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2
Imag-Inria, Inria, 655 Avenue de l’Europe, 38330 Montbonnot, France

Abstract. The software architecture research domain arose in the early
90s and seeks solutions for easing the development of large, complex,
software systems based on the abstract description of their software ar-
chitectures. This research field is quite recent and there still does not
exist a consensus on what should be the description of a software archi-
tecture. However, guidelines are already provided. In particular, it is now
accepted that an architecture definition decomposes into three types of
elements: component, connector, and configuration, which respectively
correspond to a computation unit, an interaction unit and an architec-
ture. It is also admitted that the description of an architecture should
rely on a well-defined set of notations, generically referred to as archi-
tecture description languages. This document gives an overview of the
capabilities offered by development environments based on the architec-
ture paradigm. In a first step, we examine basic features of architecture
description languages, which may be seen as their common denomina-
tor although existing languages already differ from that standpoint. We
then concentrate on two specific environments, developed by members
of the Broadcast working group, which aim at easing the implemen-
tation of distributed applications out of existing components. The Aster
environment from the Solidor group at Inria-Irisa provides means for
the systematic synthesis of middleware from non-functional requirements
of applications. The Olan environment from the Sirac group at Inria-
Grenoble offers support for the deployment of distributed applications
composed of heterogeneous software elements.

1 Introduction

The ever increasing complexity of distributed applications calls for methods and
tools for easing their development. In that framework, industrial consortia have
emerged so as to provide application developers with standard distributed soft-
ware architectures. In general, such a standard specifies a base distributed system
for communication management, a set of services for distribution management
(e.g., naming service), and a set of tools for application development (e.g., Inter-
face definition language). The definition of a standard architecture then serves
as a guideline for the implementation of a programming system. A well known
example of standard distributed architecture is the Oma (Object Management
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Architecture) [33] from the Omg (Object Management Group) for the develop-
ment of distributed applications relying on client-server type interactions.

A more ambitious approach to the development of complex distributed ap-
plications is the one undertaken in the software architecture research field of
software engineering. Instead of concentrating on the definition of a specific ar-
chitecture, the ongoing research work aims at providing a sound basis for the
specification of various styles of software architectures (e.g., see [35,40]). An ar-
chitectural style identifies the set of patterns that should be followed by the
system organization, that is, the kinds of components to be used and the way
they interact. Although the software architecture field is continuously evolving,
it is now accepted that the description of an application architecture decomposes
into at least three abstractions (e.g., see [39]):

(i) Components that abstractly define computational units written in any pro-
gramming language,

(ii) Connectors that abstractly define types of interactions (e.g., pipe, client-
server) between components,

(iii) Configuration that defines an application structure (i.e., a software archi-
tecture or configuration-based software) in terms of the interconnection of
components through connectors.

Development environments that are based on the software architecture paradigm
then integrate an Architecture Description Language (Adl) that allows applica-
tion specification in terms of the three above abstractions, together with runtime
libraries that implement base system services (including primitive connectors).
Such an application description fosters software reuse, evolution, analysis and
management.

In the light of research results in the software architecture field, configuration-
based description of distributed applications constitutes a promising approach
for facilitating the development of correct, complex distributed applications. The
next section provides a general definition of Adls together with an overview of
research work in the area. Sections 3 and 4 then concentrate on two specific
development environments based on the architecture description of distributed
applications. Section 3 presents the Aster environment, which is being devel-
oped within the Solidor research group at Inria-Irisa. The Aster environment
offers a set of tools for the systematic synthesis of middleware from the formal
specification of non-functional properties (e.g., security, availability, timeliness)
as respectively required by distributed applications and provided by available
middleware services. Section 4 discusses the Olan environment from the Sirac
research group at Inria-Grenoble. The Olan environment provides means to
deploy a distributed application over a given infrastructure with respect to the
application’s configuration. Finally, Section 5 offers some conclusions.

2 Description of Software Architectures

Research effort in the software architecture domain aims at reducing costs of de-
veloping large, complex software systems. Towards that goal, formal notations
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are being provided to describe software architectures, replacing the usual in-
formal description of software architectures in terms of box-and-line diagrams.
These notations are generically referred to as Architecture Description Languages
(Adls). Basically, an Adl allows the developer to describe the gross organiza-
tion of his system in terms of coarse-grained architectural elements, abstracting
away the elements’ implementation details. Except this general definition and
despite the increasing interest in the software architecture domain since its ap-
pearance in the early 90s, it still does not exist a consensus on what is an Adl.
As previously mentioned, prominent elements of a software architecture subdi-
vide into the three following categories: component, connector and configuration.
However, some Adls do not model connectors as first-class objects in which case
connectors are implicitly defined within configurations through the connections
(or bindings) among components. In general, existing Adls differ depending on
the aspects that are targeted for the construction of software architectures. We
identify at least two research directions, which are sometimes both covered by
the same Adl:

(i) Architecture analysis that relates to the formal specification of architecture
behavior. Work in this category further subdivides into the analysis of the
properties provided by either components, connectors, or configurations.

(ii) Architecture implementation that relates to the implementation of an ap-
plication from the description of its architecture.

The interested reader is referred to Chapter 2 of [1] and [30] for a survey of
existing Adls and associated Case tools. An overview of work on the formal
specification of the behavior of architecture elements may further be found in
[19]

In general, most existing Adls should rather be seen as complementary rather
than as competitive. As a consequence, this has led to the definition of an archi-
tecture description interchange language so as to allow the developer to combine
the various facilities provided by different Adls, for the construction of his ap-
plications [17]. The following provides a general definition of Adls, based on
existing work in the area, together with a brief overview of work relating to
the implementation of applications from their architectural description. How-
ever, we do not intend to be exhaustive from the standpoint of Adls taken as
references since the number of proposed Adls is quite large and the number of
related projects keeps growing (see [15] for an overview of latest results). Exam-
ples specifically considered in the following are Aesop [16], Aster [20], Darwin
[27], Olan [6], Rapide [26], Sadl [32], UniCon [39], and Wright [2].

