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Video shot detection is an important contemporary problem since it is the first step towards indexing and
content based video retrieval. Traditionally, video shot segmentation approaches rely on thresholding
methodologies which are sensitive to the content of the video being processed and do not generalize well
the when there is little prior knowledge about the video content. To ameliorate this shortcoming we pro-
pose a learning based methodology using a set of features that are specifically designed to capture the
differences among hard cuts, gradual transitions and normal sequences of frames at the same time. A
support vector machine (SVM) classifier is trained both to locate shot boundaries and characterize tran-
sition types. Numerical experiments using a variety of videos demonstrate that our method is capable of
accurately discriminating shot transitions in videos with different characteristics.

� 2008 Elsevier B.V. All rights reserved.
1. Introduction

In recent years, there has been a significant increase in the
availability of high quality digital video as a result of the expansion
of broadband services and the availability of large volume digital
storage devices. Due to the extended use of videos in several appli-
cations such as distance learning, video surveillance, internet–TV
and video on demand, as well as the thousands of produced movies
and documentaries, a large amount of video information is added
to the repositories every year. Consequently, there has been an in-
crease in the need to access this huge amount of information and a
great demand for techniques that will provide efficient indexing,
browsing and retrieving of video data. The first step towards this
direction is to segment the video into smaller ‘‘physical” units in
order to proceed with indexing and browsing.

The smallest physical segment of a video is the shot and is de-
fined as an unbroken sequence of frames recorded from one cam-
era. After this segmentation has been accomplished, each shot is
summarized with one or more frames called key-frames which
are selected using spatial and temporal features. Further analysis
requires grouping of shots into scenes with similar content. In this
paper, we will focus on the first stage of the video segmentation
problem which is shot boundary detection. Shot transitions can
be classified into two categories. The first one which is the most
common is the abrupt cut. An abrupt or hard cut takes place be-
tween consecutive frames due to camera switch. In other words,
ll rights reserved.
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a different or the same camera is used to record a different aspect
of the scene. The second category concerns gradual transitions
such dissolves, fade-outs followed by fade-ins, wipes and a variety
of video effects which stretch over several frames. A dissolve takes
place when the initial frames of the second shot are superimposed
on the last frames of the first shot. A fade-out is a gradual decrease
in the intensity of a frame resulting to a black frame, while fade-in
is the opposite i.e., starting from a black image the intensity of the
frame gradually increases.

A formal study of the shot boundary detection problem is pre-
sented in (Yuan et al., 2007). In (Hanjalic, 2002), the major issues
to be considered for the effective solution of the shot boundary
detection problem are identified. A comparison of existing meth-
ods is presented in (Boreczky and Rowe, 1996; Dailianas et al.,
1995; Gargi et al., 2000; Lienhart, 1999). There are several ap-
proaches to the shot boundary detection task most of which in-
volve the determination of a predefined or adaptive threshold. A
simple way to declare a hard cut is pair-wise pixel comparison
(Zhang et al., 1993), where the difference in intensity or color val-
ues of corresponding pixels in two successive frames is evaluated
and compared against a threshold. This method is very sensitive
to object and camera motions, thus many researchers propose
the use of a motion independent characteristic, which is the inten-
sity or color, global or local histogram (Nagasaka and Tanaka,
1995; Zhang et al., 1993). The use of second order statistical char-
acteristics of frames is also suggested (Kasturi and Lain, 1991;
Zhang et al., 1993). More specifically, the likelihood ratio test is
used to compare corresponding blocks of successive frames. Shot
transitions are identified when the number of changed blocks is
above a predefined threshold. To overcome the difficulties that
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arise from the use of global thresholds several adaptive threshold-
ing methods are reported (Volkmer et al., 2004; Yeo and Liu, 1995;
Yusoff et al., 2000). In (Zabih et al., 1999), an algorithm is presented
based on the analysis of entering and exiting edges between con-
secutive frames. This approach works well on abrupt changes,
but fails in the detection of gradual changes. In (Cernekova et al.,
2006), mutual information and joint-entropy between frames are
used for the detection of cuts, fade-ins and fade-outs. An original
approach to partitioning of a video into shots based on a foveated
representation of the video is proposed in (Boccignone et al., 2005).

A quite interesting approach is presented in (Yuan et al., 2007)
where the detection of shot boundaries is based on a graph par-
titioning problem. More specifically a weighted graph is con-
structed where each frame is treated as a node and the edges
represent the similarity between corresponding frames. Then
the min-max criterion is used to partition this graph and the
scores for all feasible cuts are calculated. As it concerns the grad-
ual transitions, multi-resolution graphs are constructed which are
further partitioned using the same criterion. Finally, support vec-
tor machines with active learning are implemented to declare
boundaries and non-boundaries. A support vector machine classi-
fier with color and motion features is also employed in (Dalatsi
et al., 2001). In that work, the first minutes of a video have been
used for training and the rest for testing. In (Feng et al., 2005), the
authors propose as features of SVMs, wavelet coefficient vectors
within sliding windows.

