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Video

Video: A sequence of frames

A three-dimensional signal, in which two dimensions reveal the visual
content in the horizontal and vertical frame direction, and the third one
reveals the variations of the visual content over the time axes.



Shot Transitions Detection and Classi�cation Using Support

Vector Machines

Shot

The smallest physical segment of a video is the shot and is de�ned as an
unbroken sequence of frames recorded from one camera.

Shot Transitions

Hard cut

Gradual Transitions
Dissolve
Fade in, Fade out
Other e�ects

V. Chasanis, A. Likas, and N. Galatsanos. \Simultaneous detection of abrupt cuts and
dissolves in videos using support vector machines". Pattern Recognition Letters,
30(1):55-65, 2009.



Visual Examples

Figure: Hard cut

Figure: Dissolve



Challenges,Problems and Contribution

Challenges

Frame representation.

Frames dissimilarity.

Classi�cation using dissimilarity vectors.

Problems

Di�erent visual content.

Simultaneous detection of all types of shot transitions.

Contribution

Features that describe the variation between adjacent frames and the
contextual information at the same time.

Threshold independent method.

A single classi�er for detection and classi�cation of all types of shot
transitions.



Contribution

Features selection

The common practice of identifying the transitions between shots is to
�rst calculate the discontinuity (distance) values of adjacent frames.

Gradual transitions spread over several frames, thus the di�erences
between adjacent frames are not su�cient to characterize them.

The di�erences between non-adjacent frames is also employed in the
de�nition of the proposed features.

Classi�cation

Support Vector Machines

A single classi�er that classi�es transitions into:
Hard cuts
Gradual Transitions
No transitions



Color Histogram and Dissimilarity Value

Color Histogram

Normalized RGB histograms with 256 bins for each one of the RGB
component de�ned as HR;HG and HB .

Concatenation of three histograms H = [HRHGHB ].

Dissimilarity Value

d(Ii ; Ii+l ) =
1

3

768∑
k=1

(Hi(k)− Hi+l (k))2

Hi(k) + Hi+l (k)



Inter-frame Distance

Dissimilarity value is computed between adjacent frames and frames with
time distance l (inter-frame distance).

l = 1. To identify hard cuts between two consecutive frames.

l = 2. During a gradual transition two consecutive frames may be the
same or very similar to each other, the dissimilarity value will tend to
zero.

l = 6. A gradual transition stretches along several frames, while the
di�erence value between consecutive frames is smaller.

l = 1 l = 2 l = 6



De�nition of feature vectors

For each value of l , the dissimilarity values form three vectors:

D l=1 = [d(I1; I2); : : : ; d(Ii ; Ii+1); : : : ; d(IN−1; IN )];

D l=2 = [d(I1; I3); : : : ; d(Ii ; Ii+2); : : : ; d(IN−2; IN )];

D l=6 = [d(I1; I6); : : : ; d(Ii ; Ii+6); : : : ; d(IN−6; IN )]:

For each frame i we de�ne a window of length w that is centered at
this frame and contains the dissimilarity values:

W l=1(i ; 1 : w) = [D l=1(i − w=2); : : : ;D l=1(i); : : : ;D l=1(i + w=2− 1)];

W l=2(i ; 1 : w) = [D l=2(i − w=2); : : : ;D l=2(i); : : : ;D l=2(i + w=2− 1)];

W l=6(i ; 1 : w) = [D l=6(i − w=2); : : : ;D l=6(i); : : : ;D l=6(i + w=2− 1)]:

Normalize dissimilarity values

W̃ l=k (i ; j ) =
W l=k (i ; j )∑w
j=1W

l=k (i ; j )
; k = 1; 2; 6:

Feature vector of frame Fi : W̃Fi = [W̃ l=1W̃ l=2W̃ l=6]



Feature vector examples

Hardcut Dissolve

Dissolve Normal



Classi�cation of Feature Vectors

Classify feature vectors using a machine learning approach.

Build a training set of annotated examples of shot transitions.

Employ Support Vector Machine Classi�er .



Support Vector Machine Classi�er

Suppose we are given a training set of m vectors xi ∈ Rn , i=1; : : : ;m
and a vector y ∈ Rm with yi ∈ {1,-1} denoting the class of vector xi .
The classical SVM classi�er:

Non-linear mapping (function �(x )) of input data to a feature space
of higher dimension.
Finds an hyperplane (wT�(x ) + b = 0) which separates data points of
two classes.



Support Vector Machine Classi�er

min
w ;b;�

1
2w

Tw + C
∑m

i=1 �i

subject to yi(w
T�(xi) + b) ≥ 1− �i

�i ≥ 0; i = 1; : : : ;m

C is the penalty parameter for misclassi�ed data introduced by error
variables �i .

The decision function is:

sign(
m∑
i=1

wiK (xi ; x ) + b); where K (xi ; xj ) = �T (xi)�(xj ) :



Support Vector Machine Classi�er

Support Vectors

Training patterns xi that contribute to the decision function and have
wi 6= 0.

RBF Kernel

K (xi ; xj ) = exp(−‖xi − xj ‖2)

\One-against-one" approach

For a k-class problem, k(k − 1)=2 binary classi�ers are constructed
and each one is trained to discriminate data from two classes.

The decision of each binary classi�er is considered as a vote for its
proposed class.

