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Abstract—Keyframe extraction for shot representation is the
most common video summarization approach. Any reliable
keyframe extraction algorithm should automatically detect the
number of keyframes, while extracting non-repetitive keyframes
that can efficiently summarize the video content. Moreover, it is
important that key-frame extraction is performed in reasonable
time. The proposed method is based on a moving window of
successive frames that slides over the whole frame sequence
(shot). The set of frames included in each window is tested
for content homogeneity using an appropriate unimodality test.
Thus, each window is characterized as unimodal or not and
the frame sequence of each non-unimodal window is splitted
into two (possibly unimodal) segments. In this way, each video
shot is segmented into unimodal segments and the key-frames
are computed as the representative frames (medoids) of each
unimodal segment. An important aspect of the above method is
that it does not require the number of keyframes to be specified in
advance, since the number of segments is computed automatically.
Numerical experiments demonstrate that our method provides
reasonable estimates of the number of ground-truth keyframes,
while extracting non-repetitive keyframes that efficiently summa-
rize the content of each shot.

I. INTRODUCTION

The most popular indexing and summarization method
for video sequences is based on key-frame extraction. More
specifically, each video is first segmented into shots, which
are subsequently sufficiently using their most representative
frames, which are called key-frames. Any key-frame extraction
algorithm should fulfil some requirements. First, the key-
frames should adequately represent the whole video content
without missing important information and second, these key-
frames should be non-repetitive, in terms of video content
information. Finally, it is highly desirable that the number of
keyframes should be specified automatically without any prior
knowledge about the video content.

There are two major categories of methods for the keyframe
extraction problem. The first one considers keyframe extraction
as a clustering problem, thus frames are clustered into groups
and the cluster representatives (e.g. medoids) are selected as
keyframes. For example, in [1] the keyframes are extracted
using clustering based on the visual variations in shots. A
variant of this algorithm is presented in [2], where a threshold
parameter defining whether two frames are similar controls
the final number of key-frames. In [3], consecutive frames are
clustered into groups with a split-merge approach based on
the mutual information. A different technique for key-frame

selection is described in [4], where the key-frame positions in
the video sequence is taken into account.

The second major category of key-frame extraction meth-
ods is based on the detection of abrupt changes in the similarity
between successive frames [5], [6]. In [7], three principles
(Iso-Content Distance, Iso-Content Error and Iso-Content Dis-
tortion) are employed. Selected keyframes are equidistant in
the video content curve with respect to these three principles.
In [8], a keyframe selection framework based on keypoints is
presented. A keypool of unique keypoints extracted from all
frames based on SIFT descriptors [9] is generated and those
frames that best cover the keypool are selected as keyframes.
However, this method is relatively slow due to the cost for
SIFT extraction and matching.

In the herein approach, we propose a novel keyframe
extraction algorithm that belongs to the second category. The
method is based on a unimodality test on a set of frames.
This test essentially decides on the content homogeneity of
frames in this set. We check for unimodality using the recently
proposed dip-dist criterion [10], which is based on Hartigans’
dip-test [11] for unimodality.

In our method the test is applied on a moving window
of successive frames that slides over the whole shot. If at
any point the test on the window declares multimodality, we
assume that video content inside this window changes, thus we
try to find the best split of the frames in this window into two
(possibly unimodal) segments. The aforementioned procedure
finally divides any shot into segments that are unimodal with
respect to video content, and provides unique non-repetitive
keyframes by selecting one representative frame (medoid)
for each segment. A key aspect of our method, contrary to
existing methods, is that it can provide automatically the
number of keyframes of a video shot. Moreover, taking into
consideration consecutive windows that declare multimodality,
it is possible to identify multimodal frame sequences, that
usually correspond to the transition period between two actions
in a shot. It must be noted that we do not select keyframes
from multimodal segments. Another important characteristic
of our method is that it is very fast, thus it can be used for
online video summarization.

