addition,
computationally- and storage-intensive tasks of both the middleware and the
choreographies are supported by the CHOReOS Cloud and Grid services. In the
following, we describe the CHOReOS middleware (See Figure 3).

Fig. 3. CHOReOS Middleware Architecture

4.1 eXtensible Service Discovery

The CHOReOS IDRE provides a multi-protocol service discovery service. Actu-
ally, it relies on an Abstraction-oriented Service Base Management (AoSBM) [2],
[1] that stores and classifies in a suitable way an important amount of services
data. This base is populated by an extensible plugin-based mechanism. The lat-
ter is responsible for extending the service discovery to both business services
and FI things, by plugging domain-specific discovery protocols like, e.g., the
Governance Registry for Business services and the Things Discovery Protocol
(TDP). The registry is populated either in a passive or active way thanks to
the Plugins. Moreover, the XSD relies on Semantic Knowledge Base ontologies
to enable the devices (Things) discovery. Regardless of their heterogeneity, the
CHOReOS XSD provides a unique abstraction referencing services, which em-
powers the ability of realizing choreographies of services.

4.2 eXecutable Service Composition

Service choreographies in CHOReOS are supported by different execution plat-
forms so as to cope with the diversity of service technologies found in a ULS
environment. The enactment of a choreography is taken into account by the
XSC mechanism. The latter takes as input the choreography synthesized previ-
ously by the Choreography Development Process and discussed in Section 2. A
set of Coordination Delegates specifies the choreography and are then dedicated
to the right XSC. Specifically, BPEL-based XSC enables the implementation



An Integrated Development and Runtime Environment for the FI 87

of coordination delegates using BPEL, while SCA-based XSC supports the im-
plementation of coordination delegates using SCA. In a complementary way,
the Thing-based Composition & Estimation component deals with the composi-
tion of Thing-based services to handle requests for interacting with the physical
world. While enacting a choreography, some services may not respect the ini-
tially contracted agreements and choreography reconfigurations need then to be
operated. For that end, the CHOReOS XSC relies also on a reconfiguration and
substitution mechanism.

4.3 eXtensible Service Access

In ULS environments, millions of services either Business or Things oriented are
deployed in a distributed manner allover the ambient context. Besides the fact
that they are coming from heterogeneous sources and are dedicated to different
aims, they are also implemented using distinct standards and technologies. Con-
sequently, in order to make these services collaborate within choreographies, it
is essential to provide a middleware technology that unifies their access. Within
CHOReOS we exploit the Enterprise Service Bus paradigm, which provides a
glue technology supporting connectivity and communication techniques. Further
enhancements are realized with the aim of making the CHOReOS XSA support
both Business and Things services. Indeed, the XSA is based on an enhanced ser-
vice bus paradigm to overcome the heterogeneity of the FI. This paradigm is rep-
resented by the eXtensible Service Bus (XSB). The latter enables multi-protocol
access to both Business Services of the IoBS domain and Thing-based Services of
the IoTS domain, as well as cross-domain access. In particular, it enables inter-
operability among heterogeneous interaction paradigms of both domains, while
conserving as much as possible their semantics. The XSB is an abstract bus that
prescribes only the high-level semantics of the common bus protocol. This se-
mantics follows a Generic Application-GA- abstraction paradigm. Moreover, the
XSB relies on the Distributed Service Bus (DSB) [4] that provides support for
accessing business services. We rely on the Petals DSB to ensure this function-
ality. Additionally to the native bus capabilities the DSB supports distribution
and offers the core runtime middleware. The DSB is leveraged to the FI features
through the adaptation to the cloud middleware. It benefits from the provided
hardware resource infrastructure, in fact. Further enhancements intend to take
advantage from the cloud elasticity discussed in Section 4.4. Furthermore, in or-
der to target IoTS domain, we provide the Light Service Bus (LSB), which is a
lightweight concrete bus realization of XSB and its GA semantics, dedicated to
IoTS, hence, accounting for its dynamics and resource constraints while enabling
access to heterogeneous Things. In particular, the GA semantics is conveyed on
top of a substrate protocol (DPWS) that is suitable for the IoTS domain.