A variety of methods have been proposed for gradual transitions
detection, but still are inadequate to solve this problem due to the
complicated nature of such transitions. In (Zhang et al., 1993), a
twin-comparison technique is proposed for hard cuts and gradual
transitions detection by applying different thresholds based on dif-
ferences in color histograms between successive frames. In (Ngo
et al., 2001), a spatio-temporal approach was presented for the
detection of a variety of transitions. There is also research specifi-
cally aimed towards the dissolve detection problem. In (Lienhart,
2001), the problem of dissolve detection is treated as a pattern rec-
ognition problem. Another direction, which is followed in
(Fernando et al., 1999; Hanjalic, 2002; Lelescu and Schonfeld,
2003), is to model the transitions types by presupposing probability
distributions for the feature difference metrics and perform a pos-
teriori shot change estimation. It is worth mentioning that the orga-
nization of the TREC video shot detection task (NIST) provides a
standard performance evaluation and comparison benchmark.

In summary, the main drawback of most previous algorithms is
that they are threshold dependent. As a result, if there is no prior
knowledge about the visual content of a video that we wish to seg-
ment into shots, it is rather difficult to select an appropriate
threshold.

In order to overcome this difficulty we propose in this paper a
supervised learning methodology for the shot detection problem.
In other words, the herein proposed approach does not use thresh-
olds and can actually detect shot boundaries of videos with totally
different visual characteristics. Another advantage of the proposed
approach, apart from the fact that we do not use any thresholds, is
that we can detect hard cuts and gradual transitions at the same
time in contrast with existing approaches. For example, in (Dalatsi
et al., 2001) the authors propose a support vector machine classi-
fier only for abrupt cut detection. In (Yuan et al., 2007), features
for abrupt cuts and dissolves are constructed separately and two
different SVM models are trained. In our approach, we define a
set of features designed to discriminate hard cuts from gradual
transitions. These features are obtained from color histograms
and describe the variation between adjacent frames and the con-
textual information at the same time. Due to the fact that the grad-
ual transitions spread over several frames, the frame-to-frame
differences are not sufficient to characterize them. Thus, we also
use the differences between non-adjacent frames in the definition
of the proposed features.

These features are used as inputs to a support vector machine
(SVM) classifier algorithm. A set of nine different videos with over
70 K frames from TV series, documentaries and movies is used to
train and test the SVM classifier. The resulting classifier achieves
content independent correct detection rates greater than 94%.

The rest of this paper is organized as follows: In Sections 2 and
3, the features proposed in this paper are described. In Section 4,
the SVM method employed for this application is briefly presented.
In Section 5, we present numerical experiments and compare our
method with four existing methods. Finally, in Section 6, we pres-
ent our conclusions and suggestions for future research.

2. Feature selection

2.1. Color histogram and x2 value

Color histograms are the most commonly used features to de-
tect shot boundaries. They are robust to object and camera motion,
and provide a good trade-off between accuracy of detection and
implementation speed. We have chosen to use normalized RGB
histograms. So for each frame a normalized histogram is computed,
with 256 bins for each one of the RGB component defined as HR, HG

and HB, respectively. These three histograms are concatenated into
a 768 dimension vector representing the final histogram of each
frame.

H ¼ ½HRHGHB�: ð1Þ

To define whether two shots are separated with an abrupt cut or a
gradual transition we have to look for a difference measure between
frames. The simplest method for shot detection is to compute the
histograms of two adjacent frames calculate the sum of their bin-
wise differences and compare to a threshold.

In our approach, we use a variation of the x2 value to compare
the histograms of two frames in order to enhance the difference
between the two histograms. Finally the difference between two
images Ii, Ij based on their color histograms Hi, Hj is given from
the following equation:

dðIi; IjÞ ¼
1
3

X768

k¼1

ðHiðkÞ � HjðkÞÞ2

HiðkÞ þ HjðkÞ

 !
; ð2Þ

where k denotes the bin index. In the literature, two versions of the
x2 value have been used (Nagasaka and Tanaka, 1995; Sethi and
Patel, 1995). One uses the square of the histogram values in the
denominator as normalization and the other the histogram value
of the second frame. We decided not to use squares for normaliza-
tion but the one used herein Eq. (2), because in this manner the pro-
duced feature vectors that will be subsequently discussed, were
smoother.

2.2. Inter-frame distance

The dissimilarity value given in Eq. (2) can be computed for any
pair of frames within the video sequence. We compute the value not
only between adjacent frames, but also between frames with time
distance l, where l is called the inter-frame distance as suggested
in (Bescós et al., 2005; Hanjalic, 2002). We compute the dissimilar-
ity value d(Ii, Ii+1) for three values of the inter-frame distance l:

1. l = 1. This is used to identify hard cuts between two consecutive
frames, so the dissimilarity values are computed for l = 1.

2. l = 2. Due to the fact that during a gradual transition two con-
secutive frames may be the same or very similar to each other,
the dissimilarity value will tend to zero and, as a result, the
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sequence of the dissimilarity values could have the form shown
in Fig. 1. The computation for l = 2 usually results in a smoother
curve, which is more useful for our further analysis. A typical
example of a sequence of dissimilarity values for l = 2 is shown
in Fig. 2.

3. l = 6. A gradual transition stretches along several frames, while
the difference value between consecutive frames is smaller, so
we are interested not only in the difference between consecu-
tive frames, but also between frames that are a specific distance
apart from each other. As the inter-frame distance increases, the
curve becomes smoother as it can be observed in the example of
Fig. 3.

Of course the maximum distance between frames for which the
inter-frame distance in Eq. (2) is useful is rather small. This dis-
tance should be less than the minimum length of all transitions
in the video set in order to capture the form of the transition. Thus,
the choice of l = 6 was made due to the fact that most of the grad-
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Fig. 1. Dissimilarity pattern for l = 1.
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Fig. 2. Dissimilarity pattern for l = 2.

