
Physical Design Oriented DRAM
Neighborhood Pattern Sensitive Fault Testing

Yiorgos Sfikas and Yiorgos Tsiatouhas
University of Ioannina

Department of Computer Science,
P.O. Box 1186, 45110 Ioannina, Greece (Hellas)

{gsfikas, tsiatouhas}@cs.uoi.gr

Abstract�Although the Neighborhood Pattern Sensitive Fault
(NPSF) model is recognized as a high quality fault model for
memory arrays, the excessive test application time cost associated
with it, compared to other fault models, restricts its wide
adoption for memory testing. In this work we exploit the physical
design (layout) of folded DRAM memory arrays to introduce a
new neighborhood type for NPSF testing and a pertinent test and
locate algorithm. This algorithm reduces drastically the test
application time (about 58% with respect to the well known
Type-1 neighborhood) aiming to make the NPSF model also a
cost attractive choice. In addition, we introduce the
Neighborhood Word-Line Sensitive Fault model and the
corresponding test algorithm to cover those faults along with
NPSFs, achieving test application time cost reduction from 33%
to 41%, depending on various assumptions, with respect to the
Type-1 neighborhood.
Keywords: Memory Testing, DRAM Testing, Neighborhood Pattern

Sensitive Fault (NPSF) model, Neighborhood Word-Line
Sensitive Fault (NWSF) model, �-Type neighborhood.

I. INTRODUCTION
The Pattern Sensitive Fault (PSF) model can be

considered as the most general case of coupling faults where
all memory cells (n the number) are involved. PSF is modeling
the susceptibility of a cell in a memory array to the contents
and transitions of all other cells [1-3]. This susceptibility is
due to the high densities of nanometer technology DRAMs as
well as various fault mechanisms (static and dynamic leakage
currents [4] like the field-inversion current between two
adjacent storage cells [3], [5]) that are present in memory
arrays. However, testing DRAMs for PSFs is almost infeasible
due to the prohibitive test application time as it requires a test
set of (3n2+2n)2n patterns [3].

Alternatively, a more realistic and well established
memory fault model is the Neighborhood Pattern Sensitive
Fault (NPSF) model [2]. According to this, the content of a
cell or the ability to apply a desired value at that cell, is
affected by the values or transitions on the values of k
neighbor cells in the memory array. In practice the cells
(called deleted neighborhood) affecting the operation of a cell
(called base cell) are those with physical proximity to that
particular cell. The combination of the base cell and the

deleted neighborhood is called neighborhood while the
corresponding faults are called Neighborhood Pattern
Sensitive Faults (NPSFs). The NPSF model is distinguished in
three categories:

� Active NPSF (ANPSF) or Dynamic NPSF, where the
base cell changes its contents due to a change in the
deleted neighborhood pattern.

� Passive NPSF (PNPSF), where the contents of a cell
cannot be changed due to a certain neighborhood
pattern.

� Static NPSF (SNPSF), where the contents of a base
cell are forced to a certain state due to certain deleted
neighborhood pattern.

Various types of neighborhoods have been proposed in the
open literature. In [6] the Row/Column Pattern Sensitive
Faults have been proposed where the contents of a cell
become sensitive to the contents of the row and column
containing the cell. The Disturb Neighborhood Pattern
Sensitive Faults have been introduced in [7], which involves k
cells in the memory array. According to this, the base cell
(victim cell) makes an up (�) or a down () transition due to a
ry (read with expected value y) or wy (write value y) operation
(y�{0, 1}) applied to one deleted neighborhood cell
(aggressor cell), while the remaining k-2 deleted
neighborhood cells (enabling cells) contain a certain pattern
(enabling pattern). In [3], [8] a four-cell neighborhood (the T-
Type) has been proposed targeting the detection of Bit-Line
Neighborhood Pattern Sensitive Faults (NBLSFs) along with
NPSFs.

However, the most common neighborhoods are the Type-1
and Type-2 neighborhoods [1, 2]. The Type-1 neighborhood is
consisting of the four adjacent cells to a base cell, these on the
same row and the same column, which form the deleted
neighborhood. Thus, this is a five cells neighborhood, as it is
shown in Fig. 1(a). The Type-2 neighborhood consists of cells
within m1 columns to the west, m2 rows to the north, m3
columns to the east and m4 rows to the south of a base cell.
Commonly m1=m2=m3=m4=1 and the neighborhood contains
nine cells as it is shown in Fig. 1(b).

