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General Facts

 Studying the evolution of database schemata is of great importance.

 A change in the schema of the database can impact the entire ecosystem of 
applications that are built on top of the database.

 The study of schema evolution entails extracting schema versions and their delta 
changes from software repositories, subsequently leading to the extraction of patterns 
and regularities. 

 The history of a typical database can consist of hundreds of transitions and includes a 
potentially large number of tables.
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Visual Inspection 

 One of the main tools to study schema evolution is the visual inspection of the history of the 
schema. 

 This can allow the scientists to construct research hypotheses as well as to drill into the details 
of inspected phenomena and try to understand what has happened at particular points in time. 

 Such a representation is targeted for a two-dimensional representation target in a computer 
screen or a printed paper.

 The space available in these representation media is simply too small for encompassing 
the hundreds of transitions from one version to another and the hundreds of tables involved in 
such a history.
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Our Solution

 The main idea is the creation of a synopsis of the history of the schema evolution.

 The number of transitions is abstracted by a limited set of phases and the number of 
tables is represented by a limited number of table clusters. 

 Then, we can represent this synopsis as a 2D diagram, with the details of change in 
the contents of this 2D space.
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How we achieve our solution (1/2)

Phase Extraction

 We introduce a hierarchical agglomerative clustering algorithm that merges the most 
similar transitions.

 As a result we can have a desired number of phases, each of which encompasses 
subsequent and similar transitions. 

Cluster Extraction

 We introduce another hierarchical agglomerative clustering algorithm that creates a 
desired number of clusters. 

 Within each cluster, the desideratum is to maximize the similarity of the contained 
tables. 
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How we achieve our solution (2/2)

Plutarch’s Parallel Lives tool

Plutarch’s Parallel Lives (in short, PPL) tool combines our abovementioned 
contribution and allows an interactive exploration of the history of schema.

Functionalities:

 Production of a detailed visualization of the life of the database, called Parallel Lives 
Diagram

 Production of an overview for this visualization, which has the extracted phases in its 
x-axis and the extracted clusters in its y-axis

 Zooming into specific points

 Filters according to specific criteria

 Details on demand
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Terminology (1/2)

 Schema Version, or simply, Version: A snapshot of the database schema, committed 
to the public repository that hosts the different versions of the system

 Dataset: A sequence of versions, respecting the order by which they appear in the 
repository that hosts the project to which the database belongs

 Transition: The fact that the database schema has been migrated from version vi to 
version vj, i < j

 Revision: A transition between two sequential versions, i.e., from version vi to version 
vi+1

 History of a database schema: A sequence of revisions
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Terminology (2/2)

For each transition, for each relation, we can identify the following data:

 Old Attributes: The set of attributes of the relation at the source, old version of the 
transition

 New Attributes: The set of attributes of the relation at the target, new version of the 
transition

 Attributes Inserted: The set of attribute names inserted in the relation in the new version 
of the transition

 Attributes Deleted: The set of attribute names deleted from the relation during the 
transition from the old to the new version

 Attributes with Type Alternations: The set of attributes whose data type changed during 
a transition.

 Attributes involved in Key Alternations: The set of attributes that reversed their status 
concerning their participation to the primary key of the relation between the old and the 
new version of the transition
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Visual representation of a history of a database (1/3)

Parallel (Table) Lives Diagram of a database schema: a two dimensional rectilinear 
grid having all the revisions of the schema’s history as columns and all the relations of 
the diachronic schema as its rows

Each cell PLD[i,j] represents the changes undergone and the status of the relation at row 
i during the revision j.
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Visual representation of a history of a database (2/3)

 The blue cells correspond 
to transitions where some 
form of change occurred to 
the respective table. 

 Dark cells denote that the 
table was not part of the 
database at that time. 

 Green solid cells denote 
zero change. 
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Visual representation of a history of a database (3/3)
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Intuition on the problem

 The idea came from the mantra that Shneiderman underlines in his article at 1996 
[Shne96], which is 

Overview first, zoom and filter, details on demand. 
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Segmentation of the history into phases

 The idea is that we want to zoom-out on the time/version axis. 