The class with the maximum number of votes is selected.



Performance Criteria

Recall =
Nc

Nc + Nm
;Precision =

Nc

Nc + Nf

;F1 =
2× Recall× Precision

Recall + Precision
;

Nc stands for the number of correct detected shot boundaries.

Nm stands for the number of missed ones.

Nf stands for the number of false detections.

Final performance measure:

F1 =
�

� + b
F1C +

b

� + b
F1D

� is the number of true hard cuts
b the number of true dissolves



Video Data for Shot Detection Problem

The video sequences were taken from TV-series, documentaries and
educational �lms.
Nine videos (70000 frames), manually annotated by a human observer.
Sample uniformly negative examples due to imbalanced training set.
9 \rounds" of testing (8 videos are used for training and the 9-th for
testing).

Video ID Frames Cuts Dissolves Genre

T1 6318 36 23 Comedy
T2 9466 28 16 Action
T3 11807 4 6 Drama
T4 1535 14 8 Educational
T5 17982 146 7 Action
T6 1665 1 19 Comedy
T7 14993 105 11 Drama
T8 9840 12 41 Documentary
T9 6355 9 11 Documentary
Total 69334 355 142 -

Table: Characteristics of videos used for the shot detection problem.



Results

Transition type Nc Nm Nf Recall (%) Precision (%) F1 (%)

Cuts 351 4 9 98.87 97.50 98.18
Dissolves 127 15 33 89.44 79.38 84.11
Average - - - 96.18 92.32 94.21

Table: w = 40, l = 1, l = 2 and l = 6.

Transition type Nc Nm Nf Recall (%) Precision (%) F1 (%)

Cuts 352 3 8 99.15 97.78 98.46
Dissolves 130 12 25 91.55 83.87 87.54
Average - - - 96.98 93.80 95.37

Table: w = 50, l = 1, l = 2 and l = 6.

Transition type Nc Nm Nf Recall (%) Precision (%) F1 (%)

Cuts 353 2 4 99.44 98.88 99.16
Dissolves 127 15 25 89.44 83.55 86.39
Average - - - 96.58 94.50 95.53

Table: w = 60, l = 1, l = 2 and l = 6.



Comparison

METHOD
CUTS

Recall (%) Precision(%) F1(%)

w = 40, l=1, l=2 and l=6. 98.87 97.50 98.18
w = 40, l=2 and l=6. 98.87 97.50 98.18
w = 40, l=1, l=2 and l=6 (HSV, x 2). 99.44 98.89 99.16
w = 40, l=1, l=2 and l=6 (HSV, KL). 99.15 98.60 98.92

Pair-wise comparison 85.07 84.83 84.95
Likelihood ratio 94.37 86.12 90.05
Twin-comparison 89.30 88.05 88.92
Wavelets 97.18 91.57 94.29

Table: Comparative results using Recall, Precision and F1 measures for cuts detection.



Comparison

METHOD
DISSOLVES

Recall (%) Precision(%) F1(%)

w = 40, l=1, l=2 and l=6. 89.44 79.38 84.11
w = 40, l=2 and l=6. 88.73 80.77 84.56
w = 40, l=1, l=2 and l=6 (HSV, x 2). 88.03 81.17 84.46
w = 40, l=1, l=2 and l=6 (HSV, KL). 85.92 79.74 82.73

Pair-wise comparison - - -
Likelihood ratio - - -
Twin-comparison 70.42 64.94 67.57
Wavelets 74.64 81.53 77.93

Table: Comparative results using Recall, Precision and F1 measures for dissolves detection.



Key-frame Extraction Using Spectral Clustering

Key-frame extraction is an important task in video processing and
analysis that is used to create a video summary.

Indexing and retrieval algorithms are usually applied on key-frames.

Key-frames

Most representative frames of a shot describing the whole content.

V. Chasanis, A. Likas, and N. Galatsanos. \E�cient video shot summarization using an
enhanced spectral clustering approach." In Proceedings of the 18th International

Conference on Arti�cial Neural Networks, Part I, pp. 847-856, Prague, Czech Republic,
September 2008.



Requirements and Approaches

Requirements

Must represent the whole video content without missing important
information.

Must not be similar, in terms of video content information, thus
containing redundant information.

Typical Approaches

Detect abrupt changes in the similarity between successive frames.

Perform clustering of shot frames into groups and select a
representative frame of each group as key-frame.

Contribution

Spectral analysis of frame similarity matrix.

Estimate the number of key-frames from the eigenvalues of the
similarity matrix.

Employ global k-means (instead of k-means).



Spectral Clustering

Given a set of frames F = {F1; : : : ;FN } to be partitioned into M groups.

Compute similarity matrix A = [a(i ; j )], with a(i ; j ) = sim(Fi ;Fj ).

Eigenvalue computation of a matrix Φ(A) (normalized cut).

Construct the eigenvector matrix U = [u1; : : : ; uM ] (top
eigenvectors).

each frame Fk is represented by an M-dimensional real vector yk
corresponding to the k-th row of U .

Cluster the rows of U into M groups using k-means.



Spectral Clustering - Analysis

Z = [Z1;Z2; : : : ;ZM ]:partition matrix representing a clustering
solution.