Aiming to detect in common and at an optimum test
application time, active, passive and static NPSFs
(APSNPSFs) with respect to the Type-1 and Type-2

978-1-4244-3339-1/09/$25.00 ©2009 IEEE

user
Text Box
IEEE International Symposium on Design and Diagnostics of Electronic Circuits and Systems

user
Text Box
108

neighborhoods, every possible neighborhood with base cell
every cell of the memory array should be written with the
patterns of an Eulerian sequence [2]. This sequence consists of
161 5-bit patterns in the case of Type-1 neighborhood and
4609 9-bit patterns in the case of Type-2 neighborhood (in a k-
bit Eulerian sequence the number of patterns is k2k+1).
Moreover, two methods to further accelerate the test
application time have been adopted for the write operation of
the test sequence in the memory array, the tiling and the two-
groups methods [2], [5].

Fig. 1: The Type-1 and Type-2 neighborhoods

With the tiling method, the memory is totally covered by a
group of neighborhoods which do not overlap. In Fig. 1 the
Type-1 and Type-2 tiling neighborhoods are shown
respectively. The cells of each neighborhood are numbered
from 0 to 4 and from 0 to 8 respectively.

The two-group method is based on the duality of the cells
and can only be used for Type-1 neighborhoods. Using this
method the cells are divided into two groups by a
checkerboard pattern. A cell is a base cell in one group and a
deleted neighborhood cell in the other group, and vice versa.
This approach reduces the number of write operations by a
factor of 4.

As the memory density increases with CMOS technology
evolution in the nanometer era, NPSFs become more and more
important especially for DRAMs [7], [9-13]. However,
although the NPSF model is preferred since it provides better
fault modeling in memory arrays [10-11], the associated test
application time cost still makes it unattractive for memory
testing. Earlier efforts to reduce this cost [14] failed to provide
full fault location capabilities. Moreover, since none of the
above NPSF types consider the physical design (layout) of the
memory array, a reduced fault coverage may result at an
additive cost of a large number of redundant operations.

In this work we discuss a four-cells neighborhood type for
NPSFs in DRAMs that is based on the physical design of the
memory array. In addition test and locate algorithms are
proposed that provide high fault coverage at reduced test
application time cost compared to previous approaches. The
paper is organized as follows. In Section II the common layout
design of folded DRAM memory arrays is presented. Next, in
Section III inabilities of present neighborhood types are
discussed and the new type (called �-Type) is proposed.
Finally, in Section IV the conclusions are drawn.

II. DRAM MEMORY ARRAY PHYSICAL DESIGN
The main advantage of DRAM is the low area cost due to

the simplicity of its one transistor – one capacitor memory
cell. Fig. 2 presents the general layout of a folded DRAM
memory array [15-17]. The memory cell (mcell) size is 4F
long (2 lines + 2 spaces) and 2F wide (a line and a space)
resulting in a cell area of 8F2, where F is the minimum
lithographic feature size of the technology defined as one-half
of the word-line or the bit-line pitch. The cells are arranged
back-to-back and share a common bit-line. The distance
between back-to-back storage capacitors is equal to 5F. In this
work there is not any assumption on the capacitor type; either
trench capacitor or stacked capacitor DRAMs can be
considered.

Fig. 2: DRAM memory array layout

The 8F2 cell layout provides superior signal-to-noise
performance (bit-line noise rejection) with respect to sub-8F2
layouts, because of its folded bit-line architecture capability
[4], [15]. This architecture uses adjacent data and reference
bit-lines providing excellent matching and noise rejection.
Sub-8F2 cell layouts require two levels of bit-line wiring to
achieve equivalent matching and noise rejection. Moreover,
8F2 layouts with folded bit-line architecture pose no problem
on sense amplifier layout and area. Each sense amplifier
serves a total of four bit-lines in contrast to the open bit-line
architectures used in sub-8F2 layouts where each sense
amplifier serves only two bit-lines. In those cases the number
of sense amplifiers is duplicated and the required silicon area
is increased resulting in a significant drawback since sense
amplifiers occupy about 10% of the total chip area in modern
DRAMs [4].

