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Ekten c PerÐlhyh Sta Ellhnik�

Qas�nhc BasÐleioc tou Jwm� kai thc Frìswc.

Didaktorikì DÐplwma, Tm ma Plhroforik c, Panepist mio IwannÐnwn, Ell�da. IoÔnioc,

2009.

TÐtloc: Teqnikèc Mhqanik c M�jhshc gia DiaqeÐrish Gn¸shc se Polumesik� Dedomèna.

Epiblèpontac: AristeÐdhc LÔkac.

H Diatrib  esti�zetai sta zht mata thc kat�tmhshc (video segmentation) kai anapar�-

stashc bÐnteo (video representation) me th qr sh teqnik¸n mhqanik c m�jhshc (ma-

chine learning techniques), kaj¸c kai sthn efarmog  twn proteinìmenwn mejìdwn sta

probl mata thc perÐlhyhc amont�ristou bÐnteo (video rushes summarization) kai parako-

loÔjhshc mèsw bÐnteo (video surveillance).

Katarq n exet�zetai to qamhlìtero epÐpedo kat�tmhshc bÐnteo pou sqetÐzetai me to

prìblhma thc anÐqneushc twn orÐwn twn pl�nwn (shot boundary detection). ProteÐnetai

mia mejodologÐa m�jhshc me epÐbleyh pou qrhsimopoieÐ èna sÔnolo qarakthristik¸n pou

èqoun sqediasteÐ eidik� gia na ekfr�soun th sun�feia twn eikonoplaisÐwn se mia geitoni�.

'Ena sÔsthma taxinìmhshc SVM (Support Vector Machines) ekpaideÔetai tìso gia ton

entopismì twn orÐwn twn pl�nwn ìso kai gia to qarakthrismì twn metab�sewn metaxÔ twn

pl�nwn.

Sth sunèqeia proteÐnetai ènac algìrijmoc exagwg c qarakthristik¸n eikonoplaisÐwn

(key-frame extraction) enìc pl�nou pou basÐzetai se teqnikèc fasmatik c omadopoÐhshc

(spectral clustering). H proteinìmenh mèjodoc parèqei epÐshc mia ektÐmhsh tou arijmoÔ twn

qarakthristik¸n eikonoplaisÐwn exet�zontac tic idiotimèc tou pÐnaka omoiìthtac metaxÔ twn

eikonoplaisÐwn enìc pl�nou. Ta exagìmena qarakthristik� eikonoplaÐsia eÐnai monadik�,
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mh epanalambanìmena kai sunoyÐzoun ikanopoihtik� to perieqìmeno tou k�je pl�nou.

Katìpin proteÐnetai ènac algìrijmoc gia thn kat�tmhsh enìc bÐnteo se skhnèc (video

scene segmentation). Ta pl�na enìc bÐnteo arqik� omadopoioÔntai se om�dec qrhsimopoi¸-

ntac teqnikèc fasmatik c omadopoÐhshc. Sth sunèqeia, se k�je pl�no antistoiqÐzetai

mÐa etikèta (label) me b�sh thn om�da sthn opoÐa an kei. Gia thn anÐqneush twn orÐwn

twn skhn¸n anazhtoÔme allagèc sto motÐbo twn etiket¸n twn pl�nwn. Gia autì to

lìgo qrhsimopoieÐtai ènac algìrijmoc eujugr�mmishc akolouji¸n (sequence alignment

algorithm), o opoÐoc sugkrÐnei akoloujÐec apì sumbolikèc etikètec pl�nwn. Ta ìria

twn skhn¸n entopÐzontai sta qronik� shmeÐa gia ta opoÐa o algìrijmoc eujugr�mmishc

akolouji¸n parèqei qamhlèc timèc.

Sth sunèqeia proteÐnetai mÐa mèjodoc gia thn uyhloÔ epipèdou kat�tmhsh mÐac tainÐac

(high-level movie segmentation), dhl. thn kat�tmhsh se skhnèc kai kef�laia (chapters).

H mèjodoc qrhsimopoieÐ perigrafeÐc topik¸n qarakthristik¸n (local invariant descriptors)

gia thn anapar�stash twn pl�nwn me mia shmasiologik  perigraf . Pio sugkekrimèna, èna

lexilìgio optik¸n lèxewn (visual word vocabulary) par�getai apì touc perigrafeÐc kai

èna pl�no anaparÐstatai apì èna istìgramma pou ekfr�zei th suqnìthta emf�nishc twn

perigrafèwn tou pl�nou se k�je lèxh tou lexilogÐou. Uiojet¸ntac mÐa prosèggish apì

to pedÐo thc kat�tmhshc keimènwn, aut� ta shmasiologik� istogr�mmata omalopoioÔntai

se sqèsh me geitonik� istogr�mmata qrhsimopoi¸ntac mÐa gkaoussian  sun�rthsh pur na

(gaussian kernel). Ta topik� mègista thc diafor�c twn omalopoihmènwn istogramm�twn se

di�forec qronikèc klÐmakec antistoiqoÔn sta ìria twn skhn¸n/kefalaÐwn.

'Ena �llo z thma pou melet�tai sth diatrib  eÐnai to prìblhma thc perÐlhyhc amont�ri-

stou bÐnteo (video rushes summarization). To amont�risto bÐnteo perièqei arket  peritt 

plhroforÐa, ìpwc monìqrwma eikonoplaÐsia, all� kai epanalambanìmena pl�na. O stìqoc

eÐnai h apom�krunsh twn anepijÔmhtwn eikonoplaisÐwn all� kai thc epanalambanìmenhc

plhroforÐac. PerigrafeÐc topik¸n qarakthristik¸n kai istogr�mmata dieÔjunshc akm¸n

(edge direction histograms) qrhsimopoioÔntai gia thn apom�krunsh twn anepijÔmhtwn eiko-

noplaisÐwn. Sth sunèqeia, orÐzetai èna mètro omoiìthtac metaxÔ pl�nwn basismèno sthn

optik  omoiìthta twn qarakthristik¸n eikonoplaisÐwn touc. Me b�sh autì to mètro
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parìmoia pl�na omadopoioÔntai se om�dec kai èna mìno pl�no apì k�je om�da krateÐtai

wc antiproswpeutikì, apaleÐfontac ètsi epanalambanìmena pl�na. Tèloc, epilègontac èna

arijmì eikonoplaisÐwn prin kai met� apì ta qarakthristik� eikonoplaÐsia k�je antiprosw-

peutikoÔ pl�nou, katal goume sthn telik  perÐlhyh tou arqikoÔ akatèrgastou bÐnteo.

Tèloc sth diatrib  proteÐnetai ènac algìrijmoc gia anÐqneush kai qarakthrismì gego-

nìtwn (event detection and classification) se akoloujÐec bÐnteo parakoloÔjhshc (video

surveillance). QrhsimopoioÔntai perigrafeÐc topik¸n qarakthristik¸n gia thn kat�tmhsh

tou bÐnteo se tm mata/gegonìta, kaj¸c kai gia ton qarakthrismì twn eikonoplaisÐwn

k�je gegonìtoc me istogr�mmata optik¸n lèxewn. Me b�sh ta paragìmena istogr�mmata

orÐzontai dÔo mètra anomoiìthtac metaxÔ gegonìtwn kai efarmìzontai teqnikèc mhqanik c

m�jhshc gia thn kathgoriopoÐhsh gegonìtwn se prokajorismènec kathgorÐec.
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In this thesis, we study the video segmentation and representation problems using

machine learning techniques. We also consider two video analysis applications such as

video rushes summarization and video surveillance.

At first we examine the first level of video segmentation which is the shot boundary

detection problem. We propose a supervised learning methodology that uses a set of

features that are specifically designed to capture the variation between adjacent frames

and the contextual information in a neighborhood of frames. A support vector machine

(SVM) classifier is trained both to locate shot boundaries and characterize transition

types in videos with different characteristics.

Next we present a key-frame extraction algorithm that is based on spectral clustering

and the fast global k-means algorithm. The proposed method also provides an estimation

of the number of clusters using elements from spectral graph theory. The extracted key-

frames are unique, non-repetitive and summarize the video shot content. This is also

indicated from numerical experiments, where appropriate quality measures are computed.

Then a video scene segmentation algorithm is proposed. Shots are clustered into groups

using the improved spectral clustering algorithm and a label is assigned to each shot

according to the group that it belongs to. In order to detect scene boundaries, we search

for changes in the patterns of shot labels. Therefore, a sequence alignment algorithm is
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applied to compare sequences of shot labels. Scene boundaries correspond to low score

values of the sequence alignment algorithm. Numerical experimental results on several

videos indicate that the proposed method accurately detects most scene boundaries, while

providing a good trade off between recall and precision.

Next we present a high-level movie segmentation algorithm. Local invariant descriptors

are employed to provide a semantical shot representation through visual word histograms.

The visual word histograms of shots are temporally smoothed using a gaussian kernel

with respect to neighboring histograms to preserve useful contextual information. The

semantic smoothing process at different time scales results in efficient movie segmentation

at different high-levels, such as scenes and chapters.

Based on the above methods for video segmentation and key-frame extraction, a video

rushes summarization algorithm has been proposed. Edge direction histograms and local

invariant descriptors are first employed to remove useless frames from the initial video.

Next in order to remove repetitive shots, a shot similarity metric is computed based

on a sequence alignment algorithm on the key-frames of the shots under comparison.

Finally, by selecting a number of frames around each key-frame, the final video summary

is generated constituting an efficient representation of the initial video.

Finally an event detection and classification algorithm is proposed for video surveil-

lance sequences. The method employs local invariant descriptors to segment the video se-

quence in segments/events and describe each video segment with a visual word histogram.

Two different dissimilarity metrics between events are defined based on the computed vi-

sual word histograms and machine learning techniques are employed to classify events

into predefined categories.
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Chapter 1

Introduction

1.1 Video Indexing and Retrieval

1.2 Video Segmentation and Representation

1.3 Machine Learning Problems

1.4 Thesis Contribution

1.1 Video Indexing and Retrieval

In recent years, there has been a significant increase in the availability of high quality

digital video as a result of the expansion of broadband services and the availability of large

volume digital storage devices. Due to the extended use of videos in several applications

such as distance learning, video surveillance, internet-TV, digital libraries and video on

demand, as well as the the thousands of produced movies and documentaries, a large

amount of video information is added to the repositories every year. Consequently, there

has been an increase in the need to access this huge amount of information and a great

demand for techniques that will provide efficient indexing, browsing and retrieving of

video data.
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Content-based video database modeling, representation, summarization, indexing, re-

trieval, navigation and browsing have emerged as challenging and important problems

in computer vision and database management. Video structure parsing is an initial step

to organize the content of videos. Video data are typically organized in an hierarchical

structure [44, 32]. Such structure is obtained through video segmentation into meaningful

pieces of information, either physical (shots) or semantical (scenes or chapters).

Another important problem is video browsing and summarization, i.e. the representa-

tion of the whole content of a video in a form as concise and accessible as possible [92, 59].

The need behind such representation is that users are often interested to inspect only part

of the video, and it should be possible to locate such segment without watching the whole

video. The most common approach is to represent the shots or the scenes of each video

with a sequence of key-frames, which are the most representative frames of the video

content. In this way, few images can summarize several minutes of a video. Moreover, a

user can access the video and search its content by referring to the key-frames without

watching the whole content.

A successful segmentation and representation of a video is important for video clas-

sification, indexing and retrieval [25]. Automatic or semi-automatic methods have been

proposed to categorize the video into predefined categories. However, this is a quite chal-

lenging task due to the semantic gap, defined as the problem of accurately classifying

multimedia content from automatically extracted low-level features. Alternatively, videos

can be indexed in video databases using selected keywords. The last stage of video anal-

ysis is content-based video retrieval, where a user can search and retrieve selected video

segments from a video database [70]. There are three widely accepted approaches to ac-

cess a video database. The first one is query by example, where users provide an example

video clip and retrieve a set of similar videos. In the second approach, users prefer to

query the video database via high-level semantic visual concepts. Finally, in the query

by keyword approach, the users query the video database via keywords that are used for

indexing the videos in the databases.

In this thesis, we focus on the problems of efficient segmentation and representation of
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a video sequence. More specifically, the first step towards automatic annotation of digital

video sequences is to divide the video stream into a set of meaningful and manageable

segments (shots) that are used as basic elements for indexing [44]. The shot is defined as

an unbroken sequence of frames recorded from one camera. Proceeding further towards

the goal of video indexing and retrieval requires the grouping of shots into high level

video units such as scenes and chapters (stories) [62]. A scene refers to a group of shots

that take place in a fixed setting or describe an action or event. A chapter or story

is a more compact representation of a video corresponding to a group of semantically

correlated scenes. Concerning the video representation problem, each video segment (shot

or scene) is represented with still frames (key-frames) or a short sequence of frames (video

summary).

1.2 Video Segmentation and Representation

Under the visual perspective, a video is a three-dimensional signal, in which two dimen-

sions reveal the visual content in the horizontal and vertical frame direction, and the third

one reveals the variations of the visual content over the time axes. Shot boundary detec-

tion aims to temporally segment the video into consecutive shots (low-level segmentation).

The basic idea is to identify the discontinuities of visual content [85].

There are three major challenges concerning the shot boundary detection problem [85].

The first one is the representation of the visual content of each video frame. The most

common approach is to extract different features from each frame and obtain a compact

content representation (i.e. histogram). Video segmentation techniques can be applied

on a variety of features extracted from the video frames such as visual, audio, motion

and text features. Visual features such as color, texture and shape provide important

information to recognize the content of the video. Audio features are not commonly

used, but sometimes they provide additional and useful information for video. Motion

features are proposed to exploit the spatio-temporal relation of video frames and are
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usually employed to describe the relation of moving objects across time. Text features are

extracted from embedded objects in videos and contain rich semantic information related

to the multimedia content. The extracted features must be invariant to several content

variations such as illumination changes and object/camera movement. Furthermore, the

more details feature captures, the more sensitive it is, since the feature can even reflect

the tiny changes of visual content. Thus, the feature within shots should remain relatively

stable, whereas between different shots should exhibit considerable change.

The second challenge concerns the construction of a discontinuity signal to identify

the shot transitions. The most common practice is to calculate the discontinuity (dis-

tance) values of adjacent frames. In this way, the visual content flow is transformed into

a 1-D temporal signal. This signal should keep low magnitudes within shots, while should

increase to high values surrounding the positions of shot transitions. However, the tem-

poral signal obtained by inter-frame comparison of features is not always stable enough

to various disturbances such as abrupt illumination variation and large object/camera

movement. Thus, contextual information expressing the variations in a neighborhood of

a particular frame should also be considered.

Finally, classification of discontinuity values is a critical issue. The most common

approaches compare discontinuity values with predefined thresholds or employ machine

learning techniques to classify discontinuity values into shot transitions or normal transi-

tions.

Video segmentation into high level units such as scenes and chapters (high-level seg-

mentation) is a very difficult but also challenging task [32, 62]. The difficulty stems from

the fact that high level units do not have physical boundaries like shots, but their bound-

aries correspond to changes in the semantic content of the movie. A common approach to

detect scene boundaries is to compare adjacent shots and construct a discontinuity signal

similar to the shot boundary detection problem. The constant change of the video con-

tent and the fact that adjacent shots do not always describe the same setting, necessitate

the consideration of contextual information in a neighborhood of shots. Furthermore,

shot representation should be enriched with semantic features, extracted directly from
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the video content or by classifying shots using a predefined lexicon of semantic concepts.

Shot representation is also an important issue, since it is a pre-processing step for

scene and chapter segmentation [92]. Shots are usually represented as a set of key-frames.

The extracted representative frames (key-frames) should fulfil some requirements. Firstly,

the key-frames should represent the whole video content without missing important in-

formation and secondly, these key-frames should not be similar, in terms of video content

information, in order not to contain redundant information.

Apart from typical video database applications, video segmentation and representation

can also be extended and provide solution to other video-based applications. Two such

applications that are examined in this thesis are video rushes summarization [59] and

video surveillance [34]. The goal of video rushes summarization is to create a condensed

version of the initial video, so that judgements about the video content can be made in

less time and effort than using the initial video. Video rushes contain many repetitive

information and junk frames that should be removed from the final video summary. In

video surveillance systems, the goal is to detect and characterize the major events of the

video surveillance sequence into predefined categories.

1.3 Machine Learning Problems

Machine learning is the area of artificial intelligence that attempts to provide machines

with the ability to learn from examples [3, 43]. More specifically, in machine learning

problems we make use a set of observations (examples), which we call training set, in

order to make predictions for unseen events. In the area of machine learning there are two

major categories of problems; supervised learning and unsupervised learning. In supervised

learning, every training example of the training set has the form of a pair (input, target),

where input contains the features of the examples we want to characterize and target, the

desired output result. The aim is to build a model that can be used to make predictions

for the outputs of previously unseen inputs. On the other hand, unsupervised learning
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methods assume a training set that only consists of observed inputs. The objective is to

learn a model of these inputs, which can later be used for example to predict missing values

of some of the observations, or to group similar observations into clusters. Semi-supervised

machine learning methods combine characteristics of both supervised and unsupervised

methods. These methods, require that some of the input observations are associated with

the corresponding desired output, but they can also take advantage of available input

observations whose corresponding desired output is unknown.

Supervised methods are further divided in two categories depending on the type of

the outputs. In classification problems the outputs are labels that distinguish in which

category the input belongs to. In contrast, if the outputs are continuous variables, the

problem is known as regression. A popular classification method used in this thesis is the

Support Vector Machines (SVM) [17].

Unsupervised methods consider among others the problems of density estimation and

clustering. In density estimation problems, we wish to find the distribution that could

have generated a set of observations with high probability. In clustering problems a set

of examples is given that we wish to group them into clusters such that the examples

in a cluster are similar and different from the examples in other clusters. To solve these

problems we can use probability density estimation methods, such as mixture models and

assign one cluster to each mixture component. A similar approach is followed in the k-

means algorithm, where each example is assigned to the cluster whose center (also called

centroid) is nearest. A quite different method is the hierarchical clustering algorithm,

which is based on the gradual formation of clusters. The agglomerative algorithm starts

with one cluster for each example and builds the hierarchy by progressively merging clus-

ters with minimal distance. Another clustering approach based on graph theory is spectral

clustering [56]. A graph can be constructed where the distances between prototypes cor-

respond to the weights of edges of the graph. Clusters are obtained by analyzing the

spectrum of the similarity matrix. Several clustering methods have been considered in

this thesis as it will be described in the following chapters.
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1.4 Thesis Contribution

The contribution of the thesis is twofold. On one hand, we focus on the efficient seg-

mentation of a video into shots, scenes and chapters and we also provide an efficient

shot representation scheme. On the other hand, using the proposed algorithms for video

segmentation and representation, we provide efficient methods for video rushes summa-

rization and event detection in video surveillance sequences. Next, we summarize the

contributions of this thesis.

In Chapter 2, we present a supervised learning methodology for video shot detection

[11, 15]. The main novelty of this approach is that shot transitions are detected without

using any thresholds, which is the main drawback of the majority of shot detection al-

gorithms. In the proposed approach, novel features that describe the variation between

adjacent frames and the contextual information in a neighborhood of frames become in-

puts to a SVM classifier which categorizes transitions to three classes: normal, abrupt and

gradual. Another novelty of out approach is that all types of shot transitions are detected

using a single classifier. Numerical experiments are presented that compare our algorithm

with threshold dependent methods and another supervised learning methodology.

In Chapter 3, we consider the key-frame extraction problem [10, 14]. In order to find

unique and non repetitive frames that summarize the shot content, frames are clustered

into groups using an enhanced spectral clustering algorithm. In the clustering stage after

the eigenvector computation we employ the very efficient global k-means algorithm and

the medoids of the clusters are characterized as key-frames. A novelty of the proposed

approach is that the number of key-frames is estimated using results from spectral graph

theory, by examining the eigenvalues of the similarity matrix corresponding to pairs of shot

frames. Appropriate quality measures indicate that the proposed approach outperforms

traditional techniques and provides efficient summarization and reconstruction of the

video sequence from the extracted key-frames.

The efficient shot detection and representation methods are the first steps towards

the definition of shot similarity metrics and the segmentation of videos into high-level
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units. In Chapter 4, we present a scene detection algorithm [9, 14] that is based on the

improved spectral clustering of Chapter 3 and on sequence alignment methods. In the

method we propose, to overcome the difficulty of having prior knowledge of the scene

duration, the shots are clustered into groups based only on their visual similarity and a

label is assigned to each shot according to the group that it belongs to. Next, a sequence

alignment algorithm is applied to detect when the pattern of shot labels changes, providing

the final scene segmentation result. Experiments on TV-series and movies indicate that

the proposed scene detection method accurately detects most of the scene boundaries

while preserving a good tradeoff between recall and precision.

In Chapter 5, we present a high-level movie segmentation algorithm [13]. The main

novelty of this approach is that movie shots are represented with local invariant descrip-

tors instead of color histograms, resulting into a visual words histogram representation.

Using a technique from text document segmentation, the visual words histograms of shots

are temporally smoothed (using a gaussian kernel) with respect to neighboring histograms

to preserve valuable contextual information. As indicated from numerical experiments,

the semantic smoothing process at different time scales provides the efficient movie seg-

mentation into different high-levels, such as scenes and chapters.