Column vector Zj is the binary indicator vector for group j :

Z (i ; j ) = 1 : if i ∈ Gj

Z (i ; j ) = 0 : otherwise

ZTZ = IM

Clustering objective (depending on Φ)

max
Z

trace(ZTΦZ );

s:t : ZTZ = IM and Z (i ; j ) ∈ {0; 1}:



Spectral Clustering - Analysis

The spectral approach (for M clusters) provides solution to the
following continuous optimization problem (relaxation):

max
Y

trace(Y TΦY );

s:t : Y TY = IM :

Optimal solution: Y ∗ = UM = [u1; : : : ; uM ]

ui are the eigenvectors corresponding to the ordered top M eigenvalues
�i of Φ.

Use k-means to obtain Z ∗ from Y ∗ (discretization).



Number of Key-frames

The optimal value of the objective function for M clusters is:

sol(M ) = max
Y TY=IM

trace(Y TΦY ) = �1 + �2 + : : : + �M

The improvement from adding cluster M+1 is:

sol(M + 1)− sol(M ) = �M+1:

When �M+1 is lower than a threshold, the improvement is negligible
and the number of clusters is assumed to be M .

The proposed approach:
Compute and sort eigenvalues: �1 ≥ �2 ≥ : : : �N
Determine the largest eigenvalue �M+1 < T (T=0.005 in all
experiments).
Select M as the number of clusters.



Proposed Method

Frame similarity matrix A based on normalized HSV color

histograms.

Matrix Φ: Φ = I −D−
1
2AD−

1
2 (normalized cut).

Eigenanalysis of Φ: estimation of number of key-frames M .

De�ne the matrix U = [u1; : : : ; uM ] and cluster its rows into M
groups:

global k-means [Likas et al., PR 2003] is used (instead of typical
k-means) to overcome the initialization problem of k-means.

The medoid frame of each group is selected as key-frame.



Evaluation metrics

The evaluation of extracted key-frames is a di�cult issue.

Which frames are the best representatives is rather subjective.

Objective quality measures have been proposed:
Average Fidelity (AF)
Shot Reconstruction Degree (SRD)

Given:
The frame sequence F = {F1;F2; : : : ;FN }.
The set of key-frames KF = {KF 1;KF 2; : : : ;KFM }



Average Fidelity and Shot Reconstruction Degree

Average Fidelity

Average similarity of frames to closest key-frames.

Shot Reconstruction Degree

Reconstruct each frame from neighboring KFs in the sequence, using a
frame interpolation algorithm IA.

F̃n = IA(KFnj ;KFnj+1); nj ≤ n < nj+1

Compute the similarity between the original and reconstructed
sequence.

The Shot Reconstruction Degree (SRD):

SRD(F ;KF ) =
N−1∑
n=0

Sim(Fn ; F̃n)



Dataset

Frame Sequence No. Frames Genre

F1 633 Comedy
F2 144 Basketball
F3 145 Basketball
F4 146 Basketball
F5 225 Football
F6 300 Football
F7 172 Football

Table: Key-Frame extraction dataset characteristics.



Comparison

Algorithms

k-means on the histogram vectors
20 restarts keeping the one with minimum clustering error.

Typical spectral clustering algorithm (with 20 k-means restarts)

Adaptive key-frame extraction method (AKF) [Rasheed et al., TMM
2005]:

The middle frame is selected as the �rst key-frame.
Next, each frame in the sequence is compared with the current set
(KF) of key-frames.
If it di�ers more than a threshold value from every key-frame in the
current set KF, then it is added to KF as a new key-frame.

Number of key-frames

Assumed to be the same as selected using the proposed estimation
algorithm.



Results

ASF Algorithm
Frame Seq. Our method K-means AKF Spectral

F1 0.973 0.9549 0.9616 0.9619
F2 0.9437 0.9278 0.8913 0.9235
F3 0.9506 0.9344 0.9268 0.9253
F4 0.9557 0.948 0.9405 0.9462
F5 0.9673 0.9467 0.9550 0.9625
F6 0.9558 0.931 0.9424 0.9318
F7 0.9782 0.9654 0.9672 0.9675

Table: Comparative results of the tested key-frame extraction algorithms using
Average Shot Fidelity measure on dataset A.



Results

SRD Algorithm
Frame Seq. Our method K-means AKF Spectral

F1 1859.66 1533.34 1693.1 1620.6
F2 424.72 369.87 292.43 362.64
F3 502.76 430.78 374.23 431.32
F4 528.09 356.46 340.89 393.02
F5 843.10 808.2 758.23 780.33
F6 855.44 753.75 813.1 791.2
F7 707.92 648.71 642.97 663.15

Table: Comparative results of the tested key-frame extraction algorithms using
SRD measure on dataset A.



Representation (solution for M=1,..,5)



Representation

Our method

K-means

AKF

Spectral



Representation

Our method

K-means

AKF

Spectral



Segmentation of Videos into Scenes Using Spectral Clustering

and Sequence Alignment

Scene

A group of successive shots that take place in a �xed physical setting
(e.g. a dialogue detection in a room) or a group of successive shots that
describe an action or event (e.g. a car chase by police cars).

V. Chasanis, A. Likas, and N. Galatsanos. \Scene detection in videos using shot clustering
and sequence alignment". IEEE Transactions on Multimedia, 11(1):89-100, January
2009.