0 5 10 15 20 25 30 35 40
# of Frames

Fig. 3. Dissimilarity pattern for l = 6.
ual transitions in our set of videos have length between 7 and 40
frames.
3. Feature vector selection for shot boundary classification

The dissimilarity values defined in Section 2 are not going to be
compared with any threshold, but they will be used to form feature
vectors based on which an SVM classifier will be constructed.

3.1. Definition of feature vectors

The feature vectors selected are the normalized dissimilarity
values calculated in a temporal window centered at the frame of
interest. More specifically, the dissimilarity values that are com-
puted in section 2 form three vectors, one for each one of the three
inter-frame distances l.

Dl¼1 ¼ ½dðI1; I2Þ; . . . ;dðIi; Iiþ1Þ; . . . ;dðIN�1; INÞ�;
Dl¼2 ¼ ½dðI1; I3Þ; . . . ;dðIi; Iiþ2Þ; . . . ;dðIN�2; INÞ�;
Dl¼6 ¼ ½dðI1; I7Þ; . . . ;dðIi; Iiþ6Þ; . . . ;dðIN�6; INÞ�:

ð3Þ

Moreover for each frame, we define a window of length w that is
centered at this frame and contains the dissimilarity values. As a re-
sult for the ith frame the following three vectors are composed:

Wl¼1ði;1 : wÞ ¼ ½Dl¼1ði�w=2Þ; . . . ;Dl¼1ðiÞ; . . . ;Dl¼1ðiþw=2� 1Þ�;
Wl¼2ði;1 : wÞ ¼ ½Dl¼2ði�w=2Þ; . . . ;Dl¼2ðiÞ; . . . ;Dl¼2ðiþw=2� 1Þ�;
Wl¼6ði;1 : wÞ ¼ ½Dl¼6ði�w=2Þ; . . . ;Dl¼6ðiÞ; . . . ;Dl¼6ðiþw=2� 1Þ�:

ð4Þ

To obtain the final features we normalize the dissimilarity values in
Eq. (4) by dividing each dissimilarity value by the sum of the values
in the window. This provides the normalized ‘‘magnitude” indepen-
dent features.

fW l¼kði; jÞ ¼ Wl¼kði; jÞPw
j¼1Wl¼kði; jÞ

; k ¼ 1;2;6 ð5Þ

The size of the window used is w = 40. In our experiments we also
considered windows of length 50 and 60 in order to capture longer
transitions. The 120-long vector resulting from the concatenation of
the normalized dissimilarities for the three windows given by
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FðiÞ ¼ ½fW l¼1ðiÞ; fW l¼2ðiÞ; fW l¼6ðiÞ � ð6Þ

is the feature vector corresponding to frame i.
In what follows, we show examples of the feature vectors for a

hard cut, two dissolves and a ‘‘normal” sequence of frames in Figs.
4–7. By observing these features, it is clear that the shape of the
l = 1 normalized dissimilarity vectors for normal sequences and
dissolves can be of similar shape. However, the inclusion of the
l = 2 and l = 6 dissimilarity vectors discriminates the two
categories.

4. Support vector machine classifier

After the feature definition, an appropriate classifier has to be
used in order to categorize each frame in three categories: normal
sequences, abrupt cuts and gradual transitions. For this purpose we
selected the support vector machine (SVM) classifier (Cortes and
Vapnik, 1995) that provides state-of-the-art performance and
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Fig. 4. Feature vector for a hard cut.
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Fig. 6. Feature vector for the second dissolve example.
scales well with the dimension of the feature vector which is rela-
tively large (equal to 120) in our problem.

The classical SVM classifier finds an optimal hyperplane which
separates data points of two classes. More specifically, suppose
we are given a training set of l vectors xi 2 Rn, i = l, l belonging to
one of two classes, and a vector y 2 Rl with yi 2 {1,�1} denoting
the class of vector xi. We also assume a mapping function u(x), that
maps each training vector to a higher dimensional space, and the
corresponding kernel function K(x,y) (Eq. (9)). Then, the SVM clas-
sifier (Cortes and Vapnik, 1995) is obtained by solving the follow-
ing primal problem:

min
w;b;n

1
2

wT wþ C
Xl

i¼1

ni

subject to yiðwTuðxiÞ þ bÞP 1� ni;

ni P 0; i ¼ 1; . . . ; l:

ð7Þ

The decision function is

sgn
Xl

i¼1

wiKðxi; xÞ þ b

 !
; where Kðxi; xjÞ ¼ uTðxiÞuðxjÞ: ð8Þ

A notable characteristic of SVMs is that after training, usually most
of the training patterns xi have wi = 0 in Eq. (8), in other words they
do not contribute to the decision function. Those xi for which wi – 0,
are retained in the SVM model and called support vectors (SVs). In
our approach the commonly used radial basis function (RBF) kernel
is employed.

Kðxi; xjÞ ¼ expð�ckxi � xjk2Þ; ð9Þ

where c denotes the width of the kernel. It must be noted that in
order to obtain an efficient SVM classifier the parameters C (Eq.
(7)) and c (Eq. (9)) must be carefully selected, usually through
cross-validation.