4.4 Cloud and Grid Middleware

The Cloud and Grid Middleware services provide basic services that support
computational- and storage- intensive tasks performed either by the CHOReOS



88 A. Ben Hamida et al.

middleware services, or by the choreographies that are built on top of the
CHOReOS middleware. The Cloud service can allocate and deallocate resources
dynamically according to service demand. Tasks such as encoding large amounts
of video in a citizen journalism application can take advantage of the Grid
service. The allocation of Cloud machines for execution of choreographies is
performed by the CHOReOS middleware in a way that is transparent to chore-
ography users, designers, and developers. The CHOReOS middleware uses the
ServiceDeployer component to allocate new nodes from the NodePoolManager
and then deploy and run new services on them. In these nodes, CHOReOS will
execute major choreography components (e.g., proxies, adapters, coordination
delegates) for service access at runtime. To this end, the EnactmentEngine will
use the NodePoolManager and the ServiceDeployer to set up the choreography
environment, allocating the required nodes, deploying the required software and
enabling the execution of the choreography. To achieve scalability and portabil-
ity, the NodePoolManager is able to allocate new nodes in multiple underlying
execution platforms. A CHOReOS node may be part of a Cloud Infrastructure
as a Service (IaaS) platform; these can be provided by a public Cloud such as
Amazon EC2 or Rackspace, or a private Cloud, for example, executing the Open-
Nebula or OpenStack open source Cloud software. The CHOReOS monitoring
service will provide data to runtime QoS and V&V enforcers. If a QoS violation
is detected, for example, the Cloud service can be used to allocate new nodes in
an attempt to improve QoS.

5 Governance and V&V Framework

ULS choreographies bring into play a very large number of services, users and
resources employing the system for different purposes. Therefore, methodologies
and approaches that will permit the smooth integration of independently devel-
oped pieces of software need to be implemented. In IT Systems, the Governance
approach enables supervising such large systems. Indeed, a set of processes, rules,
policies, mechanisms of control, enforcement policies, and best practices are put
in place throughout the life-cycle of services and choreographies, in order to
ensure the successful achievement of the SOA implementation. Activities such
as policy definition, auditing & monitoring, and finally evaluation & validation
are recommended. Within CHOReOS, we implement a Governance and V&V
Framework (See figure 4) that underly the services, and choreographies lifecy-
cle. Precisely, the Service Level Agreement-SLA and lifecycle management deals
with the lifecycle of relevant resources such as services, service level agreements,
and choreographies. Further, the V&V Components perform the testing of ser-
vices before their involvement in choreographies. Online testing of services and
choreographies at runtime is also operated. Finally, the Test Driven Development
Framework (TDD) operates a series of complementary tests.



An Integrated Development and Runtime Environment for the FI 89

Fig. 4. CHOReOS Governance and V&V Framework

5.1 SLA and Lifecycle Management

The SLA and Lifecycle management activities [12] are responsible for offering
the capabilities that ease the management of the resources, these can be services,
choreographies, policies, and service level agreements life-cycles. Meanwhile, it
also helps managing the roles and responsibilities of the users of the Gover-
nance Framework, by assigning credentials. Design time policies might define
which, when, and where to use standards and insure compliance between them.
The design time policies may also consider the fact of setting out corporate
namespaces, common coding conventions, etc. When a choreography is enacted,
in order to ensure its good behavior, it is ultimately necessary to enforce and
manage the non functional contracts of involved services, according to defined
policies. Within CHOReOS, a distributed monitoring system is envisaged in or-
der to assess the ULS choreography properties. The SLA governance is realized
by the Business Service Monitoring discussed in Section 5.4.

5.2 Verification and Validation Support

The Governance framework provided by the CHOReOS project implements a
comprehensive strategy for managing both choreographies and services. The
project put a special emphasis on governance aspects related to choreography-
oriented V&V activities by defining policies, and rules governing (e.g., enabling,
regulating, etc.) them [6]. The idea of V&V governance was originally proposed
in [7] to support an on-line testing [5] session when a service asks for registration
within a registry. In this vision, only services passing the testing phase are logged
in the registry. As a result, the registry is expected to include only “high-quality”
services that passed the validation steps foreseen by a more general governance
framework. In addition to the registration of a new service, the on-line validation
process could be also extended to other events, like the release of a new service
version. Note that when entering a new service registration in a registry, the
service provider is naturally wishful to promote the service and therefore can be
explicitly willing to submit it to on-line testing. On the other hand, the notifi-
cation of a service upgrade could be notified only sporadically. The governance