V. Chasanis, A. Likas, and N. Galatsanos. \Scene detection in videos using shot clustering
and symbolic sequence segmentation". In Proceedings of IEEE 9th Workshop on

Multimedia Signal Processing, pp. 187-190, Chania, Greece, October 2007.



Scene Detection Algorithm

Figure: The main steps of our scene segmentation method.



Contribution

Contribution

Shots are clustered into groups using only visual similarity, while
time adjacency is treated in a distinct processing phase.

Shots are labeled according to the cluster they are assigned.

Sequence alignment to detect changes in the pattern of sequences of
shot labels that correspond to scene boundaries.



Shot Similarity

Existing approaches consider the temporal distance of shots as an
extra feature that is taken into account when computing the similarity
between two shots for shot clustering into scenes.

In our approach, shots are clustered into groups using only visual

similarity.

Time adjacency is treated in a distinct processing phase.

Visual similarity between a pair of shots i and j :

VisSim(i ; j ) = max
p∈Ki ;q∈Kj

ColSim(p; q);

where Ki and Kj are the sets of key-frames of shots i and j
respectively.

ColSim(i ; j ) =
∑

h∈bins
min(Hi(h);Hj (h));

where Hi , Hj are the HSV normalized color histograms of frames fi
and fj respectively.



Shots Clustering

Suppose there is a set V = {v1; v2; : : : ; vN } of N shots, ordered in time,
to be segmented.

A N × N similarity matrix A is computed.

a(i ; j ) = VisSim(vi ; vj ); vi ; vj ∈ V

Spectral clustering algorithm employing fast-global k-means is used to
group shots into clusters.

Number of shot clusters is not equal to the number of scenes in the
video, but to the principal color distributions of the video.



Symbolic Shot Sequence

Spectral clustering algorithm has provided a partition of the shots into
K clusters {C1;C2; : : : ;CK }.
A label is assigned to each shot according to the cluster it belongs.

A symbolic sequence of labels is produced.

V01V02V03V04 V05 V06V07V08 V09 V10V11V12V13V14V15 V16 V17V18V19V20V21

C1 C1 C1 C1 C1 ↓ C2 C2 C2 C2 ↓ C3 C5 C3 C5 C3 C5 C3 ↓ C4 C4 C2 C4 C4

Figure: Video sequence of labels.



Patterns of shot labels

Patterns of repetitive shots:

A dialogue between two or more persons.
Camera switches from one person to another.
Sequence of shots C1C2C1C3C2C1C3C1.

Di�erent captions of the same setting.
Cameras recording from di�erent angles.
Sequence of shots C 1

4
C 2

4
C 1

4
C 3

4
C 3

4
C 2

4
.



Sequences Comparison

A scene changes when a change in such patterns occurs.
Comparison of successive non-overlapping windows of shot labels.

OriginalSequence︷ ︸︸ ︷
V01V02V03V04V05V06V07V08V09V10V11V12V13V14V15V16V17V18V19V20V21

C1 C1 C1 C1 C1 C2 C2 C2 C2 C3 C5 C3 C5 C3 C5 C3 C4 C4 C2 C4 C4

Iteration 1→ (C1C1C1C1)︸ ︷︷ ︸
X 1
1

(C1C2C2C2)︸ ︷︷ ︸
X 1
2

Iteration 2→ (C1C1C1C1)︸ ︷︷ ︸
X 2
1

(C2C2C2C2)︸ ︷︷ ︸
X 2
2

Iteration 3→ (C1C1C1C2)︸ ︷︷ ︸
X 3
1

(C2C2C2C3)︸ ︷︷ ︸
X 3
2

Figure: Sub-sequences to be compared.



Global Sequence Alignment Algorithm

\Needleman-Wunsch" algorithm

An example of dynamic programming commonly used in
bioinformatics to align protein or nucleotide sequences.

Performs global alignment on two sequences and is guaranteed to �nd
the alignment with the maximum score.

Given two sequences of length w : X1 = L1L2 : : :Lw and
X2 = M1M2 : : :Mw .

The labels Li ;Mi ; i = 1; : : : ;w belong to some alphabet of K
symbols.

To align these sequences, a w × w matrix N is constructed where :

N (i ; j ) =


N (i − 1; j − 1) + S (X1(i);X2(j ))
N (i − 1; j )− d

N (i ; j − 1)− d



Global Sequence Alignment Algorithm



Global Sequence Alignment Algorithm

The traceback from N (w ;w) to N (0; 0) de�nes the optimal
alignment of X1 and X2.
The output of the alignment algorithm is an alignment matrix
containing:

Matches (M)
Mismatches (m)
Gaps (G)

Seq1 : C1C2C1C2C3C4C1C1C3C4C4

Seq2 : C4C1C2C1C2C2C3C4C4C1C3C4

Output : (Alignment matrix)

Seq1 C1 C2 C1 C2 C3 C4 C1 C1 C3 C4 C4

Seq2 C4 C1 C2 C1 C2 C2 C3 C4 C4 C1 C3 C4

Type G M M M M G M M m M M M G



Substitution Matrix S

Substitution Matrix S

S (i ; j ) expresses how similar are shot labels Ci and Cj in terms of color
and position.

Color similarity between shot labels can be de�ned from the similarity
of their respective clusters medoids.

CSM (i ; j ) = VisSim(mi ;mj ); mi ;mj ∈ Med

Position similarity is expressed through the possibility that a shot label
i precedes or follows a shot label j .