 We need to group transitions to phases, i.e., partition the set of transitions to disjoint 
groups of consecutive transitions, such that each phases is “homogeneous” internally 

 The formulation of the problem is as follows: 

Given the evolution history of a database schema,

group transitions into phases 

such that the transitions of each phase share similar 
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Clustering of tables into groups

 The idea is that we want to zoom-out on the vertical axis with the tables (in case the 
relations are too many). 

 We partition the set of relations into disjoint subsets or else clusters. Each cluster has 
relations with similar lives i.e., lives with similar start, death and heartbeat of changes. 

 The formulation of the problem is as follows: 

Given the evolution history of a database schema, 

group relations into groups of relations with similar lives 

such that the relations of each group share similar 
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Zoom, filter and details on demand

 Zoom into a specific point of the overview: if we have a matrix in which the x-axis 
contains the phases and the y-axis contains the tables of the database or the clusters 
how we could zoom into a specific cell of this table? 

 Filter the overview: often there is the desire to isolate a component of an overview 
including its elements to compare for example how similar are the elements from 
which it consists of.

 Details on demand: if the PLD contains in its x-axis the phases and the clusters in its 
y-axis what details we could get about a cell of PLD?
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Creating an overview of the history of the database

Creation of an overview of the history of the database consists of two parts:

 Computing a segmentation of the history into phases

 Phase extraction algorithm (on the basis of a parameterized distance function)

 Assessment of the quality of result & parameter tuning

 Grouping tables into table clusters

 Table clustering algorithm (on the basis of a parameterized distance function)

 Assessment of the quality of result & parameter tuning
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Computing a segmentation of the history into phases: The 
Algorithm

Algorithm: The Phasic Extractor algorithm

Input: A list of schema transitions H = { ts, ts+1, …, te-1, te}, the desired number of 
phases k, the weight to assign to time wt, the desired weight to assign to 
changes wc , the choice if we want the data to be preprocessed according to the 
time preProcessingTime, the choice if we want the data to be preprocessed 
according to the changes preProcessingChanges.

Output: A partition of H, P = {p1...pk}

variable numPhases=e, counter of the number of phases.

Begin

1. P={p1,…pe} s.t. pi={ti} i s…e
2. while(numPhases>k){

a. for each pair of phases phi, phi+1,
i. compute δ(phi, phi+1)

b. Merge the most similar phases, pa and pa+1 into a new phase p’
c. P = {p1,…, pa-1, p, pa+1, …, pm}
d. numPhases --

}

3. Return P;

End
21



Computing a segmentation of the history into phases: 
Parameters

 Desired number of segments (k): refers to the number of phases that we would like 
to be extracted. 

 Pre-Processing Changes (PPC): refers to the preprocessing of the data from the 
aspect of changes (ON if the data has been preprocessed, OFF otherwise). 

 Pre-Processing Time (PPT): refers to the preprocessing of the data from the aspect 
of time (ON if the data has been preprocessed, OFF otherwise). 

 Weight Change (WC): refers to the weight of changes (0.5 normal weight, 0 if 
changes is not taken into account). 

 Weight Time (WT): refers to the weight of time (0.5 normal weight, 0 if time is not 
taken into account). 
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Computing a segmentation of the history into phases: Distance 
Function

𝛿 𝑝𝑖 , 𝑝𝑖+1 = 𝑤
𝑇 × 𝛿𝑇 𝑝𝑖 , 𝑝𝑖+1 +𝑤

𝐶 × 𝛿𝐶(pi, p𝑖+1)
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Computing a segmentation of the history into phases: 
Assessment via divergence from the mean (1/3)

𝐸𝑝𝑛 =  

∀𝑝ℎ𝑎𝑠𝑒 𝑝ℎ𝑖

 

∀𝑒𝑣𝑒𝑛𝑡 𝑒𝑗 ∈𝑝ℎ𝑖

𝜇𝑖 − 𝑒𝑗
𝑝
 1 𝑝

 μi is the average number of changes of each phase

 ej is the number of changes of each phase’s event

 Typically p is equal to one or two

24



Computing a segmentation of the history into phases: 
Assessment via divergence from the mean (2/3)

Datasets that were used by Phasic Extractor 

 Atlas

 bioSQL

 Coppermine

 Ensembl

 mediaWiki

 Opencart

 phpBB

 typo3
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Computing a segmentation of the history into phases: 
Assessment via divergence from the mean (3/3)