The above algorithm is suitable for binary classification. In our
application, we have a three-class problem, thus we used the
‘‘one-against-one” approach (Knerr et al., 1990) in which for a k-
class problem, k(k � 1)/2 binary classifiers are constructed and
each one is trained to discriminate data from two classes. More
specifically, if we assume that class label 0 corresponds to normal
sequences, class label 1 to dissolves and class label 2 to hard cuts,
three binary classifiers discriminating between pairs of classes
(0,1), (1,2) and (0,2) are constructed. The final classification is
based on a voting strategy where the decision of each binary clas-
sifier is considered as a vote for its proposed class and the class
with the maximum number of votes is selected. In the case of a
tie the class with the smallest index is selected. This tie braking
strategy is well-justified since in our case class 0 corresponds to
normals which is the most probable outcome.



Table 2
Training examples and support vectors

Positive examples Negative examples Support vectors

Cuts 315 – 152
Dissolves 126 – 101
Normal – 2200 1276

Table 3
Performance results for w = 40, l = 1, l = 2 and l = 6

Transition type Nc Nm Nf RECALL (%) PRECISION (%) F1 (%)

Cuts 351 4 9 98.87 97.50 98.18
Dissolves 127 15 33 89.44 79.38 84.11
Average – – – 96.18 92.32 94.21

Table 4
Performance results for w = 50, l = 1, l = 2 and l = 6

Transition type Nc Nm Nf RECALL (%) PRECISION (%) F1 (%)

Cuts 352 3 8 99.15 97.78 98.46
Dissolves 130 12 25 91.55 83.87 87.54
Average – – – 96.98 93.80 95.37
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5. Experiments

In this section, we present numerical experiments of the pro-
posed approach and compare our method with three other
methods.

5.1. Data

The video sequences used for our data set were taken from TV
series, documentaries and educational films. Nine videos (70000
frames) were used; containing 355 hard cuts and 142 dissolves
(Table 1), manually annotated.

5.2. Performance criteria

To evaluate the performance of our method we used the follow-
ing criteria (Bimbo, 1999):

RECALL ¼ Nc

Nc þ Nm
;

PRECISION ¼ Nc

Nc þ Nf
;

F1 ¼
2 � RECALL � PRECISION

RECALLþ PRECISION
;

ð10Þ

where Nc stands for the number of correct detected shot bound-
aries, Nm for the number of missed ones and Nf the number of false
detections. During our experiments, we calculate the F1 value for
the cuts (F1C) and the dissolves (F1D) separately. Then the final per-
formance measure is given from the following equation:

F1 ¼
a

aþ b
F1C þ

b
aþ b

F1D; ð11Þ

where a is the number of true hard cuts and b the number of true
dissolves.

5.3. Results and comparison

In our experiments, eight videos are used for training and the
ninth for testing, therefore, nine ‘‘rounds” of testing were con-
ducted. In order to obtain good values of the parameters c and C
(in terms of providing high F1 values), in each ‘‘round” we applied
three-fold cross-validation using the eight videos of the corre-
sponding training set. A difficulty of the problem under consider-
ation is the generation of an imbalanced training set that
contains few positives examples and a huge number of negative
ones. In (Schohn and Cohn, 2000), an active learning procedure is
proposed to reduce the training time: based on the assumption
that the support vectors determine the decision boundary in Eq.
(8), they suggest removing the training examples that are far from
the SVM’s decision hyperplane. In (Yuan et al., 2007), the authors
identify the positive examples while reducing the number of neg-
Table 1
Characteristics of videos used in the experiments

Video ID Frames Cuts Dissolves Genre

T1 6318 36 23 Comedy
T2 9466 28 16 Action
T3 1180 4 6 Drama
T4 1535 14 8 Educational
T5 17982 146 7 Action
T6 1665 1 19 Comedy
T7 14993 105 11 Drama
T8 9840 12 41 Documentary
T9 6355 9 11 Documentary
Total 69334 355 142 –
ative ones by applying a predefined threshold on their constructed
features. In our approach we sample negative examples uniformly,
thus we reduce their number to 3% of the total number of exam-
ples. More specifically, in our training set there are 440 positive
examples (transitions) and 2200 negative examples (no transi-
tions) on average. Finally each model of the training procedure
generated on average 1276 support vectors for normal transitions,
101 support vectors for gradual transitions and 152 support vec-
tors for abrupt transitions. The number of examples and support
vectors (on average) of the support vector machines classification
are summarized in Table 2.

We also tested our method by using larger windows of width
w = 50 and w = 60. In what follows in Tables 3–5, we provide the
classification results using different selections of window lengths
and inter-frame distances. We notice that the performance im-
proves as the size of the window increases. False boundaries are re-
duced since larger windows contain more information. The use of
larger windows also helps the detection of dissolves that last
longer.

In order to reduce the size of our feature vector, we have also
consider as feature vectors used to train the SVM classifier, those
obtained from the concatenation of features extracted for l = 2
and l = 6, only. It can be observed (Tables 6–8) that even with the
shorter feature vector the proposed algorithm gives very good
Table 5
Performance results for w = 60, l = 1, l = 2 and l = 6

Transition type Nc Nm Nf RECALL (%) PRECISION (%) F1 (%)

Cuts 353 2 4 99.44 98.88 99.16
Dissolves 127 15 25 89.44 83.55 86.39
Average – – – 96.58 94.50 95.53

Table 6
Performance results for w = 40, l = 2 and l = 6

Transition type Nc Nm Nf RECALL (%) PRECISION (%) F1 (%)

Cuts 351 4 9 98.87 97.50 98.18
Dissolves 127 16 30 88.73 80.77 84.56
Average – – – 95.98 92.72 94.32



Table 16
Performance results for w = 40, l = 1, l = 2, l = 6 HSV histograms, Kullback–Liebler
distance