PPM (i ; j ) =
1

N − 1
{# pairs(L1 = Ci ;L2 = Cj )}

S (i ; j ) =

{
CSM (i ; j ) + PPM (i ; j ) ; i = j

−�(1− CSM (i ; j ))− (1− �)(1− PPM (i ; j )) ; i 6= j



Scoring Sequence

Scoring Function

F=(score of matches)-(score of mismatches)-(score of gaps).

Find global minimum.

Scene boundaries are the local minima that are less than 80% of the
global minimum value.



Dataset

Video Duration(min) Shots Scenes Genre

V1 22 404 15 comedy
V2 31 591 18 comedy
V3 30 587 16 comedy
V4 23 437 13 comedy
V5 27 633 14 drama
V6 26 454 17 drama
V7 32 377 15 comedy
V8 45 608 25 drama
V9 31 714 25 action
V10 26 246 19 action

Table: Dataset B characteristics.



Results

Figure: Average performance results for di�erent values of the window parameter
w .



Results

Figure: Average performance results for di�erent values of the a parameter and w

= 4, Th = 0.8.



Comparison

Spectral clustering on a color and motion based similarity matrix
weighted by a decreasing function of the temporal distance between
shots. [Rasheed et al., TMM 2005]

Construction of a scene transition graph based on visual
characteristics and temporal dynamics. [Yeung et al., CVIU 1998]



Comparative results of the tested scene detection algorithms

C2009 R2005 Y1998

V1

R(%) 86.67 86.67 60.00
P(%) 92.85 61.90 81.82
F1(%) 89.70 72.22 69.23

V2

R(%) 100.00 83.33 72.22
P(%) 90.00 62.50 68.42
F1(%) 94.74 71.43 70.27

V3

R(%) 87.50 81.25 87.50
P(%) 73.68 52.00 70.00
F1(%) 80.00 63.41 77.78

V4

R(%) 76.92 92.31 76.92
P(%) 83.33 60.00 71.43
F1(%) 80.00 72.73 74.07

V5

R(%) 85.71 92.86 78.57
P(%) 92.31 63.16 64.71
F1(%) 88.89 75.18 70.97

C2009 R2005 Y1998

V6

R(%) 82.35 76.47 70.59
P(%) 93.33 61.90 66.67
F1(%) 87.50 68.42 68.57

V7

R(%) 86.67 86.67 80.00
P(%) 81.25 61.90 75.00
F1(%) 83.87 68.42 77.42

V8

R(%) 76.00 80.77 71.43
P(%) 95.00 70.00 74.07
F1(%) 84.44 75.00 72.73

V9

R(%) 72.00 80.77 64.00
P(%) 75.00 55.26 59.26
F1(%) 73.47 65.63 61.54

V10

R(%) 70.00 75.00 68.42
P(%) 93.33 75.00 72.22
F1(%) 80.00 75.00 70.27



Results

Figure: Scene detection results (using F1 measure) comparing four key-frame
extraction algorithms.



High-level Movie Segmentation

Chapter

A more compact representation/segmentation of a video is the merging of
successive scenes into chapters (logical story units).

V. Chasanis, A. Kalogeratos, and A. Likas. \Movie segmentation into scenes and chapters
using locally weighted bag of visual words". In Proceedings of ACM International

Conference on Image and Video Retrieval, Santorini, Greece, July 2009.



Challenges and Contribution

Challenges

Constant change in the color distribution of the shots due to
di�erent shots taken at di�erent places.

Color histograms are ine�cient to describe scenes with constant
changing content.

Distinctive points are repeated in consecutive shots during the
progress of such an event.

Contribution

Employ Locally invariant descriptors to provide su�cient
description of interest points and their possible transformations.

SIFT (Scale-Invariant Feature Transforms) descriptors
CCH (Contrast Context Histogram) descriptors

Shot representation with visual word histograms.

Temporally histogram smoothing (using a gaussian kernel) with
respect to neighboring histograms.



Scale-Invariant Feature Transforms

Scale-invariant feature transforms [Lowe, IJCV 2004]

Find keypoints in image.

Compute scale-invariant coordinates relative to a neighborhood of
each keypoint.

128-dimensional feature vector serves as the descriptor for each
keypoint.



Contrast Context Histogram Descriptors

Contrast context histogram [Huang et al., PR 2008] represents the
contrast distributions of a local region around an interest point and
serves as a local descriptor for this region.

The contrast of a point p in this area is given from the following
equation:

C (p) = I (p)− I (pc):

For each salient point pc a region R is de�ned in a quantized
log-polar coordinate system.



Contrast Context Histogram Descriptors

For each sub-region Rij = (ri�j ), a positive and a negative bin of
the contrast values are computed.

HR
+
ij (pc) =

∑
{C (p)|p ∈ Rij and C (p) ≥ 0}

#R+
ij

;

HR
−
ij (pc) =

∑
{C (p)|p ∈ Rij and C (p) < 0}

#R−ij
;

#R+
ij and #R−ij de�ne the number of positive and negative positive

contrast values in Rij

CCH descriptor is a 64-dimensional features vector.

CCHpc = (HR
+
00;HR

−
00; : : : ;HR

+
rl ;HR

−
rl ):



Bag of Visual Words

Given a shot st and its corresponding set of n key-frames
KF = {kf1; : : : ; kfn}.
For each key-frame kfi ; i = 1; : : : ;n, a set of descriptors Dkf i

is
extracted (SIFT or CCH).