In Chapter 6, we propose a system for video rushes summarization [12]. A video

sequence is segmented into shots and key-frames are extracted for each shot. Then,

the edge direction histogram of each key-frame is computed in order to determine if

it is a monochrome frame or a colorbar. In order to remove redundant information, we

compare shots using a sequence alignment metric between the sets of their key-frames. The

SIFT descriptors of the key-frames of the remaining representative shots are compared

with a database of descriptors of frames containing clapboards. In that way, frames

with clapboards are identified and removed from the video summary. Finally, the video

summary is generated by concatenating frames around the key-frames of the remaining

shots. Experimental results indicate that our system exhibited good performance in the

Rushes Summarization task of TRECVID 2008.

In Chapter 7, we describe a system for event detection and classification in video rushes
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surveillance sequences. First, the video is segmented into events using the local invariant

descriptors of video frames. Next, we compute the visual words histograms for each

video event and we employ machine learning techniques to classify events into predefined

categories. Numerical experiments indicate that the proposed approach provides high

event detection and classification rates.

Finally, in Chapter 8 we provide a review of the results of this thesis and we suggest

some interesting directions for further research.

9



Chapter 2

A Support Vector Machine

Approach for Detection of Video

Shot Transitions

2.1 Introduction

2.2 Feature Selection

2.3 Feature Vector Formulation for Shot Boundary Classification

2.4 Support Vector Machine Classifier

2.5 Numerical Experiments

2.6 Conclusions

2.1 Introduction

The first step towards indexing, browsing and retrieval of video data is the efficient seg-

mentation of video into smaller physical units. The smallest physical segment of a video
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is the shot and is defined as an unbroken sequence of frames recorded from one cam-

era. After this segmentation has been accomplished, each shot can be summarized with

one or more frames called key-frames which are selected using spatial and temporal fea-

tures. Further analysis requires grouping of shots into scenes with similar content. In this

Chapter, we will focus on the first stage of the video segmentation problem which is shot

boundary detection. Shot transitions can be classified into two categories. The first one

which is the most common is the abrupt cut. An abrupt or hard cut takes place between

consecutive frames due to camera switch. In other words, a different or the same camera

is used to record a different aspect of the scene. The second category concerns gradual

transitions such dissolves, fade-outs followed by fade-ins, wipes and a variety of video

effects which stretch over several frames. A dissolve takes place when the initial frames

of the second shot are superimposed on the last frames of the first shot. A fade-out is a

gradual decrease in the intensity of a frame resulting to a black frame, while fade-in is the

opposite i.e., starting from a black image the intensity of the frame gradually increases.

In Fig. 2.1 and Fig. 2.2, we present examples of a hard cut and a dissolve, respectively.

Figure 2.1: Visual example of a hard cut.

Figure 2.2: Visual example of a dissolve.

A formal study of the shot boundary detection problem is presented in [85]. In [31],

the major issues to be considered for the effective solution of the shot-boundary detection

problem are identified. A comparison of existing methods is presented in [6, 19, 29, 47].

There are several approaches to the shot-boundary detection task most of which involve

the determination of a predefined or adaptive threshold. A simple way to declare a hard

cut is pair-wise pixel comparison [90]. This method is very sensitive to object and camera
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motions, thus many researchers propose the use of a motion independent characteristic,

which is the intensity or color, global or local histogram [54, 90]. The use of second order

statistical characteristics of frames, in a likelihood ratio test, is also suggested [40, 90].

More specifically, the likelihood ratio test is used to compare corresponding blocks of

successive frames. Shot transitions are identified when the number of changed blocks

is above a predefined threshold. To overcome the difficulties that arise from the use

of global thresholds several adaptive thresholding methods are reported [77, 83, 86]. In

[87], an algorithm is presented based on the analysis of entering and exiting edges between

consecutive frames. This approach works well on abrupt changes, but fails in the detection

of gradual changes. In [7], mutual information and joint-entropy between frames are used

for the detection of cuts, fade-ins and fade-outs. An original approach to partitioning of

a video into shots based on a foveated representation of the video is proposed in [5].

A quite interesting approach is presented in [85], where the detection of shot bound-

aries is based on a graph partitioning problem. More specifically a weighted graph is

constructed where each frame is treated as a node and the edges represent the similar-

ity between corresponding frames. Then, the min-max criterion is used to partition this

graph and the scores for all feasible cuts are calculated. As it concerns the gradual tran-

sitions, multi-resolution graphs are constructed which are further partitioned using the

same criterion. Finally, support vector machines with active learning are implemented to

declare boundaries and non-boundaries. A support vector machine classifier with color

and motion features is also employed in [20]. In that work, the first minutes of a video

have been used for training and the rest for testing. In [27], the authors propose as inputs

to SVMs, wavelet coefficient vectors within sliding windows.

A variety of methods have been proposed for gradual transitions detection, but still

are inadequate to solve this problem due to the complicated nature of such transitions.

In [90], a twin-comparison technique is proposed for hard cuts and gradual transitions

detection by applying different thresholds based on differences in color histograms between

successive frames. In [57], a spatio-temporal approach was presented for the detection of

a variety of transitions. There is also research specifically aimed towards the dissolve
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detection problem. In [48], the problem of dissolve detection is treated as a pattern

recognition problem. Another direction, which is followed in [28, 31, 46], is to model

the transitions types by presupposing probability distributions for the feature difference

metrics and perform a posteriori shot change estimation. It is worth mentioning that the

organization of the TREC video shot detection task [68] provides a standard performance

evaluation and comparison benchmark.

In summary, the main drawback of most previous algorithms is that they are threshold

dependent. As a result, if there is no prior knowledge about the visual content of the video

that we wish to segment into shots, it is rather difficult to select an appropriate threshold.

In order to overcome this difficulty we propose in this Chapter a supervised learning

methodology for the shot detection problem [11, 15]. The herein proposed approach does

not use thresholds and can actually detect shot boundaries of videos with different visual

characteristics. Another advantage of the proposed approach, apart from the fact that

we do not use any thresholds, is that we can detect hard cuts and gradual transitions

at the same time in contrast with existing approaches. For example, in [20], a support

vector machine classifier only for abrupt cut detection is proposed. In [85], features for

abrupt cuts and dissolves are constructed separately and two different SVM models are

trained. In our approach, we define a set of features designed to discriminate hard cuts

from gradual transitions. These features are obtained from color histograms and describe

the variation between adjacent frames and the contextual information at the same time.

Due to the fact that the gradual transitions spread over several frames, the frame-to-

frame differences are not sufficient to characterize them. Thus, we also use the differences

between non-adjacent frames in the definition of the proposed features.

The rest of the Chapter is organized as follows: In Sections 2.2 and 2.3, the proposed

features used for video shot classification are described. In Section 2.4 the SVM method

employed for this application is briefly presented. In Section 2.5 we present numerical

experiments and compare our method with four existing methods and finally, in Section

2.6 we provide some conclusions.
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2.2 Feature Selection

2.2.1 Color Histogram and x2 Value

Color histograms are the most commonly used features to detect shot boundaries. They

are quite robust to object and camera motion, and provide a good trade-off between

accuracy of detection and implementation speed. We have chosen to use normalized RGB

histograms. Thus, for each frame a normalized histogram is computed, with 256 bins for

each one of the RGB component defined as HR, HG and HB, respectively. These three

histograms are concatenated into a 768 dimension vector representing the final histogram

of each frame:

H = [HRHGHB]. (2.1)

To determine whether two shots are separated with an abrupt cut or a gradual transition

we have to define a difference measure between frames. The simplest method for shot

detection is to compute the histograms of two adjacent frames, calculate the sum of their

bin-wise differences and compare it to a threshold. In our approach, we use a variation

of the x2 value [54, 66] to compare the histograms of two frames. Finally, the difference

between two images Ii, Ij based on their color histograms Hi, Hj is given from the

following equation:

d(Ii, Ij) =
1

3

768∑
k=1

(Hi(k)−Hj(k))2

Hi(k) +Hj(k)
, (2.2)

where k denotes the bin index.

2.2.2 Inter-frame Distance

The dissimilarity value given in equation 2.2 can be computed for any pair of frames

within the video sequence. We compute the value not only between adjacent frames, but

also between frames with time distance l, where l is called the inter-frame distance as

suggested in [1, 31]. We compute the dissimilarity value d(Ii, Ii+l) for three values of the

inter-frame distance l:
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1. l = 1. This is used to identify hard cuts between two consecutive frames. Thus, the

dissimilarity values are computed for l = 1.

2. l = 2. Due to the fact that during a gradual transition two consecutive frames may

be the same or very similar to each other, the dissimilarity value will tend to zero

and, as a result, the sequence of the dissimilarity values could have the form shown

in Fig. 2.3. The computation for l = 2 usually results in a smoother curve, which is

more useful for our further analysis. A typical example of a sequence of dissimilarity

values for l = 2 is shown in Fig. 2.4.

3. l = 6. A gradual transition stretches along several frames, while the difference

value between consecutive frames is smaller, so we are interested not only in the

difference between consecutive frames, but also between frames that are a specific

distance apart from each other. As the inter-frame distance increases, the curve

becomes smoother as it can be observed in the example of Fig. 2.5.

The maximum distance between frames for which the inter-frame distance is useful is

rather small. This distance should be less than the minimum length of all transitions in

the video set in order to capture the form of the transition. Thus, the choice of l = 6 was

made due to the fact that most of the gradual transitions in our set of videos have length

between 7 and 40 frames.

Figure 2.3: Dissimilarity pattern for l = 1.
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Figure 2.4: Dissimilarity pattern for l = 2.

Figure 2.5: Dissimilarity pattern for l = 6.

2.3 Feature Vector Formulation for Shot Boundary Classifica-

tion

The dissimilarity values defined in Section 2.2 will not be compared with any threshold,

but they will be used to form the feature vectors based on which an SVM classifier will

be constructed.

2.3.1 Definition of Feature Vectors

The selected feature vectors are the normalized dissimilarity values calculated in a tem-

poral window centered at the frame of interest. More specifically, the dissimilarity values

that have been defined in Section 2.2 form three vectors, one for each of the three inter-
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frame distances l.

Dl=1 = [d(I1, I2), . . . , d(Ii, Ii+1), . . . , d(IN−1, IN)], (2.3)

Dl=2 = [d(I1, I3), . . . , d(Ii, Ii+2), . . . , d(IN−2, IN)], (2.4)

Dl=6 = [d(I1, I6), . . . , d(Ii, Ii+6), . . . , d(IN−6, IN)]. (2.5)

where N denotes the number of video frames. Moreover, for each frame i we define a

window of length w that is centered at this frame and contains the dissimilarity values.

As a result, for the i-th frame the following three vectors are composed:

W l=1(i, 1 : w) = [Dl=1(i− w/2), . . . , Dl=1(i), . . . , Dl=1(i+ w/2− 1)], (2.6)

W l=2(i, 1 : w) = [Dl=2(i− w/2), . . . , Dl=2(i), . . . , Dl=2(i+ w/2− 1)], (2.7)

W l=6(i, 1 : w) = [Dl=6(i− w/2), . . . , Dl=6(i), . . . , Dl=6(i+ w/2− 1)]. (2.8)

To obtain the final features we normalize the dissimilarity values in equations (2.6), (2.7)

and (2.8) by dividing each dissimilarity value by the sum of the values in the window.

This provides the normalized “magnitude” independent features.

W̃ l=k(i, j) =
W l=k(i, j)∑w
j=1W

l=k(i, j)
, k = 1, 2, 6. (2.9)

The size of the window used is w = 40. In our experiments, we also considered windows

of length 50 and 60 in order to capture longer transitions. The 120-dimensional vector

resulting from the concatenation of the normalized dissimilarities for the three windows

given by equation (2.10), is the feature vector corresponding to frame i.

F (i) = [W̃ l=1(i) W̃ l=2(i) W̃ l=6(i)] . (2.10)

In what follows, we show examples of the feature vectors for a hard cut, two dissolves and

a “normal” sequence of frames in Fig. 2.6, Fig. 2.7, Fig. 2.8 and Fig. 2.9, respectively. By
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observing these features, it is clear that the shape of the l = 1 normalized dissimilarity

vectors for normal sequences and dissolves may be of similar shape. However, the inclusion

of the l = 2 and l = 6 dissimilarity vectors discriminates the two categories.

Figure 2.6: Feature vector for a hard cut.

Figure 2.7: Feature vector for the first dissolve example.

2.4 Support Vector Machine Classifier

After the feature definition, an appropriate classifier has to be used in order to categorize

each frame in three categories: normal sequences, abrupt cuts and gradual transitions. For
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Figure 2.8: Feature vector for the second dissolve example.

Figure 2.9: Feature vector for a normal sequence of frames.

this purpose we selected the Support Vector Machine (SVM) classifier [17] that provides

state-of-the-art performance and scales well with the dimension of the feature vector which

is relatively large (equal to 120) in our problem.

The classical SVM classifier finds an optimal hyperplane which separates data points

of two classes. More specifically, suppose we are given a training set of m vectors xi ∈ Rn,

i=1, . . . ,m and a vector y ∈ Rm with yi ∈ {1,-1} denoting the class of vector xi. We also

assume a mapping function φ(x), that maps each training vector to a higher dimensional

space, and the corresponding kernel function (equation (2.15)). Then, the SVM classifier
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[17] is obtained by solving the following primal problem:

min
w,b,ξ

1
2
wTw + C

∑m
i=1 ξi (2.11)

subject to yi(w
Tφ(xi) + b) ≥ 1− ξi (2.12)

ξi ≥ 0, i = 1, . . . ,m. (2.13)

The decision function is:

sign(
m∑
i=1

wiK(xi, x) + b), where K(xi, xj) = φT (xi)φ(xj) . (2.14)

A notable characteristic of SVMs is that after training, usually most of the training

patterns xi have wi = 0 in equation (2.14), in other words they do not contribute to the

decision function. Those xi for which wi 6= 0, are retained in the SVM model and called

Support Vectors (SVs). In our approach the commonly used radial basis function (RBF)

kernel is employed:

K(xi, xj) = exp(−γ‖xi − xj‖2) , (2.15)

where γ denotes the width of the kernel. It must be noted that in order to obtain an

efficient SVM classifier the parameters C, γ in equations (2.11), (2.15) respectively, must

be carefully selected, usually through cross-validation.

The above algorithm is suitable for binary classification. In our application, we have

a three-class problem, thus we used the “one-against-one” approach [41] in which for a

k-class problem, k(k − 1)/2 binary classifiers are constructed and each one is trained to

discriminate data from two classes. More specifically, if we assume that class label 0

corresponds to normal sequences, class label 1 to dissolves and class label 2 to hard cuts,

three binary classifiers discriminating between pairs of classes (0,1), (1,2) and (0,2) are

constructed. The final classification is based on a voting strategy where the decision of

each binary classifier is considered as a vote for its proposed class and the class with the

maximum number of votes is selected. In the case of a tie the class with the smallest index

is selected. This tie braking strategy is well-justified in our case, since class 0 corresponds
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Table 2.1: Characteristics of videos used for the shot detection problem.

Video ID Frames Cuts Dissolves Genre

T1 6318 36 23 Comedy
T2 9466 28 16 Action
T3 11807 4 6 Drama
T4 1535 14 8 Educational
T5 17982 146 7 Action
T6 1665 1 19 Comedy
T7 14993 105 11 Drama
T8 9840 12 41 Documentary
T9 6355 9 11 Documentary

Total 69334 355 142 -

Table 2.2: Training examples and support vectors.

Transition type Positive examples Negative examples Support vectors

Cuts 315 - 152
Dissolves 126 - 101
Normal - 2200 1276

to normals which is the most probable outcome.

2.5 Numerical Experiments

In this Section, we present numerical experiments of the proposed approach and compare

our method with four other methods.

2.5.1 Video Data for Shot Detection Problem

The video sequences used for our data set were taken from TV-series, documentaries and

educational films. Nine videos (70000 frames), manually annotated by a human observer,

were used; containing 355 hard cuts and 142 dissolves (Table 2.1).
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2.5.2 Performance Criteria

To evaluate the performance of our method we used the following commonly used criteria

[2]:

Recall =
Nc

Nc +Nm

, (2.16)

Precision =
Nc

Nc +Nf

, (2.17)

F1 =
2× Recall× Precision

Recall + Precision
, (2.18)

where Nc stands for the number of correct detected shot boundaries, Nm for the number

of missed ones and Nf the number of false detections. During our experiments we calcu-

late the F1 value for the cuts (F1C) and the dissolves (F1D) separately. Then, the final

performance measure is given from the following equation:

F1 =
α

α + b
F1C +

b

α + b
F1D , (2.19)

where α is the number of true hard cuts and b the number of true dissolves.

2.5.3 Results

In our experiments, 8 videos are used for training and the 9-th for testing, therefore,

9 “rounds” of testing were conducted. In order to obtain good values of the parame-

ters C and γ (in terms of providing high F1 values), in each “round” we applied 3-fold

cross-validation using the 8 videos of the corresponding training set. A difficulty of the

problem under consideration is the generation of an imbalanced training set that contains

few positives examples and a huge number of negative ones. In [65], an active learning

procedure is proposed to reduce the training time. Based on the assumption that the

support vectors determine the decision boundary in equation (2.14), they suggest remov-

ing the training examples that are far from the SVM’s decision hyperplane. In [85], the

authors identify the positive examples while reducing the number of negative ones by
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applying a predefined

Table 2.3: Performance results for w = 40, l = 1, l = 2 and l = 6.

Transition type Nc Nm Nf Recall (%) Precision (%) F1 (%)

Cuts 351 4 9 98.87 97.50 98.18
Dissolves 127 15 33 89.44 79.38 84.11
Average - - - 96.18 92.32 94.21

Table 2.4: Performance results for w = 50, l = 1, l = 2 and l = 6.

Transition type Nc Nm Nf Recall (%) Precision (%) F1 (%)

Cuts 352 3 8 99.15 97.78 98.46
Dissolves 130 12 25 91.55 83.87 87.54
Average - - - 96.98 93.80 95.37

Table 2.5: Performance results for w = 60, l = 1, l = 2 and l = 6.

Transition type Nc Nm Nf Recall (%) Precision (%) F1 (%)

Cuts 353 2 4 99.44 98.88 99.16
Dissolves 127 15 25 89.44 83.55 86.39
Average - - - 96.58 94.50 95.53

threshold on their constructed features. In our approach, we sample negative examples

uniformly, thus we reduce their number to 3% of the total number of examples. More

specifically, in our training set there are 440 positive examples (transitions) and 2200 neg-

ative examples (no transitions) on average. Finally, each model of the training procedure

generated on average 1276 support vectors for normal transitions, 101 support vectors

for gradual transitions and 152 support vectors for abrupt transitions. The number of

examples and support vectors (on average) of the support vector machines classification

are summarized in Table 2.2.

We also tested our method by using larger windows of width w = 50 and w = 60. In

what follows in Tables 2.3, 2.4 and 2.5, we provide the classification results using different

selections of window lengths. It can be observed that the performance improves as the

size of the window increases. False boundaries are reduced since larger windows contain
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more information. The use of larger windows also helps the detection of dissolves that

last longer.

In order to reduce the size of our feature vector, we have also considered as feature

vectors used to train the SVM classifier, those obtained from the concatenation of features

extracted for l = 2 and l = 6, only. It can be observed in Tables 2.6, 2.7 and 2.8 that

even with the shorter feature vector the proposed algorithm gives very good results that

are only slightly inferior to the ones obtained by the longer feature vector.

In order to test the importance of selecting the best values for parameters (C, γ), in

another experiment we used the SVM classifier with constant values pair (C, γ) = (6,

8) for all “rounds” of testing. The obtained results (Tables 2.9-2.14) indicate that even

without the optimal “selection” of (C, γ) the performance of the SVM classifier remains

very good.

In another additional experiment we carried out, an HSV normalized histogram is

computed for each frame, with eight bins for hue and four bins for each of saturation and

value, resulting 8 × 4 × 4 bins. In Tables 2.15 and 2.16, we provide the classification

results using the x2 value defined in equation (2.2) and the Kullback-Liebler distance

between two histograms. It can be observed that the method is not sensitive to the choice

of the color space and the distance measure between the color.

Table 2.6: Performance results for w = 40, l = 2 and l = 6.

Transition type Nc Nm Nf Recall (%) Precision (%) F1 (%)

Cuts 351 4 9 98.87 97.50 98.18
Dissolves 127 16 30 88.73 80.77 84.56
Average - - - 95.98 92.72 94.32

Table 2.7: Performance results for w = 50, l = 2 and l = 6.

Transition type Nc Nm Nf Recall (%) Precision (%) F1 (%)

Cuts 350 5 5 98.59 97.49 98.04
Dissolves 129 13 21 90.85 86.00 88.36
Average - - - 96.38 94.21 95.28
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Table 2.8: Performance results for w = 60, l = 2 and l = 6.

Transition type Nc Nm Nf Recall (%) Precision (%) F1 (%)

Cuts 351 4 5 98.87 98.60 98.73
Dissolves 128 14 26 90.14 83.12 86.49
Average - - - 96.38 94.17 95.26

Table 2.9: Performance results for w = 40, l = 1, l = 2 and l = 6 and constant (C, γ).

Transition type Nc Nm Nf Recall (%) Precision (%) F1 (%)

Cuts 353 2 9 99.44 96.98 98.19
Dissolves 128 14 23 90.14 84.77 87.37
Average - - - 96.78 93.49 95.11

Table 2.10: Performance results for w = 50, l = 1, l = 2 and l = 6 and constant (C, γ).

Transition type Nc Nm Nf Recall (%) Precision (%) F1 (%)

Cuts 353 2 7 99.44 98.06 98.74
Dissolves 128 14 31 90.14 80.50 85.05
Average - - - 96.78 93.04 94.87

Table 2.11: Performance results for w = 60, l = 1, l = 2 and l = 6 and constant (C, γ).