Transition type Nc Nm Nf RECALL (%) PRECISION (%) F1 (%)

Cuts 352 3 5 99.15 98.60 98.92
Dissolves 122 20 31 85.92 79.74 82.73
Average – – – 94.38 92.23 93.91

Table 14
Performance results for w = 60, l = 2, l = 6 and constant (C,c)

Transition type Nc Nm Nf RECALL (%) PRECISION (%) F1 (%)

Cuts 351 4 7 98.87 98.04 98.46
Dissolves 127 15 22 89.44 85.23 87.29
Average – – – 96.18 94.38 95.27

Table 15
Performance results for w = 40, l = 1, l = 2, l = 6,HSV histograms, x2 distance

Transition type Nc Nm Nf RECALL (%) PRECISION (%) F1 (%)

Cuts 353 2 4 99.44 98.89 99.16
Dissolves 125 17 29 88.03 81.17 84.46
Average – – – 95.19 92.84 93.97

Table 7
Performance results for w = 50, l = 2 and l = 6

Transition type Nc Nm Nf RECALL (%) PRECISION (%) F1 (%)

Cuts 350 5 5 98.59 97.49 98.04
Dissolves 129 13 21 90.85 86.00 88.36
Average – – – 96.38 94.21 95.28

Table 8
Performance results for w = 60, l = 2 and l = 6

Transition type Nc Nm Nf RECALL (%) PRECISION (%) F1 (%)

Cuts 351 4 5 98.87 98.60 98.73
Dissolves 128 14 26 90.14 83.12 86.49
Average – – – 96.38 94.17 95.26

Table 9
Performance results for w = 40, l = 1, l = 2, l = 6 and constant (C,c)

Transition type Nc Nm Nf RECALL (%) PRECISION (%) F1 (%)

Cuts 353 2 9 99.44 96.98 98.19
Dissolves 128 14 23 90.14 84.77 87.37
Average – – – 96.78 93.49 95.11
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results that are only slightly inferior to the ones obtained by the
longer feature vector.

In order to test the importance of selecting the best values for
(C,c), in another experiment we used the SVM classifier with con-
stant values pair (C,c) = (6,8) for all ‘‘rounds” of testing. The ob-
tained results (Tables 9–14) indicate that even without the
‘‘optimal selection” of (C,c) the performance of the SVM classifier
Table 10
Performance results for w = 50, l = 1, l = 2, l = 6 and constant (C,c)

Transition type Nc Nm Nf RECALL (%) PRECISION (%) F1 (%)

Cuts 353 2 7 99.44 98.06 98.74
Dissolves 128 14 31 90.14 80.50 85.05
Average – – – 96.78 93.04 94.87

Table 11
Performance results for w = 60, l = 1, l = 2, l = 6 and constant (C,c)

Transition type Nc Nm Nf RECALL (%) PRECISION (%) F1 (%)

Cuts 353 2 5 99.44 98.60 99.02
Dissolves 128 14 23 90.14 84.77 87.37
Average – – – 96.78 94.65 95.70

Table 12
Performance results for w = 40, l = 2, l = 6 and constant (C,c)

Transition type Nc Nm Nf RECALL (%) PRECISION (%) F1 (%)

Cuts 352 3 13 99.15 96.44 97.78
Dissolves 127 16 22 88.73 85.14 86.90
Average – – – 96.18 93.21 94.67

Table 13
Performance results for w = 50, l = 2, l = 6 and constant (C,c)

Transition type Nc Nm Nf RECALL (%) PRECISION (%) F1 (%)

Cuts 352 3 10 99.15 96.44 98.19
Dissolves 129 13 20 90.85 86.58 88.66
Average – – – 96.78 94.19 95.47
remains very good. The choice of w = 50 for the window size seems
to provide best performance. In addition, it can deal with transi-
tions that spread over many frames.

In another additional experiment we carried out, an HSV nor-
malized histogram is computed for each frame, with eight bins
for hue and four bins for each of saturation and value, resulting
to 8 � 4 � 4 bins. In Tables 15 and 16, we provide the classification
results using the x2 value defined in Eq. (2) and the Kullback–Lie-
bler distance between two histograms, respectively. It can be ob-
served that the method is not sensitive to the choice of the color
space and the distance measure between the color.

In order to gain more intuition into the SVM classifier for this
problem, in Figs. 9–11, we provide correctly detected feature vec-
tors from dissolves, hard cuts and normal sequences of frames.
From these figures, it is clear that the selected features of the
three classes of frame sequences exhibit distinguishable charac-
teristics. More specifically, for hard cuts the feature vector con-
tains three ‘‘impulses” with decaying height and increasing
width. For dissolves it contains three replicas of a pattern that
resembles to a rectangle from which a sinusoidal lobe has been
subtracted. Furthermore, these patterns become smoother as we
move from left to right. Finally, for ‘‘normal” sequences of frames
the pattern resembles to ‘‘white noise” superimposed on a con-
stant DC value.