The shot is described by the concatenation of all descriptors:

Dst = Dkf 1

⋃
: : :
⋃

Dkf n
:

The descriptors for all N video shots DS = Ds1

⋃
Ds2

⋃
: : :
⋃
DsN are

clustered into k groups (visual words) {C1;C2; : : : ;Ck} using the
k-means algorithm.

Each element of the set of descriptors Dst is assigned to one of the k
visual words (clusters).

Given shot st with D descriptors dt1 ; : : : ; dtD , the visual word
histogram VHt for this shot is de�ned as:

VHt(l) =
#{dtj ∈ Cl ; j = 1; : : : ;D}

D
; l = 1; : : : ; k :



Similarities Between Video and Text Documents

Text

Words, paragraphs and logical story units (book chapters).

Movie

Shots, scenes and logical story units (DVD chapters).

Locally Weighted Bag of Words (Lowbow) [Lebanon et al., JMLR
2007] has been proposed for text document representation and
segmentation.

The main idea is to represent a text document by describing several
locations in its word sequence using histograms.

Each histogram is smoothed with the neighbor histograms using a
gaussian kernel.



Smoothing Process

The visual word histogram of a shot is temporally smoothed with
respect to the histograms of neighboring shots.
A normalized discretized gaussian kernel K� with zero mean and
standard deviation � is used.

SH t =
∞∑

n=−∞
VH n ·K�(t − n);



Segmentation

By adjusting the value of �, we can preserve contextual information
at di�erent time scales:

A low value of � results in small scale smoothing (scene detection).
A higher value of � results in large scale smoothing (chapter detection).

The boundaries between di�erent video segments separate video
parts containing di�erent visual words distributions.

Boundaries are the local maxima of the distance between successive
smoothed histograms.



Scene Detection

Figure: Di�erence values of the smoothed histograms using � = 8 (scene
detection).



Chapter Detection

Figure: Di�erence values of the smoothed histograms using � = 16 (chapter
detection).



Dataset
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A Beautiful Mind M1 36 421 18 7 Biography | Drama
Sex and the City M2 70 1217 45 19 Comedy | Romance

Gone in 60 seconds M3 80 1788 74 23 Action | Crime | Thriller
Goldeneye M4 74 1218 46 20 Action | Adventure
Top Gun M5 74 1113 48 16 Action | Romance

Table: Movies characteristics.



Performance w.r.t �

Figure: Average performance results (on all movies) for di�erent values of the
smoothing parameter � for the scene and chapter detection problems, using SIFT
descriptors and a vocabulary of 500 visual words.



Results

SIFT CCH SEQAL NCUT GRAPH HSV

M1
R(%) 88.89 83.33 77.78 83.33 77.78 72.22
P(%) 88.89 88.24 82.35 60.00 60.87 72.22
F1(%) 88.89 85.71 80.00 69.77 68.29 72.22

M2
R(%) 91.11 80.00 80.00 71.71 64.44 73.33
P(%) 83.67 73.47 67.92 46.24 56.86 63.46
F1(%) 87.23 76.60 73.47 56.22 60.42 68.04

M3
R(%) 82.43 77.03 79.73 74.32 62.16 71.62
P(%) 72.62 69.51 68.60 55.56 54.12 67.09
F1(%) 77.22 73.08 73.75 63.58 57.86 69.28

M4
R(%) 88.89 77.78 88.89 80.00 68.89 68.89
P(%) 68.97 63.94 64.52 53.73 48.44 58.49
F1(%) 77.67 70.00 74.77 64.29 56.88 63.27

M5
R(%) 75.00 70.83 75.00 72.92 70.83 52.08
P(%) 73.47 72.34 70.59 53.85 45.33 58.14
F1(%) 74.23 71.58 72.73 61.95 55.28 54.95

Table: Comparative results using Recall(R), Precision(P) and F1 measures for the
scene detection problem for movies M1-M5, (SEQAL - Chasanis et al.,2009 -
C2009, NCUT - Rasheed and Shah - R2005, GRAPH - Yeng et al., 1998).



Results

SIFT CCH SEQAL NCUT GRAPH HSV

M1
R(%) 100.00 85.71 42.86 71.43 71.43 71.43
P(%) 63.64 60.00 33.33 41.67 31.25 50.00
F1(%) 77.78 70.59 37.50 52.63 43.49 58.82

M2
R(%) 89.47 84.21 68.42 57.89 63.18 73.68
P(%) 68.00 59.26 41.94 45.83 37.50 50.00
F1(%) 77.27 69.57 52.00 41.16 47.06 59.57

M3
R(%) 78.26 82.61 65.22 60.87 60.87 65.22
P(%) 45.00 43.18 30.62 40.00 40.00 30.61
F1(%) 57.14 56.72 41.67 48.28 48.28 41.67

M4
R(%) 80.00 75.00 95.00 40.00 45.00 60.00
P(%) 61.54 53.57 30.65 42.10 33.33 42.86
F1(%) 69.57 62.50 46.34 41.02 38.29 50.00

M5
R(%) 87.50 75.00 68.75 56.25 81.25 56.25
P(%) 51.85 50.00 32.33 36.00 26.00 39.13
F1(%) 65.12 60.00 44.00 43.90 39.39 46.15

Table: Comparative results using Recall(R), Precision(P) and F1 measures for the
chapter detection problem for movies M1-M5, (SEQAL - Chasanis et al.,2009 -
C2009, NCUT - Rasheed and Shah - R2005, GRAPH - Yeng et al., 1998).