Transition type Nc Nm Nf Recall (%) Precision (%) F1 (%)

Cuts 353 2 5 99.44 98.60 99.02
Dissolves 128 14 23 90.14 84.77 87.37
Average - - - 96.78 94.65 95.70

Table 2.12: Performance results for w = 40, l = 2, l = 6 and constant (C, γ).

Transition type Nc Nm Nf Recall (%) Precision (%) F1 (%)

Cuts 352 3 13 99.15 96.44 97.78
Dissolves 127 16 22 88.73 85.14 86.90
Average - - - 96.18 93.21 94.67

Table 2.13: Performance results for w = 50, l = 2 and l = 6 and constant (C, γ).

Transition type Nc Nm Nf Recall (%) Precision (%) F1 (%)

Cuts 352 3 10 99.15 96.44 98.19
Dissolves 129 13 20 90.85 86.58 88.66
Average - - - 96.78 94.19 95.47

In order to gain more intuition of how the SVM classifier solves this problem, in Fig.

2.10 - 2.12, we provide correctly detected feature vectors from dissolves, hard cuts and
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Table 2.14: Performance results for w = 60, l = 2 and l = 6 and constant (C, γ).

Transition type Nc Nm Nf Recall (%) Precision (%) F1 (%)

Cuts 351 4 7 98.87 98.04 98.46
Dissolves 127 15 22 89.44 85.23 87.29
Average - - - 96.18 94.38 95.27

normal sequences of frames. From these figures, it is clear that the selected features of

the three classes of frame sequences exhibit distinguishable characteristics. More specifi-

cally, for hard cuts the feature vector contains three “impulses” with decaying height and

increasing width. For dissolves it contains three replicas of a pattern that resembles to a

rectangle from which a sinusoidal lobe has been subtracted. Furthermore, these patterns

become smoother as we move from left to right. Finally, for “normal” sequences of frames

the pattern resembles to “white noise” superimposed on a constant DC value.

Figure 2.10: Correctly detected dissolve patterns.
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Figure 2.11: Correctly detected hard cut patterns.

Figure 2.12: Correctly detected patterns of normal sequences.

In Fig. 2.13 - 2.15, we provide a portion of SVs for all the cases for the same “round”.

These examples are training patterns for which wi 6= 0 in equation (2.14) and are retained

in the SVM model. We immediately notice, as expected, that the SVs are the “borderline
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examples” for all categories. The hardest cases to separate are normal from dissolves, since

more SVs of the normal class have characteristics of correctly classified dissolves and fewer

have characteristics of hard cuts. Similarly, more SVs for dissolves have characteristics of

“normal” than hard cuts. Furthermore, the SVs for hard cuts are much fewer than their

“normal” and dissolves counterparts. Also one cannot make an assessment whether most

of them have characteristics of the normal or dissolve class.

2.5.4 Comparison

To demonstrate the effectiveness of our algorithm and its advantage over threshold de-

pended methods, we implemented three methods that use thresholds in different ways.

More specifically, we implemented pair-wise comparison of successive frames [90], likeli-

hood ratio test [40, 90] and the twin-comparison method [90]. The first two methods

Figure 2.13: Support vectors for dissolves.

can only detect cuts, while the third can identify both abrupt and gradual transitions.

We have also compared our method with the method proposed in [27].

The pair-wise comparison method [90] compares corresponding pixels of successive
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Figure 2.14: Support vectors for hard cuts.

Figure 2.15: Support vectors for normal sequences.

frames to determine how many pixels have changed. More specifically we consider that a

pixel changes if the difference of its corresponding pixel in the following frame is over a
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predefined threshold:

DP i(x, y) =

 1, if | Pi(x, y)− Pi+1(x, y) |>Th;

0, otherwise.
(2.20)

where Pi(x, y) is the intensity of pixel with coordinates (x, y) in frame i. A shot boundary

is declared if the number of the pixels that have changed is over another predefined

threshold. However the appropriate selection of such a threshold is a tedious task. Firstly,

this threshold is different for videos that belong to different genres and secondly, even in

the same video differences between frames may vary due to different states of illumination

and content. Thus, it is difficult to define a global threshold. In [86], the authors propose

the use of a sliding window over the differences. A shot boundary is detected if two

conditions are fulfilled: the middle sample of the window (a) is the maximum in the

window and (b) is greater than:

max(µleft + aσleft, µright + aσright), (2.21)

where µleft, µright and σleft, σright are the means and standard deviations of the samples,

left and right of the middle sample of the window, respectively. The length of the window

and the parameter a are set to 21 and 5, respectively. In Tables 2.15 and 2.16, we provide

the performance results of the pair-wise comparison method.

The second method we implemented uses the likelihood ratio [40, 90] as the metric

to compute frame differences. More specifically, this metric compares the second order

statistics of corresponding regions. Each frame is divided into blocks, which represent

the regions, and the likelihood ratio between two consecutive frames i, i+ 1 for a specific

block k is given from the following equation:

λ(i, i+ 1)k =
[(σi+σi+1

2
) + (µi+µi+1

2
))]2

σi × σi+1

, (2.22)

where µi, µi+1 and σi, σi+1 are the means and standard deviations of block k of frames
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i, i + 1, respectively. Then,the likelihood ratio between two consecutive frames i, i + 1 is

as follows:

L(i, i+ 1) =

∑K
k=1 λ(i, i+ 1)k

K
, (2.23)

where K is the number of blocks of the frame. A shot boundary is detected when the

likelihood ratio between two frames exceeds a predefined threshold. To improve the

performance of the specific method, we do not use a global threshold, but we select

the threshold via cross-validation, using the “leave-one-out” method. To identify the

threshold and test it on a video of our dataset, we choose the threshold that achieves the

best performance over the rest eight videos of our dataset. In Tables 2.15 and 2.16 we

provide the performance of the likelihood ratio method.

Figure 2.16: Twin-comparison algorithm [90].

The third method we implemented was the twin-comparison algorithm [90] which

uses two thresholds for the detection of abrupt and gradual transitions. Each frame is

represented with a histogram and the differences between histograms of consecutive frames

are calculated. Histograms and their differences are computed using equations (2.1) and

(2.2). If the difference between two successive frames exceeds a high threshold Thigh, a

cut is detected. A low threshold Tlow is used for the detection of gradual transitions.

If the difference is above Tlow then this frame is characterized as a potential start Fs

of the gradual transition. Then, Fs is compared with subsequent frames providing the

accumulated differences metric. The end frame Fe of the transition is detected if two

conditions are satisfied: (1) the consecutive difference falls below threshold Tlow and (2)
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Table 2.15: Comparative results using Recall, Precision and F1 measures for cuts detec-
tion.

METHOD
CUTS

Recall (%) Precision(%) F1(%)

w = 40, l=1, l=2 and l=6. 98.87 97.50 98.18
w = 40, l=2 and l=6. 98.87 97.50 98.18
w = 40, l=1, l=2,l=6 and constant (C, γ). 99.44 96.98 98.19
w = 40, l=2, l=6 and constant (C, γ). 99.15 96.44 97.78
w = 40, l=1, l=2 and l=6 (HSV, x2). 99.44 98.89 99.16
w = 40, l=1, l=2 and l=6 (HSV, KL). 99.15 98.60 98.92

Pair-wise comparison [90] 85.07 84.83 84.95
Likelihood ratio [90] 94.37 86.12 90.05
Twin-comparison [90] 89.30 88.05 88.92
[27] 97.18 91.57 94.29

the accumulated difference exceeds threshold Thigh. If consecutive difference falls below

Tlow before the accumulated difference exceeds Thigh, then the potential start frame is

discarded. In Fig. 2.16, we illustrate the twin-comparison algorithm.

Table 2.16: Comparative results using Recall, Precision and F1 measures for dissolves
detection.

METHOD
DISSOLVES

Recall (%) Precision(%) F1(%)

w = 40, l=1, l=2 and l=6. 89.44 79.38 84.11
w = 40, l=2 and l=6. 88.73 80.77 84.56
w = 40, l=1, l=2,l=6 and constant (C, γ). 90.14 84.77 87.37
w = 40, l=2, l=6 and constant (C, γ). 88.73 85.14 86.90
w = 40, l=1, l=2 and l=6 (HSV, x2). 88.03 81.17 84.46
w = 40, l=1, l=2 and l=6 (HSV, KL). 85.92 79.74 82.73

Pair-wise comparison [90] - - -
Likelihood ratio [90] - - -
Twin-comparison [90] 70.42 64.94 67.57
[27] 74.64 81.53 77.93

To compute the two thresholds we follow the method proposed in [42]. The threshold

Tlow is calculated from the following equation:

Tlow = µ+ aσ, (2.24)
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where µ and σ are the mean and standard deviation of histogram differences respectively.

The value of parameter a is set to 5. To calculate Thigh we compute the histogram of

the differences values. Threshold Thigh is assigned to the index value that corresponds to

half of the peak value on the right slope of the peak value of the histogram. Thigh must

be higher than mean value. In Tables 2.15 and 2.16, we provide the performance of the

twin-comparison method.

Finally, in [27], Blocked Color Histogram is incorporated as feature vector and the

temporal multi-resolution characteristics of shot presented by the wavelet transition co-

efficients are selected as video frame series patterns for a SVM classifier. In Tables 2.15

and 2.16, we present the classification results for this method.

The obtained results indicate that our algorithm outperforms the other three thresh-

old dependent methods and the method proposed in [27]. In Tables 2.15 and 2.16, we

provide the recall, precision and F1 values for our algorithm and the four methods un-

der consideration for cuts and dissolves detection, respectively. For our algorithm we

present the results using w = 40, for best values (C, γ) and constant values pair (C, γ)

= (6, 8), using all features (l =1, l = 2 and l = 6) and less features (l = 2 and l =

6). We also present the results using HSV histograms and two different distance metrics

between histograms: (a) x2 value and (b) Kullback-Liebler. The thresholds used in the

three threshold dependent methods were calculated in different ways. We used adaptive

thresholds in pair-wise comparison algorithm, cross-validation in likelihood ratio method

and finally global adaptive threshold in the twin-comparison method. Especially for the

dissolve detection our algorithm, provides far better results than the twin-comparison

algorithm.

In summary, the proposed system is capable of identifying where a shot boundary

occurs and whether the transition is abrupt or gradual. The main advantage of the

method is that it can be trained using different types of video and then it can be used to

locate shot boundaries in other videos without using any thresholds.
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2.6 Conclusions

In this Chapter we have proposed a method for shot boundary detection and discrimina-

tion between a hard cut and a gradual transition. Traditionally, video shot segmentation

approaches rely on thresholding methodologies which are sensitive to the content of the

video being processed and do not generalize well when there is little prior knowledge about

the video content. To ameliorate this shortcoming, we have proposed a learning based

methodology using a set of features that are specifically designed to capture the differ-

ences between hard cuts, gradual transitions and normal sequences of frames at the same

time. These features describe the variation between adjacent frames and the contextual

information and are derived from color histograms using a temporal window. Next, they

become inputs to a SVM classifier which categorizes transitions of the video sequence

into normal transitions, hard cuts and gradual transitions. This categorization provides

an effective segmentation of any video into shots, thus is a valuable aid to further analysis

of the video for indexing and browsing. The main advantage is that throughout the whole

procedure, no use of any thresholds is made.
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Chapter 3

Key-Frame Extraction Using an

Enhanced Spectral Clustering

Approach

3.1 Introduction

3.2 Key-Frame Extraction Algorithm

3.3 Estimation of Number of Key-Frames Using Spectral Graph Theory

3.4 Summary Evaluation

3.5 Numerical Experiments

3.6 Conclusions

3.1 Introduction

A major issue with video retrieval is the efficient indexing of databases. The most popular

indexing and summarization method is based on key-frame extraction. More specifically,
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each video shot can be sufficiently summarized using its most representative frames, which

are the key-frames. Any key-frame extraction algorithm should fulfil some requirements.

Firstly, the key-frames should represent the whole video content without missing impor-

tant information and secondly, these key-frames should not be similar, in terms of video

content information, thus containing redundant information.

The simplest methods choose the first, last and median frames of a shot or a com-

bination of the previous ones to describe the content of a shot [63]. A major category

of key-frame extraction algorithms detect abrupt changes in the similarity between suc-

cessive frames. In [78], the optical flow is computed and the local minima of a motion

metric are selected as key-frames. In [22], it is proposed to form a trajectory from the

feature vectors for all frames within a shot. The magnitude of the second derivative of

this feature trajectory with respect to time is used as a curvature measure in this case.

As key-frames the local minima and maxima of this magnitude are selected. In [30], the

key frames are extracted by detecting curvature points within the curve of the cumulative

frame differences.

Another category of key-frame extraction algorithms perform clustering of shot frames

into groups and select a representative frame of each group as key-frame. In [92], multiple

frames are detected using unsupervised clustering based on the visual variations in shots.

A main drawback of this algorithm is the determination of the appropriate number of key-

frames to represent each shot which depends on the threshold parameter that controls the

density of the clusters. A variant of this algorithm is presented in [62], where the final

number of key-frames depends on a threshold parameter which defines whether two frames

are similar. In [7], the mutual information values of consecutive frames are clustered

into groups using a split-merge approach. As key-frames are selected the representative

frames of the clusters that maximize the interframe mutual information in each cluster. A

different approach is presented in [38], where a video shot is segmented into homogeneous

parts based on major types of camera motion and key-frames are extracted for each

segment.

There are two major issues concerning key-frame extraction problem. The first one
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is the extraction of key-frames that capture the whole content of the shot and do not

contain redundant information. The second problem is the selection of the appropriate

number of key-frames without any knowledge about the shot content. In this Chapter

[10, 14], we propose a clustering of the frames of a video sequence into groups using an

improved version of the typical spectral clustering algorithm [56] that employs the fast

global k-means algorithm [49] in the clustering stage after the eigenvector computation.

The rest of this Chapter is organized as follows: In Section 3.2, we describe our key-

frame extraction algorithm. In Section 3.3, we propose a method to estimate the number

of key-frames using results from the spectral graph theory. In Section 3.4, we provide

the criteria based on which the proposed key-frame extraction algorithm is evaluated. In

Section 3.5, we provide numerical experiments and examples of video shot summarizations

and finally, in Section 3.5 we conclude our work.

3.2 Key-Frame Extraction Algorithm

In this Section, we present the key-frame extraction algorithm that is based on the combi-

nation of the spectral clustering approach with the fast global k-means algorithm. Next,

we estimate the number of key-frames using the eigenvalues of the similarity matrix cor-

responding to pairs of shot frames. For each frame, a 16-bin HSV normalized histogram

is used, with 8 bins for hue and 4 bins for each saturation and value.

3.2.1 The Typical Spectral Clustering Algorithm

To perform key-frame extraction the video frames of a shot are clustered into groups

using an improved spectral clustering algorithm. Then, the medoid of each group, defined

as the frame of a group whose average similarity to all other frames of this group is

maximal, is characterized as a key-frame. The main steps of the typical spectral clustering

algorithm [56] are described next. Suppose there is a set of objects S = s1, s2, . . . , sN to

be partitioned into K groups.
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1. Compute similarity matrix A ∈ RN×N for the pairs of objects of the data set S.

2. Define D to be the diagonal matrix whose (i, i) element is the sum of the A’s i-th

row and construct the Laplacian matrix L = I −D−1/2AD−1/2.

3. Compute the K principal eigenvectors x1, x2, . . . , xK of matrix L to build an N ×K

matrix X = [x1 x2 . . . xK ].

4. Renormalize each row of X to have unit length and form matrix Y so that:

yij = xij/(
∑
l

x2
il)

1/2. (3.1)

5. Cluster the rows of Y into K groups using k-means.

6. Finally, assign object si to cluster j if and only if row i of the matrix Y has been

assigned to cluster j.

In what concerns our key-frame extraction problem, suppose we are given a data

set H = {H1, . . . , HN} where Hn is the feature vector (normalized color histogram) of

the n-th frame. The distance function we consider is the Euclidean distance between the

histograms of the frames. As a result, each element of the similarity matrix A is computed

as follows:

a(i, j) = 1− 1√
2

√ ∑
h∈bins

(Hi(h)−Hj(h))2 . (3.2)

3.2.2 Fast Global k-means

In our method, in the fifth step of the spectral clustering algorithm, instead of using the

typical k-means approach, we have used the fast version of the very efficient global k-means

algorithm [49]. Global k-means in an incremental deterministic clustering algorithm that

overcomes the important initialization problem of the typical k-means approach. This

initialization problem has been found to be severe in the case of frame clustering, signif-

icantly affecting the quality of the key-frames. Using the global k-means, the obtained

key frames usually provide a sensible representation of shot content.

38



Next, we briefly review the global k-means algorithm. Suppose we are given a data set

X = {x1, . . . , xN}, xn ∈ Rd to be partitioned into K disjoint clusters C1, C2, . . . , CK . This

algorithm is incremental in nature. It is based on the idea that the optimal partition into

K groups can be obtained through local search (using k-means) starting from an initial

state with i) the K-1 centers placed at the optimal positions for the (K-1)-clustering

problem and ii) the remaining K-th center placed at an appropriate position within the

dataset. Based on this idea, the K-clustering problem is incrementally solved as follows.

Starting with k = 1, find the optimal solution which is the centroid of the data set X. To

solve the problem with two clusters, the k-means algorithm is executed N times (where

N is the size of the data set) from the following initial positions of the cluster centers: the

first cluster center is always placed at the optimal position for the problem with k = 1,

whereas the second center at execution n is initially placed at the position of data xn. The

best solution obtained after the N executions of k-means is considered as the solution for

k = 2. In general, if we want to solve the problem with k clusters, N runs of the k-means

algorithm are performed, where each run n starts with the k-1 centers initially placed at

the positions corresponding to solution obtained for the (k-1)-clustering problem, while

the k-th center is initially placed at the position of data xn. A great benefit of this

algorithm is that it provides the solutions for all k-clustering problems with k ≤ K.

The computational cost of the global k-means algorithm can be reduced without sig-

nificant loss in the quality of the solution using the fast global k-means algorithm [49].

This method computes an upper bound En of the final clustering error obtained by ini-

tializing a new cluster center at position xn. The initial position of the new cluster center

is selected as the point xi that minimizes En and k-means runs only once for each k. The

application of fast global k-means requires a single execution of k-means for each value

(m) of the number of clusters: m = 1, . . . , k.
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3.3 Estimation of Number of Key-Frames Using Spectral Graph

Theory

As already mentioned in Section 3.1, the number of key-frames cannot be predetermined

due to the different content of each shot. In our approach, we attempt to estimate the

number of the key-frames using results from the spectral graph theory. Assume we wish

to partition dataset S into K disjoint subsets (S1, . . . , SK), and let X = [X1, . . . , XK ] ∈

RN×K denote the partition matrix, where Xj is the binary indicator vector for set Sj such

that:

X(i, j) = 1 : if i ∈ Sj, (3.3)

X(i, j) = 0 : otherwise. (3.4)

This clustering problem can be defined as [81]:

max
X

trace(XTLX), (3.5)

s.t. XTX = IK and X(i, j) ∈ {0, 1}. (3.6)

where L is the Laplacian matrix defined in Section 3.2.1. The spectral clustering algorithm

(for K clusters) provides solution to the following relaxed optimization problem:

max
Y

trace(Y TLY ), (3.7)

s.t. Y TY = IK . (3.8)

Relaxing Y into the continuous domain turns the discrete problem into a continuous

optimization problem. The optimal solution is attained at Y = UK , where the columns

ui of Uk, i = 1, . . . , K, are the eigenvectors corresponding to the ordered top K largest
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Figure 3.1: Eigenvalues and selection of k.

eigenvalues λi of L. Since it holds that [88]:

λ1 + λ2 + . . .+ λK = max
Y TY=IK

trace(Y TLY ) , (3.9)

the optimization criterion that quantifies the quality of the solution for K clusters and

its corresponding difference for successive values of K are respectively given by:

sol(K) = λ1 + λ2 + . . .+ λK , (3.10)

sol(K + 1)− sol(K) = λK+1. (3.11)

When the improvement in this optimization criterion (i.e. the value of the λK+1 eigen-

value) is below a threshold, improvement by the addition of cluster K+1 is considered

negligible, thus the estimate of the number of clusters is assumed to be K. The threshold

value that is used in all our experiments was fixed to Th=0.005 with very good results. In

Fig. 3.1, we provide an example of the eigenvalues of a matrix L for a key-frame extraction

problem with five clusters (key-frames).

Summarizing, to extract the appropriate key-frames for a shot, we compute the cor-
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responding Laplacian matrix L and analyze its eigenvalues to select the number of key-

frames kf . After we have determined kf , we proceed with the steps 4-6 of the spectral

clustering algorithm employing the fast global k-means in step 5, instead of k-means.

3.4 Summary Evaluation

A difficult issue of the key-frame extraction problem is related to the evaluation of the

extracted key-frames, since it is rather subjective which frames are the best representatives

of the content of a shot. There are several quality measures that can be used to evaluate

the efficiency of the algorithms. In [30], two quality measures are used. The first is

the Fidelity measure proposed in [8] and the second is the Shot Reconstruction Degree

measure proposed in [51].

3.4.1 Average Shot Fidelity

The Fidelity measure compares each key-frame with other frames in the shot. Given the

frame sequence F = {F1, F2, . . . , FN} and the set of key-framesKF = {KF1, KF2, . . . ,KFNkf}

the distance between the set of key-frames KF and a frame Fn is defined as:

d(Fn, KF ) = min
j

Diff(Fn, KFj), j = 1, . . . , Nkf , (3.12)

where Nkf is the number of key-frames and Diff(Fi, Fj) is the histogram intersection

[74] between two frames Fi and Fj, defined as:

Diff(Fi, Fj) =
∑
h∈bins

min(Hi(h), Hj(h)) , (3.13)

where Hi and Hj are the feature vectors (normalized color histograms) of frames Fi and

Fj.