The following paragraphs give a general definition of component, connector
and configuration as offered by existing Adls knowing that the corresponding
language constructs vary according to Adls. For illustration purpose, we take
the example of a Distributed Information System (Dis). However, simplified
declarations will be provided, which are sufficient to exemplify Adl features.
Basically, a Dis is composed of a set of clients interacting with a possibly dis-
tributed server for information access; we further assume that the interaction
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protocol among components is Rpc-like. Thus, the Dis may be seen as a special
instance of a client-server architecture and corresponds to various specific archi-
tectures depending on the instantiation of the Dis architectural elements. For
instance, examples of Dis incarnations include the Web, distributed file systems,
and online services providing access to discrete data.

2.1 Component

A component may be either primitive or complex: a complex component is equiv-
alent to a configuration; and a primitive component corresponds to either a
computation unit or a data store, whose implementation details (e.g. program-
ming language, supporting platform, ...) are abstracted away. The description of
a primitive component gives the component interface. In general, the interface
specifies the interaction points (e.g. port in UniCon) of the component with re-
spect to the communication protocol that is used (i.e. it prescribes the expected
type of connector).

The other feature of a component that is of equal interest is its functional be-
havior. Here, the component’s interface states the list of operations (or services)
provided for other components and the list of operations required from other
components. Let us remark that the latter definition of component interface
may be seen as an extension of an Idl (Interface Definition Language) interface.
Even closer to this Adl definition of component falls Module Interconnection
Languages (Mils) that were introduced in the 70s for the implementation of
large-scale software [14]. Simply stated, a Mil allows the developer to abstractly
describe the configuration of his application through bindings among the func-
tions offered and provided by the components. Hence, when the Adl definition
is oriented towards application implementation such as UniCon (as opposed to
Adls aimed at architecture analysis), it appears to closely resemble a Mil except
it integrates the notion of connector. Let us further remark that this distinction
falls short when a development environment that is based on a Mil enables to
build applications that may run above various (possibly distributed) platforms.
For instance, the Polylith environment [36] belongs to this category of environ-
ments. The distinction that can then be made between a Mil-based and an Adl-
based environment for application deployment above a given platform is that the
know-how about the platform usage is within the corresponding connector for
the former, while the latter requires wrapping the platform so as to make it
accessible through the Api specified by the environment for use by components.
Hence, the connector notion enables the development of adequate Case tools for
the generation of interfacing code among components and the underlying plat-
forms as abstracted by connectors. Such a facility is for instance supported by the
Aster and Olan environments, as further addressed in the two next sections. On
the other hand, to our knowledge, the wrapping of platforms within Mil-based
environments is realized in an ad’hoc manner, on a case-by-case basis. In the
following, despite the aforementioned distinction between Mil and Adl-based
development, when concerned with implementation-oriented Adls, we include
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Mils in this category. To be more precise, implementation-oriented Adls and
Mils may be referred to under the generic term of configuration languages [10].

The definition of component interfaces –be they interaction-, functional-
related, or both– may simply take the form of operation signatures or be more
precise by formally specifying the behavior of operations [34,13]. Other attributes
may further be stated in the declaration of components. For instance, when con-
cerned with architecture implementation, the Adl provides way to specify the
implementation file that corresponds to the component.

For illustration, Figure 1 gives a description of the client component of the
Dis example. For the sake of generality, we do not take the syntax of a spe-
cific Adl but instead use a self-explanatory syntax, and merge the component’s
interaction- and functional-related specification. The client component declara-
tion specifies a component interface, which may be instantiated through different
implementations.

component interface client =

port

Declares the port used for interaction, e.g., client-type port

functional

Declares the operations offered/required by the client component,

e.g.: operations for opening, closing a connection,

for reading, writing information

interaction

Declares the port used for accessing the declared operations,

which prescribes whether they are offered or provided by the

component. In the example operations given above, they are all

required and use a client-type port.

Fig. 1. An example of component description

In general, software reuse being one of the primary objectives of Adl-based
development environments [18], Adls can support reuse by modeling abstract
components as types and instantiating them multiple times in an architecture
description [30]. Enhanced support for software reuse may further be offered
through subtyping and parameterized types. All the Adls taken into considera-
tion for this chapter distinguish component types from instances. On the other
hand, not all offer subtyping and parameterization: the former is supported by
Acme, Aesop, Aster, and Rapide, and the latter is supported by Acme, Darwin,
and Rapide.
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2.2 Connector

Similarly to a component, a connector may be either primitive or complex. A
primitive connector corresponds to a communication protocol of the target ex-
ecution platform. For instance, over a Unix platform, there will be a connector
describing a pipe. The description of a primitive connector includes the connec-
tor interface, which may further formally specify the connector’s behavior [2].
In addition, if the architecture description is to be used for the architecture’s
implementation, the implementation corresponding to the connector is given.

A complex connector is a connector that is built from a set of connectors and
components. A typical example of complex connector is a middleware that com-
prises a set of services for enhanced management of component interoperation
[7]. As a more precise example, we may consider a Corba Distributed Processing
Environment (Dpe) composed of some Common Object Services (Coss) inter-
connected by the Corba Object Request Broker (Orb). Thus, the properties
provided by a connector relate to: (i) properties of the base underlying commu-
nication protocol (e.g. asynchronous message passing, Rpc, pipe, ...), and (ii) to
additional non-functional properties (e.g. dependability, security, timeliness, ...)
characterizing the embedded services [21].

For illustration, Figure 2 gives the definition of the connector describing an
Rpc-based transactional middleware providing atomicity, and isolation prop-
erties, as for instance offered by the Corba Orb combined with the Object
Transaction Service (Ots) and Concurrency Control Service (Ccs).

connector interface TransactionalServiceMdw =

role

Declares the roles offered for achieving interaction among

components, e.g., client-type and server-type roles as

offered by Rpc-based middleware

non-functional

Specifies the additional operations provided by the middleware

for the enforcement of some non-functional (or quality)

properties over the interactions, e.g., operations for creating,

committing, and aborting a transaction in the case of the

considered middleware

Fig. 2. An example of connector description

As for the definition of components, enhanced reuse is provided by the Adl

if connectors are modeled as types. However, let us recall here that not all the
Adls define connectors as first-class entities, in which case connectors are defined
in-line within the configuration, hence prohibiting connector naming, subtyping
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or reuse in general. Among the Adls taken as examples, Acme, Olan, Sadl,
UniCon, Wright and the latest Aster version model connectors explicitly, which
is realized according to one of the following two forms: (i) definition of an ex-
tensible type system in terms of communication protocols and independent of
implementation (e.g. Acme, Aesop, Wright); (ii) definition of a set of types based
on their implementation mechanisms (e.g. Aster, Olan, Sadl, UniCon).