The rest of the paper is organized as follows. In Sections
2 and 3 we describe the dip-dist criterion for deciding uni-
modality and our key-frame extraction method, respectively.
In Section 4 we describe the evaluation procedure and pro-
vide numerical experiments. Finally, in Section 5 we provide
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conclusions and suggestions for further study.

II. THE DIP-DIST CRITERION FOR UNIMODALITY

The Dip-dist criterion has been proposed in [10] to evaluate
the cluster structure of a set of data objects. The basic intuition
behind dip-dist is that a set of objects is homogeneous if
the underlying density distribution is unimodal. However,
unimodality is not checked in the original data space, but it
is tested using only the pairwise distance values between data
objects (i.e. the distance matrix).

More specifically, in the dip-dist computation, each object
of the dataset is considered as viewer that decides on the
unimodality of the set in the following way: we consider the
set of the pairwise distances from the viewer to all other data
objects. Then, the density of this set of distances is tested for
unimodality using Hartigans’ dip test [11] and is characterized
as either unimodal or multimodal. If the percentage of viewers
suggesting multimodality exceeds a given threshold (e.g. 1%),
then the set of objects is characterized as multimodal.

As proposed in [11], given a set of n values Fn, the dip-test
computes the dip value of Fn (dip(Fn)) which is the departure
from unimodality of the empirical distribution (cdf) of Fn:

dip(Fn) = min
G∈U

ρ(F,G), (1)

where ρ(F,G) is the distance between the two distributions F ,
G and U the class of all unimodal distributions. In [11], it is
also argued that uniform distribution U is the most appropriate
for the null hypothesis. Thus the computation of the p-value
for a unimodality test for a set Fn uses b bootstrap sets of
n samples Ur

n, r = 1, . . . , b from U[0,1] and expresses the
probability of dip(Fn) being larger that dip(Ur

n):

P = #[dip(Fn) ≤ dip(Ur
n)]/b, r = 1, . . . , b. (2)

The null hypothesis H0 that Fn is unimodal, is accepted at
significance level α if p-value> α, otherwise hypothesis H1

indicating multimodality, is accepted.

In our key-frame extraction method, we work with a
moving window containing w successive video frames V =
{f1, . . . , fw}. Let V fi is the feature vector (image descriptor)
of frame fi and Dist the w × w matrix with the pairwise
Euclidean distances:

Dist(fi, fj) =
√
(V fi − V fj)2. (3)

We use the dip-dist criterion to decide whether a window (set
V ) is unimodal or not, ie. if its visual content, as specified
by the selected image descriptor, is homogeneous or not.
Multimodality indicates that the video content changes in this
set, thus the window should be splitted. The viewers suggesting
multimodality are called split-viewers [10].

Summarizing, given a window of of w successive video
frames and the corresponding pairwise distance matrix Dist,
the dip-dist criterion is applied as follows:

1) Create b sets Ur
w of w values sampled form U(0, 1)

and compute the dip values dip(Ur
w), r = 1, . . . , b,

for those sets. Once the window w is fixed this can
be done in a preprocessing step and the values can
be stored for later use.

2) Compute the dip values dip(i) for every frame/viewer
fi, i = 1, . . . , w using the matrix Dist.

3) Estimate the p-values P (i), i = 1, . . . , w, based on
Eq.2 using a significance level α and the percentage
of frames/viewers identifying multimodality. If the
percentage is higher than a threshold (in our case 1%)
then the window is characterized as multimodal, oth-
erwise it is considered as unimodal. Note that since
in our method the maximum considered window size
is 50, only one viewer that observes multimodality is
required to characterize a window as multimodal.

Fig. 1: Four consecutive windows of successive frames of an
example video sequence.

Fig. 2: Corresponding p-values of the frames of each window
of Fig. 1.

In Fig. 1 we present four consecutive windows of succes-
sive frames of an example video sequence each containing 11
frames. In Fig. 2 we present the corresponding p-values of
the frames/viewers of each window in Fig. 1. Note that in
the first sequence only the last two frames differ in content,
thus all viewers have high p-values (unimodality). In the next
sequences the content variability inside the window increases
and the corresponding p-values decrease.