However, as mentioned in [51], Fidelity cannot capture well the dynamics of a shot
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since it focuses on global details. For that reason we compute the Average Shot Fidelity

(ASF) measure which is computed using the average of the minimal distances between

the key frame set and the video shot and is given from the following equation:

ASF(F,KF ) = 1− 1

N

N∑
n=1

d(Fn, KF ) . (3.14)

3.4.2 Shot Reconstruction Degree

The whole frame sequence of a shot can be reconstructed from the set of key-frames using

an interpolation algorithm. The better the reconstructed video sequence approximates

the original sequence, the better the set of key-frames summarizes the video content.

More specifically, given the frame sequence F , the set of key-frames KF and a frame

interpolation algorithm IA(), we can reconstruct any frame from a pair of key-frames in

KF [51]:

F̃n = IA(KFnj, KFnj+1), nj ≤ n < nj+1 . (3.15)

The Shot Reconstruction Degree (SRD) measure is defined as follows:

SRD(F,KF ) =
N−1∑
n=0

Sim(Fn, F̃n) , (3.16)

where Sim() is given from the following equation:

Sim(Fn, F̃n) = log(1/Diff(Fn, F̃n)) , (3.17)

where Diff(Fi, Fj) is the the histogram intersection between frames Fi and Fj, defined

in equation (3.13).

43



3.5 Numerical Experiments

Numerical experiments have been carried out in order to demonstrate the efficiency of

the proposed key-frame extraction algorithm. We have also compared our method with

existing approaches.

3.5.1 Data for Key-Frame Extraction

To evaluate the performance of our key-frame extraction algorithm we have used two

datasets. The first one (Dataset A) consists of seven frame sequences (single-shot) taken

from TV-series and sports (Table 3.1), which contain high camera and object motion.

The first frame sequence describes an action of a comedy movie that takes place in an of-

fice. The next three sequences describe three attempts in a NBA Slam Dunk Contest and

the other three a goal attempt in a football match taken from three individual cameras.

The second dataset (Dataset B) consists of ten video sequences taken from TV-series and

movies (Table 3.2).

Table 3.1: Dataset A characteristics.

Frame Sequence No. Frames Genre

F1 633 Comedy
F2 144 Basketball
F3 145 Basketball
F4 146 Basketball
F5 225 Football
F6 300 Football
F7 172 Football

3.5.2 Comparison with other Key-Frame Extraction Algorithms

We have compared the proposed approach with three other methods. The first one is the

simple k-means algorithm applied on the histogram vectors. For each shot, we performed

20 runs of the k-means algorithm keeping as final solution one with the minimum clustering
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Table 3.2: Dataset B characteristics.

Video Duration(min) Shots Genre

V1 22 404 comedy
V2 31 591 comedy
V3 30 587 comedy
V4 23 437 comedy
V5 27 633 drama
V6 26 454 drama
V7 32 377 comedy
V8 45 608 drama
V9 31 714 action
V10 26 246 action

error. The number of clusters in k-means algorithm is assumed to be the same as selected

using the proposed estimation algorithm (Section 3.3). The second technique used for

comparison is presented in [62], as a variant of the method proposed in [92]. Initially,

the middle frame of the video sequence is selected as the first key-frame and added to

the empty set of key-frames KF . Next, each frame in the video sequence is compared

with the current set of key-frames. If it differs from every key-frame in the current set,

then it is added into the set as a new key-frame. This algorithm uses a threshold to

discriminate whether two frames are similar or not. In our experiments, this threshold

parameter is set to such a value that the number of key-frames extracted is the same as

in our algorithm. Finally, the third technique is the typical spectral clustering algorithm

[56], described in Section 3.2.1 and employing the simple k-means algorithm (20 runs of

the k-means algorithm are performed keeping as final solution one with the minimum

clustering error).

To evaluate the results of the extracted key-frames we use the metrics mentioned in

Section 3.4. More specifically in Tables 3.3 and 3.4, we present the performance results

on dataset A, for the ASF and SRD measures respectively. To compute the SRD we use

a simple linear interpolation algorithm on the frame’s features [51]. The dataset A, which

contains high camera and object motion, is used to show the effectiveness of our algorithm

in cases where many key-frames are required to represent the shot. It is clear that our

approach provides the best summarization of each shot compared to the other methods
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Table 3.3: Comparative results of the tested key-frame extraction algorithms using Aver-
age Shot Fidelity measure on dataset A.

ASF Algorithm
Frame Seq. Our method K-means [62] Spectral

F1 0.973 0.9549 0.9616 0.9619
F2 0.9437 0.9278 0.8913 0.9235
F3 0.9506 0.9344 0.9268 0.9253
F4 0.9557 0.948 0.9405 0.9462
F5 0.9673 0.9467 0.955 0.9625
F6 0.9558 0.931 0.9424 0.9318
F7 0.9782 0.9654 0.9672 0.9675

Table 3.4: Comparative results of the tested key-frame extraction algorithms using SRD
measure on dataset A.

SRD Algorithm
Frame Seq. Our method K-means [62] Spectral

F1 1859.66 1533.34 1693.1 1620.6
F2 424.72 369.87 292.43 362.64
F3 502.76 430.78 374.23 431.32
F4 528.09 356.46 340.89 393.02
F5 843.10 808.2 758.23 780.33
F6 855.44 753.75 813.1 791.2
F7 707.92 648.71 642.97 663.15

and the best reconstruction of the original video sequence from the extracted key-frames.

We have also tested our key-frame extraction algorithm and compared it with the

other methods using dataset B (TV-series and movies). The measures we have used are :

i) Average Video Fidelity, which is the mean of Average Shot Fidelities of each video and

ii) Average SRD, which is the mean of the SRD of the shots of each video. In Fig. 3.2

and Fig. 3.3, we present the Average Video Fidelity and the Average SRD, respectively.

It is obvious that our key-frame extraction algorithm provides better shot representation

and reconstruction than the other three methods.
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Figure 3.2: Comparative results of the tested key-frame extraction algorithms using Av-
erage Video Fidelity measure on dataset B.

Figure 3.3: Comparative results of the tested key-frame extraction algorithms using Av-
erage SRD measure on dataset B.
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3.5.3 Video Shot Representation

As already mentioned (Section 3.2.2), a great benefit of the fast global k-means algorithm

is that it provides the solutions for all intermediate k-clustering problems with k ≤ K. In

Fig. 3.4 we give an example of the extracted key-frames of a video shot with object and

camera motion. Moving from the top to the bottom of this figure we show all intermediate

solutions until the selected number of key-frames Nkf = 5 is reached. The shot that we

used contains 633 frames (frame sequence F1). It shows a woman in an office set-up. This

shot can be semantically divided into 5 sub-shots. a) The woman stands against a door

eavesdropping and then rushes to her office to pick up the phone that is ringing; b) she

talks on the phone, c) lays the receiver of the phone down with a visible effort not to

make any noise, d) she rushes back to the door, and e) she continues eavesdropping.

In Fig. 3.5, we provide the key-frames extracted performing the simple k-means algo-

rithm, the algorithm in [62] and the typical spectral clustering algorithm. All algorithms

fail to provide a solution adequately describing the visual content of the shot, whereas our

approach provides a sensible solution. More specifically, they do not produce any frames

for sub-shots (c), (d) and (e) and instead produce multiple frames for sub-shot (a). In

contrast, the proposed approach produces key frames for all sub-shots.

In Fig. 3.6, we provide the key-frames for these four algorithms for a video shot

describing a slam dunk attempt (frame sequence F3). It becomes clear that our algorithm

summarizes the attempt from the beginning to the end, whereas the other three fail to

describe the end of the action.

3.6 Conclusions

In this Chapter, we considered the key-frame extraction problem [10, 14]. In Section

3.2, we described how key-frames are extracted using a spectral clustering approach that

employs the fast global k-means algorithm in the clustering procedure. In Section 3.3

we described the estimation of the number of key-frames using results from the spectral

48



Figure 3.4: Key-frame extraction using the proposed approach of a shot with object and
camera motion (Nkf = 5).

Figure 3.5: Results for the key-frame extraction algorithms used for comparison with (Nkf

= 5). 1st row: K-means. 2nd row: [62]. 3rd row: Spectral Clustering employing simple
k-means.
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Figure 3.6: Key-frame extraction algorithms in comparison in basketball sequence. 1st
row: Our method. 2nd row: K-means. 3rd row: [62]. 4th row: Spectral Clustering
employing simple k-means.

graph theory, by examining the eigenvalues of the similarity matrix corresponding to pairs

of shot frames. Finally, we evaluated the performance of our algorithm using appropriate

quality measures that indicate that our method outperforms traditional techniques and

provides efficient summarization and reconstruction of a video sequence from the extracted

key-frames.

In the next Chapters, we use the proposed key-frame extraction algorithm for shot

representation. The efficient shot representation assists the definition of an effective shot

similarity metric since only the most representative frames of the shots are compared and

not all the frames. In Chapter 4, we also demonstrate the efficiency of our key-frame

extraction algorithm in the scene detection problem. Numerical results show that, the

more information we extract about the shot content, the better we can associate shots

and detect scene boundaries.
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Chapter 4

Segmentation of Videos into

Scenes Using Spectral Clustering

and Sequence Alignment

4.1 Introduction

4.2 Video Shots Representation

4.3 Scene Detection Algorithm

4.4 Numerical Experiments

4.5 Conclusions

4.1 Introduction

Proceeding further towards the goal of video indexing and retrieval requires the grouping

of shots into scenes. A scene can be regarded as a series of semantically correlated shots.

Usually, a scene refers to a group of shots that take place in a fixed physical setting (e.g.
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a dialogue detection in a room) or a group of shots that describe an action or event (e.g. a

car chase by police cars). A more compact representation/segmentation of a video is the

merging of scenes into logical story units. The latter, corresponds to the DVD chapters

describing the different sub-themes of a movie.

Several approaches have been proposed for the scene segmentation problem. In [62],

the authors transform this task into a graph partitioning problem. A shot similarity graph

is constructed, where each node represents a shot and the edges between shots depict their

similarity based on color and motion information. Then, the Normalized cuts [67] method

is applied to partition the graph. In [32], a method is proposed for detecting boundaries of

the logical story units by linking similar shots and connecting overlapping links. For each

shot, all key frames are merged into a larger image and the similarity between shots is

computed by comparing these shot images. A similar approach is presented in [84], where

a scene transition graph is constructed to represent the video and the connectivity between

shots. Then, this transition graph is divided into connected subgraphs representing the

scenes. A different approach is presented in [61], where a two-pass algorithm is proposed.

In the first pass, shots are clustered by computing backward shot coherence, a similarity

measure of a given shot with respect to the previously seen shots, while in the second pass

oversegmented scenes are merged based on the computation of motion content in scenes.

Another method that uses Markov chain Monte Carlo to determine scene boundaries is

proposed in [89]. Two processes, diffusions and jumps, are used to update the scene

boundaries that are initialized at random positions. Diffusions are the operations that

adjust the boundaries between adjacent scenes, while jump operations merge or split

existing scenes.

Most of the above approaches, calculate shot similarity based on visual similarity.

Furthermore, they consider the temporal distance of shots as an extra feature that is

taken into account when computing the similarity between two shots for shot clustering

into scenes. Due to the absence of prior knowledge concerning the video content and the

duration of scenes, it is difficult to determine an appropriate weight parameter that will

account for the contribution of the temporal distance in the computation of the overall
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similarity between shots.

In this Chapter we present an approach [9, 14] where shots are clustered into groups

using an improved version of the typical spectral clustering method [56] that uses the fast

global k-means algorithm [49] in the clustering stage after the eigenvector computation

[10, 14]. In addition, we employ a criterion for estimating the number of groups based

on the magnitude of the eigenvalues of the similarity matrix as proposed in the previous

Chapter. The resulted groups of shots are not the final scene boundaries, but this clus-

tering procedure is a preprocessing step towards the final detection of scene boundaries.

Another novelty of our method is that shot similarity is computed based only on visual

features, because incorporating time distance in a shot similarity metric requires a priori

knowledge of the scene duration. Thus, it is a quite difficult task to determine a distance

parameter that defines whether two shots are related or not. In our method, cluster labels

are assigned to shots according to their visual content and then, sequences of shot labels

are compared to identify changes in the patterns of successive labels. In that way, time

distance between shots is not taken into account since our method locally searches for

changes in patterns of shot labels ignoring the relation between shots with respect to time

distance.

Typically, the sequence of shots in a video follows specific production rules. The most

common is known as the 180 ◦ rule, where the director draws a line in the physical setting

of a scene and all cameras are placed on the same side of this line [73]. This production

rule produces repeating shots of one person, a group of persons or the same setting which

is commonly seen in movies, documentaries and TV-series. The most common patterns of

repetitive shots are two. The first one is a dialogue between two or more persons, where

the camera switches from one person to another, thus producing a sequence of shots like

ABABCBCABABC, where A,B and C are the shot labels for three different persons.

Another common pattern is a sequence of shots like A1A2A1A3A3A2 where A1, A2 and

A3 are captions of three different cameras providing views of the same physical setting

from different angles. When a scene changes it is expected that a change in such patterns

will occur. For example, if two dialogues take place in different scenes, it is expected
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that a sequence of shots like ABABCBDEDFEDEF is produced where ABABCB

corresponds to the first scene and DEDFEDEF corresponds to the second scene. To

identify the change in pattern, a comparison of successive non-overlapping windows of

shot labels is performed. Thus, we need to define a proper measure to define whether

two sequences are related (share the same patterns of shots) or not. A very efficient

category of algorithms that compare sequences in order to define whether two sequences

are related or not are the sequence alignment algorithms that are successfully used in

biological applications [39].

In our approach, to compare sequences we use the “Needleman - Wunsch” global

sequence alignment algorithm [55], which performs global alignment on two sequences

and is guaranteed to find the alignment with the maximum score. This algorithm requires

the definition of a substitution matrix in order to implement the alignment. This matrix

represents the rate at which one character in a sequence changes to another character

over time. In our method, the substitution matrix is formulated based on criteria that are

adapted to the problem of scene detection. Color similarity between clusters of shot labels

and probability of existence of a pair of successive shot labels are the two components

that contribute to the substitution matrix. The score of each alignment is given through

a scoring function which takes into account matches, mismatches and gaps of shot labels.

When an alignment gives a low score, a change in the patterns of shot labels is implied and

suggests a scene boundary. The proposed two-stage approach (shot clustering, sequence

alignment) achieves high correct detection rates while preserving a good trade off between

the number of missed scenes and the number of falsely detected scenes.

In Fig. 4.1 we summarize the main steps of our approach and the algorithms employed

in these steps. The video is segmented into shots and the spectral clustering algorithm of

the previous Chapter is employed to extract the key-frames of the corresponding shots.

Next, shots are grouped with respect to their visual similarity and labeled according to

the group they are assigned. Finally, a sequence alignment algorithm is implemented to

identify high dissimilarities between successive windows of shot labels. Scene boundaries

are considered to be the points of high dissimilarity.
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The rest of the Chapter is organized as follows: In Section 4.2, the procedure of

video shot representation and similarity is described. In Section 4.3, the proposed scene

detection algorithm is presented. In Section 4.4, we present numerical experiments and

compare our method with two other methods proposed in [62] and [84]. Finally, in Section

4.5, we provide some conclusions.

Figure 4.1: The main steps of our scene segmentation method.

4.2 Video Shots Representation

4.2.1 Key-Frame Extraction and Shot Detection

In order to proceed with video segmentation into scenes, the volume of video data to be

processed must be reduced. It is required to start with the video segmentation into shots
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and continue with the efficient shot representation. In this way, a video comprised of

thousands of frames can be efficiently represented using only several hundreds of frames.

In our approach [14], each video is manually segmented into shots and each shot is rep-

resented with key-frames extracted by applying the algorithm proposed in Section 3.2.

Each frame is represented by an 16-bin HSV normalized histogram with 8 bins for hue

and 4 bins for each of saturation and value. The frames of the shot are clustered into

groups using the method of the previous Chapter which is based on an improved version

of the typical spectral clustering method [56] that uses the fast global k-means algorithm

[49] in the clustering stage after the eigenvector computation. Then, the medoid of each

group, defined as the frame of the group whose average similarity to all other frames of

this group is maximal, is characterized as a key-frame.

4.2.2 Shot Similarity

As explained earlier, shots that belong to the same scene often have similar color content.

As suggested in [62], the visual similarity between a pair of shots i and j can be computed

as the maximum color similarity (ColSim) among all possible pairs of their key-frames:

V isSim(i, j) = max
p∈Ki,q∈Kj

ColSim(p, q) , (4.1)

where Ki and Kj are the sets of key-frames of shots i and j respectively, and the color

similarity (ColSim) between two frames fi, fj is defined as the histogram intersection

[74]:

ColSim(i, j) =
∑
h∈bins

min(Hi(h), Hj(h)) , (4.2)

where Hi, Hj are the HSV normalized color histograms of frames fi and fj respectively.
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4.3 Scene Detection Algorithm

Scene detection is a quite difficult task, because a scene is a group of shots that are i)

semantically correlated and ii) continuous in time. The semantic correlation between two

shots cannot actually be described with low-level features. However, low-level features

such as color give useful information about the connection between shots and the physical

setting where the scene takes place. On the other hand, taking into account the contri-

bution of temporal distance in the computation of the overall similarity between shots is

difficult, due to the absence of prior knowledge about the scene duration.

4.3.1 Shots Clustering

In order to perform scene detection, clustering of shots into groups is required, taking

into account visual similarity (V isSim) and time adjacency. Suppose there is a set V =

{v1, v2, . . . , vN} of N shots, ordered in time, to be segmented. In order to implement

shot grouping, an N × N similarity matrix A must be specified. In [58, 62], both visual

similarity and time distance are combined in a single similarity metric (see Section 4.4.1).

On the contrary, in our method we have considered only visual similarity (equation (4.1))

for shot clustering:

a(i, j) = V isSim(vi, vj), vi, vj ∈ V , (4.3)

while ordering of shots is taken into account at a later processing stage.

After the similarity matrix A has been computed, the modified spectral clustering

algorithm is used to group shots into clusters. The main steps of this algorithm have

been presented in Section 3.2.1. The selection of the number of shot clusters is done in

a way similar to the key-frame extraction problem in Section 3.3. However it is worth

mentioning that the number of shot clusters is not equal to the number of scenes in the

video. Our aim is to estimate the principal color distributions over the video shots and

group all shots according to the color distribution that they fit most. Following the same

approach proposed for key-frame extraction, the analysis of the eigenspectrum of the
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Laplacian matrix L provides an estimate of the number of clusters K. Then, shots are

clustered into K groups with respect to their visual content (color histogram similarity

(equation (4.1)), while the final number of scenes will be extracted at a later step of our

algorithm.

Once the spectral clustering algorithm has provided a partition of the shots into K

clusters {C1, C2, . . . , CK}, a label is assigned to each shot according to the cluster it

belongs, thus producing a symbolic sequence of labels. In this way, the sequence of shots

is transformed into a new sequence of labels that illustrates the visual similarity between

shots. An illustrative example is given in Fig. 4.2:

V01V02V03V04V05V06V07V08V09V10V11V12V13V14V15V16V17V18V19V20V21

C1 C1 C1 C1 C1 C2 C2 C2 C2 C3 C5 C3 C5 C3 C5 C3 C4 C4 C2 C4 C4

Figure 4.2: Video sequence of labels.

To each shot Vt (the index t implies time) a label from the set {C1, C2, C3, C4, C5}

is assigned to. Typically, during a scene there exists a sequence of similar shot labels

(different captions of the same person/place) or a sequence of repetitive label patterns

(rotation of different camera captions, eg. dialogue). We consider that a scene change

occurs when the pattern of symbols changes. In our example, distinct scenes correspond to

shots with time indices 1-5, 6-9, 10-16 (repetitive pattern C3C5) and 17-21. In practice,

due to the presence of noise (shot V19 with label C2), it is not trivial to discriminate

patterns of symbols. To efficiently segment the symbolic sequence into segments-scenes,

two methods are suggested in this Chapter. In the first one [9], a comparison of successive

pairs of labels is employed. In the second one [14], a sequence alignment algorithm is used

that provides the best performance.

4.3.2 Symbolic Sequence Segmentation

In order to account for noise in the sequence (shot C2 in the last scene in Fig. 4.2) and

for the case of repetitive patterns (scene V10-V16 in Fig. 4.2) we form a new sequence
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containing pairs of successive labels (this is analogous to two-grams in traditional string

processing). In this sequence of pairs, successive similar pairs are considered to belong to

the same scene. More specifically, in order to merge successive pairs in the same scene we

check for the existence of at least one similar label in both pairs. If this is not the case,

a scene boundary is identified and we consider that a new scene starts from the next pair

in the sequence.

The algorithm [9] proceeds in two passes. In pass one, the first two shots are regarded

as the first pair, whereas in pass two the second and the third shots are regarded as the

first pair. As we can see in Fig. 4.3, during the first pass the scene boundary (denoted

as ↓) between clusters 1 and 2 is not detected since shots that belong to different scenes

form a pair. However, in the second pass this boundary is clearly detected. The final

boundaries are the union of the boundaries detected from both passes.