In Figs. 12–14, we provide a portion of SVs for all the cases for
the same ‘‘round”. These examples are training patterns for which
wi – 0 in Eq. (8) and are retained in the SVM model. We immedi-
Fig. 8. Twin-comparison algorithm (Zhang et al., 1993).
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Fig. 10. Correctly detected hard cut patterns.
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Fig. 9. Correctly detected dissolve patterns.
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Fig. 11. Correctly detected patterns of normal sequences.
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Fig. 12. Support vectors for dissolves.
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Fig. 13. Support vectors for hard cuts.
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Fig. 14. Support vectors for normal sequences.
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ately notice, as expected, that the SVs are the ‘‘borderline exam-
ples” for all categories. The hardest cases to separate are normal
from dissolves, since more SVs of the normal class have character-
istics of correctly classified dissolves and fewer have characteris-
tics of hard cuts. Similarly, more SVs for dissolves have
characteristics of ‘‘normal” than hard cuts. Furthermore, the SVs
for hard cuts are much fewer than their ‘‘normal” and dissolves
counterparts. Also one cannot make an assessment whether most
of them have characteristics of the normal or dissolve class.

To demonstrate the effectiveness of our algorithm and its
advantage over threshold depended methods, we implemented
three methods that use thresholds in different ways. More specif-
ically, we implemented pair-wise comparison of successive frames
(Zhang et al., 1993), likelihood ratio test (Kasturi and Lain, 1991;
Zhang et al., 1993) and the twin-comparison method (Zhang
et al., 1993). The first two methods can only detect cuts, while
the third can identify both abrupt and gradual transitions. We also
compare our method with the method proposed in (Feng et al.,
2005).

The pair-wise comparison method (Zhang et al., 1993) com-
pares corresponding pixels of successive frames to determine
how many pixels have changed. More specifically we consider that
a pixel changes if the difference of its corresponding pixel in the
following frame is over a predefined threshold:



Table 17
Performance results for Pair-wise comparison method (Zhang et al., 1993)

Transition type Nc Nm Nf RECALL (%) PRECISION (%) F1 (%)

Cuts 302 53 54 85.07 84.83 84.95
Dissolves – – – – – –
Average – – – – – –

Table 18
Performance results for Likelihood ratio method (Zhang et al., 1993)

Transition type Nc Nm Nf RECALL (%) PRECISION (%) F1 (%)

Cuts 335 5320 54 94.37 86.12 90.05
Dissolves – – – – – –
Average – – – – – –

Table 19
Performance results for Twin-comparison method (Zhang et al., 1993)

Transition type Nc Nm Nf RECALL (%) PRECISION (%) F1 (%)

Cuts 317 38 41 89.30 88.05 88.92
Dissolves 100 42 51 70.42 64.94 67.57
Average – – – 83.90 81.80 82.82

Table 20
Performance results for method in (Feng et al., 2005)

Transition type Nc Nm Nf RECALL (%) PRECISION (%) F1 (%)

Cuts 348 7 32 97.18 91.57 94.29
Dissolves 106 36 24 74.64 81.53 77.93
Average – – – 89.77 87.78 88.67
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DPiðx; yÞ ¼
1; if Piðx; yÞ � Piþ1ðx; yÞj j > Th
0; otherwise

�
ð12Þ

where Pi(x,y) is the intensity of pixel with coordinates (x,y) in frame
i. A shot boundary is declared if the number of the pixels that have
changed is over another predefined threshold. However the appro-
priate selection of such a threshold is a tedious task. Firstly, this
threshold is different for videos that belong to different genres
and secondly, even in the same video differences between frames
may vary due to different states of illumination and content. Thus,
it is difficult to define a global threshold. In (Yusoff et al., 2000), the
authors propose the use of a sliding window over the differences. A
shot boundary is detected if two conditions are fulfilled: the middle
sample of the window (a) is the maximum in the window and (b) is
greater than
Table 21
Comparative results using RECALL, PRECISION and F1 measures

Method Transition type

Cuts

RECALL (%) PRECISION

w = 40, l = 1, l = 2 and l = 6. 98.87 97.50
w = 40, l = 2 and l = 6. 98.87 97.50
w = 40, l = 1, l = 2 and l = 6 and constant (C,c) 99.44 96.98
w = 40, l = 2 and l = 6 and constant (C,c) 99.15 96.44
w = 40, l = 1, l = 2 and l = 6 (HSV,x2) 99.44 98.89
W = 40, l = 1, l = 2 and l = 6 (HSV,KL) 99.15 98.60
Pair-wise comparison (Zhang et al., 1993) 85.07 84.83
Likelihood ratio (Zhang et al., 1993) 94.37 86.12
Twin-comparison (Zhang et al., 1993) 89.30 88.05
(Feng et al., 2005) 97.18 91.57
maxðlleft þ arleft;lright þ arrightÞ; ð13Þ

where lleft, lright and rleft, rright are the means and standard devi-
ations of the samples, left and right of the middle sample of the
window, respectively. The length of the window and the parameter
a are set to 21 and 5, respectively. In Table 17, we provide the per-
formance of the pair-wise comparison method.

The second method we implemented uses the likelihood ratio
(Kasturi and Lain, 1991; Zhang et al., 1993) as the metric to com-
pute frame differences. More specifically, this metric compares
the second order statistics of corresponding regions. Each frame
is divided into blocks, which represent the regions, and the likeli-
hood ratio between two consecutive frames i, i + 1 for a specific
block k is given from the following equation:

kði; iþ 1Þj ¼
riþriþ1

2

� �
þ li�liþ1

2

� �2
h i2

ri � riþ1
; ð14Þ

where li, li+1 and ri, ri+1 are the means and standard deviations of
block k of frames i, i + 1, respectively.