2.3 Configuration

The description of a configuration consists in interconnecting a set of components
so as to bind the operations that are required by some configuration components
to the corresponding operations that are provided by other components of the
configuration. These interconnections (or bindings) are further realized through
connectors, hence specifying the communication protocols that are used for the
resulting interactions among components. As for components and connectors,
formal specification of configuration behavior has given rise to a number of pro-
posals, providing ways to reason about correctness of architecture refinement
[32] and about legal dynamic changes to architectures [25], and to carry out
behavioral analysis of architecture properties [26,2,24].

For illustration, Figure 3 gives the definition of a configuration for the Dis

example where the definition of the client component that is used is the one
given previously.

A configuration ultimately corresponds to the abstract description of an ap-
plication. However, as exemplified by the Dis configuration, it generally defines
a software architecture from which various applications (or more specialized con-
figurations) may be derived by refining the description of embedded components
and connectors. Such a feature is crucial from the standpoint of both design
and software reuse. A configuration constitutes the blueprint for the implemen-
tation of a specific application. The choice for a given blueprint then results
from various factors such as the functionalities targeted for the application or
the execution platform to be used for execution.

2.4 Implementation of Applications from Architecture Description

Implementation of applications from their architectural description is one area
of active research in the software architecture domain. Basically, the implemen-
tation of an application from its architectural description consists of generating
appropriate stub code for the realization of component interactions via connec-
tors (e.g. see [12] for an overview although this reference addresses application
implementation from its description using a Mil). One of the most difficult
parts in the implementation of an application from the description of its soft-
ware architecture lies in the integration of possibly heterogeneous architectural
elements, which may be partly simplified through the use of component-based
middleware architectures such as Corba or Ejb. This issue is being examined by
various research groups of the field. It is currently simplified in most prototypes



334 Valérie Issarny et al.

connector interface service =

role

Declare client- and server-type roles

component interface server =

port

Declares a server-type port

functional

Declares operations for opening, closing sessions, and

for information access

interaction

Declares that all the operations use the server-type port

configuration DIS(typeInt N) =

component

The DIS configuration is made of a number of

client components and a server component

connector

Declares a service connector per client component

binding

Each client component port binds to the client

role of the connector it is associated to.

The server role of all the connectors are bound

to the role of the server component

functional binding

Binds the operations of each client component with

the corresponding operations of the server component

Fig. 3. An example of configuration description

of Adl-based development environments by integrating architectural elements
aimed at the same platform although different platforms may be targeted by
a prototype. The Darwin environment currently supports the construction of
distributed systems above the Regis [28] (A specific platform developed at Im-
perial College) and Corba platforms. The Aster [20] and Olan [6] prototypes
also support the implementation of applications above Corba platforms. The
Olan environment further provides base solutions for the integration of heteroge-
neous architectural elements through dedicated declarations within connectors,
which is further detailed in Section 4. The UniCon environment [39] deals with
lower level platforms by addressing specifics of the underlying operating system.
In particular, it enables the implementation of applications requiring real-time
scheduling capabilities (Real-Time Mach operating system in the case of the
UniCon prototype) [40]. The implementation of an application from its architec-
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tural description does not prescribe any specific execution platform. Platforms
that are supported by an environment result in general from design and imple-
mentation decisions for the given prototype based on different factors such as
the types of applications that are targeted or the implementation effort required
for the integration of architectural elements.

3 Synthesizing Middleware from Non-functional
Requirements

Middleware services provided by infrastructures such as Corba, Dcom or Ejb

can all be characterized by the functionality they provide when combined into
a middleware. The principal idea of the systematic middleware synthesis that is
being investigated within the Aster research activity1 is to match this functional-
ity against the demands of the application. Based on the match, an appropriate
set of middleware services is selected and combined to form the middleware with
desired properties. Thus, the entire synthesis process is driven by demands of
the application that is to use the middleware.

In the current practice, specification of properties provided by a middleware
is semi-formal, consisting of a description of the middleware interface and a de-
scription of the middleware behavior. The interface description is formal, given
in an interface definition language specific to the infrastructure. The behavior
description is informal, given in a natural language. Such an informal description
is not useful for the systematic customization of middleware, as it lacks precision
and makes automated reasoning about required and provided properties virtu-
ally impossible. So as to remedy this problem, we employ the basic concepts
introduced in the software architecture paradigm. The input of the systematic
customization is an architecture description of the application that, apart from
the definitions given previously, includes a specification of the requirements on
the properties of the middleware connectors that mediate the interaction among
the components (i.e. non-functional properties required by the application). We
also rely on the recursive nature of the architecture description to specify how
the middleware connectors are built from the middleware services.