Original sequence
C1C1C1C1C1C2C2C2C2C3C5C3C5C3C5C3C4C4C2C4C4

Shot pairs sequence - First Pass
(C1C1)(C1C1)(C1C2)(C2C2)(C2C3)(C5C3)(C5C3)(C5C3)↓(C4C4)(C2C4)C4

Shot pairs sequence - Second Pass
C1(C1C1)(C1C1)↓(C2C2)(C2C2)↓(C3C5)(C3C5)(C3C5)(C3C4)(C4C2)(C4C4)

Figure 4.3: Video sequence of labels.

4.3.3 Sequence Segmentation Through Sequence Alignment

However, there are some disadvantages in the method proposed in Section 4.3.2. The

first one is that shots with different labels (for example shot i with label C1 and shot j

with label C2) are considered as totally different. As already mentioned in Section 4.1

a common pattern in a video shot sequence is a sequence of shots like A1A2A1A3A3A2

where A1, A2 and A3 are captions of three different cameras providing views of the same

physical setting form different angles. Suppose that views A1 and A2 are assigned to

cluster C1 and view A3 is assigned to cluster C2. Then the shot sequence A1A2A1A3A3A2
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is transformed to label sequence C1C1C1C2C2C1. If we apply the method described in

Section 4.3.2 a scene boundary will be falsely detected between shots 3 (C1) and 4 (C2).

Thus, we should take into consideration the similarity between clusters C1 and C2, which

in the above example is quite high since they describe the same physical setting. In other

words, we need to find a more robust “label similarity” metric between shots labels. Next,

we propose the use of a sequence alignment algorithm that employs a substitution matrix

and fits better to the problem of scene detection.

The second disadvantage of the method described in Section 4.3.2 is the existence of

multiple irrelevant shots (noise) in the symbolic sequence of labels. Suppose the following

sequence of shot labels describing a scene C4C4C2C1C4C4. The noisy shots have labels C2

and C1. If there has been only one such shot, the method proposed in Section 4.3.2 would

successfully not detect a scene boundary. In this case however, a scene boundary would be

detected regarding shot labels C2C1 as a separate scene. To avoid such occasions, we have

to extend the window of shots compared and take into account the possible similarity of

shot labels C2, C1 with shot label C4. In the following, the sequence alignment algorithm

employed for scene detection compares successive sequences of shots labels of length larger

than 2.

As already mentioned in the introduction, videos such as movies, documentaries and

TV-series, follow some production rules. These rules result in the generation of patterns

of shots inside a scene. Different scenes share different patterns of shots (different sub-

sequences of labels). Thus, it is expected to detect scene changes in cases where the

pattern of shot labels changes. In order to find the points in the sequence of shot labels

where the pattern of symbols changes, we compare successive non-overlapping windows of

shot labels using a sequence alignment algorithm. More specifically, given the set V of N

shots, the sub-sequences of the original video sequence to be compared at each iteration

i are formulated as:

X i
1 = LiLi+1 . . . Li+w−1 and X i

2 = Li+wLi+w+1 . . . Li+2w−1, (4.4)
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where i = 1, . . . , N−2w, w is the length of the window used and Lj, j = 1, . . . , N are the

shot labels. In Fig. 4.4, the first three sub-sequences of the video sequence in Fig. 4.2 are

shown, using a window of length 4. In iteration 1 the first sub-sequence containing shots

V1 − V4 will be compared with sub-sequence containing shots V5 − V8. In next iteration

the two sub-sequences under comparison are those containing shots V2 − V5 and V6 − V9

respectively.

OriginalSequence︷ ︸︸ ︷
V01V02V03V04V05V06V07V08V09V10V11V12V13V14V15V16V17V18V19V20V21

C1 C1 C1 C1 C1 C2 C2 C2 C2 C3 C5 C3 C5 C3 C5 C3 C4 C4 C2 C4 C4

Iteration 1→ (C1C1C1C1)︸ ︷︷ ︸
X1

1

(C1C2C2C2)︸ ︷︷ ︸
X1

2

Iteration 2→ (C1C1C1C1)︸ ︷︷ ︸
X2

1

(C2C2C2C2)︸ ︷︷ ︸
X2

2

Iteration 3→ (C1C1C1C2)︸ ︷︷ ︸
X3

1

(C2C2C2C3)︸ ︷︷ ︸
X3

2

Figure 4.4: Sub-sequences to be compared.

A well established approach to compare sequences of symbols is the sequence alignment

algorithm. Significant similarity between sequences may imply that the sequences belong

to the same scene. Our interest however, focuses on cases of high dissimilarity that is

a strong indication of a scene boundary. The sequence alignment algorithm we used

in our approach is the “Needleman-Wunsch” algorithm [55] which is commonly used in

bioinformatics to align protein or nucleotide sequences. This algorithm performs global

alignment on two sequences and is guaranteed to find the alignment with the maximum

score. The input consists of two sequences of length w as described in equation (4.5). Let

us denote

X1 = L1L2 . . . Lw and X2 = M1M2 . . .Mw . (4.5)

The labels Li,Mi, i = 1, . . . , w belong to some alphabet of K symbols, where K is the

number of cluster labels generated from the spectral clustering of shots. To align these

sequences, a w × w matrix N is constructed where the value N(i, j) is the score of the

best alignment between the segment X1(1 . . . i) and the segment X2(1 . . . j) [39]. There
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are three possible ways to obtain the best score of an alignment up to X1(i), X2(j): a)

X1(i) could be aligned to X2(j), b) X1(i) could be aligned to a gap and c) X2(j) could

be aligned to a gap. The best score will be the largest of these three options:

N(i, j) =


N(i− 1, j − 1) + S(X1(i), X2(j))

N(i− 1, j)− d

N(i, j − 1)− d

, (4.6)

where S is a substitution matrix and d is a gap penalty. The definition and calculation

of these quantities are given below. The traceback from N(w,w) to N(0, 0) defines the

optimal alignment of X1 and X2. The time complexity for aligning two sequences of length

w is O(w2). A typical example of a sequence alignment over an alphabet {C1, C2, C3, C4}

is given in Fig. 4.5. The output of the alignment algorithm is an alignment matrix. The

columns of this matrix that contain the same label in both rows are called matches (M),

while columns containing different letters are called mismatches (m). The columns of the

alignment containing one space are called gaps (G). A gap in an alignment is defined

as a contiguous sequence of spaces in one of the rows of the alignment matrix [39]. By

inserting one or more gaps, the algorithm succeeds in aligning symbols that occur in

different positions.

Seq1 : C1C2C1C2C3C4C1C1C3C4C4

Seq2 : C4C1C2C1C2C2C3C4C4C1C3C4

Output : (Alignment matrix)

Seq1 C1 C2 C1 C2 C3 C4 C1 C1 C3 C4 C4

Seq2 C4 C1 C2 C1 C2 C2 C3 C4 C4 C1 C3 C4

Type G M M M M G M M m M M M G

Figure 4.5: Alignment matrix of a sequence alignment example.

The sequence alignment algorithm requires a substitution matrix S and a gap cost

function δ. In our problem, the elements s(i, j) of the substitution matrix S express how

similar are shot labels Ci and Cj in terms of color and position. The color similarity
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between shot labels can be defined from the similarity of their respective clusters. In

what concerns position, it can be observed that during a scene, repetitive patterns of

labels frequently occur. This increases the possibility that a shot label i can be aligned

with a shot label j and the opposite with high score, when shot labels i and j belong to

the same pattern, thus the similarity between shot labels, as far as position is concerned,

can be expressed through the possibility that a shot label i precedes or follows a shot label

j. As a result, the substitution matrix S is defined as the combination of two different

similarity metrics. Next, we define these similarity metrics, one for color similarity and

one for position similarity, and how they are combined to formulate matrix S.

For color similarity, for each cluster i we compute the medoid mi, defined as the shot of

a cluster, whose average similarity to all the other shots of this cluster is maximal. Then,

the visual similarity between shot clusters can be computed from the visual similarity

between the corresponding medoids, thus producing a cluster similarity matrix (CSM):

CSM(i, j) = V isSim(mi,mj), mi,mj ∈Med (4.7)

where V isSim is given from equation (4.1) and Med is the set of the medoids of the

clusters. Next, we compute a pair probability matrix (PPM) which represents the prob-

ability (frequency) of existence of a pair of sequential labels in the video. There are N -1

pairs of successive labels in a video containing N shots and the PPM matrix is given

from the following equation:

PPM(i, j) =
1

N − 1
{# pairs(L1 = Ci, L2 = Cj)} , (4.8)

where L1, L2 are the first and the second label of a pair respectively and i, j = 1, . . . , K.

The final substitution matrix S is computed as follows:

S(i, j) =

 A(i, j) +B(i, j) , i = j

−α(1− A(i, j))− β(1−B(i, j)) , i 6= j
, (4.9)
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where A and B are the CSM and PPM matrices respectively and α, β with α+β = 1, are

weights controlling the contribution of each matrix element. Each entry (i, j) of the matrix

represents the score of alignment of the ith and jth symbols in the alphabet. The diagonal

elements of matrix S account for match operations, while the non-diagonal elements

account for the mismatch operations during the alignment procedure. To represent the

cost of having a gap of length l we consider the linear gap model δ(l) = −ld, where d is

a nonnegative constant called the “linear gap penalty” and is set to 1.

After the formulation of the substitution matrix, the sequence alignment algorithm

computes the score for the best alignment in each iteration (Fig. 4.4). The evaluation

of the alignment is based on the number of matches, mismatches and gaps between the

sequences. A scoring function [39] is defined as:

F = (score of matches)− (score of mismatches)− (score of gaps). (4.10)

In Fig. 4.6 we illustrate the computation of this scoring function for the previous se-

quence alignment example using a similarity matrix with score +1 for matches (M), -1

for mismatches (m) and a linear gap (G) function with d =1.

Seq1 : C1C2C1C2C3C4C1C1C3C4C4

Seq2 : C4C1C2C1C2C2C3C4C4C1C3C4

Seq1 C1 C2 C1 C2 C3 C4 C1 C1 C3 C4 C4

Seq2 C4 C1 C2 C1 C2 C2 C3 C4 C4 C1 C3 C4

Type G M M M M G M M m M M M G
Score -1 1 1 1 1 -1 1 1 -1 1 1 1 -1

Figure 4.6: Scoring function of the sequence alignment example.

We apply the above sequence alignment procedure to all pairs of subsequences (X i
1, X

i
2),

i = 1, . . . , N − 2w. The values of the scoring function are stored in a score sequence SC.

In Fig. 4.7, an example of the score sequence values is shown. At the scene boundaries

a change in the pattern of labels occurs, thus it is expected to observe a low score value.

In other words, low score values are considered as indicators of the possibility for scene
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Figure 4.7: Scoring sequence of a sequence alignment example.

change. The global minimum of the score sequence corresponds to the most dissimilar

sub-sequences in the video, thus to the most certain scene boundary. Since there are

many local minima in the score sequence, it is expected that those with value close to

the global minimum to correspond to the most probable scene boundaries. To locate

these boundaries we first find the global minimum value in sequence SC. Then, the local

minima of the sequence SC that are less than a percentage of the global minimum value

are characterized as scene boundaries. In our experiments, a percentage equal to 80% was

used providing very good results.

4.4 Numerical Experiments

4.4.1 Data and Performance criteria

To evaluate the performance of our scene detection algorithm, we used Dataset B (see Ta-

ble 3.2), which contains video sequences taken from TV-series and movies. The commonly

used criteria in equations (2.16), (2.17) and (2.18), where Nc stands for the number of cor-

rect detected scene boundaries, Nm for the number of missed ones and Nf the number of
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false detections, were used to evaluate our method and the algorithms under comparison.

In Fig. 4.8, the average performance of our algorithm on all videos is presented, varying

the length of the window w, (which defines the length of the sequences to be aligned) from

2 to 8. It can be observed that even for w = 8, the algorithm yields very good results. We

believe that the choice of w = 4 is preferable because, apart from reducing the possibility

of missing a scene with a small number of shots, it is sufficiently large for a reliable

comparison during the sequence alignment algorithm.

To detect the final scene boundaries, as already mentioned in Section 4.3.3, we select

the local minima of the SC sequence that are less than a percentage Th of its global

minimum. In Fig. 4.9, the average F1 values (for w = 4) for all videos are presented,

for Th varying from 0.7 to 0.95. It can be observed that for any Th from 0.7 to 0.85

our algorithm provides very good result achieving the best performance for Th = 0.8. In

Fig. 4.10, we present the F1 values for w = 4 and Th = 0.8 varying the weight parameter

α, which controls the contribution of the matrices CSM and PPM , from 0 to 1. The best

performance is achieved for α = 0.5. It can be observed that for α = 1 the performance

is very low, thus indicating that the use of the PPM matrix is beneficial. In Table 4.1

we present the recall, precision and F1 values for w = 4, Th = 0.8 and α = 0.5 for our

algorithm [14]. It can be observed that our approach achieves high correct detection rate

while keeping small the number of false detections.

To demonstrate the efficiency of the string comparison method, we also implemented

another approach where subsequences are simply considered as sets of labels and their

similarity is measured using the similarity of the corresponding histograms of labels (as

an extension of the comparison of pairs of shot labels in Section 4.3.2). In Fig. 4.11 we

present the F1 values comparing the set comparison and our method (string comparison

using sequence alignment). It is clear that the structure of the label sequence assists in the

scene detection problem. In Table 4.1, we also present the performance of the algorithm

presented in Section 4.3.2, [9].
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Figure 4.8: Average performance results for different values of the window parameter w.

Figure 4.9: Average performance results for different values of the Th parameter and w
= 4.
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Figure 4.10: Average performance results for different values of the a parameter and w =
4, Th = 0.8.

Figure 4.11: Scene detection results (using F1 measure) when subsequences are considered
as i) strings (compared using sequence alignment) and ii) sets of labels (compared using
histogram similarity).
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4.4.2 Comparison

To compare the effectiveness of our approach, we have also implemented two other meth-

ods. The first one is proposed in [62]. This method computes both color and motion

similarity between shots and the final similarity value is weighted by a decreasing func-

tion of the temporal distance between shots given by the following equation:

wt(i, j) = e−
1
d
|
mi−mj

σ
|2 , (4.11)

where mi and mj are the time indices of the middle frames of the two shots under con-

sideration and σ the standard deviation of the shots duration in the entire video. The

parameter d plays a critical role in the final number of scenes produced by the algorithm.

The final shot similarity matrix defines a weighted undirected graph where each node

represents a shot and the edges are the elements of the matrix. To partition the video

into scenes, an iterative application of Normalized cuts method [67] was used that divides

the graph into subgraphs. It must be noted that the implementation of the Normalized

cuts method in this approach does not require the computation of eigenvectors, because

scenes are composed of shots which are time continuous. Thus a cut can be made along

the diagonal of the shot similarity matrix. The Ncut algorithm is applied recursively

as long as the Ncut value is below some stopping threshold T . We have implemented

and tested this method using the same video set for different values of the threshold pa-

rameter T and the parameter d (equation (4.11)). Determination of optimal values for

these parameters is a tedious task. In our comparisons we found distinct values for each

video that provide the best performance. The recall, precision and the F1 values of the

experiments are presented in Table 4.1, [62].

The second method has been proposed in [84]. This method clusters shots into groups

taking into account the visual characteristics and temporal dynamics of video. Then, a

scene transition graph which is a graphical representation of the video is constructed. The

nodes of this graph represent the shots and the edges the transitions between the shots. To

find the scenes, this graph is partitioned into connected subgraphs. The above algorithm
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depends on two parameters. The first one is the parameter δ which defines the minimum

separation between any two resulting clusters and controls the final number of clusters.

The second parameter is T that defines two shots to belong in different clusters if they are

not close to each other. After the initial segmentation, the segmented scenes are refined

by adjusting the threshold parameter T to reflect the duration of scenes. Determination

of optimal values for the parameters δ and T is a tedious task. To test the performance

of this algorithm we executed multiple runs using different values for the parameters δ

and T . In our comparisons, we used distinct values for each video that provide the best

performance. The recall, precision and the F1 values of the experiments are presented in

Table 4.1, [84].

In Fig. 4.12, the F1 values of the three examined methods are graphically presented.

It is clear that our algorithm provides the best F1 value for all videos, and in general our

method outperforms the other approaches. Finally, to show that a sensible representation

of a shot by its key-frames contributes to the scene detection problem, we carried out

the following experiment. We implemented our scene detection algorithm using as key-

frames for the shots those extracted the method proposed in Chapter 3 and the other

three methods mentioned in Chapter 3. The F1 values of the four examined methods

are presented in Fig. 4.13. It is obvious that the better the shot is represented by its

key-frames, the better our algorithm detects scene boundaries.

All three algorithms were implemented in Matlab. Considering the scene detection

problem for the first video sequence, our algorithm and the method in [62] took approxi-

mately the same time to identify the scene boundaries, whereas the method in [84] took

approximately five times more than the first two.

4.5 Conclusions

In this Chapter, we have proposed a new method for video scene segmentation. First,

key-frames are extracted using a spectral clustering method employing the fast global
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Table 4.1: Comparative results of the tested scene detection algorithms ([14] - C2009, [9]-
C2007, [62] - R2005, [84] - Y1998) using Recall(R), Precision(P) and F1 measures.

C2009 C2007 R2005 Y1998

V1

R(%) 86.67 86.60 86.67 60.00
P(%) 92.85 72.20 61.90 81.82
F1(%) 89.70 78.70 72.22 69.23

V2

R(%) 100.00 93.30 83.33 72.22
P(%) 90.00 88.20 62.50 68.42
F1(%) 94.74 90.70 71.43 70.27

V3

R(%) 87.50 81.30 81.25 87.50
P(%) 73.68 65.00 52.00 70.00
F1(%) 80.00 72.20 63.41 77.78

V4

R(%) 76.92 84.60 92.31 76.92
P(%) 83.33 64.70 60.00 71.43
F1(%) 80.00 73.30 72.73 74.07

V5

R(%) 85.71 92.50 92.86 78.57
P(%) 92.31 76.40 63.16 64.71
F1(%) 88.89 83.70 75.18 70.97

V6

R(%) 82.35 80.00 76.47 70.59
P(%) 93.33 60.00 61.90 66.67
F1(%) 87.50 68.60 68.42 68.57

V7

R(%) 86.67 73.30 86.67 80.00
P(%) 81.25 91.60 61.90 75.00
F1(%) 83.87 81.40 68.42 77.42

V8

R(%) 76.00 72.00 80.77 71.43
P(%) 95.00 85.70 70.00 74.07
F1(%) 84.44 78.30 75.00 72.73

V9

R(%) 72.00 68.00 80.77 64.00
P(%) 75.00 58.60 55.26 59.26
F1(%) 73.47 63.00 65.63 61.54

V10

R(%) 70.00 75.00 75.00 68.42
P(%) 93.33 78.95 75.00 72.22
F1(%) 80.00 76.82 75.00 70.27

k-means algorithm in the clustering phase and also providing an estimate for the number

of the key-frames. Then, shots are clustered into groups using only visual similarity as a

feature and they are labeled according to the group they are assigned. Shot grouping is

achieved using the same spectral clustering method proposed for key-frame extraction.

After shot grouping, shots are labeled according to the cluster they are assigned. Since
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Figure 4.12: Scene detection results (using F1 measure) comparing three scene detection
algorithms.

Figure 4.13: Scene detection results (using F1 measure) comparing four key-frame extrac-
tion algorithms.

a typical scene contains a sequence of similar shot labels or a sequence of repetitive label

patterns of two or more different groups of shots, when a change in the pattern occurs,

we consider that a scene boundary also occurs. To identify such changes, we considered

windows of shot sequences which are compared using the “Needleman - Wunsch” sequence
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alignment algorithm [55]. Thus, our approach treats time adjacency in a distinct process-

ing phase while existing methods use temporal distance between shots in the definition

of the similarity matrix that is subsequently used as input to the clustering procedure.

The presented experimental results on several videos indicate that the proposed method

accurately detects most scene boundaries, while providing a good trade off between recall

and precision.
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Chapter 5

Movie Segmentation Using

Temporally Weighted Histograms

of Visual Words

5.1 Introduction

5.2 Video Representation with Bag of Visual Words

5.3 Scene and Chapter Detection Using Temporally Weighted Histograms of Visual

Words

5.4 Numerical Experiments

5.5 Conclusions

5.1 Introduction

Movie is the genre of a video that provides the most well-defined structure so far. Typ-

ically, a movie is organized into low-level units (shots) and high-level units (scenes and
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chapters). Movie segmentation into high-level units is a quite tedious task due to the “se-

mantic gap”. Low-level features do not provide useful information about the semantical

correlation between shots and usually fail to detect scenes with constantly dynamic con-

tent. The scene and chapter boundaries of a movie are not physical, as shot boundaries,

but correspond to changes in the semantic content of the movie.

There are two major problems concerning movie segmentation into scenes and chap-

ters. The first problem concerns the nature of the video content. In dialogue scenes, where

the content of video does not change dramatically (changes between cameras recording

actors speaking), low-level features such as color histograms are quite efficient in detecting

the scene boundaries. This is expected since the shots of a dialogue scene have similar

color distribution due to the fixed physical setting (same background). Thus, to detect a

scene boundary, we have to seek for a change in the color distribution of shots. However,

there are scenes where content changes constantly.