It can be observed that in the first window both last
“different” frames have high p-values, thus view the rest of
the window as unimodal. However, as we progress in time
and more different frames are added in the window, all frames
start to act as split-viewers. Finally, in the fourth window,
all frames/viewers propose multimodality. This example is the
hard case, where visual content changes suddenly. In a similar
way when visual content changes smoothly, we wish to find
at least on split viewer to declare multimodality.

III. KEYFRAME EXTRACTION

As mentioned in the previous Section, we can use the
dip-test [10] to decide on whether a set of frames is uni-
modal (homogeneous content) or multimodal with respect to
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Fig. 3: Cut score sequence of our keyframe extraction algorithm for an example sequence of 160 frames.

a given image descriptor (eg. HSV histogram). Our method
exploits this convenient and effective test in order to identify
homogeneous frame subsequences (called unimodal segments).
Note that such unimodal segments should be maximal in the
sense that if we combine two adjacent unimodal segments, the
resulting segment is no longer unimodal. This segmentation
task is actually the major computational part in our method.

In order to extract the unimodal segments, we consider a
moving window with w successive frames that slides over the
frame sequence. At each position, the window of frames is
tested for unimodality using dip-dist criterion and a binary cut
score zero or one is assigned if unimodality is detected or not.
More specifically, a window is characterized as multimodal if
the percentage of frame/viewers that vote for multimodality
(split viewers) is greater than a threshold tv=0.01 as proposed
in [10]. In Fig.3, we present the sequence of Cut Score values
(as the window moves along the frame sequence) computed
for a shot of 160 frames. The segmentation process works
as follows: the first unimodal segment of the shot starts at
the first frame, whose corresponding window is unimodal, eg.
frame #1 in Fig.3. The algorithm then proceeds until the first
multimodal window is encountered; such window corresponds
to frame #61 in Fig.3. In this case, the set of frames in the
multimodal window is splitted into two segments of successive
frames as described later in this Section. Let s be the splitting
position inside the multimodal window of frames. Then we can
define the boundaries of first unimodal segment as S1 = {1, s}.
Note that the first frame of the next segment is not necessary
the next frame s+ 1, since it must also fulfil the requirement
that its corresponding window of frames is unimodal. If not,
we seek for the first unimodal window which corresponds to
frame #82 in Fig.3. This frame is considered as the begining of
the new segment. The method proceeds analogously until all
windows have been tested for unimodality. For the example in
Fig.3, the extracted segments are S1 = {1, 71}, S2 = {82, 83},
S3 = {84, 120}, S4 = {130, 133} and , S5 = {132, 160}.
To avoid very small segments like S2 and S4, we discard
segments containing less than five frames. It must be noted
that there may exist intervals such as 72-83 and 121-129
that have not been assigned to any segment. These frames
usually correspond to transition intervals (e.g. moving from

one room to another), thus we do not select keyframes from
such multimodal segments.

In general, we consider that a unimodal segment starts at
the first unimodal window (that follows a multimodal window)
and lasts for several consecutive frames whose corresponding
windows remain unimodal, until a multimodal window is
encountered. This window is then splitted into two segments at
a splitting point s, and the frame at position s is considered as
the end of the unimodal segment. The next unimodal segment
then starts at the first unimodal window that is encountered
after the end of the previous segment. This segmentation
procedure continues until the last window of the sequence has
been examined.

After the unimodal segments have been extracted, the
medoid frame of each segment is selected as key-frame. Thus,
the number of key-frames is equal to the number of extracted
segments. Note that the medoid is defined as the frame of
a segment with minimum average dissimilarity to all other
frames of its segment.