Figure 4 depicts an architecture description using the Aster Adl
2 of the

example application we use throughout this section to demonstrate the system-
atic synthesis of middleware. The example application is a specialization of the
Dis example used in the previous section and describes a (simplified version)
of a distributed file system. The specification describes two component types,
FileClient and FileServer, and a connector ReliableConnector. The FileServer
component type provides an interface that exports a set of basic operations for
accessing files, the FileClient component type requires the same interface so as
to issue requests for accessing files. The ReliableConnector definition requires
1 Information about the Aster activity may be found at the Url:

http://www.irisa.fr/solidor/work/aster.
2 The syntax taken for the Aster Adl is based on the one of the Tina-Odl object

definition language, which is itself an extension of the Omg’s Idl.
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interface FileSystem {
void fopen (in string name, out handle file);

void fread (in handle file, in long size, out sequence<octet> data);

void fwrite (in handle file, in sequence<octet> data);

void fclose (in handle file);

};

object FileClient { requires FileSystem FS;};
object FileServer { provides FileSystem FS;};
connector ReliableConnector { property CModel, TModel; };

configuration Application

{
instances

Server FileServer;

Client FileClient;

Connector ReliableConnector;

bindings

Client.FS to Server.FS through Connector;

};

property CModel { ReliableComm; };
property TModel { Atomicity, Isolation; };

Fig. 4. An example architecture description

the connector to provide properties ReliableComm for reliable communication,
and Atomicity and Isolation for the atomicity and isolation properties known
from the flat Acid transaction model. The configuration part of the description
defines two components, Client and Server, of the FileClient and FileServer com-
ponent types. The interfaces of those components are bound together through a
connector of the ReliableConnector type.

3.1 Property Specification

Until now, our definition of properties provided by or required from a middleware
connector has been rather intuitive. To precise the term, we first define observable
behavior of a middleware as a sequence of events that influence the application
components. Ideally, the middleware would be completely encapsulated and the
observable behavior would be defined as the interaction that takes place through
the middleware interfaces. Typically, however, the middleware can also influence
the application components through the operating system, libraries or other
shared resources. This makes our definition of the observable behavior include
not only the interaction through the interfaces, but also the indirect influence
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on the state of the components, the activities executing within the components,
etc. Based on the definition of observable behavior, a property of a middleware
is then simply a constraint on this behavior. Expressed in a natural language,
examples of such constraints can be:

– Whenever a request is issued by a source component for delivery, it is even-
tually delivered to the destination component once. No request is delivered
unless issued. This constraint intuitively defines a property of reliable com-
munication.

– When a set of requests is processed by a set of components and processing
of any request of the set ends with failure, the state of the components at
the end of processing the requests will be the same as at the beginning of
processing the requests. This constraint reflects the atomicity property from
the Acid transaction model.

– While a set of requests is processed, no request not belonging to this set will
be processed by the components processing this set. This constraint reflects
the isolation property from the Acid transaction model.

Formalized Specification The formalized specification of a middleware prop-
erty in temporal logic follows the approach of defining constraints on the observ-
able behavior. The events that make up the observable behavior are described
by temporal logic predicates that hold whenever the particular event happens,
the constraints on the observable behavior are expressed by temporal logic for-
mulas. In this paper, we employ the temporal logic notation found in [29]. Here
is a brief list of operators used:

– Boolean operators ∧ (and), ∨ (or), ¬ (not), ⇒ (implies), with their usual
meaning.

– Quantifiers ∀ (for all), ∃ (exists), with their usual meaning.
– Operators ⊕P (next), 	P (previous), stating that P holds at the very next

time in the future, resp. that P held at the just passed time in the past.
– Operators 3P (eventually), 3P (once), stating that P holds at some time

in the future, resp. that P held at some time in the past.

Here is further a brief list of symbols and predicates used:

– A set of components of the application, C.
– A set of possible states of a component C ∈ C, ΣC .
– A set of requests exchanged by components, R.
– Predicates characterizing components, namely:

• [σC ], holding when C ∈ C is in state sigmaC ∈ ΣC .
• export(src, dst, req), holding when src ∈ C exports request req ∈ R to

dst ∈ C.
• import(src, dst, req), holding when dst ∈ C imports request req ∈ M

from src ∈ C.
– Predicates characterizing requests, namely:

• failure(req), holding if req ∈ R reports a failure.
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The above notations make it possible to formally specify a middleware property
as a temporal logic formula that describes constraints on the observable behavior.
Following our example, the specification of the reliable communication property
in temporal logic is3:

ReliableComm ≡ ∀src, dst ∈ C, req ∈ R :
(export(src, dst, req) ⇒
3(import(src, dst, req) ∧ ¬	3import(src, dst, req)∧
¬ ⊕3import(src, dst, req)))∧

(import(src, dst, req) ⇒ 3export(src, dst, req))

The two remaining properties from our example, atomicity and isolation, are
specified in a similar way. We use three additional predicates in the specifica-
tion to denote involvement of a component in processing a set of requests, and
beginning and end of processing the requests4:

– involved(C,S) holds if C ∈ C is involved in processing S ⊂ R, formally
∃src ∈ C, req ∈ S : 33import(src, C, req).

– begin(C,S), end(C,S) holds when C ∈ C begins, resp. ends, processing re-
quests from S ⊂ R.

Atomicity ≡ ∀S ⊂ R, C ∈ C | involved(C,S) :
∃req ∈ S | failure(req) ⇒
∃σC ∈ ΣC | (33([σC ] ∧ begin(C,S))) ∧ (33([σC] ∧ end(C,S)))

Isolation ≡ ∀S ⊂ R, req ∈ R− S, src ∈ C, dst ∈ C | involved(dst,S) :
(import(src, dst, req) ∧ ⊕3begin(dst,S))∨
(end(dst,S) ∧ ⊕3import(src, dst, req))

Property Matching The primary use for the formalized property specifica-
tion is an automated matching of properties provided by the middleware against
properties required by the application. A middleware providing property P can
be used in an application requiring property R if any observable behavior that
satisfies the constraints characterizing P also satisfies the constraints characteriz-
ing R. In this case, we say that P refines R. Formally, the refinement is expressed
as an implication between the constraints. Let P denote the constraints char-
acterizing property P and R the constraints characterizing property R. Then,
P matches R if P ⇒ R. Although formally precise, this definition of property
matching does not reflect the differences between the specification of provided
and required properties.