90 A. Ben Hamida et al.

mechanisms oriented to V&V activities could mitigate this aspect by means of
specific policies and obligations that the service providers should abide by, when
binding their services to a choreography. During the life-cycle of a choreography,
a service that was originally registered to play a given role in such choreography
could be modified or become deprecated. In addition, it is also possible that a
single service may play one or more roles defined by a choreography. Finally, the
same service may be involved in several choreographies with differnt roles, as well.
In all these scenarios, the V&V governance rules that the CHOReOS project is
proposing aim at prescribing that any modification (i.e. activation, modification,
cancellation) to either a registered service, or to a role defined by a choreography
should activate a new appropriate online testing session. In this sense, the Gov-
ernance Registry is an important component for SOA Governance. Indeed, as
described above, the CHOReOS Governance Framework enhances the canonical
functionalities provided by a Service Registry with a set features supporting on-
line testing techniques. Specifically, each feature is implemented and managed
by proxing the Service Registry with a set of dedicated handlers. Such handlers
are conceived as mechanisms permitting to modify the registration procedure of
a service with additional functionalities. In particular testing handlers activate
testing sessions on services for which a registration request, or a modification of
the associated entry, is received.

5.3 Test-Driven Development Framework

The main goal of Rehearsal, the CHOReOS testing framework, is to support
Test-Driven Development (TDD) of web service choreographies. Using the frame-
work, a choreography developer can perform multiple levels of tests to guide the
choreography development. TDD is performed in a testing, or offline, environ-
ment where some of the concrete services may not be available. To achieve that,
Rehearsal provides mechanisms for emulating real services or a part of the chore-
ography by using mocks, which is a well-known TDD practice. In addition, the
framework provides mechanisms for applying unit, integration, and scalability
testing. At development-time, services may be created or adapted to implement
the choreography roles properly. Unit testing aims at validating the correct be-
havior of atomic services. Integration testing aims at validating the messages
exchanged by the services when they are composed to implement a role. Finally,
compliance tests may also be applied to verify whether a service or a composition
of services plays the role correctly. Rehearsal also supports the scalability testing
of choreographies. Using this feature, the developer can assess the choreographies
in different scales. Through this assessment, which is performed offline, the de-
veloper can estimate the needed infrastructure aspects (e.g., instances of virtual
machines allocated to a service) to assure a performance metric (e.g., response
time) in the online environment. As it is a framework, Rehearsal usage, itself,
does not imply TDD application. It must be composed with other classes to
create a concrete and executable application. For so, a methodology is proposed
to guide developers in the application of TDD in choreography development
using Rehearsal. This methodology is divided in four phases: (i) Creation and



An Integrated Development and Runtime Environment for the FI 91

adaption of atomic services; (ii) Integration of services to compose choreography
roles; (iii) Integration of roles to compose the choreography; (iv) Acceptance
and scalability testing. The framework provides a tool to support each of these
phases. All tests written using TDD serve both as an executable specification of
the choreography behavior and as a means for V&V at design time. Later, at
runtime, the same tests may be used with the online system to verify the proper
behavior of the choreography in the production environment.

5.4 CHOReOS Monitoring

Relevant data such as the functional as well as the non functional attributes of
services are useful for the system supervision. The data from hardware resources
helps the middleware to engage in reactive measurements to correct problems as
they occur. However, monitoring ULS choreographies and systems raises chal-
lenging issues such as dealing with the scalability, the distribution and the het-
erogeneity. The CHOReOS IDRE addresses these requirements by relying on a
distributed and event-based infrastructure for monitoring both Business Services
and hardware resources. Finally, a Complex Event Processor-CEP-, ensures the
respect of the dictated policies. Once services are deployed or exposed on the
DSB, the CHOReOS Monitoring performs runtime assessment of Service Level
Agreements and control of the communications taking place within a choreogra-
phy, thanks to the Business Service Monitoring, which gathers data from the Dis-
tributed Service Bus. Communication Monitoring is achieved by subscribing to
events triggered by the running services. While, QoS Runtime Assessment relies
on the implementation of the WSDM standard. Then, the Resource Monitoring
is a ganglia-like monitoring system that interacts with the Cloud and Grid Mid-
dleware. First, it actively supplies notifications to interested subsystems about
relevant events, such as overloaded systems, out-of-memory conditions, or hard-
ware failures. Second, it maintains an overview of the current and recent status
of system resources to be able to respond to queries about them. Queries are
useful to support creation or destruction of virtual machine instances according
to load, services allocation, or services migration. We address the scalability and
distribution issues by considering for each each CHOReOS node a local compo-
nent collecting data (primarily memory, disk, and CPU usage). Then, data is
aggregated between distributed nodes in a hierarchical manner.