For example, in a scene describing a car chase, there are different shots taken at

different places during the course of the car resulting into a constant change in the color

distribution of the shots. If we use the same approach described above for a dialogue scene,

then the correspondence between scene boundaries and changes in color distributions of

shots would lead to a large number of falsely detected scenes. Therefore, color histograms

are inefficient to describe scenes with constant changing content. On the other hand, there

are some objects or distinctive points that are repeated in consecutive shots during the

progress of such an event (e.g. the thief and the stolen car). Locally invariant descriptors

have been found to provide sufficient description of these interest points and their possible

transformations (rotation, scale). These descriptors can be further grouped into a large

number of clusters, where each cluster is treated as a visual word and represents a specific

local pattern shared by all the descriptors in the cluster. By mapping the descriptors into

visual words we can adopt the bag of words representation, that in the field of image and

video processing is known as bag of visual words [82, 75]. Thus, each video shot can be

represented as a vector containing the frequency of each visual word in the shot. This

derived shot representation uses a set of “semantically” richer features, the visual words,
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Figure 5.1: Main steps of our high-level movie segmentation method.

helping to correlate two shots and detect possible scene boundaries.

The second problem in movie segmentation concerns the detection of chapters (logical

story units). Since a chapter is a group of scenes describing a sub-theme of the movie,

it is expected that the color distributions of the corresponding shots will fail to describe

the connectivity between them. For example, consider a chapter that comprises of the

following two scenes. The first scene describes a thief stealing a car followed by the second

scene that describes the chase of the stolen car from the police. Considering that these

two events take place in different places, the color distribution of the shots will be very

different. On the other hand, features describing the stolen and the police cars could

provide useful information about the semantical connection of these two scenes and their

corresponding shots.
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Several approaches have been proposed for the scene segmentation problem as men-

tioned in Section 4.1. Most of these approaches calculate shot similarity based on color

histograms. Thus, their major disadvantage is the erroneous detection of scenes when

the visual content changes continuously. Segmentation of a movie into a more compact

representation, such as chapters, has not received much attention yet. In [62], the scene

segmentation results of the proposed algorithm are compared with the chapters provided

in the DVD compilations of known movies. Considering that chapters are more compact

representations, there are many false detections resulting into a very low precision, thus

making the specific algorithm inefficient for the chapter detection problem.

In the method we propose herein [13], each video is first segmented into shots. To

represent the content of each shot, key-frames are extracted using an improved version of

spectral clustering [10, 14]. Then, local invariant descriptors are extracted from all key-

frames of the shot. The descriptors of all shots are clustered into a predefined number

of visual words (visual vocabulary) and a visual words histogram is constructed for each

shot. The histograms of visual words corresponding to each shot are further smoothed

temporally by taking into account the histograms of neighboring shots. This is a process

that applies local semantic smoothing and enables preserving valuable contextual infor-

mation. Smoothing is achieved using a Gaussian kernel whose variance can be adjusted to

control the amount of smoothing [45]. The final scene and chapter boundaries are deter-

mined at the local maxima of the difference of successive smoothed histograms for low and

high values of the smoothing parameter, respectively. Thus, by adjusting the smoothing

parameter of the gaussian kernel, we can segment each video at different levels, i.e. scenes

or chapters. In Fig. 5.1, we summarize the main steps of our approach.

The proposed approach exhibits several novel characteristics such as the use of local

invariant descriptors instead of color histograms for movie shots representation. In this

way, we provide a semantic representation of a movie that is more robust to visual content

variations. Also, the visual words histograms of shots are temporally smoothed (using

a gaussian kernel) with respect to neighboring histograms to preserve valuable contex-

tual information. The semantic smoothing process at different time scales facilitates the

77



efficient segmentation of a movie at different high-levels, such as scenes and chapters.

Finally, using the proposed method with different values of smoothing parameter of the

gaussian kernel we can tackle both scene and chapter segmentation.

The rest of the Chapter is organized as follows: In Section 5.2, the key-frame extraction

method, the feature extraction method and the construction of the visual vocabulary

are described. In Section 5.3, the proposed scene and chapter detection algorithm is

presented that is based on temporally smoothed shot histograms. In Section 5.4, we

present numerical experiments and compare our method with the method proposed in

previous chapter and two other methods proposed in [62] and [84]. Finally, in Section 5.5,

we conclude our work and provide suggestions for further study.

5.2 Video Representation with Bag of Visual Words

Each video is first segmented into shots and each shot is represented with key-frames

extracted using the algorithm presented in Chapter 3. Each frame is represented by a

3D HSV normalized histogram with 8 bins for hue and 4 bins for each of saturation and

value, resulting to 8× 4× 4 bins. It is worth mentioning that, we use color histograms for

the key-frame extraction problem, whereas for the scene and chapter detection problem

we propose the use of local invariant descriptions. The latter could also be used for the

key-frame extraction problem. However, this is not examined in this Chapter since color

histograms sufficiently work well for key-frame extraction as demonstrated in Chapter 3.

5.2.1 Feature Extraction

As already mentioned, color histograms fail to describe connectivity between shots in cases

where the visual content constantly changes. The semantic content usually remains the

same because objects or interest points are repeated during consecutive shots of a scene. A

well-known method to describe objects in images are the invariant local descriptors. In our

approach, we consider two kinds of descriptors that have been proposed in bibliography:
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the SIFT descriptors proposed in [52] and the CCH descriptors proposed in [35].

SIFT Descriptors

In [52], scale-invariant feature transforms have been proposed that transform image data

into scale-invariant coordinates relative to local features. These features are invariant to

image scale and rotation. The method described in [52], consists of four major stages:

1. scale-space peak selection;

2. keypoint localization;

3. orientation assignment;

4. keypoint descriptor.

In the first stage, the image is scanned over scale and location to detect features (or

interest) points. A Gaussian pyramid is constructed and local peaks (keypoints) in a

series of difference-of-Gaussian (DoG) images are detected. In the second stage, unstable

keypoints are eliminated. In the third stage, the dominant orientations for each key-

point based on its local image patch are identified. Finally, in the fourth stage, a local

image descriptor is built for each keypoint, based upon the image gradient in its local

neighborhood. In Fig. 5.2, we present the stages for the keypoint selection.

The standard keypoint descriptor used by SIFT is created by sampling the magni-

tudes and orientations of the image gradient in the patch around the keypoint, and build-

ing smoothed orientation histograms to capture the important aspects of the patch (see

Fig. 5.3). A 4 × 4 array of histograms, each with 8 orientation bins, captures the rough

spatial structure of the patch. This 128-element vector (4 × 4 × 8) is then normalized

to unit length and thresholded to remove elements with small values. SIFT descriptors

constitute a very popular approach successfully employed for several computer vision

problems [60, 26].
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(a) (b)

(c) (d)

Figure 5.2: Stages of keypoint selection (Image taken from [52]). (a) The original im-
age. (b) The initial 832 keypoints locations at maxima and minima of the difference-of-
Gaussian function. Keypoints are displayed as vectors indicating scale, orientation, and
location. (c) After applying a threshold on minimum contrast, 729 keypoints remain. (d)
The final 536 keypoints that remain following an additional threshold on ratio of principal
curvatures.

Figure 5.3: Computation of a keypoint descriptor (Image taken from [52]).
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CCH Descriptors

A similar local invariant descriptor, called contrast context histogram (CCH) has been

proposed in [35] and successfully employed for the shot detection problem [36]. It repre-

sents the contrast distributions of a local region around an interest point and serves as a

local descriptor for this region. Given an image I, gaussian kernels are applied to smooth

this image. Then, a multi-scale Laplacian pyramid is constructed and salient points are

extracted by detecting Harris corners [33]. A region R around each salient point pc and

the contrast of a point p in this area is given from the following equation:

C(p) = I(p)− I(pc). (5.1)

Region R is defined in a quantized log-polar coordinate system (r, θ), where ri = 0, . . . , r,

r = blog(
√

2n2)c and θj = 2π
l
m, m = 0, . . . , l− 1. Parameters r, l define the distance and

orientation quantization, respectively. For each sub-region Rij = (riθj), a positive and a

negative bin of the contrast values are computed. More specifically, given a salient point

pc and a sub-region Rij, the positive and the negative histogram bins are defined from

equations (5.2) and (5.3) respectively:

HR
+
ij(pc) =

∑
{C(p)|p ∈ Rij and C(p) ≥ 0}

#R+
ij

, (5.2)

HR
−
ij(pc) =

∑
{C(p)|p ∈ Rij and C(p) < 0}

#R−ij
, (5.3)

where #R+
ij and #R−ij define the number of positive and negative positive contrast values

in Rij. By composing the contrast histograms of all the sub-regions into a single vector,

the CCH descriptor of pc with respect to its local region R is defined as follows:

CCHpc = (HR
+
00, HR

−
00, . . . , HR

+
rl, HR

−
rl). (5.4)

In our approach, we have used r = 3 and l = 8, as proposed in [35], resulting to
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Figure 5.4: Contrast context histogram of a salient corner pc under the log-polar coordi-
nate system (Image taken from [35]).

2 × 4 × 8 = 64 dimensions for each CCH descriptor. In Fig. 5.4 we present the contrast

context histogram of a salient corner pc under the log-polar coordinate system.

5.2.2 Bag of Visual Words

For each shot a different number of descriptors is computed that describe certain objects or

interest points in the shot. More specifically, suppose we are given a shot st and its corre-

sponding set of n key-frames KF = {kf1, . . . , kfn}. For each key-frame kfi, i = 1, . . . , n,

a set of descriptors Dkf i is extracted (SIFT or CCH) using the algorithms presented in

[52] and [35], respectively. Then, all the sets of descriptors are concatenated to describe

the whole shot

Dst = Dkf1

⋃
. . .

⋃
Dkfn . (5.5)

To speed up the implementation, the set Dst of the descriptors of each shot st is summa-

rized to obtain a more compact representation. More specifically, the set Dst is clustered

into M groups (set to 20 in our experiments) using the fast global k-means algorithm [49].

Thus, each shot is finally represented by the centroids of the M groups denoted as DM
st .

To extract visual words from the descriptors, the set of representative centroids de-
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scriptors for all N video shots DS = DM
s1

⋃
DM
s2

⋃
. . .

⋃
DM
sN

is clustered into k groups

{C1, C2, . . . , Ck} using the k-means algorithm, where k denotes the total visual words

vocabulary size. To construct the visual word histogram (bag of visual words) for shot

st, each element of the set of descriptors Dst is assigned to one of the k visual words

(clusters), thus resulting into a vector containing the frequency of each visual word in the

shot. Thus, given that shot st has D descriptors dt1 , . . . , dtD , the visual word histogram

V Ht for this shot is defined as:

V Ht(l) =
#{dtj ∈ Cl, j = 1, . . . , D}

D
, l = 1, . . . , k. (5.6)

5.3 Scene and Chapter Detection Using Temporally Weighted

Histograms of Visual Words

So far, each video shot st is described by a visual word histogram V Ht that corresponds

to the probability that a specific visual word of the video is included in the specific shot.

Next, the similarity between successive shots must be defined in order to detect the scene

and chapter boundaries. This will be based on a technique that has been previously

proposed for text documents.

5.3.1 Similarities Between Video and Text Documents

Video and text documents exhibit many analogies. Videos can be segmented into shots,

scenes and logical story units (DVD chapters). In a similar way, text documents can be

segmented into words, paragraphs and logical story units (book chapters). A key aspect

of our method is that, based on an idea from text segmentation, the histograms of visual

words corresponding to each shot are further smoothed temporally by taking into account

the histograms of neighboring shots.

In [45], the Locally Weighted Bag of Words (Lowbow) framework has been proposed

for text document representation and segmentation. The main idea of this approach is
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to represent a text document by describing several locations in its word sequence using

histograms, instead of using a typical bag of words histogram that models the word dis-

tribution in that document. To construct a local histogram representation, a smoothing

kernel is utilized to smooth the semantics temporally around a given location in the origi-

nal word sequence. Initially each location t in a word sequence is described using a trivial

histogram Ht whose probability mass is concentrated only at the bin that corresponds to

the word that occurs at that location in text. Formally, the Lowbow representation for a

certain location t in a text sequence is computed by

Lt =
∞∑

n=−∞

Hn ·Kσ(t− n), (5.7)

where Kσ is a normalized discretized gaussian kernel with zero mean and standard devi-

ation σ. In this way, the presence of a word at a certain location in the document also

contributes to a neighboring location but with discounted contribution depending on the

temporal distance between the two locations. This representation captures the sequential

content at a certain resolution determined by a given local smoothing parameter (σ).

We have adopted a similar approach for video documents. Video shots can be con-

sidered analogous to the words of a document that compose a paragraph (scene) that

further compose a book chapter (movie chapter) that describes a specific theme. Initially,

each location in the video shot sequence can be described using a visual word histogram

computed as described in Section 5.2.2. Next, the temporal semantic smoothing takes

place to compute the final shot representations, the temporally smoothed visual word his-

tograms. It must be noted that video shots are complicated units of visual information,

contrary to textual words. For this reason, we introduce the visual words histograms to

initially summarize the semantics of the raw features extracted from video shots, while

in the text case trivial histograms are used as described previously. As a result, in the

case of video data, the temporal semantic smoothing can be considered to be at a higher

semantic level than that of the original method for texts.
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Figure 5.5: Temporal smoothing of visual word histograms representing the video shots,
using a gaussian smoothing kernel.

5.3.2 Scene and Chapter Segmentation

In a similar way to Lowbow framework described in [45], a local smoothing kernel is used

to smooth temporally the visual word histogram of a shot with respect to the histograms

of neighboring shots. The smoothed histogram SH t of a visual word histogram V Ht of a

shot st (where t denotes the time index of the shot) is given from the following equation:

SH t =
∞∑

n=−∞

V Hn ·Kσ(t− n), (5.8)

where Kσ is a normalized discretized gaussian kernel with zero mean and standard de-

viation σ. In Fig. 5.5, a visual representation of the smoothing process is given. First,

the visual words histogram (V Ht) for each shot is computed (bottom level). Then, the

visual words histogram of shot st is smoothed temporally with the neighbor visual word
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histograms using a gaussian kernel, resulting to the smoothed histogram (SH t) of the

shot (upper level). The number of neighboring histograms that contribute to smoothing

is defined by the value of the smoothing parameter σ. By adjusting the value of σ, we

can preserve contextual information at different time scales. A low value of σ results in

small scale smoothing and can preserve contextual information within scenes, whereas a

higher value of σ results in large scale smoothing and can preserve contextual information

within chapters.

Our model associates each shot st, t = 1, . . . , N with a smoothed histogram SH t,

which can be considered to be a point in the multinomial simplex Pk−1, where k is the

vocabulary size. The multinomial simplex Pk−1 for k ≥ 1 is the k-dimensional subset of

Rk of all histograms over k objects:

Pk−1 = {θ ∈ Rk : ∀i θi ≥ 0,
k∑
j=1

θj = 1}. (5.9)

The sequence SH t, t = 1, . . . , N of smoothed histograms represents the video shot se-

quence with a curve in Pk−1 called Temporally Smoothed Visual Words Histograms or

TSVWH curve. Fig. 5.6 illustrates an example of a video shot sequence, whose TSVWH

curve representation is projected from Pk−1 to P2 using Principal Component Analysis

(PCA). This semantic representation of a video shot sequence could be extended in many

other applications, such as video retrieval and surveillance since it provides useful infor-

mation about the semantic content of the video sequence and its progress in time. The

boundaries between different video segments separate video parts containing different vi-

sual words distributions. In the context of the TSVWH curve produced by the smoothed

histograms, a boundary point would correspond to sudden shifts in the curve location.

Due to the continuity of TSVWH curve, such sudden shifts may be discovered by consider-

ing the local maxima of the Euclidean distance between successive smoothed histograms:

Vt =

√√√√ k∑
h=1

(SH t(h)− SH t+1(h))2, t = 1, . . . , N − 1, (5.10)
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Figure 5.6: 2D embedding (using PCA) of the TSVWH curve representing a video shot
sequence.

where k denotes the number of visual words (histogram bins).

In Fig. 5.7 and Fig. 5.8, we present the difference values between successive smoothed

histograms for an example shot sequence using smoothing parameter σ = 8 (for scene de-

tection) and σ = 16 (for chapter detection), respectively. In both cases, circles correspond

to detected boundaries and stars correspond to true boundaries. It can be observed that

using a high value of the smoothing parameter σ results into a smoother curve whose

maxima are the boundaries of more compact representations (chapters). Therefore, us-

ing the same method with different values of σ we can tackle both scene and chapter

segmentation.

5.4 Numerical Experiments

In this Section, we present numerical experiments for the scene and chapter detection

problems, and we also compare our method with the method proposed in Chapter 4 and

two other approaches: [62] and [84].
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Figure 5.7: Difference values of the smoothed histograms using σ = 8 (scene detection).

Figure 5.8: Difference values of the smoothed histograms using σ = 16 (chapter detection).

5.4.1 Data and Performance Criteria

To evaluate the performance of our detection algorithm we use five movies that belong to

different genres. The characteristics of these movies are shown in Table 5.1.

To evaluate the performance of our method we have computed the commonly used

criteria of equations (2.16), (2.17) and (2.18), where Nc stands for the number of correctly

detected scene or chapter boundaries (true positive), Nm for the number of missed ones

(false positive) and Nf the number of false detections (false negative). Two human ob-
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Table 5.1: Movies characteristics.
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A Beautiful Mind M1 36 421 18 7 Biography | Drama
Sex and the City M2 70 1217 45 19 Comedy | Romance

Gone in 60 seconds M3 80 1788 74 23 Action | Crime | Thriller
Goldeneye M4 74 1218 46 20 Action | Adventure
Top Gun M5 74 1113 48 16 Action | Romance

servers identified the scene boundaries and the ground truth was defined as the cases for

which there was agreement between the observers. The boundaries of the movie chapters

were obtained from the menu of the corresponding DVD compilations.

5.4.2 Results

In Fig. 5.9, the average performance of our algorithm on all movies is presented, using

SIFT descriptors and a visual vocabulary of 500 words, varying the smoothing parameter

σ from 2 to 32. It can be observed that for σ = 8 the algorithm provides the best

performance for the scene detection problem, whereas for σ = 16 the algorithm provides

the best performance for the chapter detection problem. In all our experiments, we use

σ = 8 and σ = 16 for the scene and chapter detection problems respectively. In Fig. 5.10,

the average F1 values for all movies are presented using SIFT and CCH descriptors,

varying the vocabulary size (number of visual words) from 10 to 500. It can be observed

that as the number of visual words increases, the performance of our algorithm improves.

However, it is computational expensive to produce a good partition of the shot descriptors

into a large number of visual words, thus we have only experimented with less or equal to

500 visual words. In Tables 5.2 and 5.3 (first two methods (SIFT, CCH)) we present the

recall, precision and F1 values using 500 visual words, σ = 8 for scene detection, σ = 16

for chapter detection, for both SIFT and CCH descriptors.
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Figure 5.9: Average performance results (on all movies) for different values of the smooth-
ing parameter σ for the scene and chapter detection problems, using SIFT descriptors and
a vocabulary of 500 visual words.

Figure 5.10: Average performance results (on all movies) for different number of visual
words, using SIFT and CCH descriptors and σ = 8 and σ = 16 for the scene and chapter
detection problems, respectively.

5.4.3 Comparison

To compare the effectiveness of our approach, we have also tested three other methods. In

the method proposed in Chapter 4, shots are clustered into groups based on their visual

similarity using an improved spectral clustering algorithm and a label is assigned to each

shot according to the group that it belongs to. Then a sequence alignment algorithm is

applied to detect when the pattern of shot changes providing the final segmentation result.
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Table 5.2: Comparative results using Recall(R), Precision(P) and F1 measures for the
scene detection problem for movies M1-M5, (SEQAL - [14], NCUT - [62], GRAPH - [84]).

SIFT CCH SEQAL NCUT GRAPH HSV

M1
R(%) 88.89 83.33 77.78 83.33 77.78 72.22
P(%) 88.89 88.24 82.35 60.00 60.87 72.22
F1(%) 88.89 85.71 80.00 69.77 68.29 72.22

M2
R(%) 91.11 80.00 80.00 71.71 64.44 73.33
P(%) 83.67 73.47 67.92 46.24 56.86 63.46
F1(%) 87.23 76.60 73.47 56.22 60.42 68.04

M3
R(%) 82.43 77.03 79.73 74.32 62.16 71.62
P(%) 72.62 69.51 68.60 55.56 54.12 67.09
F1(%) 77.22 73.08 73.75 63.58 57.86 69.28

M4
R(%) 88.89 77.78 88.89 80.00 68.89 68.89
P(%) 68.97 63.94 64.52 53.73 48.44 58.49
F1(%) 77.67 70.00 74.77 64.29 56.88 63.27

M5
R(%) 75.00 70.83 75.00 72.92 70.83 52.08
P(%) 73.47 72.34 70.59 53.85 45.33 58.14
F1(%) 74.23 71.58 72.73 61.95 55.28 54.95

In Table 5.2 (third method (SEQAL)) we present the recall, precision and F1 values of

the experiments with this method.

The second method we implemented has been proposed in [62]. It computes both

color and motion similarity between shots and the final similarity value is weighted by a

decreasing function of the temporal distance between shots. The shot similarity matrix

defines a weighted undirected graph where each node represents a shot and the edges are

the elements of the matrix. To partition the video into scenes, an iterative application of

Normalized cuts method [67] is used that divides the graph into subgraphs. The Ncut

algorithm is applied recursively as long as the Ncut value is below some stopping threshold

T . We have implemented and tested this method using the same movies set for different

values of the threshold parameter T . In our comparisons, we found distinct values for

each video that provided the best performance. The recall, precision and the F1 values of

the experiments are presented in Table 5.2 (fourth method (NCUT)).

The third method we implemented has been proposed in [84]. It clusters shots into

groups taking into account the visual characteristics and temporal dynamics of video.
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Table 5.3: Comparative results using Recall(R), Precision(P) and F1 measures for the
chapter detection problem for movies M1-M5, (SEQAL - [14], NCUT - [62], GRAPH -
[84]).