A specification of a required property is something perceived by the appli-
cation designer. Typically, such a specification is short and abstract, not going
3 For sake of brevity, we presume that each request is unique, i.e. the same request

cannot be issued more than once.
4 In a full property definition, these predicates would be related to e.g. begin, commit

and abort operations provided by the middleware connector.
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into detail unless it is necessary for application functionality. On the other hand,
a specification of a provided property is associated with a specific middleware,
and is therefore very detailed so as to describe the middleware precisely. The
difference in the level of detail can often lead to a situation where none of the
provided middleware properties quite satisfies the specification of the required
property simply because this specification does not allow for minor differences
that are not, in fact, vital for the application. This is the case in our example,
where the specification of the ReliableComm property requires absolutely re-
liable delivery that cannot be provided in a realistic environment. Instead, the
available middleware will guarantee slightly weaker property of at-most-once or
at-least-once delivery, which is probably what the application designer had in
mind when specifying the requirement anyway. Similarly, the available middle-
ware might provide atomicity as long as the number of components involved is
less than 32767 or other handy limit. Again, such a service would not meet the
requirements for atomicity as specified by Atomicity, even though the limit is
probably something the application designer would not mind. To overcome this
drawback, we introduce a concept of an ideal behavior as a behavior that the
middleware would exhibit if there were no failures in neither the hardware nor
the software the middleware relies on, and if there were no resource shortages.
We do not further detail specification of middleware behavior, the interested
reader is referred to [43].

When built solely on the predicates introduced at the beginning of this sec-
tion, the temporal logic specifications tend to grow quickly in size even for rela-
tively simple middleware properties. The specifications are then not only difficult
to write and read, but the proofs of relationships between them become com-
putationally expensive. In a sense, this is similar to building a program out of
too primitive statements, and can be solved by introducing predicates that de-
scribe complex events and conditions, as was done in the case of the involved,
begin and end predicates in the example above. What predicates are used then
depends on the domain of the property the temporal logic formula describes.
For instance, formulas describing communication properties can take advantage
of a predicate stating what transport protocol the middleware uses, rather than
specifying the format of the messages on the wire.

3.2 Middleware Architecture

With the formalism for specifying middleware properties in place, we now focus
on the description of the middleware architectures that provide specific prop-
erties. The goal is to provide a middleware architecture description associated
with, and later on selected by, the properties that it provides. Once selected,
the architecture description is used to assemble the middleware as per the ap-
plication requirements. In principle, there is no significant difference between
architecture description of middleware and architecture description of any other
software system. Employing this fact, we use the same architecture description
language to describe the middleware structure as the one we use to describe
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the structure of the entire application in Figure 4. In our example, a middle-
ware architecture that provides reliable communication, atomicity and isolation
is required. Focusing on the Corba infrastructure, as mentioned in the previous
section, such a middleware can be built from an Orb and the Ots and Ccs

services.

Reusing Middleware Architectures A middleware architecture often reuses
properties that are provided by other middleware architectures. In our example,
we can consider the Orb component alone as a middleware architecture that
provides reliable communication. The rest of the example then builds on top
of the reliable communication to provide the atomicity and isolation properties.
Any middleware architecture that provides reliable communication compliant
with the Corba standard can be used in place of the Orb component. To re-
flect this, we allow a component definition within the middleware architecture to
refer not only directly to a specific middleware service, but also indirectly to any
other middleware architecture that provides specific properties required from
the component. This, in fact, is a recursive application of the principle where a
connector definition lists required properties rather than specifying a particular
connector to be used. A fragment of a middleware architecture description illus-
trating our example is presented on Figure 5. The description does not detail
the interconnection of the Ots and Ccs services as, although the two services
are specified independently by Omg, they cannot in fact be implemented sepa-
rately. The Binding interface denotes the interface the middleware architecture
is to bind within the application, its definition is therefore taken from the appli-
cation architecture description. The TSIdentification interface is a standardized
interface used to connect an Orb with an Ots service, its functionality is de-
scribed by the TSPortability property.

From Architecture to Implementation To assemble a middleware on the
implementation level, we require the implementations of the middleware services
to export operations defined in the middleware architecture description5. The
implementations are then linked together with a binding code generated from
the architecture description. This process is complicated by the fact that some
of the interface definitions within the middleware architecture are derived from
the interface definitions of the application components connected by the middle-
ware. In our example on Figure 5, these are the interfaces of type Binding. Some
of the middleware services come with a specialized tool for generating imple-
mentation based on the interface description, such as an Idl compiler available
with an Orb. Such tools, however, may not be available for every middleware
service used within the architecture, or may not accept input in the form used
within the architecture description. To overcome this problem in the systematic
synthesis framework, we introduce a macro language that makes it possible to

5 We also require the implementations to provide certain housekeeping operations such
as operations for service initialization and shutdown.
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interface Transaction {
void begin ();

void commit ();

void abort ();

};

object OTSCCSBlock {
provides Binding ServerIn, Transaction Control;

requires Binding ServerOut, TSIdentification Ident;

};
object ORBBlock {
provides Binding ClientIn, TSIdentification Ident;

requires Binding ServerOut;

property ReliableComm, TSPortability;

};

configuration Middleware

{
provides Binding ClientIn, Transaction Control;

requires Binding ServerOut;

instances

OTSCCS OTSCCSBlock;

ORB ORBBlock;

bindings

ClientIn to ORB.ClientIn;

Control to OTSCCS.Control;

ORB.ServerOut to OTSCCS.ServerIn;

OTSCCS.ServerOut to ServerOut;

OTSCCS.Ident to ORB.Ident;

};

Fig. 5. An example middleware architecture

parameterize those parts of the middleware implementation that depend on the
specific application interfaces [42]. The macro language can be used to provide
expected input for the available implementation generation tools, or to generate
the middleware implementation directly, as the situation requires. Taking our ex-
ample into the Orbix environment, the implementation of the Orb component
is partially generated from the application interface description by the Orbix

Idl compiler. The output of the Idl compiler needs to be further supplemented
with the binding code that sets up connection between the application compo-
nents. Figure 6 provides fragments of both the Idl compiler input and the C++
binding code defined using the macro language. The $(Macro) macros expand
according to the specific application architecture, in our example scenario this
means the $(Interface.Name) macro expands to FileSystem etc.