6 Conclusion

The FI world challenges the SOA by raising scalability, distribution and het-
erogeneity issues. The CHOReOS project addresses these issues by providing
responses at several levels. The CHOReOS Integrated and Runtime Environ-
ment gathers top-level technological SOA approaches including Model-driven
Architectures, SOA Discovery, SOA Composition and SOA Governance. In this
chapter, we have presented the CHOReOS platform as well as its main compo-
nents. Ongoing works concern the realization of the IDRE in ULS choreography
use cases.



92 A. Ben Hamida et al.

Acknowledgments. This work is partially funded by the EU 7th Framework
Program, contract CHOReOS FP7-ICT-2009-5 - Objective 1.2 (grant 257178).
The work presented in this paper only reflects the authors views. The Commision
is not liable for any use that may be made of the information contained therein.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution Noncommercial License which permits any noncommercial use, distribu-
tion, and reproduction in any medium, provided the original author(s) and source are
credited.

References

1. Athanasopoulos, D., Zarras, A., Issarny, V.: Towards the maintenance of service
oriented software. In: Proc. of the 3rd CSMR Workshop on Software Quality and
Maintenance, SQM (2009)

2. Athanasopoulos, D., Zarras, A., Vassiliadis, P., Issarny, V.: Mining service abstrac-
tions - nier. In: Proc. of the 33rd International Conference on Software Engineering
(ICSE), pp. 944–947 (2011)

3. Autili, M., Mostarda, L., Navarra, A., Tivoli, M.: Synthesis of decentralized and
concurrent adaptors for correctly assembling distributed component-based systems.
Journal of Systems and Software (2008)

4. Baude, F., Filali, I., Huet, F., Legrand, V., Mathias, E., Merle, P., Ruz, C., Krum-
menacher, R., Simperl, E., Hamerling, C., Lorré, J.: Esb federation for large-scale
soa. In: Proc. of the ACM Symposium on Applied Computing, SAC 2010, pp.
2459–2466 (2010)

5. Bertolino, A., De Angelis, G., Kellomäki, S., Polini, A.: Enhancing service federa-
tion trustworthiness through online testing. IEEE Computer 45(1), 66–72 (2012)

6. Bertolino, A., De Angelis, G., Polini, A.: Validation and verification policies for
governance of service choreographies. In: Proc. of the 8th International Conference
on Web Information Systems and Technologies, WEBIST (to appear, April 2012)

7. Bertolino, A., Polini, A.: Soa test governance: Enabling service integration testing
across organization and technology borders. In: Proc. of Software Testing, Verifi-
cation and Validation Workshops (ICSTW), pp. 277–286 (April 2009)

8. Calvanese, D., De Giacomo, G., Lenzerini, M., Mecella, M., Patrizi, F.: Automatic
service composition and synthesis: the roman model. IEEE Data Eng. Bull. 31(3),
18–22 (2008)

9. Issarny, V., Georgantas, N., Hachem, S., Zarras, A., Vassiliadis, P., Autili, M.,
Gerosa, M., Ben Hamida, A.: Service-Oriented Middleware for the Future Inter-
net: State of the Art and Research Directions. Journal of Internet Services and
Applications 2(1), 23–45 (2011)

10. Newman, M.: Networks: An Introduction, 1st edn. Oxford University Press (2010)
11. Tivoli, M., Inverardi, P.: Failure-free coordinators synthesis for component-based

architectures. Sci. Comput. Program. 71, 181–212 (2008)
12. Zribi, S., Bénaben, F., Ben Hamida, A.: Towards a service and choreography gov-

ernance framework. In: Proc. of the I-ESA Conference, Valencia Spain. Springer,
Heidelberg (to be published, 2012)


	An Integrated Development and Runtime Environment for the Future Internet
	Context
	CHOReOS IDRE Overview
	CHOReOS Development Environment
	Requirements Specification Tools
	Synthesis Processing
	Choreography Analyzer

	CHOReOS Service-Oriented Middleware
	eXtensible Service Discovery
	eXecutable Service Composition
	eXtensible Service Access
	Cloud and Grid Middleware

	Governance and V&V Framework
	SLA and Lifecycle Management
	Verification and Validation Support
	Test-Driven Development Framework
	CHOReOS Monitoring

	Conclusion
	References