SIFT CCH SEQAL NCUT GRAPH HSV

M1
R(%) 100.00 85.71 42.86 71.43 71.43 71.43
P(%) 63.64 60.00 33.33 41.67 31.25 50.00
F1(%) 77.78 70.59 37.50 52.63 43.49 58.82

M2
R(%) 89.47 84.21 68.42 57.89 63.18 73.68
P(%) 68.00 59.26 41.94 45.83 37.50 50.00
F1(%) 77.27 69.57 52.00 41.16 47.06 59.57

M3
R(%) 78.26 82.61 65.22 60.87 60.87 65.22
P(%) 45.00 43.18 30.62 40.00 40.00 30.61
F1(%) 57.14 56.72 41.67 48.28 48.28 41.67

M4
R(%) 80.00 75.00 95.00 40.00 45.00 60.00
P(%) 61.54 53.57 30.65 42.10 33.33 42.86
F1(%) 69.57 62.50 46.34 41.02 38.29 50.00

M5
R(%) 87.50 75.00 68.75 56.25 81.25 56.25
P(%) 51.85 50.00 32.33 36.00 26.00 39.13
F1(%) 65.12 60.00 44.00 43.90 39.39 46.15

Then, a scene transition graph, which is a graphical representation of the video, is con-

structed. The nodes of this graph represent the shots and the edges the transitions

between the shots. To find the scenes, this graph is partitioned into connected subgraphs.

The above algorithm depends on two parameters. The first one is the parameter δ which

defines the minimum separation between any two resulting clusters and controls the fi-

nal number of clusters. The second parameter is T that defines two shots to belong in

different clusters if they are not close to each other. After the initial segmentation, the

segmented scenes are refined by adjusting the threshold parameter T to reflect the dura-

tion of scenes. Determination of optimal values for the parameters δ and T is a tedious

task. To test the performance of this algorithm we executed multiple runs using different

values for the parameters δ and T . In our comparisons we used distinct values for each

video that report the best performance. The recall, precision and the F1 values of the

experiments are presented in Table 5.2 (fifth method (GRAPH)).

To demonstrate the efficiency of using local invariant descriptors, instead of smooth-
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ing the visual words histograms of shots, we smoothed the corresponding HSV color

histograms. In Tables 5.2 and 5.3 (sixth method (HSV)), we present the recall, precision

and the F1 values of these experiments. It is clear that local invariant descriptors outper-

form color histograms. However, it is worth mentioning that the proposed technique that

uses temporal smoothing of histograms with a gaussian kernel, provides better results

than the approaches proposed in [62] and [84], even when color histograms are smoothed.

It must be noted that the three other algorithms SEQAL, NCUT and GRAPH have

been proposed for scene detection. However, fewer boundaries (that correspond to more

compact representations, such as chapter boundaries) can be detected if the thresholds

that these algorithms employ are modified. Thus, the thresholds that these methods

employ are adjusted to provide the best performance considering the chapter detection

problem. More specifically, in the SEQAL method scene boundaries are identified from

the local minima of a sequence alignment scoring function that are under a predefined

threshold. To provide the best performance considering the chapter detection problem,

we increase this threshold. In this way, fewer boundaries are detected that correspond to

chapter boundaries. The recall, precision and the F1 values of the experiments are pre-

sented in Table 5.3 (third method (SEQAL)). Similarly, in NCUT method the stopping

threshold T controls the number of final scene boundaries. By decreasing this threshold

we identified the threshold value providing the best performance for chapter detection and

fewer scenes are detected corresponding to more compact representations (chapters). The

recall, precision and the F1 values of the experiments are presented in Table 5.3 (fourth

method (NCUT). Finally, in GRAPH method the threshold parameter δ controls the final

number of clusters. To find the best performance considering the chapter detection prob-

lem, we must increase this threshold. In this way, fewer number of clusters are obtained

and fewer boundaries corresponding to chapters are detected. The recall, precision and

the F1 values corresponding to the best value of the threshold parameter are presented

in Table 5.3 (fifth method (GRAPH)). It is clear that the use of local invariant descrip-

tors in combination with the temporal smoothing of visual words histograms provides the

best results outperforming the other methods both for scene and chapter detection. Also,
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SIFT descriptors provide better performance compared to CCH descriptors.

5.5 Conclusions

In this Chapter, a new high-level movie segmentation method has been proposed based

on the temporal smoothing of visual word histograms of video shots. For each movie shot

a number of key-frames is extracted and local invariant descriptors are computed for each

key-frame. All the descriptors are clustered to form the visual words vocabulary and for

each shot a visual word histogram is computed. Next, to preserve contextual information,

the Lowbow framework proposed for text segmentation is adopted and the histograms of

visual words are smoothed temporally by taking into account the histograms of neigh-

boring shots. A notable characteristic of the method is that by adjusting the smoothing

parameter of the gaussian kernel we can detect both scene and chapter boundaries of

each movie, determined at the local maxima of the difference of successive smoothed his-

tograms. The presented experimental results on five movies indicate that the proposed

method outperforms other methods and accurately detects most scene and chapter bound-

aries, while providing a good trade off between recall and precision. A direction for future

work, is to incorporate the proposed movie representation with temporally smoothed shot

histograms in other video-based applications, such as video retrieval and surveillance.

94



Chapter 6

Video Rushes Summarization

6.1 Introduction

6.2 Video Representation

6.3 Useless Frames Detection

6.4 Redundant Information Retrieval

6.5 Clapboard Removal

6.6 Summarization

6.7 Experiments

6.8 Conclusions

6.1 Introduction

In this Chapter, we present a system for video rushes summarization [12]. A video sum-

mary is a condensed version of the initial video where judgements about the video content

can be made in less time and effort than using the initial video [59]. Video rushes are
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unedited video footage and contain many repetitive information, since the same scene

is taken many times until the desired result is produced. Moreover, since it is unedited

video, it contains many “junk” frames such as colorbars, monochrome frames and frames

that contain clapboards. Colorbars are an artificial electronic signal generated by the

camera or by post production equipment. They are recorded at the head of a videotape

to provide a consistent reference in post production. They are also used for matching the

output of two cameras in a multi-camera shoot and to set up a video monitor. A clap-

board is a device used to assist in the synchronizing of picture and sound. Additionally,

the clapboard is used to designate and mark particular scenes and takes recorded during

a production.

Three issues should be considered during the rushes summarization process. The first

one is that useless frames such as colorbars, monochrome frames and frames that contain

clapboards should be removed from the video. The second issue is that similar segments

generated from multiple takes of the same scene should be removed keeping only one

representative segment. The third issue is the efficient representation of the content of

each of the selected representative shots and the creation of the final video summary.

In [16], a baseline video summarization system is described that presents the entire

video in 25×, 50× and 100× speed, while removing junk frame using color and SIFT

features. In [76], dynamic generation of binary trees is used, allowing realtime, on-the-fly

summaries to be generated. In [21], shot similarity is computed based on color histograms

of regions in so-called characteristic frames, and similar shots are then stacked. Then, an

adaptive acceleration technique is used, changing playback speed based on the (visual)

similarity of adjacent frames in the generated summary.

In the method we propose herein, each video is initially segmented into shots by

comparing the normalized histograms of adjacent video frames. Then, for key-frame ex-

traction we use the method proposed in Chapter 3 where an enhanced spectral clustering

algorithm is employed that both estimates the number of clusters and uses the fast global

k-means algorithm in the clustering stage after the eigenvector computation of the simi-

larity matrix. Next, useless frames such as colorbars and monochrome frames are removed
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Figure 6.1: The main steps of our video rushes summarization method.

by checking their edge direction histogram. Rushes video contain redundant information,

since the same scene is taken many times until the desired result is produced. To find

similar segments (shots) in the rushes video, the key-frames of shots are compared using

a sequence alignment algorithm. Those similar shots that describe the same scene are

removed and only one of them is kept to contribute to the final video summary. More-

over, key-frames that contain clapboards should be removed from the final representative

shots. Comparing the SIFT descriptors of the key-frames of each shot with the SIFT

descriptors of a database of clapboards, we are able to determine if a key frame contains a

clapboard and remove it. Finally, to produce the video summary with duration less than

a percentage of the duration of the original video, a number of frames around each key

frame of the selected shots are considered to contribute to the final video summary. In

Fig. 6.1, we summarize the main steps of our approach and the algorithms employed in

these steps.

The rest of the Chapter is organized as follows: In Section 6.2, we present the rep-

resentation of the video by its shots key-frames. In Section 6.3, the removal of junk
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frames is presented. In Section 6.4, the procedure for removing redundant information is

described. In Section 6.5, the process of removing frames with clapboards is presented

and in Section 6.6 the final summarization process is described. Finally, in Section 6.7,

we present numerical experiments from the TRECVID Rushes Summarization task 2008,

which indicate that our system exhibited good performance.

6.2 Video Representation

In this Section, we describe the shot detection and key-frame extraction methods. The first

level of video processing is the extraction of features for each frame and the segmentation

of the video into shots.

6.2.1 Feature Extraction and Shot Detection

Each video is sampled uniformly keeping only five frames per second. Then, for each

frame an HSV normalized histogram is computed, with 8 bins for hue and 4 bins for

each of saturation and value, resulting to 8× 4× 4 bins. Since rushes are unedited video

footage, they are always stand alone shots and do not contain transitions of any type.

Thus, a simple shot detection algorithm is a very fast and efficient method. To detect

shot boundaries we calculate the sum of the bin-wise differences of adjacent frames and

compare them to a threshold. We use a variation of x2 to compare the histograms of

two frames in order to enhance the difference between the two histograms. Finally, the

difference between two images Ii, Ij based on their color histograms Hi, Hj is computed:

d(Ii, Ij) =
1

2

128∑
k=1

(Hi(k)−Hj(k))2

Hi(k) +Hj(k)
, (6.1)

where k denotes the bin index. A shot boundary is defined at frame Ii if d(Ii, Ij) is

greater than a threshold Tsh, which in our experiments was set to 0.15. Shots shorter

than 1 second were removed.
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6.2.2 Key-Frame Extraction

To speed up the summarization process each shot must be represented by unique frames

that will capture the whole content of the shot. In this way, to compare two shots, we

don’t use all the frames of each shot but a small number of key-frames that provide a

sensible representation of the shot content. To perform key-frame extraction we use the

method presented in Chapter 3. The video frames of each shot are clustered into groups

using an enhanced spectral clustering algorithm [56] that employs the very efficient global

k-means algorithm [49] in the clustering stage after the eigenvector computation. The

medoids of the obtained groups are selected as the key-frames of the shot.

A key aspect of the summarization process is the number of key-frames that are

necessary to capture the video content. In this Chapter, the number of key-frames is

estimated using the method proposed in Section 3.3.

6.3 Useless Frames Detection

Video rushes contain many useless frames such as colorbars and monochrome frames (see

Fig. 6.2), which are not necessary for the final summarization and should be removed. The

shot detection algorithm usually isolates colorbars or monochrome frames into single shots,

thus to speed up the implementation process the first key-frame of each shot is checked and

if it is defined as useless frame, the corresponding shot is removed from the summarization

process. To check whether a key-frame is useless or not we calculate its edge direction

histogram [53]. The edge direction histogram captures the spatial distribution of edges.

The key-frame is first sub-divided into 16 sub-images, and local edge histograms for

each of these sub-images is computed. Edges are grouped into five categories: vertical,

horizontal, 45 diagonal, 135 diagonal, and isotropic (nonorientation specific). Thus, each

local histogram has five bins corresponding to the above five categories resulting in a

80-bin histogram for the whole frame. To compute the edge histograms, each of the 16

sub-images is further subdivided into image blocks (see Fig. 6.3). A simple edge detector
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(a) Colorbar (b) Monochrome

Figure 6.2: Junk frames in rushes videos.

is then applied to each macro-block, which is treated as a 2 × 2 pixel image. The edge-

detector operators include four directional selective detectors and one isotropic operator

(Fig. 6.4). Thus, for an image block, we can compute five edge strengths, one for each

of the five filters. Those image blocks whose edge strengths exceed a certain minimum

threshold are used in computing the histogram.

In Fig. 6.5 we provide the edge direction histograms for (a) a colorbar and (b) a

normal frame. The edge direction histogram of a colorbar produces peaks in vertical and

horizontal bins whereas the other bins are close to zero. The bins of the edge direction

histogram of a monochrome frame are all close to zero. Thus a colorbar or monochrome

frame is detected if the difference between the sum of all bins of the edge histogram and

the sum of the vertical and horizontal bins is lower that a threshold Tedh:

128∑
k=1

Ei(k)−
15∑
m=0

Ei(5m+ 1)−
15∑
m=0

Ei(5m+ 2) < Tedh , (6.2)

where Ei is the edge direction histogram of frame Ii and Ei(5m + 1), Ei(5m + 2),

m = 0, . . . , 15 are the vertical and horizontal bins of the histogram respectively. In

our experiments Tedh was set to 10.
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Figure 6.3: Edge direction histogram computation (Image taken from [53]).

Figure 6.4: Edge detection filters (Image taken from [53]).

(a) Colorbar (b) Normal frame

Figure 6.5: Edge direction histograms.

6.4 Redundant Information Retrieval

Rushes often contain repetitive information, since the same scene is usually taken many

times until the desired result is produced. Our goal is to detect similar segments which in

our case are shots and keep only one representative for each group of similar shots that

will be further analyzed to contribute to the final summary.
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6.4.1 Visual Shot Similarity Metric

Once we have removed the shots that correspond to colorbars or monochrome frames

we need to suggest a proper visual shot similarity metric. Suppose we are given two

shots Si and Sj and KFi = {KF 1
i , KF

2
i , . . . , KF

m
i }, KFj = {KF 1

j , KF
2
j , . . . , KF

n
j }

their corresponding key-frame sets. An m× n similarity matrix SM is constructed with

elements:

SM(m,n) = V isSim(KFm
i , KF

n
j ) , (6.3)

where V isSim is the visual similarity between two frames Ii and Ij given by the following

equation:

V isSim(Ii, Ij) = 1− d(Ii, Ij) , (6.4)

with d(Ii, Ij) defined in equation (6.1) and V isSim ∈ [0, 1].

Taken into consideration that in rushes two shots that describe the same scene are

similar, we expect that their key frames will follow the same order. Thus, it is expected

that either a segment of one shot or the whole shot will also appear in the other shot.

To find similar segments in two shots we use a sequence alignment algorithm between

the sets of their key-frames. In this way, a key-frame is “matched” with the most similar

(visually) key-frame of the the other set of key-frames, while also taking into consideration

the temporal order of key-frames. Suppose that the first shot describes the following time

ordered events E1, E2, E3, E4, E5, E6 and the second shot describes events E2, E3, E5, E6.

An optimal alignment of the two shots is presented in Fig. 6.6.

Seq1 : E1E2E3E4E5E6

Seq2 : E2E3E5E6

Seq1 E1 E2 E3 E4 E5 E6

Seq2 E2 E3 E5 E6

Figure 6.6: Sequence alignment example

The score of the sequence alignment constitutes the final shot similarity metric. To

align two sequences we use the “Smith-Waterman” algorithm [69]. This is a well-known
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- - -

Figure 6.7: Sequence alignment of the key-frames of two shots describing the same scene.

algorithm for performing local sequence alignment in protein or nucleotide sequences and

is guaranteed to find the optimal local alignment with respect to the scoring system being

used, defined by a substitution matrix. The substitution matrix in our case is given by

similarity matrix SM . The score of each alignment is normalized to be in range of 0-1:

ScoreN = Score/min(nkf1, nkf2) , (6.5)

where nkf1, nkf2 are the numbers of key-frames of the two shots under alignment, respec-

tively.

In Fig. 6.7 we present the sequence alignment of the key-frames of two shots, where

the three key-frame of the first shot are successfully aligned with the second, third and

fourth key-frames of the second shot.

6.4.2 Repetitive shot detection

To find groups of repetitive and similar shots we compared each shot with the next

three. If one of the three shots is similar with the shot under consideration then all

the shots between these two shots and the shots under comparison, form a group. If

none of the shots is similar then a new group of shots is considered and the algorithm

continues until all shots are examined. Two shots are considered similar if the score of

the sequence alignment of their sets of key-frames exceeds a predefined threshold which in

our experiments was set to 0.9. Finally, the shot of each group with the largest duration
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is selected as the representative for this group.

(a) Clapboard (b) Sift descriptors

Figure 6.8: Clapboard and its sift descriptors.

Figure 6.9: Comparison of the sift descriptors of two clapboards.

6.5 Clapboard Removal

So far, we have selected unique and non-repetitive shots which are represented by their

key-frames. Rushes also contain clapboards to indicate the current number of the shot

(see Fig. 6.8(a)). These frames should not be included in the final summarization, thus

they have to be removed. Clapboards usually appear at the beginning of each shot.

To detect clapboards we compute for each key-frame the scale-invariant feature trans-
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forms (SIFT) [52]. An example of the SIFT descriptors of a clapboard are shown in (see

Fig. 6.8(b)). Using the TRECVID 2007 Development Data [59], a database of approxi-

mately 150 frames containing only clapboards was generated and their SIFT descriptors

were calculated. In order to detect whether a key-frame contains a clapboard, we compute

its SIFT descriptors and compare them with the SIFT descriptors of the database. In

Fig. 6.9, we present the matching descriptors of two frames containing clapboards. If the

number of matching descriptors is over a predefined threshold, this key-frame is charac-

terized as clapboard and the cluster corresponding to this key-frame is removed from the

shot. Having checked all the key-frames of a shot and having removed those key-frames

characterized as clapboards and their corresponding clusters, we extract new key-frames

for the shot using the method described in Section 3.2.

6.6 Summarization

The final stage of our summarization method involves the production of the final video

summary. The summary of a video can be a set of key-frames or a video of a smaller

duration than the original video. The method we described so far has produced unique,

non-repetitive shots that are represented from their time-ordered key-frames. The goal of

the rushes summarization process is to create a video summary with duration less than

p% of the original video duration. Once the repetitive shots have been detected (Section

6.4), the shot with the largest duration is selected as their representative. The duration of

a group of similar shots is referred as Tall. We want the duration of the summarized video

Tsum for the specific group, to be p% of Tall. Suppose now that this shot is represented

from k key-frames. A duration of Tkf = Tsum/k is assigned to each key-frame. Finally,

sampling every 3 frames, the bTkf/2c preceding and bTkf/2c following frames of each

key-frame are selected to summarize the shot under consideration.
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Table 6.1: Performance of our video rushes summarization method.

Our method All

Mean Median Avg.(Mean) Avg.(Median)

IN (0-1) 0.53 0.56 0.44 0.44
JU (1-5) 3.31 3.33 3.17 3.21
TE (1-5) 2.50 2.33 2.76 2.75
RE (1-5) 3.16 3.33 3.3 3.36
DU (secs) 25.07 28.00 27.01 28.25
XD (secs) 6.64 5.17 4.69 3.93
TT (secs) 39.86 41.33 40.76 39.91
VT (secs) 27.57 30.33 29.31 30.47

6.7 Experiments

We have tested our method on TRECVID 2008 Test Data [59], under the Rushes Summa-

rization task of TRECVID 2008 [59]. The goal of this task is to produce video summaries

with duration less than or equal to p = 2% of the duration of the original video. The

summary was to be constructed to maximize a viewer’s efficiency in recognizing the main

(primarily visual) objects and events from the original video as quickly as possible. The

performance of our method was tested on 40 videos. The data are unedited video footage,

shot mainly for five series of BBC drama programs, and was provided to TRECVid for

research purposes by the BBC Archive [59]. The drama series included a historical drama

set in London in the early 1900’s, a series on ancient Greece, a contemporary detective

program, a program on emergency services, a police drama, as well as miscellaneous scenes

from other programs.

6.7.1 Evaluation metrics

Three humans at Dublin City University have judged each summary. The quality of each

summary was evaluated directly by subjective and objective measures [59].

• Subjective measures

1. The fraction of inclusions found in the summary (IN) ranging from 0 to 1.
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2. Lack of junk (colorbars, clapboars and monochrome frames) (JU). The lack of

junk score was an integer ranging from 1 (worst) to 5 (best).

3. Whether the summary had a pleasant tempo/rythm (TE). Score ranges from

1 (worst) to 5 (best).

4. Whether the summary contained lots of duplicate video (RE). Score ranges

from 1 (worst) to 5 (best).

• Objective measures

1. Duration of summary in seconds (DU).

2. Different between target and actual summary size in seconds (XD).

3. Total time spent judging the inclusions in seconds (TT).

4. Total video play time (versus pause) judging the inclusions (VT).

6.7.2 Results and comparison

In Table 6.1 we present the scores of our method for the different measures given in Sec-

tion 6.7.1. We also present the average mean and median for all 31 groups participated in

the same task. It is worth mentioning that the proposed key-frame extraction algorithm

efficiently summarizes the content of a shot, which is indicated from the high fraction of

inclusions found in the summary (IN) that ranked our algorithm in the top ten in perfor-

mance. In what concerns the removal of useless frames (JU), we observe that the results

of our method are above average. Colorbars and monochrome were successfully removed

from the summaries. However, clapboard removal could be further investigated and im-

proved. Finally, the identification of repetitive information (RE) also needs improvement

as indicated from the results.
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6.8 Conclusions

In this Chapter, we have presented a method for video rushes summarization. There are

three challenges concerning rushes summarization. The first one is the removal of junk

frames (colorbars, clapboards and monochrome frames). The second one is the removal

of repetitive shots generated from multiple takes of the same scene. The third one is the

efficient summarization of the initial video in a summary video of much smaller duration

describing most of the information provided in the initial video.