PPC: OFF

PPT: OFF

PPC: ON

PPT: OFF

PPC: OFF

PPT: ON

PPC: ON

PPT: ON

WC = 0.0

WT = 1.0
- - - -

WC = 0.5

WT = 0.5
- - 1 1

WC = 1.0

WT = 0.0
5 3 - 1
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Computing a segmentation of the history into phases: 
Assessment via spread in the time x change space (1/2)

The second assessment method can be described as follows:

For each pair of phases phi and phi+1 :

 compute the term δtime

 compute is the term δchange

 When these two terms have been computed for the whole set of pairs we can 
represent our results with the scatter plot format.
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Computing a segmentation of the history into phases: 
Assessment via spread in the time x change space (2/2)
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Grouping tables into clusters: The Algorithm

Algorithm: The Clustering Extractor algorithm

Input: The entire set of the database’s tables T {tab1, ... , tabn}, the desired number of 
clusters k, the weight to assign to birth date wb, , the weight to assign to death date wd, , 
the weight to assign to heartbeat of the changes date wc

Output: A partition of T, C={c1, … , ck} 

variable numClusters=n, counter of the number of clusters

Begin

1. C={c1, … , cn} s.t. ci = {tabi} i 1…n
2. while(numClusters>k){

a. for each pair of clusters ci, ci+1,
i. compute the δ(ci,ci+1)

b. Merge the most similar clusters, ca and ca+1 into a new cluster c’
c. C = {c1,…, ca-1, c, ca+1, …, cm}
d. numClusters –-

}

3. Return C;

End
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Grouping tables into clusters: Parameters 

 Desired number of clusters (k): refers to the number of clusters that we would like to 
be created. 

 Birth Weight (BW): refers to the weight of the distance between birth dates of 
compared clusters. 

 Death Weight (DW): refers to the weight of the distance between death dates of 
compared clusters. 

 Change Weight (CW): refers to the weight of the distance between the changes of 
compared clusters. 
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Grouping tables into clusters: Distance Function

𝛿 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝐴, 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝐵 = 𝑤𝑏 ∗ 𝛿𝑏𝑖𝑟𝑡ℎ 𝑐𝐴, 𝑐𝐵 + 𝑤𝑑 ∗ 𝛿𝑑𝑒𝑎𝑡ℎ 𝑐𝐴, 𝑐𝐵 +𝑤𝑐 ∗ 𝛿𝑐ℎ𝑎𝑛𝑔𝑒(𝑐𝐴, 𝑐𝐵)
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Grouping tables into clusters: Clustering Validity Techniques

There are two main categories for clustering validity:

 Internal evaluation: refers to methods that do not need external knowledge and can 
measure the quality of the clusters only with the information that they keep and which 
was used from the clustering algorithm

 External evaluation: needs external knowledge, i.e., data have to be classified before 
the evaluation process, by explicit tracing of human knowledge on the issue. 
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Grouping tables into clusters: Assessment via External 
evaluation - Metrics

There is a large amount of methods that have been used previously.

We decided to choose the most common of them

 Entropy: is defined as the degree to which each cluster consists of objects of a single 
class. 

For each cluster j we compute pij, which is the probability that a member of cluster i belongs 
to class j.

𝑝𝑖𝑗 =
𝑚𝑖𝑗

𝑚𝑖
 mi is the number of objects in cluster i.

 mij is the number of objects of class j in cluster i.

The total entropy of each cluster i is calculated by the following formula:

𝑒𝑖 = − 
𝑗=1

𝐿

𝑝𝑖𝑗 log2 𝑝𝑖𝑗

 L is the number of classes. 33



Grouping tables into clusters: Assessment via External 
evaluation – Metrics

The total entropy of a set of clusters, is defined as the sum of the 
entropies of each cluster weighted by the size of each cluster:

𝑒 = 
𝑖=1

𝐾 𝑚𝑖
𝑚
𝑒𝑖

 K is the number of clusters and m is the total number of data points

 Precision: is defined as the fraction of a cluster that consists of objects of a 
specified class. Precision of a cluster i with respect to class j is:

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑖, 𝑗 = 𝑝𝑖𝑗
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Grouping tables into clusters: Assessment via External 
evaluation - Metrics

 Recall: depicts the extent to which a cluster contains all the objects of a specified 
class. The recall of cluster i with respect to class j is:

𝑟𝑒𝑐𝑎𝑙𝑙 𝑖, 𝑗 =
𝑚𝑖𝑗

𝑚𝑗
 mj is the number of objects in class j.