342 Valérie Issarny et al.

interface $(Interface.Name) {
$(Iterate $(Interface.Operations Op

$(Op.Type) $(Op.Name) ($(Op.Args));

)

};

$(Proxy.Name)::$(Proxy.Name) () {
pReference =

$(Proxy.Type):: bind (":$(Target.Component)","$(Target.Host)"); };

Fig. 6. Usage of macros for Orbix Orb

3.3 Middleware Repository

Selecting from the available middleware architectures based on the properties
they provide leads to a need of a repository that contains the available middle-
ware architectures together with descriptions of the properties they provide, and
that can be searched with the required properties as a search key.

The middleware repository needs to be organized in a way that allows for
efficient searching. This issue is even more emphasized by the fact that the mid-
dleware properties are matched using a theorem prover, which is computationally
expensive. In traditional databases, efficient search is achieved by exploiting an
ordering on the search keys. In the middleware repository, the search keys are
middleware properties that can be partially ordered using the refinement relation
from Section 3.1. The refinement allows to structure the repository as a lattice,
allowing to employ search methods that are more efficient than a linear search
[31]. Apart from properties provided by existing middleware architectures, the
lattice structure of the repository also contains abstract properties that are not
associated with any particular architecture. The abstract properties are used
to group the detailed middleware properties into domains. The reason for in-
troducing abstract properties is twofold. Since the properties typically provided
by middleware architectures are qualified as not related by the refinement re-
lation, the lattice structure built only from these properties would be rather
shallow and thus of little help when trying to make the search efficient. The
abstract properties make the lattice structure deep enough to warrant more ef-
ficient searching [20]. The abstract properties also make it easier to browse the
middleware repository. The domains defined by the abstract properties provide
an ample navigation aid to the application designer, who will typically want to
browse the available properties before specifying the application requirements
rather than providing the definitions of the required properties straight away.
Within the repository, a middleware architecture is linked to those nodes of the
refinement lattice that define the properties provided by the architecture. As
detailed in Section 3.2, the middleware architecture is represented by a formal-
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ized architecture description whose every component is associated either with
a specific middleware service or with a list of properties the component is to
provide.

3.4 Middleware Integration

Based on the repository, the systematic middleware synthesis takes part in three
steps:

– First, the repository is searched based on the properties required by the
application, and a middleware architecture that provides these properties is
retrieved.

– Second, the retrieval is repeated recursively to replace every middleware
component in the architecture that is specified by its properties with an ar-
chitecture that those properties specify. The recursion stops when all compo-
nents of the middleware architecture are associated with specific middleware
services.

– Third, the middleware services are combined together according to the re-
trieved middleware architecture to form the synthesized middleware.

Note that at each step of the process, multiple valid results can be obtained if
the repository provides multiple middleware architectures that satisfy the same
requirements. In this case, the developer is asked for selecting the most suitable
architecture among the eligible ones.

3.5 Discussion

This section has provided an overview of the features offered by the Adl-based
Aster development environment so as to support the systematic customization
of middleware given the non-functional requirements imposed by the application
under construction. The Aster prototype described in [20] is currently being en-
hanced regarding the middleware selection process, including the use of the STeP
theorem prover [11] and the efficient implementation of the middleware repos-
itory. The reader further interested by detailed specification of non-functional
properties may refer to [8,9] and [38] for security and fault-tolerance related
properties, respectively.

Except the benefits of characterizing non-functional properties within ar-
chitecture description from the standpoint of middleware synthesis, this is also
beneficial from the standpoint of the software design process. As illustrated in
[38], the specification of non-functional properties may serve as a basis for char-
acterizing generic architectures aimed at the enforcement of non-functional prop-
erties, which may be conveniently combined with an application architecture so
as to produce the overall architecture of a given software system. Open issues
regarding the proposed approach include the combination of possibly interfer-
ing non-functional properties within an architecture [22]. Another issue relates
to the practical use of the Aster environment where software developers are in
general reluctant to the use of formal specifications. The aforementioned issues
are currently being examined within the Aster research activity.
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4 Deploying Distributed Applications

In the previous section, we have presented an approach to the systematic syn-
thesis of middleware with respect to the applications requirements. Given the
middleware to be used by an application, it is further required to conveniently
deploy the application’s components. In addition, enhanced software reuse is
supported if the environment enables to encapsulate legacy software within com-
ponents. This section gives an overview of the Olan environment6, which offers
the Adl-based Olan Configuration Language (Ocl) [4,41] and a number of tools
for the deployment of configurations, possibly made up of legacy software [3].

4.1 Olan Configurations

From an Ocl description, the Ocl compiler generates the stub classes for the
components and the connectors (if these do not already exist) needed by the
application. These are stored in a distributed repository. The compiler also gen-
erates a script (called the deployment script) that contains orders and guidelines
for the deployment of the application in a distributed environment. The re-
mainder of this section details the execution structures which are generated for
components and connectors, as well as the interpretable deployment scripts.

Execution Structures Basically, two kinds of structures can be distinguished
at runtime: the execution structures for components encapsulating legacy soft-
ware and their binding to the underlying communication systems, and the exe-
cution structures for connectors in charge of integrating a particular communica-
tion schema between components. In the current prototype, execution structures
are implemented as objects programmed in the Python interpreted language
[37]. Object orientation is a convenient way to manage customizable classes of
components and connectors. Let us now detail the components and connectors
execution structures.

A component is represented by an object that is responsible for managing the
interface with the encapsulated code as well as the communications with other
components via connectors. The main characteristic of such an object is to be
configurable and its purpose is to allow dynamic positioning of the interconnec-
tions with other components as well as dynamic loading of integrated software.
In between the component object and the various integrated software (called
modules), is the stub, that homogenizes parameters format, and the wrapper
that knows how to access the encapsulated modules according to the kind of in-
tegrated software. Stubs and wrappers are automatically generated by the com-
piler. According to the kind of modules (or classes), the work to be performed
by the programmer to have his code integrated, ranges from almost nothing to
the explicit redirection of the outgoing calls to the wrapper.