Then, the likelihood ratio between two consecutive frames i,
i + 1 is as follows:

Lði; iþ 1Þ ¼
PK

k¼1kði; iþ 1Þk
K

; ð15Þ

where K is the number of blocks of the frame. A shot boundary is
detected when the likelihood ratio between two frames exceeds a
predefined threshold. To improve the performance of the specific
method, we do not use a global threshold, but we select the thresh-
old via cross-validation, using the ‘‘leave-one-out” method. To iden-
tify the threshold and test it on a video of our dataset, we choose the
threshold that achieves the best performance over the rest eight
videos of our dataset. In Table 18 we provide the performance of
the likelihood ratio method.

Finally, the third method we implemented was the twin-com-
parison algorithm which uses two thresholds for the detection of
abrupt and gradual transitions. Each frame is represented with a
histogram and the differences between histograms of consecutive
frames are calculated. Histograms and their differences are com-
puted using Eqs. (1) and (2). If the difference between two succes-
sive frames exceeds a high threshold Thigh, a cut is detected. A low
threshold Tlow is used for the detection of gradual transitions. If the
difference is above Tlow then this frame is characterized as a poten-
tial start Fs of the gradual transition. Then, Fs is compared with sub-
sequent frames providing the accumulated differences metric. The
end frame Fe of the transition is detected if two conditions are sat-
isfied: (1) the consecutive difference falls below threshold Tlow and
(2) the accumulated difference exceeds threshold Thigh. If consecu-
tive difference falls below Tlow before the accumulated difference
Dissolves

(%) F1 (%) RECALL (%) PRECISION (%) F1 (%)

98.18 89.44 79.38 84.11
98.18 88.73 80.77 84.56
98.19 90.14 84.77 87.37
97.78 88.73 85.14 86.90
99.16 88.03 81.17 84.46
98.92 85.92 79.74 82.73
84.95 – – –
90.05 – – –
88.92 70.42 64.94 67.57
94.29 74.64 81.53 77.93
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exceeds Thigh, then the potential start frame is discarded. In Fig. 8,
we illustrate the twin-comparison algorithm.

To compute the two thresholds we follow the method proposed
in (Kobla et al., 1999). The threshold Tlow is calculated from the fol-
lowing equation:

T low ¼ lþ ar; ð16Þ

where l and r are the mean and standard deviation of histogram
differences respectively. The value of parameter a is set to 5. To cal-
culate Thigh we compute the histogram of the differences values.
Threshold Thigh is assigned to the index value that corresponds to
half of the peak value on the right slope of the peak value of the his-
togram. Thigh must be higher than mean value. In Table 19, we pro-
vide the performance of the twin-comparison method.

In (Feng et al., 2005), Blocked Color Histogram is incorporated
as feature vector and the temporal multi-resolution characteristics
of shot presented by the wavelet transition coefficients are se-
lected as video frame series patterns for a SVM classifier. In Table
20, we present the classification results for this method.

The obtained results indicate that our algorithm outperforms
the other three threshold dependent methods and the method pro-
posed in (Feng et al., 2005). In Table 21, we provide the recall, pre-
cision and F1 values for our algorithm and the four methods under
consideration. For our algorithm we present the results using
w = 40, for best values (C,c) and constant values pair (C,c) = (6,8),
using all features (l = 1, l = 2 and l = 6) and less features (l = 2 and
l = 6). We also present the results using HSV histograms and two
different distance metrics between histograms: (a) x2 value and
(b) Kullback–Liebler. The thresholds used in the three threshold
dependent methods were calculated in different ways. We used
adaptive thresholds in pair-wise comparison algorithm, cross-val-
idation in likelihood ratio method and finally global adaptive
threshold in the twin-comparison method. Especially for the dis-
solve detection our algorithm, provides far better results than the
twin-comparison algorithm.

In summary, the proposed system is capable of identifying
where a shot boundary occurs and whether the transition is abrupt
or gradual. The main advantage of the method is that it can be
trained using different types of video and then it can be used to lo-
cate shot boundaries in other videos without using any thresholds.

6. Conclusions

In this paper, we have proposed a method for shot boundary
detection and discrimination between a hard cut and a gradual
transition. Features that describe the variation between adjacent
frames and the contextual information were derived from color
histograms using a temporal window. These feature vectors be-
come inputs to a SVM classifier which categorizes transitions of
the video sequence into normal transitions, hard cuts and gradual
transitions. This categorization provides an effective segmentation
of any video into shots and thus is a valuable aid to further analysis
of the video for indexing and browsing. The main advantage is that
throughout the whole procedure, no use of any thresholds is made.
As a future work, we will try to improve the performance of the
method by extracting other types of features from the video
sequence.

Acknowledgements

This research project (PENED) is co-financed by EU – European
Social Fund (75%) and the Greek Ministry of Development – GSRT
(25%).
References

Bescós, J., Cisneros, G., Martı́nez, J.M., Menéndez, J.M., Cabrera, J., 2005. A unified
model for techniques on video-shot transition detection. IEEE Trans.
Multimedia 7 (2), 293–307.

Bimbo, A.D., 1999. Visual Information Retrieval. Morgan Kaufmann Publishers Inc.,
San Francisco, California.

Boccignone, G., Chianese, A., Moscato, V., Picariello, A., 2005. Foveated shot
detection for video segmentation. IEEE Trans. Circuits Systems Video Technol.
15 (3), 365–377.

Boreczky, J.S., Rowe, L.A., 1996. Comparison of video shot boundary detection
techniques. In: Proc. SPIE Storage and Retrieval for Image and Video Databases,
vol. 2664, pp. 170–179.

Cernekova, Z., Pitas, I., Nikou, C., 2006. Information theory-based shot cut/fade
detection and video summarization. IEEE Trans. Circuits Systems Video Technol.
16 (1), 82–91.