 F-measure: consists of both precision and recall and measures the extent to which a 
cluster contains only objects of a particular class and all objects of that class. 

The F-measure of cluster i with respect to class j is calculated by this formula:

𝐹 𝑖, 𝑗 =
2 × 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑖, 𝑗 × 𝑟𝑒𝑐𝑎𝑙𝑙 𝑖, 𝑗

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑖, 𝑗 + 𝑟𝑒𝑐𝑎𝑙𝑙 𝑖, 𝑗
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Grouping tables into clusters: Assessment via External 
evaluation – Classifying Method

 Datasets

 Atlas

 bioSQL

 Coppermine

 phpBB

 The source of our classification procedure was the PLD (Parallel Live Diagram). 

 The most obvious criteria of the PLD are when a table is born (birth date) and when a 
table died and not as much the count of changes of each table. 
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Grouping tables into clusters: Assessment via External 
evaluation – Classifying Method
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Grouping tables into clusters: Assessment via External 
evaluation – Results

Average F-Measure Entropies

38

Parameters 

Set

wb-wd-wc

Average

F-Measure

0.33 - 0.33 - 0.33 0.19

0.00 - 1.00 - 0.00 0.22

0.00 - 0.50 - 0.50 0.20

0.00 - 0.00 - 1.00 0.17

0.50 - 0.50 - 0.00 0.25

0.50 - 0.00 - 0.50 0.16

1.00 - 0.00 - 0.00 0.21

wb wd wc Entropy (e)

0.333 0.333 0.333 1.13

0 1 0 0.79

0 0.5 0.5 1.06

0 0 1 1.14

0.5 0.5 0 0.00

0.5 0 0.5 0.57

1 0 0 0.52



Grouping tables into clusters: Assessment via Internal 
evaluation - Metrics

 Internal evaluation contains these types of methods that do not need any external 
knowledge

 Internal evaluation helps us to decide the right set of parameters for the best quality of 
the clustering

 We can express the overall cluster validity for a set of K clusters as a weighted sum of 
the validity of individual clusters

𝑜𝑣𝑒𝑟𝑎𝑙𝑙 𝑣𝑎𝑙𝑖𝑑𝑖𝑡𝑦 = 

𝑖=1

𝐾

𝑤𝑖𝑣𝑎𝑙𝑖𝑑𝑖𝑡𝑦 𝐶𝑖

 validity function can be expressed by various metrics such as cohesion, separation or even a 
combination of them
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Grouping tables into clusters: Assessment via Internal 
evaluation - Metrics

 Cohesion: can be defined as the sum of the proximities with respect to the prototype 
(centroid or medoid) of the cluster

𝑐𝑜ℎ𝑒𝑠𝑖𝑜𝑛 𝐶𝑖 = 
𝑥∈𝐶𝑖

𝑝𝑟𝑜𝑥𝑖𝑚𝑖𝑡𝑦 𝑥, 𝑐𝑖 = 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑥, 𝑐𝑖)

 ci is the prototype of cluster Ci

 Separation of a cluster is defined as the proximity between the centroid ci of the cluster 
and an overall centroid that has been calculated by the whole set of data points

𝑠𝑒𝑝𝑎𝑟𝑎𝑡𝑖𝑜𝑛 𝐶𝑖 = 𝑝𝑟𝑜𝑥𝑖𝑚𝑖𝑡𝑦 𝑐𝑖 , 𝑐

 c is defined the overall centroid of the dataset

 We used the Euclidean distance as a measure of proximity.
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Grouping tables into clusters: Assessment via Internal 
evaluation - Results