A. Splitting a multimodal window

Suppose that a multimodal window of frames (with size w)
has been characterized as multimodal and we wish to optimal
split this sequence into two segments. Let Dist the w × w
matrix of pairwise distances of the frames of the window.
To find the optimal split, we consider all splitting positions j
(j = 2, . . . , w−1) in this sequence. For each splitting position
j, we obtain two segments S1(j) (containing frames 1, . . . , j)
and S2(j) (containing frames j+1, . . . , w). The quality of this
split is computed by finding the medoids of S1(j) and S2(j),
computing the sum of distances from the medoid for each
segment (clustering error) and summing the two clustering
errors to obtain the total clustering error E(j). We consider
that the best split at frame s for which the total clustering error
E(j) is minimum:

s = min
j

(min
k

j∑
i=1

Dist(i, k) + min
l

w∑
i=j+1

Dist(i, l)), (4)

with k = 1, . . . , j and l = j + 1, . . . , w.
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IV. EXPERIMENTS

In the following Section, we present the dataset we have
use to evaluate our algorithm, the evaluation process and the
experimental results.

A. Dataset

We have used two video datasets for evaluation. The first
consists of 13 videos, where the first ten videos are also
used in [8] and have been taken from Open Video Project
(http://www.open-video.org). Moreover, two additional videos
and the widely known Foreman video sequence were used.
Details and screenshots from all videos tested, are given in
Table I and Fig.4, respectively. The second video dataset
consists of eleven video sequences taken for TRECVID 2008
Test Data [12]. Details and screenshots from all videos tested,
are given in Table II and Fig.5, respectively.

TABLE I: First Video Dataset.

Video Name Start
Frame

End
Frame

# of
Frames

v25 A New Horizon, segment 02 664 900 237
v28 A New Horizon, segment 05 3223 3440 218
v33 Take Pride in America, segment 03 540 650 11
v39 Senses And Sensitivity, Introduction
to Lecture 4 presenter

1838 1934 97

v40 Exotic Terrane, segment 01 1790 1989 200
v49 America’s New Frontier, segment 07 150 500 351
v57 Oceanfloor Legacy, segment 04 1600 1800 201
v58 Oceanfloor Legacy, segment 08 540 633 94
v63 Hurricane Force - A Coastal Perspec-
tive, segment 03

867 1012 146

v66 Drift Ice as a Geologic Agent, seg-
ment 05

766 977 212

Foreman sequence 1 400 400
video 1 1 271 271
video 2 1 175 175

TABLE II: Second Video Dataset (Trecvid).

Video Name Start Frame End Frame # of Frames
MRS145918 v1 2160 2990 830
MRS145918 v2 9690 10770 1080
MRS145918 v3 12600 13600 1000
MRS157444 v1 726 1331 605
MRS157444 v2 9076 11294 2218
MRS157469 v1 2200 5000 2800
MRS158013 v1 3370 8258 4888
MS0237650 v1 768 953 285
MS0237650 v2 1050 2341 1991
MS0237650 v3 3900 4570 670
MRS148800 v1 7740 12150 4410

B. Evaluation

The evaluation of keyframe extraction algorithms is non-
trivial, due to subjectivity imposed when selecting the ground-
truth (GT) keyframes and also due to the difficulty in com-
paring the extracted with the ground-truth keyframes. We
evaluate our keyframe extraction algorithm in three ways. At
first we test its ability to estimate the correct (as specified in
the ground-truth) number of keyframes. For this reason we
compute the average absolute difference between the number
of extracted keyframes and the number of the keyframes in

Fig. 4: Screenshots of the video dataset.

Fig. 5: Screenshots of the second video dataset.

the ground-truth (Dk). Furthermore, in order to compare our
solution with the ground truth solution, we do not directly
compare the corresponding keyframes, but follow an alter-
native more robust approach that exploits the fact that our
method also provides a segmentation of the video sequence
into segments: we assign each ground truth keyframe to the
extracted segment where it belongs to. Let NS the number
of extracted segments. We form a histogram vector with
each element Kj , j = 1, ..., NS indicating the number of
ground-truth keyframes assigned to segment j. Obviously, the
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histogram vector K̂ of a reference (perfect) solution would
have K̂j = 1, for all j, implying an one-to-one correspondence
between ground-truth keyframes and extracted segments. It is
obvious that the closer the distribution K to the K̂, the better
the performance of the algorithm. Thus we define the quantity:

Dd =
1

NS
||K − K̂||2, (5)

as a second performance measure, where lower values indicate
better performance.