In the method we have proposed herein an improved spectral clustering algorithm

was used to extract the key-frames of each shot as described in Section 3.2. Color-

bars and monochrome frames were removed from each video using edge direction his-

tograms, since they produce peaks in vertical and horizontal bins (colorbars) or empty

bins (monochrome frames) and differ significantly form the edge direction histograms of

normal frames. Frames containing clapboards were removed by comparing their SIFT

descriptors with a set of descriptors of a database of clapboards that were computed in

advance. To remove redundant video segments we have suggested a new shot similarity

metric. A sequence alignment algorithm was employed to align the key-frames of the

two shots under comparison with respect to their visual similarity and their temporal

order. Next, similar segments were identified and only a single representative was kept.

Finally, selecting a number of frames around each key-frame the final video summary was

generated constituting an efficient representation of the initial video. Numerical results

presented in this Chapter indicate that our system exhibited good performance in the

Rushes Summarization task of TRECVID 2008.
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Chapter 7

Event Detection and

Classification in Video

Surveillance Sequences

7.1 Introduction

7.2 Background Substraction

7.3 Video Segmentation into Events

7.4 Event Dissimilarity

7.5 Experimental Results

7.6 Conclusions

7.1 Introduction

In this Chapter, we present a system for event recognition and classification in video

surveillance sequences. Video surveillance has received many attention over the last years
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and is a major research topic in computer vision [34]. Typically, the framework of a video

surveillance system involves the following stages: background substraction, environment

modeling, object detection, classification and tracking of moving objects and descriptions

of behaviors/events. The goal of video surveillance systems is to detect and characterize

events as activities using unsupervised or supervised techniques.

In [18], a method is presented that integrates audio and visual information for scene

analysis in a typical surveillance scenario, using only one camera and one monaural mi-

crophone. However, the proposed method is designed to discriminate specific events such

as “making or receiving a call”, “entering a room and switching on light”. In [80], a

video behavior modeling method is proposed for online normal behavior recognition and

anomaly detection. For each video segment, blobs are detected that correspond to scene

events. These scene events are clustered into groups using a gaussian mixture model pro-

ducing a behavior representation for the video segment. Each behavior pattern is modeled

using a Dynamic Bayesian Network and a spectral clustering algorithm is employed to

cluster behavior patterns in groups. Then, a composite behavior model is constructed for

the observed/expected behaviors. Finally, an anomaly measure is introduced to detect

abnormal behavior, whereas normal behavior patterns are recognized using the Likeli-

hood Ration Test method. In [4], a combination of Hidden Markov Model and stochastic

grammar is proposed to recognize activities and identify different behaviors based on con-

textual information. In [91], an unsupervised technique for detecting unusual activity is

proposed. A video sequence is segmented into equal length segments and for each frame

a spatial histogram of detected objects is computed. The extracted spatial histograms

are classified into prototypes and a prototype-segment co-occurrence matrix is computed

from which unusual activity is detected.

The goal of video surveillance systems is first to detect those time intervals where

a person performs an activity. Then, a crucial issue is to find the objects that corre-

spond to this action by applying background substraction. Furthermore, each activity

must be effectively represented in order to be classified in predefined categories. In our

approach, local invariant descriptors are employed to remove background information.
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Then, by analyzing the number of foreground descriptors, we automatically segment the

video surveillance sequence into segments/events, which describe some activity taking

place in the room under surveillance. Each video segment/event is represented either by

a single (summary) visual word histogram or by multidimensional signal corresponding to

the visual word histograms of its own frames. In the second case, Dynamic Time Warping

distance [64] is employed to define a proper event dissimilarity metric. Finally, supervised

and unsupervised techniques are implemented either to classify or to cluster events into

categories.

The rest of the Chapter is organized as follows: In Section 7.2, the procedure of back-

ground substraction is described. In Section 7.3, the proposed event detection algorithm

is presented. In Section 7.4, we define an event dissimilarity metric and in Section 7.5 we

present numerical experiments for video event classification and clustering into categories.

Finally, in Section 7.6, we provide some conclusions.

7.2 Background Substraction

For each frame of the video surveillance sequence we extract local invariant descriptors.

In the proposed approach, we consider the SIFT descriptors proposed in [52]. Details of

the extraction process are given in Section 5.2. In this work, we concentrate on different

individual activities performed in an indoor environment, captured by using a standing

camera. Thus, background remains the same and object/event detection relies on fore-

ground detection modules. A popular idea for background substraction is proposed in

[79, 72, 24], where background is characterized using Gaussian mixtures in a statistical

framework. Alternative strategies for finding new objects in the scene involve motion

based segmentation of some kind [50]. However, most flow computation methods are

computationally heavy and very sensitive to noise. In our approach, for background ex-

traction and event detection we use SIFT descriptors rather than image data, which offers

several advantages, such as resistance to illumination changes, ability to cope with unusual
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Figure 7.1: Video frame of the background and the location of the extracted descriptors.

motion activity, camouflaged foreground object detection, higher tolerance to background

motion, and lower computation.

In order to remove descriptors that correspond to background objects, we compare the

descriptors of each frame of the video surveillance sequence with a set of pre-computed

descriptors corresponding to frames describing only the background. In Fig. 7.1, we

present a video frame of the background and the location of the extracted descriptors.

Figure 7.2: Video frame with its descriptors.

Suppose now that Db is the set of the descriptors extracted from video frames describ-

ing only the background and Dj is the set of descriptors of another video frame j. In order

to find the descriptors of frame j that correspond to the background, each descriptor of

set Dj is compared with the descriptors of set Db to find a “match”. According to a stan-

dard approach, the best candidate match for each descriptor is obtained by comparing
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Figure 7.3: Video frame with unmatched descriptors.

the distance of its closest neighbor to the distance of its second-closest neighbor [52]. If

it is lower than a threshold then a match is defined. The descriptors of set Dj that have

a match in set Db are removed, thus for frame j only the “unmatched” descriptors are

kept. In Fig. 7.2, we present a video frame and the corresponding SIFT descriptors and

in Fig. 7.3, we present the same video frame with the descriptors that do not match with

those of set Db.

7.3 Video Segmentation into Events

After we have subtracted the descriptors corresponding to background, we wish to identify

unique events in the video sequence. In our surveillance problem a video event is defined

as the time interval where a person performs an activity. Thus, it is expected that

when someone enters the room under surveillance, new descriptors will appear that do

not correspond to background. In [36] the authors propose a shot detection approach

by analyzing a vector that corresponds to the number of matching descriptors between

adjacent frames. In a way similar to that method we analyze a vector that corresponds

to the number of “unmatched” descriptors between each frame and the background. In

Fig. 7.4, we present the sequence of “unmatched” descriptors of a video surveillance

sequence.
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Figure 7.4: Number of unmatched descriptors of a video surveillance sequence.

In order to detect the beginning and the end of a video event, we first smooth this

vector with the discretized gaussian kernel of equation (5.7). Furthermore, we discard low

values of the smoothed signal to remove noise (background descriptors that have not been

removed). In Fig. 7.5 we present the final smoothed signal for the sequence of Fig. 7.4.

Given the final smoothed signal S, we can detect a video event beginning at time

instant tb such that S(tb) > 0, S(tb−1) = 0 and ending at time te with S(te) > 0, S(te+1) =

0. In Fig. 7.6, we present the signal values for a video event. It can be observed that the

event has at least two peaks, one close to the start of the event and the other close to its

end. Typically, these two segments, i.e from the start to the first peak and from the last

peak to the end, correspond to the entrance and exit from the room under surveillance

of the person involved in the event, respectively. Thus, these two segments are removed

and the remaining frames (their corresponding descriptors) constitute the event.

7.3.1 Event Representation

After we have segmented the video into events, we represent each video frame of the

event with a visual word histogram following the method presented in Section 5.2.2. More

specifically, the descriptors of all event frames are clustered into a predefined number of
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Figure 7.5: Smoothed signal of the number of unmatched descriptors.

clusters K using the k-means algorithm, where K denotes the size of the visual words

vocabulary. A visual word histogram V HF i
j of a frame j of event i is constructed by

assigning the frame’s descriptors to one of the K visual words (clusters). Similarly, a

visual word histogram V HEi of an event i is constructed by assigning each descriptor of

all the event frames to one of the K visual words (clusters).

7.4 Event Dissimilarity

In order to proceed with video event classification an event dissimilarity metric must

be defined. In our approach we consider two approaches. In the first one, to compute

a distance value between two events Ei and El we compare their corresponding visual

word histograms V HEi and V HEl. In the second approach, we compare the visual

word histograms V HF of their frames. More specifically, suppose that we are given

events Ei = {f i1, . . . , f iNi} and El = {f l1, . . . , f lNl}. Since Ni 6= Nl, we have to define

a proper dissimilarity metric to compare these two events. Next, we describe Dynamic

Time Warping (DTW) distance, which is employed to compare two events with different

number of frames.
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Figure 7.6: Descriptors selection of a video event.

7.4.1 Dynamic Time Warping

Dynamic Time Warping (DTW) is a well-known technique to find an optimal alignment

between two given time-independent sequences. Originally, DTW has been used to com-

pare different speech patterns in automatic speech recognition [64]. The objective of

DTW is to compare two time-dependent sequences; X = (x1, x2, . . . , xN) of length N

and Y = (y1, y2, . . . , yM) of length M , xi, yj ∈ R. The first step in computing the DTW

distance between time-series X and Y is to construct a N ×M distance matrix D con-

taining the pairwise distances between the samples, i.e Dij = (xi − yj)2, i = 1, 2, . . . , N

and j = 1, 2, . . . ,M . The objective is to find a path through the matrix so that the

cumulative distance between X and Y is minimized. This path called warping path

W = (w1, w2, . . . , wL), max(N,M) ≤ L < N + M − 1 is a contiguous set of matrix

elements that defines a mapping between X and Y . The warping path must satisfy the

following criteria [64]:

1. Boundary condition: w1 = (1,1) and wL = (N,M). The starting and ending points

of the warping path must be the first and the last points of the aligned sequences.

2. Monotonicity condition: This condition preserves the time-ordering of points.
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3. Step size condition: This criterion limits the warping path from long jumps (shifts

in time) while aligning sequences. The basic step size condition is formulated as

(wl+1 − wl) ∈ {(1, 1), (1, 0), (0, 1)}.

The cost function associated with a warping path w is computed with respect to matrix

D:

cw(X, Y ) =
L∑
l=1

D(xil, yjl). (7.1)

The DTW distance minimizes this cost function [64]:

DTW (X, Y ) = min{cw(X, Y ), w ∈ WN×M}, (7.2)

where WN×M is the set of all possible warping paths. Then, the accumulated cost matrix

DA is computed as follows:

1. DA(1, j) =
∑j

k=1D(x1, yk), j ∈ [1,M ].

2. DA(i, 1) =
∑i

k=1D(xk, y1), i ∈ [1, N ].

3. DA(i, j) = D(xi, yi) +min


DA(i, j − 1)

DA(i− 1, j)

DA(i− 1, j − 1)

.

Once the accumulated cost matrix DA is built, the optimal warping path could be found

by the simple backtracking from the point wend = (N,M) to the wstart = (1,1). The final

DTW distance is given from the sum of the values of matrix DA following the optimal

path.

7.4.2 Event Dissimilarity Metric

Each frame f ij , j = 1, . . . , Ni of event Ei is represented with a visual word histogram

V HF i
j as defined in equation (5.6). Thus, event Ei is represented by a K-dimensional
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signal of length Ni:

V Ei =


V HF i

1(k = 1) . . . V HF i
Ni

(k = 1)

... . . .
...

V HF i
1(k = K) . . . V HF i

Ni
(k = K)

 , (7.3)

where K the size of the vocabulary size employed to create the visual word histograms in

Section 5.2.2. Each row k of matrix V Ei represents the frequency of “visual word” k in

the time interval of the event.

In order to compute the distance between two video segments/events Ei and El we

compute the average DTW distance of their K-multidimensional signals. More specifically

D(Ei, El) =
1

K

K∑
k=1

DTW (V HF i(k), V HF l(k)), (7.4)

where V HF i(k), V HF l(k) are the k-th rows of the K-dimensional signals V Ei, V El rep-

resenting segments/events Ei and El, respectively.

7.5 Experimental Results

In this Section, we present numerical experiments for event classification and clustering

using supervised and unsupervised learning methods.

7.5.1 Video surveillance sequences

As already mentioned in Section 7.2 we concentrate on different individual activities

performed in an indoor environment captured by a standing camera. The performed

activities are not overlapping, in the sense that a person enters the room performs a set of

basic actions and leaves the room. The fist video sequence comprises of more than 25000

frames. In this video sequence, 20 activities/events are performed that are divided in five

categories, as follows.
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1. Phone:a person enters the room, goes to the phone and makes a conversation.

2. Scanner:a person enters the room, goes to the scanner and scans a document.

3. Library:a person enters the room, goes to the library and opens it.

4. Computer:a person enters the room, goes to the computer and works with it.

5. Board:a person enters the room, goes to the board and writes something.

In Fig. 7.7, we present sample frames of the background and the five categories of

events.

Figure 7.7: Sample frames of the background and the five categories of events.

The result of the automatic segmentation was optimal, since no over-segmentation or

under-segmentation was performed and all 20 events were detected as unique.

7.5.2 Classification Results

To classify the 20 events into 5 categories we carried out two experiments. In the first one,

we used the nearest neighbor classifier [23] and in the second one we used Support Vector

Machines [17]. We implemented the nearest neighbor classifier with 1, 3, and 5 nearest

neighbors for both dissimilarity measures defined in Section 7.4. Comparison between the
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Table 7.1: Classification results for the first video sequence.

K 1-NN 3-NN 5-NN SVM

DTW EV DTW EV DTW EV DTW EV

10 80% 85% 80% 85% 65% 65% 75% 65%
20 90% 90% 95% 90% 90% 80% 95% 95%
50 95% 95% 95% 95% 95% 90% 100% 95%
100 95% 90% 100% 100% 10% 95% 100% 95%
200 95% 90% 100% 100% 100% 100% 100% 100%

visual word histograms of events is referred as EV and comparison between the visual

word histograms of the frames of the events is referred as DTW. In Table 7.1 we present

the numerical results of the experiments for different number of visual words K. The

classification accuracy was estimated using the leave-one-out (LOO) approach [23].

In the second experiment, Support Vector Machine (SVM) classifiers [17] were em-

ployed using the leave one out (LOO) scheme again. In our approach, we employed the

typical radial basis function (RBF) kernel (equation (2.15)) and the parameters C, γ of

equations (2.11), (2.15) respectively, were selected through cross-validation. In Table 7.1,

we present the numerical results for the two compared approaches of Section 7.4 and for

different number of visual words K. It can be observed that DTW distance gives results

slightly superior to the ones obtained by the other dissimilarity metric.

7.5.3 Clustering Results

We have also employed an unsupervised method for grouping the video events into cate-

gories. More specifically, we performed agglomerative hierarchical clustering [37], setting

the number of cluster to five and using the Ward criterion to select the clusters to be

merged at each iteration. In Fig. 7.8, we present the hierarchical clustering dendrogram

using DTW distance to compare video events using a visual word vocabulary of 50 words.

In this example all video events were successfully clustered into groups. The clustering

accuracy was calculated by computing the number of errors: a clustering error occurs if

an event is assigned to a cluster in which the majority of the events belongs to another

category. In Table 7.2 we present the clustering accuracy for the two approaches of Section
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7.4 using a different number of visual words K. It can be observed that DTW distance

provides better results for a small number of visual words.

Figure 7.8: Hierarchical clustering dendrogram.

Table 7.2: Clustering results for the first video sequence.

K Hierarchical Clustering

DTW EV

10 80% 45%
20 95% 90%
50 100% 90%
100 100% 100%
200 100% 100%
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7.6 Conclusions

In this Chapter, we have presented a method for video event detection and classification in

video surveillance sequences. For each video frame, local invariant descriptors were com-

puted and compared to a pre-computed set of descriptors from the background framer of

the surveillance room. In this way, a number of “unmatched” descriptors was identified

that describe foreground objects. By analyzing the number of “unmatched” descriptors,

the video sequence was segmented into segments/events. Each video event was repre-

sented either by a single (summary) visual word histogram or by a K-dimensional signal

corresponding to the visual word histograms of its frames. Thus, two different approaches

were followed in order to compare video events. Unsupervised and supervised learning

methods were employed to cluster and classify the events into certain categories. Numer-

ical results presented in this Chapter indicate that our approach achieves high detection,

classification and clustering rates.
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Chapter 8

Conclusions

8.1 Concluding Remarks

8.2 Directions for Future Research

8.1 Concluding Remarks

In this thesis we have proposed novel methods for video segmentation and representa-

tion that are based on machine learning techniques (classification, clustering). First, we

considered support vector machines for video shot detection. Then, an improved spectral

clustering algorithm was employed for video shot representation. The same algorithm in

combination with a sequence alignment algorithm was employed for video scene segmen-

tation. Movie segmentation into scenes and chapters was also implemented using tem-

porally smoothed visual words histograms. Furthermore, the proposed techniques were

also employed for video rushes summarization and event detection in video surveillance

sequences.

More specifically, in order to perform video shot detection, we proposed in Chapter

2 a supervised learning methodology [11, 15]. In this way, we have avoided the use of

thresholds and we were able to detect shot boundaries of videos with totally different
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visual characteristics. Novel features have been defined describing the variation between

adjacent frames and the contextual information in a neighborhood of frames and became

inputs to a SVM classifier which categorized transitions to normal, abrupt and gradual. In

this way, all categories of video shot transitions were detected simultaneously. Numerical

experiments that compare our algorithm with threshold dependent methods and another

supervised learning methodology indicate that our algorithm provides superior results.

In Chapter 3 a key-frame extraction algorithm [10, 14] has been presented that is based

on the combination of spectral clustering approach and fast global k-means algorithm. We

have also proposed a technique to estimate the number of the extracted key-frames. The

extracted key-frames are unique, non-repetitive and summarize the video shot content,

which is also indicated from the numerical experiments where appropriate quality mea-

sures were defined and computed.

In Chapter 4 we presented a novel video scene segmentation algorithm [9, 14] that

employs the improved spectral clustering algorithm of Chapter 3 and a sequence alignment

algorithm. Shots were first clustered into groups based only on their visual similarity using

the method presented in Chapter 3 and a label was assigned to each shot according to the

group that it belonged to. Then, a sequence alignment algorithm was applied to detect

when a change occurs to the pattern of shot labels, providing the final scene segmentation

result. Numerical experiments on TV-series and movies have shown that the proposed

scene detection method accurately detects most of the scene boundaries, while preserving

good tradeoff between recall and precision.

In Chapter 5 we presented a high-level movie segmentation algorithm [13]. In this

approach, the movie shots were represented with local invariant descriptors instead of color

histograms, resulting into a visual words histogram representation. Next the visual words

histograms of shots were temporally smoothed (using a gaussian kernel) with respect to

histograms of neighboring shots in order to preserve valuable contextual information. This

semantic smoothing process at different time scales results in efficient movie segmentation

at different high-levels, such as scenes and chapters.

In Chapter 6, a system for video rushes summarization [12] has been presented. A
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video sequence was first segmented into shots and key-frames were extracted for each

shot using the method presented in Chapter 3. Then, the edge direction histogram of

each key-frame was computed to check whether the frame is monochrome or a colorbar.

In order to remove redundant information (repetitive shots), we compared shots using

a sequence alignment score between the sets of their key-frames. The SIFT descriptors

of the key-frames of the remaining representative shots were compared to a database of

descriptors obtained from frames with clapboards. In that way, frames with clapboards

were removed from the final video summary. Finally, the video summary was generated

by concatenating frames around the key-frames of the remaining shots. Numerical results

indicate that our system exhibited good performance in the Rushes Summarization task

of TRECVID 2008.

In Chapter 7, a system for event detection in video rushes surveillance sequences

has been presented. First, local invariant descriptors of video frames were employed to

remove background information and segment the video into events. Next, visual word

histograms were computed for each video event and used to define a distance measure

between events. Finally, machine learning techniques were employed to classify events

into predefined categories. Numerical experiments indicate that the proposed approach

provids high event detection and classification rates.

8.2 Directions for Future Research

In future work it would be very interesting to consider the use of local invariant descriptors

for the shot boundary detection problem of Chapter 2. The experiments of Chapter 5

using this type of descriptors are very promising and the proposed semantic smoothing

process could also be applied to the shot boundary detection problem.

The temporally smoothed visual histograms of Chapter 5 could be used as well for the

key-frame extraction algorithm. Using this method it would be interesting to examine

in what degree the semantic concepts change inside the video shot. Another interesting
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direction for future work would be to build a visual word vocabulary from different features

such as motion and local invariant descriptors or even a combination of features.

Furthermore, in the high-level movie segmentation problem of Chapter 5, it would

be interesting to build a visual word vocabulary by comparing video shots to existing

semantic detectors [71]. An issue that worths to be examined is whether global semantic

concepts, i.e. cars, people, animals and buildings, can provide better performance than

semantic concepts extracted from local descriptors.

The high-level segmentation algorithm presented in Chapter 5 could also be tested

for a variety of video genres, i.e sports and tv-news. In sport videos, such as a video

sequence describing a basketball game, it would be very desirable to provide a video

segmentation into play-time, replays, timeouts and other possible segments. In tv-news

a possible segmentation could divide the video sequence into dialogues, reportage and

tv-commercials.

Finally, in video surveillance there are several open problems that deserve further

investigation. For example, a very challenging problem is the detection of multiple events

in a video sequence. The majority of event detection algorithms consider independent

events. The combination of motion trajectories with the semantic representation of video

frames could provide a possible solution to this difficult problem.
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