Wb Wd Wc Cohesion

0.00 1.00 0.00 2

0.33 0.33 0.33 2

0.50 0.50 0.00 -

0.50 0.00 0.50 4

1.00 0.00 0.00 -

41

Wb Wd Wc Separation

0.00 1.00 0.00 3

0.33 0.33 0.33 2

0.50 0.50 0.00 -

0.50 0.00 0.50 3

1.00 0.00 0.00 -
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Overview vs PLD (Atlas)
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Overview vs PLD (bioSQL)
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Overview vs PLD (Ensembl)
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Zoom into a specific point of overview: PLD phases x tables
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Zoom into a specific point of overview: PLD phases x clusters
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Filter the overview of the history: Filter by a specific phase
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Filter the overview of the history: Filter by a specific table
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Filter the overview of the history: Filter by specific clusters
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Details on demand for selected phase
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Details on demand with a full detailed PLD
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Conclusions

Conclusions:

 Creation of an interactive overview from the entire life of a database

 Phase Extraction Algorithm

 Cluster Extraction Algorithm

 Assessment of both of them

 Plutarch’s Parallel Lives tool
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Open Issues

Open Issues

 Implementation of different distance metrics for phase extraction

 Implementation of different distance metrics for cluster extraction

 Enrichment of PPL with more features
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Thank you!
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Phase Extraction Distance Function Notations
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Computing a segmentation of the history into phases: 
Assessment via divergence from the mean (3/4)

PPC:OFF

PPT:OFF

PPC:ON

PPT:OFF

PPC:OFF

PPT:ON

PPC:ON

PPT:ON

WC=0.0 

WT=1.0
898.38 907.51 898.38 907.51

WC=0.5

WT=0.5
877.94 891.98 840.24 855.17

WC=1.0

WT=0.0
912.11 912.11 859.56 859.56

PPC:OFF

PPT:OFF

PPC:ON

PPT:OFF

PPC:OFF

PPT:ON

PPC:ON

PPT:ON

WC=0.0

WT=1.0
380.15 381.22 380.15 381.22

WC=0.5

WT=0.5
253.84 254.62 375.37 347.37

WC=1.0

WT=0.0
206.54 206.54 325.82 325.82

Atlas Dataset bioSQL Dataset

Coppermine Dataset

PPC:OFF 

PPT:OFF

PPC:ON 

PPT:OFF

PPC:OFF 

PPT:ON

PPC:ON 

PPT:ON

WC=0.0 

WT=1.0 
136.45 130.74 136.45 130.74

WC=0.5 

WT=0.5
112.54 121.16 130.86 135.71

WC=1.0 

WT=0.0 
108.29 135.39 138.20 134.35

Ensembl Dataset

PPC:OFF 

PPT:OFF

PPC:ON 

PPT:OFF

PPC:OFF 

PPT:ON

PPC:ON 

PPT:ON

WC=0.0 

WT=1.0 
4111.28 4115.63 4111.28 4115.63

WC=0.5 

WT=0.5
4081.30 4097.89 4155.04 4083.44

WC=1.0 

WT=0.0 
3737.57 4044.81 4124.37 3935.9558



Computing a segmentation of the history into phases: 
Assessment via divergence from the mean (4/4)

mediaWiki Dataset Opencart Dataset

phpBB Dataset typo3 Dataset

PPC:OFF 

PPT:OFF

PPC:ON 

PPT:OFF

PPC:OFF 

PPT:ON

PPC:ON 

PPT:ON

WC=0.0 

WT=1.0 1052.28 1052.28 1052.28 1052.28

WC=0.5 

WT=0.5 1025.91 1042.27 1030.86 1053.47

WC=1.0 

WT=0.0 920.34 920.34 1061.43 1047.30

PPC:OFF 

PPT:OFF

PPC:ON 

PPT:OFF

PPC:OFF 

PPT:ON

PPC:ON 

PPT:ON

WC=0.0 

WT=1.0 3390.19 3381.58 3390.19 3381.58

WC=0.5 

WT=0.5 1297.10 1294.76 2733.91 2731.19

WC=1.0 

WT=0.0 837.30 837.30 2745.29 2743.91

PPC:OFF 

PPT:OFF

PPC:ON 

PPT:OFF

PPC:OFF 

PPT:ON

PPC:ON 

PPT:ON

WC=0.0 

WT=1.0 870.53 880.23 870.53 880.23

WC=0.5 

WT=0.5 861.10 941.45 853.23 791.49

WC=1.0 

WT=0.0 843.11 843.11 953.27 872.68

PPC:OFF 

PPT:OFF

PPC:ON 

PPT:OFF

PPC:OFF 

PPT:ON

PPC:ON 

PPT:ON

WC=0.0 

WT=1.0 648.59 644.33 648.59 644.33

WC=0.5 

WT=0.5 658.19 664.04 664.39 485.49

WC=1.0 

WT=0.0 486.84 486.84 477.48 438.3559



Computing a segmentation of the history into phases: 
Assessment via spread in the time x change space (2/7)