To be more clear, we provide below some typical example
cases. Suppose we are given a shot with four ground truth
keyframes:

• Case 1: The method segments the shot into four
segments, thus four keyframes are extracted. The
reference histogram is K̂ = [1111]. If all ground
truth keyframes are distributed uniformly in the four
extracted segments then K = [1111] and Dd = 0.

• Case 2: The method segments the shot into four
segments and keyframes are not distributed uniformly,
for example K = [2011]. In this case Dd = 0.5.

• Case 3: The method segments the shot into three
segments, thus underestimates the number of ground
truth keyframes. The reference histogram is K̂ = [111]
and suppose for example that K = [211]. In this case
Dd = 0.33.

• Case 4: The method segments the shot into five seg-
ments, thus overestimates the number of ground truth
keyframes. The reference histogram is K = [11111]
and suppose for example that K = [11101]. Then
Dd = 0.2.

The third way we used to assess the performance of our
method was visual evaluation. Similarly to [8], the evaluation
of the results were based on the visual comparison of the
key-frames extracted from the experiments against the ones
in the ground truth set. Three persons with video-processing
background participated in the evaluation process and the
cross-section of their evaluations was used. F1 measure has
been used for evaluation provided from the following equation:

F1 =
2× P ×R
P +R

, (6)

where P and R are Precision and Recall, respectively, and are
computed form the following equations:

P =
Nc

Nc +Nm
, R =

Nc

Nc +Nms
, (7)

where Nc, Nm and Nms are the number of correct, multiple
and missed detections of ground-truth keyframes, respectively.
Note that as multiple detection we consider the case where a
ground-truth keyframe is found similar to more than one of
the extracted keyframes.

For the second video dataset, TRECVID has provided the
ground truth inclusion. In Table III we present the ground
truth for video sequence “MRS145918 v1” as provided by
TRECVID. In Fig. 6 we provide frames that describe the

corresponding ground truth. We have asked three persons
with video-processing background to evaluate the key-frames
extracted from the experiments against the ground truth pro-
vided by TRECVID. Recall, Precision and F1 measures are
employed to evaluate the performance of the algorithms under
comparison.

TABLE III: Ground truth for MRS145918 v1 video sequence
as provided by TRECVID.

woman in white jacket enters house through white door
woman in white jacket walks into room past man and woman

woman in white jacket takes off her sunglasses
woman in white talks, looking at glass case

woman in white turns away from wall

Fig. 6: Frames corresponding to the MRS145918 v1 video
sequence.

C. Experimental Results

HSV normalized color histograms were used to describe
video frames, with 8 bins for hue and 4 bins for each of
saturation and value, resulting in a 16 (8+4+4) dimensional
feature vector in case of 1D histogram (named HSV1D) and
in a 128 (8×4×4) dimensional feature vector in case of 3D
histogram (named HSV3D). The parameters of the dip-dist
criterion are set to α=0 for significance level of dip test and
b=1000 for the number of bootstraps. It is worth mentioning
that the dip values dip(Ur

w), r = 1, . . . , b, for all Uniform
sample distributions Ur

w are the same for each window, thus
they can be precomputed once and stored for later use.

In Tables IV and V we present the performance of our
keyframe extraction algorithm using HSV1D and HSV3D
histograms, respectively. The values of the three performance
measures defined in the previous section are reported for
various window sizes.

It is clear that the proposed method yields very good perfor-
mance for windows of size 30 to 50, with peak performance
at w=45 for both histograms. When HSV3D histograms are
employed, our algorithm estimates the number of keyframes
very well (mean absolute difference is 0.81), while the visual
evaluation of the extracted keyframes (F1=89.03%) indicates
that the extracted keyframes are non-redundant.