6 Information about the Olan activity can be found at the Url:
http://sirac.inrialpes.fr.
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The main role of connectors is to bind a set of potential senders to a set of
potential receivers for communication schemes based on service request or event
notification broadcast. A connector is represented by two main kinds of Python
objects: the service adapters (resp. notification) and the sender/receivers objects
The adapters represent both the entry and exit points for the connector struc-
ture. On a sender side, they provide a function that allows a given component to
initiate a communication as described in Ocl. On a receiver side, they have the
ability to call a given function (representing either a provided service or a noti-
fication handler), provided by the component. The adapters are also in charge
of executing the user-level code which may have been added to the connector
description (e.g. code for data flow adaptation). The sender/receiver objects are
in charge of:

– Encapsulating the use of the communication system,
– Handling the possible control flow translations (e.g. when a sender asks for

an asynchronous service request while the receivers provide the service in a
synchronous way), and

– Handling remote communication according to the placement of the intercon-
nected components.

Deployment Scripts The deployment script (also called configuration ma-
chine script) contains a list of commands that can be executed by the Olan
Configuration Machine (Ocm). Those commands correspond to the requests for
the creation of components and connectors execution structures and the inter-
connection between the components, according to the architectural requirement
expressed in Ocl. The command for the creation of components requires several
information from the script: the name of the component in order to be able to
find the associated execution structure and the administration parameters that
characterize the node and context of creation. The interconnection parameters
contain the name of the connector to be instantiated and the list of components
(and the services name) that must be bound together. Several other kind of
commands can be found in the deployment script corresponding to every ab-
stractions of Ocl (e.g. attribute assignment, creation of composite structures,
...).

For illustration, Figure 7 gives a script, which comes from an application
described with Ocl named Appli, where two primitive components Component1
and Component2 are defined (the first one with a required service named Notify1
and an attribute named Attr1 of type string, and the second with a provided
service named React1). There is one instance of each component and they are
interconnected together with the asyncCall connector. The value ’foo’ is assigned
to the first component attribute. The administration parameters indicate that
the first component instance must be created on a node whose Internet name is
’db?.inrialpes.fr’, and whose processor usage is less than 10% with less than 10
users connected to the machine. In addition, the user for which the component
should be created must have ’admin’ as login name.
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Component 1 Component 2

Notify1 React1

attribute string Attr1 = "foo"

Creation on node db?.inrialpes.fr,
for user named ’admin’

## Primitive Component creation and administration parameters

nInfo = ( ’name’: "(node.name [1:] == "db") and ## constraints on Node

(node.name[3:-1] == ".inrialpes.fr")",

’IPAdr’: "true",

’platform’: "true",

’osType’: "true",

’osVersion’: "true",

’CPULoad’: "node.CPULoad <= 10",

’UserLoad’: "node.UserLoad <= 10"

)

uInfo = (’name’: ’user.name == "admin"’,’uid’: "true",

## constraints on User

’grpId": "true")

CreatePrimitiveComponent(’Appli_Component1Impl:Appli_Component1Impl:_1’,

uInfo, nInfo)

## Interconnections

## component1.Notify1() -> component1.React1() using asyncCall

Bind(’Appli:AppliImpl_asyncCall_1:AppliImpl_1_52’,

[(’Appli_Component1Impl:Appli_Component1Impl:_1’, ’Notify1’, ’itf’)]

[(’Appli_Component2Impl:Appli_Component2Impl:24’, ’React1’, ’itf’)])

## Attribute assignment \\

SetAttribute(’Appli\_Component1Impl:Appli\_Component1Impl:\_1’, \\

’\_a\_Attr1’,

"(’string*’, ’foo’)")

Fig. 7. Example of a deployment script

4.2 The Olan Configuration Machine

The Ocm machine is in charge of creating and configuring components and
connectors instances, according to the configuration constraints expressed in
the deployment script produced by the Ocl compiler. More precisely, the Ocm

performs the following tasks:
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– Deploying components: for each component, the Ocm tries to find a relevant
node able to host it, according to its placement constraints.

– Installing components: the installation step consists of the creation of the
components execution structures and the assignment of their initial parame-
ters. Components can be created at various time: initially, at the beginning of
the execution, or during execution if the Ocl description contains dynamic
component instantiation.

– Setting interconnections: once components are created on the various nodes,
the setting of interconnections consist in creating a connector execution
structure according to the user-specified communication mechanism and the
optional insertion of the code in charge of data flow transformation. Let us
mention that connector structure can be spanned on multiple nodes, depend-
ing on the component location.

– Support for the application execution: this final step allows users to launch an
application execution and handles the authorized connections or withdrawals
of users in a running session.

The general architecture of the Ocm relies on several abstract machines: the
component machine in charge of managing the components execution structures,
the connector machine in charge of handling the configuration of interconnec-
tions and a repository allowing a distributed access to the components core
implementation and the Ocl compiler generated structures. Each node able to
host an application execution contains an instance of the Ocm. It relies on an
Object Request Broker when remote communication between computer nodes
are required. The Orb is used whenever remote configuration machines need to
communicate with each other, for example at the deployment step when querying
nodes or at the installation step when creating components remotely. However,
the Orb is not used for the communication between components during the ap-
plication execution (unless the application designer has specified its use in an
interconnection).

Functions of the Ocm Machine Three management functions are carried out
by the Ocm:

– The management of the distributed environment, called a cell,
– The control of the deployment and execution of a single distributed applica-

tion, called a session,
– The management of the part of a distributed application that executes on a

given node for a given user, called a context.

A distributed environment is managed by a set of Cell Servers, one per
node for each cell. One particular Cell Server (called the Master Cell Server), is
responsible for managing the join and the withdrawal of nodes inside the cell. A
Cell Server provides features for the following tasks:

– Instrumenting the local node with predefined sensors that return informa-
tion corresponding to the management attributes. Information returned by
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sensors can be either static (e.g. the name, the IP address) or dynamic (e.g.
the average load, the number of logged users).

– Specifying policies for the evaluation of administration parameters contained
in the Ocl description. The criteria for eligible nodes may differ according
to the cell administrators.

– Managing the deployment of an application within the cell according to the
scripts for the application. This task is performed through calls to the Session
management level.