WC:0.0, WT:1.0, PPC:OFF,  PPT:OFF WC:0.0, WT:1.0, PPC:ON,  PPT:OFF
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Computing a segmentation of the history into phases: 
Assessment via spread in the time x change space (3/7)

WC:0.0, WT:1.0, PPC:OFF,  PPT:ON WC:0.0, WT:1.0, PPC:ON,  PPT:ON
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Computing a segmentation of the history into phases: 
Assessment via spread in the time x change space (4/7)

WC:0.5, WT:0.5, PPC:OFF,  PPT:OFF WC:0.5, WT:0.5, PPC:ON,  PPT:OFF
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Computing a segmentation of the history into phases: 
Assessment via spread in the time x change space (5/7)

WC:0.5, WT:0.5, PPC:OFF,  PPT:ON WC:0.5, WT:0.5, PPC:ON,  PPT:ON
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Computing a segmentation of the history into phases: 
Assessment via spread in the time x change space (6/7)

WC:1.0, WT:0.0, PPC:OFF,  PPT:OFF WC:1.0, WT:0.0, PPC:ON,  PPT:OFF
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Computing a segmentation of the history into phases: 
Assessment via spread in the time x change space (7/7)

WC:1.0, WT:0.0, PPC:OFF,  PPT:ON WC:1.0, WT:0.0, PPC:ON,  PPT:ON
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Term Description Formula

𝛿(𝑐𝑙𝑢𝑠𝑡𝑒𝑟
𝐴
, 𝑐𝑙𝑢𝑠𝑡𝑒𝑟

𝐵
) Total distance between two clusters

𝑤
𝑏

The weight that will be assigned to the

distance that is related with the birth date

𝛿𝑏𝑖𝑟𝑡ℎ(𝑐𝐴, 𝑐𝐵) The distance between birth dates of the two

compared clusters

Plain

𝑐𝐴. 𝑏𝑖𝑟𝑡ℎ − 𝑐𝐵. 𝑏𝑖𝑟𝑡ℎ

Normalized

𝛿𝑏𝑖𝑟𝑡ℎ 𝑐𝐴, 𝑐𝐵
𝐷𝐵 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛

𝑤𝑑 The weight that will be assigned to the

distance that is related with the death date

𝛿𝑑𝑒𝑎𝑡ℎ(𝑐𝐴, 𝑐𝐵) The distance between death dates of the two

compared clusters

Plain

 
∅, 𝒊𝒇 𝒃𝒐𝒕𝒉 𝒂𝒍𝒊𝒗𝒆

𝑐𝐴. 𝑑𝑒𝑎𝑡ℎ − 𝑐𝐵. 𝑑𝑒𝑎𝑡ℎ, 𝒆𝒍𝒔𝒆

Normalized

𝛿𝑑𝑒𝑎𝑡ℎ 𝑐𝐴, 𝑐𝐵
𝐷𝐵 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛

𝑤
𝑐

The weight that will be assigned to the

distance that is related with the total changes

𝛿𝑐ℎ𝑎𝑛𝑔𝑒(𝑐𝐴, 𝑐𝐵) The distance between the total changes that

have been committed to the two compared

clusters

Plain

𝑐𝐴. 𝑐ℎ𝑎𝑛𝑔𝑒𝑠 − 𝑐𝐵𝑐ℎ𝑎𝑛𝑔𝑒𝑠

Normalized

𝐶ℎ(𝐴) − 𝐶ℎ(𝐵)

𝐶ℎ(𝐴) + 𝐶ℎ(𝐵)

where Ch is the total number 

of changes
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Grouping tables into clusters: Assessment via External 
evaluation – Results

Atlas bioSQL

wb wd wc Entropy (e)