Cortes, C., Vapnik, V., 1995. Support-vector network. Mach. Learn. 20 (3), 273–297.
Dailianas, A., Allen, R.B., England, P., 1995. Comparison of automatic video

segmentation algorithms. In: Proc. SPIE Photonics East’95: Integration Issues
in Large Commercial Media Delivery Systems, vol. 2615, pp. 2–16.

Dalatsi, C., Krinidis, S., Tsekeridou, S., Pitas, I., 2001. Use of support vector machines
based on color and motion features for shot boundary detection. In: Internat.
Symp. on Telecommunications.

Feng, H., Fang, W., Liu, S., Fang, Y., 2005. A new general framework for shot
boundary detection and key-frame extraction. In: Proc. 7th ACM SIGMM
Internat. Workshop Multimedia Inf. Retrieval, pp. 121–126.

Fernando, W.A.C., Canagarajah, C.N., Bull, D.R., 1999. Fade and dissolve detection in
uncompressed and compressed video sequences. In: Proc. IEEE Internat. Conf.
Image Processing, vol. 3, pp. 299–303.

Gargi, U., Kasturi, R., Strayer, S.H., 2000. Performance characterization of video-
shot-detection methods. IEEE Trans. Circuits Systems Video Technol. 10 (1), 1–
13.

Hanjalic, A., 2002. Shot-boundary detection: Unraveled and resolved? IEEE Trans.
Circuits Systems Video Technol. 12 (2), 90–105.

Kasturi, R., Lain, R., 1991. Dynamic vision. In: Kasturi, R., Lain, R. (Eds.), Computer
Vision: Principles. IEEE Computer Society Press, Washington, DC, pp. 469–480.

Knerr, S., Personnaz, L., Dreyfus, G., 1990. Single-layer learning revisited: A stepwise
procedure for building and training a neural network. In: Fogelman, J. (Ed.),
Neurocomputing Algorithms, Architectures and Applications. Springer-Verlag.

Kobla, V., DeMenthon, D., Doermann, D., 1999. Special effect edit detection using
VideoTrails: A comparison with existing techniques. In: Proc. SPIE Conf. on
Storage and Retrieval for Image and Video Databases VII, vol. 3656, pp. 302–
316.

Lelescu, D., Schonfeld, D., 2003. Statistical sequential analysis for real-time video
scene change detection on compressed multimedia bitstream. IEEE Trans.
Multimedia 5 (1), 106–117.

Lienhart, R., 1999. Comparison of automatic shot boundary detection algorithms. In:
Proc. SPIE Storage and Retrieval for Image and Video Databases VII, San Jose, CA,
vol. 3656, pp. 290–301.

Lienhart, R., 2001. Reliable dissolve detection. In: Proc. SPIE Storage and Retrieval
for Media Databases, vol. 4315, pp. 219–230.

Nagasaka, A., Tanaka, Y., 1995. Automatic video indexing and full-video search for
object appearances. In: Knuth, E., Wegner, L.M. (Eds.), Visual Database Systems
II. Elsevier, pp. 113–127.

Ngo, C.W., Pong, T.C., Chin, R.T., 2001. Video partitioning by temporal slice
coherence. IEEE Trans. Circuits Systems Video Technol. 11 (8), 941–953.

NIST, Homepage of Trecvid Evaluation. [Online] <http://www-nlpir.nist.gov/
projects/trecvid/>.

Schohn, G., Cohn, D., 2000. Less is more: Active learning with support vector
machines. In: Proc. 17th Internat. Conf. Machine Learning, pp. 839–836.

Sethi, I.K., Patel, N., 1995. A statistical approach to scene change detection. In: Proc.
SPIE on Storage and Retrieval for Image and Video Databases III, vol. 2420, pp.
329–339.

Volkmer, T., Tahaghoghi, S.M.M., Williams, H., 2004. RMIT University at Trecvid
2004. In: Proc. TRECVID 2004 Workshop.

Yeo, B.-L., Liu, B., 1995. Rapid scene analysis on compressed video. IEEE Trans.
Circuits Systems Video Technol. 5 (6), 544–553.

Yuan, J., Wang, H., Xiao, L., Zheng, W., Li, J., Lin, F., Zhang, B., 2007. A formal study of
shot boundary detection. IEEE Trans. Circuits Systems Video Technol. 17 (2),
168–186.

Yusoff, Y., Chrismas, W., Kittler, J., 2000. Video shot cut detection using adaptive
threshold. In: 11th British Machine Vision Conf. (BMVC’00), Bristol, UK.

Zabih, R., Miller, J., Mai, K., 1999. Feature-Based Algorithms for Detecting and
Classifying Production Effects. Multimedia Systems 7 (2), 119–128.

Zhang, H.J., Kankanhalli, A., Smoliar, S.W., 1993. Automatic partitioning of full-
motion video. Multimedia Systems 1 (1), 10–28.

http://www-nlpir.nist.gov/projects/trecvid/
http://www-nlpir.nist.gov/projects/trecvid/

	Simultaneous detection of abrupt cuts and dissolves in videos using support vector machines
	Introduction
	Feature selection
	Color Histogram histogram and x2 value
	Inter-frame distance

	Feature vector selection for shot-boundary shot boundary classification
	Definition of feature vectors

	Support vector machine classifier
	Experiments
	Data
	Performance criteria
	Results and comparison

	Conclusions
	Acknowledgements
	References