A given distributed application that is currently being executed is called a
session. A session is represented and managed by one session server. The session
server provides services for the support of the installation and configuration of
components and connectors of the application. Some of these services, like the
creation of a component require the use of the context management level. Each
time a user launches an application, he specifies the name of the session in
which he wants the application to be executed. This may thus correspond to
either the launching of a new session, or to the incoming of a new user into
an existing session. More precisely, the launch of an application execution is
managed through an additional script produced by the Ocl compiler, which is
given in Figure 8.

Start(applicationName, serviceName, args):

If the given session already exists

Get the reference of the local Session Server

Ask for the execution of the given service

Else

Create a new Session Server

perform the application deployment

Ask for the execution of the given service

Fig. 8. Script for launching an application

A context represents the part of an application that executes for a given user
on a given node. In other words, a context is an execution space for components,
which ensures that components belonging to distinct users will not execute in the
same address space, for protection reason. A context is managed by a context
server, which is in charge of the actual creation and initialization of compo-
nents within the context. A context server is also responsible for the creation
and initialization of the parts of the connectors that involve the components it
manages.
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4.3 Discussion

A prototype implementation of the Ocl compiler and Configuration Machine has
been achieved using the Python language [37]. Using Python is of a particular
interest for rapid prototyping due to facilities such as dynamic typing, reflexivity
features, easy manipulation of complex structures such as lists, dictionaries, etc.
Another major interest is the portability of Python code across various platforms
(flavors of Unix, NT, W95,...). However, the price to pay is the poor performance
at runtime due to the interpretive approach. The configuration machine uses Ilu

[23], a Corba compliant Orb, for its own communication purposes. However,
Ilu is not used for the actual execution of the application, except if the ar-
chitecture contains explicit use of a connector based on Ilu mechanisms. The
component and connector structures are also implemented in Python. Stubs and
wrappers may be implemented both in Python and in the native language of the
integrated software modules. Finally, the implementation of the communication
protocol within connectors depends on the kind of connector which is used. For
instance, there are multiple implementations of a remote synchronous call: one
using sockets, another one using sun RPC, and a third one using Ilu.

It should be noted that good performances at runtime were not expected
from this experiment. The choice of the various implementation languages and
tools were mainly motivated by the objective of rapid prototyping. The lessons
drawn from our experiments mainly concern: the feasibility of the approach; the
ease of application configuration; the flexibility of the deployment procedure; the
transparent use of a distributed environment.

The prototype has been used for the construction of two applications: a
cooperative document editor [5] and an electronic mail facility. The choice of
these applications was motivated by the wish to address real-life scenarios which
actually require heterogeneous components to be integrated within a distributed
environment. The first scenario consists in transforming an existing single-user
interactive application (e.g. a document editor or a CAD tool) to be used within
a distributed groupware environment. No change can be applied to the code of
the application itself (as usually only binary code is available). A way to achieve
this goal consists in replicating the application on each user node, and building a
coordination function defined as a set of cooperating components also replicated
on each node. These components communicate together to achieve the control
of the coordination between them, but they are the only one allowed to interact
with the instance of the application of their node. The second scenario consists
in extending an existing application (in this case an electronic mail browser)
with additional facilities, acting autonomously on behalf of the end-user (e.g. for
filtering and/or forwarding messages according to parameters customized by the
user). Here again, the application itself cannot be changed and new functions
are implemented as a set of cooperating components (also called agents here
because of their specific role) which interact with existing software modules (i.e.
the sendmail program, and the Netscape mail browser in this scenario). In both
cases, the Olan environment has proved to be helpful for the following reasons:
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– The Ocl compiler greatly aids in providing wrappers to encapsulate existing
binary code thus integrating legacy applications in a distributed environment
(e.g. the Netscape browser and the editor in the previous scenarios)

– The Olan Configuration Machine also revealed to be very helpful in the im-
plementation of the deployment process of the distributed application con-
figurations. In the previous scenarios, nothing related to the distribution has
to be implemented by the component programmer. Everything concerning
distribution is externalized and the remote communications are handled by
connectors.

In addition, it should be noted that an Ocl description facilitates the reusabil-
ity at the architecture level. This is a major advantage as it allows easy cus-
tomization of an application for a specific use. Customization can be achieved
in two ways: at the component level, to provide new facility, functionally equiv-
alent to the former one, but implementing new policies; at the connector level,
to change the communication schema between a set of interrelated components.
For example, in the cooperative editor application, the component in charge of
implementing the floor-passing policy can be changed on demand. Moreover,
the same architecture may be reused to extend an existing CAD application
towards a groupware environment. This does not require to redevelop the whole
application from scratch.

5 Conclusion

This chapter has given an overview of work in the software architecture field. Us-
ing Architecture Description Languages, an application is abstractly described as
a configuration that consists of a set of components characterizing computation
units, which are interconnected through connectors that define communication
protocols. Associated to Adls are methods and tools for architecture analysis.
Analyses that can be performed include:

– Correctness of bindings among components, ensuring that the behavior of
an operation provided by a component matches the one expected by the
component that uses it.

– Correctness of component interconnection through connectors, ensuring that
the behavior provided by a connector matches the one expected by the com-
ponents that use it with regard to both interaction and non-functional prop-
erties.

– Compatibility among configurations, ensuring that a configuration is a spe-
cific instance of another.

– Behavioral analyses of architectures so as to prove properties relating to
liveness, and safety.

Another area of active research in the field of Adls, which has been the main
focus of this chapter, is the provision of tools for the implementation of dis-
tributed applications from their architectural description. In particular, we have
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presented features of the Aster and Olan Adl-based development environments,
developed by Broadcast members. The Aster environment provides support for
the systematic synthesis of middleware from the (non-functional) requirements
stated within the architectural description of an application. Such requirements
serve for the selection of necessary middleware services, which are then composed
with the application components. The Olan environment provides tools for the
deployment of applications, including those made out of legacy software, over a
distributed architecture.

The software architecture research field is quite recent and there is still much
work to be done for it to address the overall requirements of distributed appli-
cation construction. However, existing results already demonstrate that it is a
promising approach. In particular, this research field is shown to offer a conve-
nient testbed for the development of a number of Case tools, which not solely
ease the design and implementation of distributed software systems but are also
applicable to real such systems.
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