0.333 0.333 0.333 1.13

0 1 0 0.79

0 0.5 0.5 1.06

0 0 1 1.14

0.5 0.5 0 0.00

0.5 0 0.5 0.57

1 0 0 0.52

wb wd wc Entropy (e)

0.333 0.333 0.333 0.40

0 1 0 0.45

0 0.5 0.5 0.51

0 0 1 1.14

0.5 0.5 0 0.32

0.5 0 0.5 0.50

1 0 0 0.30
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Grouping tables into clusters: Assessment via External 
evaluation – Results

Coppermine phpBB

wb wd wc Entropy (e)

0.333 0.333 0.333 0.13

0 1 0 0.94

0 0.5 0.5 0.28

0 0 1 0.28

0.5 0.5 0 0.00

0.5 0 0.5 0.20

1 0 0 0.26

wb wd wc Entropy (e)

0.333 0.333 0.333 0.38

0 1 0 0.19

0 0.5 0.5 0.38

0 0 1 0.38

0.5 0.5 0 0.19

0.5 0 0.5 0.60

1 0 0 0.00
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Grouping tables into clusters: Assessment via Internal 
evaluation - Results

Atlas

Wb Wd Wc Cohesion Separation

0.00 1.00 0.00 1323.69 2115.12

0.33 0.33 0.33 650.45 2598.62

0.50 0.50 0.00 331.31 2797.45

0.50 0.00 0.50 1383.74 2049.81

1.00 0.00 0.00 1271.30 2314.82

Coppermine

Wb Wd Wc Cohesion Separation

0.00 1.00 0.00 211.33 362.10

0.33 0.33 0.33 35.62 421.41

0.50 0.50 0.00 40.16 418.65

0.50 0.00 0.50 35.62 421.41

1.00 0.00 0.00 40.16 418.65
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Grouping tables into clusters: Assessment via Internal 
evaluation - Results

bioSQL

Wb Wd Wc Cohesion Separation

0.00 1.00 0.00 320.45 781.45

0.33 0.33 0.33 159.73 890.94

0.50 0.50 0.00 122.00 886.21

0.50 0.00 0.50 473.46 668.98

1.00 0.00 0.00 253.59 827.05

Ensembl

Wb Wd Wc Cohesion Separation

0.00 1.00 0.00 11167.50 30780.37

0.33 0.33 0.33 21301.49 21566.66

0.50 0.50 0.00 5289.72 33661.45

0.50 0.00 0.50 19684.44 24562.84

1.00 0.00 0.00 14182.14 27347.17
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Grouping tables into clusters: Assessment via Internal 
evaluation - Results

mwiki

Wb Wd Wc Cohesion Separation

0.00 1.00 0.00 4653.55 6882.07

0.33 0.33 0.33 1752.76 9397.74

0.50 0.50 0.00 1033.57 9561.50

0.50 0.00 0.50 5349.92 7390.00

1.00 0.00 0.00 4775.46 7740.74

Opencart

Wb Wd Wc Cohesion Separation

0.00 1.00 0.00 3924.06 15890.54

0.33 0.33 0.33 3359.07 16089.72

0.50 0.50 0.00 2366.92 16189.32

0.50 0.00 0.50 7604.85 13317.76

1.00 0.00 0.00 3202.38 16068.17
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Grouping tables into clusters: Assessment via Internal 
evaluation - Results

phpBB

Wb Wd Wc Cohesion Separation

0.00 1.00 0.00 766.54 2053.20

0.33 0.33 0.33 2243.29 512.37

0.50 0.50 0.00 506.25 2196.72

0.50 0.00 0.50 2104.33 565.81

1.00 0.00 0.00 506.25 2196.72

typo3 

Wb Wd Wc Cohesion Separation

0.00 1.00 0.00 414.14 1096.70

0.33 0.33 0.33 192.07 1240.47

0.50 0.50 0.00 239.91 1213.34

0.50 0.00 0.50 208.57 1212.90

1.00 0.00 0.00 277.97 1200.29
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Overview vs PLD (Coppermine)
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Overview vs PLD (Opencart)
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Overview vs PLD (mediaWiki)
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Overview vs PLD (phpBB)
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Details on demand for selected cluster
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Details on demand for selected cell
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