Rushes Summarization

Video summary

A condensed version of the initial video where judgements about the video
content can be made in less time and e�ort than using the initial video.

Video rushes

Unedited video footage containing many redundant information and
useless frames.

V. Chasanis, A. Likas, and N. Galatsanos. \Video rushes summarization using spectral
clustering and sequence alignment". In Proceedings of the 2nd ACM TRECVid Video

Summarization Workshop, Vancouver, Canada, October 2008.



Challenges and Contribution

Challenges

Useless frames detection and removal.

Removal of redundant information (repetitive shots).

Contribution

Edge direction histograms and SIFT descriptors to detect useless
frames.

Local sequence alignment to detect similar shots.



Useless Frames Detection

(a) Colorbar

(b) Monochrome

Figure: Useless frames.

(a) Colorbar

(b) Typical frame

Figure: Edge direction histograms.

Edge Direction Histogram

Captures the spatial distribution of edges.

Edges are grouped into �ve categories: vertical, horizontal, 45
diagonal, 135 diagonal, and isotropic (nonorientation speci�c).



Visual Shot Similarity Metric

Rushes often contain repetitive information, since the same scene is
usually taken many times until the desired result is produced.

Our goal is to detect similar segments which in our case are shots and
keep only one representative for each group of similar shots.

Two shots that describe the same scene are considered similar and
their key frames will follow the same order.

Either a segment of one shot or the whole shot will also appear in the
other shot.



Visual Shot Similarity Metric

Employ a local sequence alignment algorithm between the sets of
their key-frames.

A key-frame is \matched" with the most similar (visually) key-frame
of the other set of key-frames, while also taking into consideration the
temporal order of key-frames.

The score of the sequence alignment constitutes the �nal shot
similarity metric.



Visual Shot Similarity Metric

To align two sequences we use the \Smith-Waterman" algorithm.

Given two shots Si and Sj and KFi = {KF 1
i ; KF

2
i ; : : : ; KF

m
i },

KFj = {KF 1
j ; KF

2
j ; : : : ; KF

n
j } their corresponding key-frame sets.

SM (m;n) = VisSim(KFm
i ;KF n

j )

The substitution matrix of the sequence alignment is given by
similarity matrix SM .

l l l

- - -



Repetitive Shot Detection

To �nd groups of repetitive and similar shots we compared each shot
with the next three.

If one of the three shots is similar with the shot under consideration
then all the shots between these two shots and the shots under
comparison, form a group. If none of the shots is similar then a new
group of shots is considered and the algorithm continues until all shots
are examined.



Clapboard Removal

Rushes also contain clapboards to indicate the current number of the
shot.

To detect clapboards we compute for each key-frame the
scale-invariant feature transforms (SIFT).

In order to detect whether a key-frame contains a clapboard, we
compute its SIFT descriptors and compare them with the SIFT
descriptors of the database (TRECVID 2007 Development Data).

(a) Clapboard (b) Sift descriptors

Figure: Clapboard and its sift descriptors.



Summarization

The �nal stage of our summarization method involves the production
of the �nal video summary.

The summary of a video can be a set of key-frames or a video of a
smaller duration than the original video.

Once the repetitive shots have been detected, the shot with the
largest duration is selected as their representative.

Select a number of frames around each key-frame to generate the �nal
video summary.



Experiments

We have tested our method on TRECVID 2008 Test Data (40 videos)
under the Rushes Summarization competition of NIST TRECVID
2008.

The goal of this task is to produce video summaries with duration less
than or equal to p = 2% of the duration of the original video.



Evaluation metrics

Three humans at Dublin City University have judged each summary. The
quality of each summary was evaluated directly by subjective and objective
measures.

Subjective measures
1 The fraction of inclusions found in the summary (IN) ranging from 0 to

1.
2 Lack of junk (colorbars, clapboars and monochrome frames) (JU). The

lack of junk score was an integer ranging from 1 (worst) to 5 (best).
3 Whether the summary had a pleasant tempo/rythm (TE). Score ranges

from 1 (worst) to 5 (best).
4 Whether the summary contained lots of duplicate video (RE). Score

ranges from 1 (worst) to 5 (best).



Results and comparison

Our method All

Mean Median Avg.(Mean) Avg.(Median)

IN (0-1) 0.53 0.56 0.44 0.44
JU (1-5) 3.31 3.33 3.17 3.21
TE (1-5) 2.50 2.33 2.76 2.75
RE (1-5) 3.16 3.33 3.3 3.36

Table: Performance of our video rushes summarization method.



Event Detection and Classi�cation in Video Surveillance

Sequences

Event

Time interval where a person performs an activity.

Individual activities performed in an indoor environment using a
standing camera.



Challenges and Contribution

Challenges

Video sequence segmentation into segments/events.

Classi�cation in prede�ned categories.

Contribution

Background substraction and video segmentation using SIFT
descriptors.

Event representation using a set of visual word histograms.

To de�ne event dissimilarity we employ Dynamic Time Warping
distance.