Base Cell

Type-2 Neighborhood

3
1 2
4

0

7 86
5

3
1 2
4

0

7 86
5

3
1 2
4

0

7 86
5

3
1 2
4

0

7 86
5

3 4
7 86

53 4
7 86

5

1 2
4
7 8

5

4
7 8

5

1 2
4
7 8

5

Base Cell

Type-1 Neighborhood

0
3

4
1 2

0
3

4
1 2

0
3

4
1 2

0
3

4
1 2

0
3

4
1 2

3
4

1 2

0
3

4
1 2

0
3

4
1 2 0

3 1 2

0

4
1 2 0

3 2

0

4
1 2 0

3
4
2

4 3 4

Poly (Word-Line)

3

1

0

user
Text Box
109

III. THE �-TYPE NEIGHBORHOOD FOR NPSFS TESTING

A. �-Type neighborhood
Focusing at the physical design of the memory array in

Fig. 2 it is easy to realize that none of the neighbor cells (the
immediate adjacent cells with physical proximity) of any cell
in the memory array (e.g. cell-0) belongs to the same word-
line with this cell, as it is supposed in the various NPSF types
in the open literature [2].

According to the Type-1 neighborhood and considering
cell-0 as the base cell, cells N, S and E belong in the deleted
neighborhood, although the distance of their storage nodes
from the storage node of cell-0 is large. Cells N and S share
the same word-line with cell-0 and their distance is equal to
3F. Cell-E shares the same bit-line with cell-0 and lies on an
adjacent word-line, but the distance of its storage node from
the corresponding node of cell-0 (equal to 5F) does not sustain
the assumption of physical proximity with it. Moreover, the
common bit-line contact comes in between the two storage
nodes so that in case of an interaction of cell-0 towards the
direction of cell-E this will be with the common bit-line and
not with cell-E. Consequently, it is not expected that cell-E
may have any realistic contribution to the pattern of the
pertinent deleted neighborhood affecting the base cell. In
addition, cells 1, 2 and 3 only partially fulfill the criteria to
form the fourth cell of the Type-1 deleted neighborhood
shown in Fig. 1(a). Cells 2 and 3 also belong to an adjacent
word-line to the word-line of cell-0 but do not lie on the same
bit-line with it, as the Type-1 neighborhood assumes, while
there is not any criterion to select only one of them as the
fourth cell. The storage nodes of cell-1 and cell-0 are adjacent
(with the smallest distance of 1F) but this is not the case for
their word-lines as the Type-1 neighborhood claims. A
solution may be to extend the neighborhood to a six-cells one
in order to add both cells 2 and 3 in the deleted neighborhood
or possibly a seven-cells neighborhood to take into account
also cell-1.

The same questioning arises trying to form the Type-2
neighborhood. Cells 1, 2, 3, N, NW, S, SW may be considered
as the seven of the eight cells of the Type-2 deleted
neighborhood, although many of them do not fulfill the criteria
of Fig. 1(b) and their distance from the base cell is
questionable. Moreover, as we mentioned earlier cell-E lies far
away from cell-0, while there is not any good criterion to
select only one of cells NE and SE as the eighth cell. Once
again we may have to extend the neighborhood to a ten-cells
or an eleven-cells neighborhood in order to include both cells
WE and SE as well as cell-E respectively in the deleted
neighborhood. However, these extensions in the Type-1 and
Type-2 neighborhoods increase considerably the complexity
of testing and the test application time without offering
significant fault coverage advantages since many cells under
consideration in these deleted neighborhoods (cells N, S, E,
NW, SW, NE and SE) are far away from the base cell. Finally,
according to the T-Type neighborhood its deleted
neighborhood consists of cells 1, N and S that are not the best
selection with respect to their physical proximity to cell-0.

Cells 2 and 3 should be added in the T-Type deleted
neighborhood for better fault coverage, extending the
neighborhood to a six-cells one, with the same complexity and
test application time drawbacks as in the previous cases.

From Fig. 2 it is easy to realize that the neighbor cells of
cell-0 are the three cells numbered 1, 2 and 3 [18-19]. Their
distance from cell-0 is less than �2F. This observation
motivated us to consider a new neighborhood consisting of
four-cells, those inside the triangle of Fig. 2, where the cell-0
is the base cell while cells 1, 2 and 3 are the deleted
neighborhood. We call this the Triangle-Type or �-Type
neighborhood. The layout based definition of the �-Type
neighborhood and the reduced number of deleted
neighborhood cells implies higher fault coverage at a reduced
test complexity and test application time with respect to earlier
neighborhood types.