In Table VI, we provide comparative results of our algo-
rithm with the method proposed in [8], where two parameters,
Coverage and Redundancy, are used to guide the keyframe
extraction process. It must be noted that the number of
keyframes is not automatically estimated, but it is controlled
by the Coverage parameter. We have tried different values of
Coverage and in Table VI we present the best performance.
The Dd value is not available for this approach, since no
segments are extracted using this method.

In Table VII, we provide comparative results of our algo-
rithm with the method proposed in [8] on the second video
dataset taken from TRECVID. We use a window of size
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TABLE IV: Performance results of our algorithm using
HSV1D on the first video dataset.

HSV1D
Window Dd Dk F1

5 0,7021 2,94 48,69%
10 0,6006 2,31 57,30%
15 0,5211 2,13 66,06%
20 0,3821 1,25 71,88%
25 0,3779 1,25 69,30%
30 0,3863 1,38 76,63%
35 0,3683 1,38 80,03%
40 0,3544 1,31 75,11%
45 0,2932 1,31 81,86%
50 0,2901 1,13 77,81%

TABLE V: Performance results of our algorithm using HSV3D
on the first video dataset.

HSV3D
Window Dd Dk F1

5 0,6341 2,88 53,41%
10 0,5243 2,06 67,90%
15 0,5391 2,19 61,08%
20 0,4279 1,50 70,14%
25 0,3934 1,50 66,70%
30 0,3085 1,13 75,91%
35 0,3136 1,38 79,72%
40 0,3165 1,13 81,55%
45 0,2234 0,81 89,03%
50 0,2416 1,13 86,59%

TABLE VI: Comparative results on the first video dataset.

Dd Dk F1

HSV1D w = 45 0,2932 1,31 81,86%
HSV3D w = 45 0,2234 0,81 89,03%
Method in [8] - 1,92 64,78%

w = 45 for our method. It is clear that our algorithm surpasses
the method under comparison, while providing a very good
inclusion of ground truth.

It must also be noted that this method is very slow
compared to our approach. For example, for a video shot with
300 frames, the computational time of then method in [8] is
150 sec, whereas in our approach it is less than 3 seconds. It
is worth mentioning that our algorithm does not require the
entire video shot to extract each keyframe, thus it can be used
for online video summarization. Since unimodal segments are
extracted progressively, keyframes are extracted immediately
after their corresponding segment is detected.

TABLE VII: Comparative results on the second video dataset.

R(in%) P (in%) F1(in%)
MRS145918 v1 80.00 66.67 72.73
MRS145918 v2 100.00 80.00 88.89
MRS145918 v3 100.00 100.00 100.00
MRS157444 v1 66.67 100.00 80.00
MRS157444 v2 100.00 77.78 87.50
MRS157469 v1 100.00 100.00 100.00
MRS158013 v1 100.00 61.54 76.19
MS0237650 v1 100.00 66.67 80.00
MS0237650 v2 100.00 72.73 84.21
MS0237650 v3 100.00 75.00 85.71
MRS148800 v1 100.00 73.33 84.62

HSV3D w = 45 (Average) 95.15 79.43 85.44
Method in [8] (Average) 77.03 69.44 63,34

V. CONCLUSIONS

In this paper, a novel keyframe extraction algorithm has
been proposed. A moving window of successive frames that
slides over the whole frame sequence is tested for unimodality
using dip-test criterion on the distribution of their pairwise
distances. In case of non-unimodality, frames are splitted into
two disjoints sets. Finally, each video shot is segmented into
unimodal segments with respect to video content that provide
the final non-repetitive keyframes. Performance results on sev-
eral video sequences demonstrate that our method efficiently
estimates the correct number of keyframes, while extracting
non-repetitive keyframes that efficiently summarize the video
content of each shot. In future work, we plan to employ
additional descriptors to capture different aspects of video
frames.
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