Supervised methods to classify events in prede�ned categories.



Background Substraction

Compute and store set Db of SIFT descriptors of frames describing
the background.

For each frame j compute set Dj SIFT descriptors.

Each descriptor of set Dj is compared with the descriptors of set Db

to �nd a \match".



Background Substraction

Figure: Video frame of the
background and the location of the
extracted descriptors.

Figure: Video frame with its
descriptors.

Figure: Video frame with foreground
descriptors.

Figure: Video frame with its
descriptors.



Video Segmentation into Events

A video event is de�ned as the time interval where a person performs
an activity.
When someone enters the room under surveillance, new descriptors
will appear that do not correspond to background.
Analyze a vector that corresponds to the number of \foreground"
descriptors for each frame.

Figure: Number of foreground descriptors of a video surveillance sequence.



Video Segmentation into Events

In order to detect the beginning and the end of a video event, this
vector is smoothed with the discretized gaussian kernel.

Discard low values of the smoothed signal to remove noise
(background descriptors that have not been removed).



Event Representation

The descriptors of all event frames are clustered into a prede�ned
number of clusters K using the k-means algorithm.

K denotes the size of the visual words vocabulary.

Event-based representation

A visual word histogram VHE i of an event i is constructed by assigning
each descriptor of all the event frames to one of the K visual words
(clusters).

Frame-based representation

A visual word histogram VHF i
j of a frame j of event i is constructed by

assigning the frame's descriptors to one of the K visual words (clusters).



Event Dissimilarity

Event-based dissimilarity

To compute a distance value between two events Ei and El we compare
their corresponding visual word histograms VHE i and VHE l .

Frame-based dissimilarity

We compare the visual word histograms VHF of their frames.

Given events Ei = {f i1 ; : : : ; f iNi
} and El = {f l1 ; : : : ; f lNl

}.
Ni 6= Nl , thus Dynamic Time Warping (DTW) distance is employed
to compare two events.



Dynamic Time Warping

Dynamic Time Warping

Similar to global sequence alignment algorithm.

Uses dynamic programming to compare sequences of continuous data.

The distance between two video segments/events Ei and El is the
average DTW distance of their K -multidimensional signals:

D(Ei ;El ) =
1

K

K∑
m=1

DTW (VHF i(m);VHF l (m))



Experimental Results

Individual activities performed in an indoor environment.

Performed activities are not overlapping, in the sense that a person
enters the room performs a set of basic actions and leaves the room.

20 activities/events are performed that are divided in �ve categories:
1 Phone:a person enters the room, goes to the phone and makes a

conversation.
2 Scanner:a person enters the room, goes to the scanner and scans a

document.
3 Library:a person enters the room, goes to the library and opens it.
4 Computer:a person enters the room, goes to the computer and works

with it.
5 Board:a person enters the room, goes to the board and writes

something.

The result of the automatic segmentation was optimal, since no
over-segmentation or under-segmentation was performed and all 20
events were detected as unique.



Video surveillance sequence

Figure: Sample frames of the background and the �ve categories of events.



Classi�cation Results

Nearest neighbor classi�er (with 1, 3, and 5 neighbors).
Support Vector Machine classi�er.

Radial basis function (RBF) kernel.
Cross-validation for parameters C, .

The classi�cation accuracy was estimated using the leave-one-out
approach.

K 1-NN 3-NN 5-NN SVM

DTW EV DTW EV DTW EV DTW EV

10 80% 85% 80% 85% 65% 65% 75% 65%
20 90% 90% 95% 90% 90% 80% 95% 95%
50 95% 95% 95% 95% 95% 90% 100% 95%
100 95% 90% 100% 100% 100% 95% 100% 95%

Table: Classi�cation results for the �rst video sequence.



Conclusions

Shot Detection
Features that describe the variation between adjacent frames and the
contextual information at the same time.
Example based, threshold independent method.
Simultaneous detection of all types of shot transitions.

Key-frame Extraction
Unique key-frames that summarize e�ciently the video content.
Estimation of number of key-frames.

Scene Detection
Shots are clustered into groups using only visual similarity, while time
adjacency is treated in a distinct processing phase.
Shots are labeled according to the cluster they are assigned.
Sequence alignment to detect changes in the pattern of sequences of
shot labels that correspond to scene boundaries.



Conclusions

High-Level Movie segmentation
Shot representation with visual word histograms.
Temporally smoothing (gaussian kernel) of visual word histograms.
By adjusting the smoothing parameter of the gaussian kernel we can
detect both scene and chapter boundaries of each movie.

Rushes Summarization
Edge direction histograms and SIFT descriptors to detect useless
frames.
Local sequence alignment to detect similar shots.

Event Detection and Classi�cation
Background substraction and video segmentation using SIFT
descriptors.
Event representation using a set of visual word histograms.
Event dissimilarity using Dynamic Time Warping distance.
Supervised methods to classify events in prede�ned categories.



Future work

Video retrieval using relevance feedback.

Apply temporally smoothed visual word histograms in shot detection
and key-frame extraction problems.

Build a visual word vocabulary by comparing video shots to existing
semantic detectors.

Test high-level segmentation algorithm in a variety of video genres, i.e
sports and tv-news.

In video surveillance there are several open problems that deserve
further investigation.

Detection of multiple events in a video surveillance sequences.
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