The number of cells in the �-Type neighborhood is equal
to four (k=4). Thus, the Eulerian sequence for testing
APSNPSF in it consists of k2k+1=65 test patterns. Such a 4-bit
Eulerian sequence is shown in Table I.

TABLE I
A 4-BIT EULERIAN SEQUENCE FOR �-TYPE NPSF TESTING

P4P3P2P1 P4P3P2P1 P4P3P2P1 P4P3P2P1

0000 1001 0101 0011
0001 0001 0001 0001
0011 0000 1001 0101
0010 1000 1101 0111
0110 1010 1100 1111
0111 0010 1000 1101
0101 0011 0000 1001
0100 1011 0100 1011
1100 1111 0110 1010
1101 0111 0010 1000
1111 0110 1010 1100
1110 1110 1110 1110
1010 1100 1111 0110
1011 0100 1011 0100
1001 0101 0011 0000
1000 1101 0111 0010

 0000

Furthermore, in order to reduce the complexity of the write
operation, during the application of the Eulerian test sequence
for NPSF testing, the tiling method has been adopted. In Fig. 3
the tiling method for the �-Type neighborhood is illustrated.
According to this, the memory is tiled by non-overlapping
triangle neighborhoods. There are two kinds of triangle
neighborhoods, right oriented triangles where the “top” cell-1
lies at the right side of the neighborhood, and left oriented
triangles where the “top” cell-1 lies at the left side of the
neighborhood. In addition, note that every word-line contains
cells assigned with only two numbers either 0 and 1 or 2 and
3. The tiling method applies each test pattern simultaneously
on all tiling neighborhoods. In general, it is assumed in the
open literature that the memory read and write operations are
of equal time cost. Thus, applying a test to locate APSNPSF
algorithm, like the TLAPNPSF1T and TLAPNPSF2T
algorithms in [2], we can detect and locate all active, passive
and static NPSFs related to the �-Type neighborhood with a
cost of 82n operations, where n is the number of cells in the
memory array. This algorithm is shown in Fig. 4 and we will

user
Text Box
110

similarly call it the TLAPNPSF�� algorithm. The write(j)
(1 � j � k2k) procedure in Fig. 4 writes the j-th pattern of the 4-
bit Eulerian sequence to the neighborhoods of the memory
array. For each pattern only half of the word-lines are involved
in the write operations and in each of these word-lines half of
the cells are written. This is due to the fact that each word-line
contains only two cell number assignments and only one bit
changes between subsequent patterns in the Eulerian sequence.
The algorithm locates all ANPSFs, PNPSFs and SNPSFs
because each execution of write(j) applies one active or
passive neighborhood pattern in each neighborhood, while
finally all possible 4-bit patterns are written in it for SNPSF
testing. Moreover, the Eulerian sequence ensures that the
active and passive patterns are generated optimally (i.e. single
bit transitions without repeating previously generated
subsequences). The algorithm cost is analyzed as follows: a) in
step (1) there are n write and n read operations and b) in step
(2) there are nk2k/k=n2k write operations to apply the patterns
of the Eulerian sequence and nk2k read operations, where k is
the number of cells in the neighborhood. Thus, there is a total
of n[2+(k+1)2k] operations and since k=4 for the �-Type
neighborhood, the cost turns to be 82n operations. This is a
significant test application time reduction with respect to
TLAPNPSF1T and TLAPNPSF2T algorithms for the classic
Type-1 and Type-2 neighborhoods, where the corresponding
cost is equal to 194n and 5122n operations respectively. The
reduction of the test cost with respect to the Type-1
neighborhood, which is of greater importance, is 57.7%.

Fig. 3: The tiling method for the �-Type neighborhood

(1) Initialize all cells with 0; read 0 from all cells;
(2) For j:=1 to k2k do

begin
 write(j);
 read all cells;
end;

Fig. 4: The TLAPNPSF�� algorithm (k=4)

B. Neighborhood word-line sensitive faults (NWSFs)
In subsection III.A we have shown that cell-E in Fig. 2 is

not expected to have any realistic contribution to the pattern of
the deleted neighborhood affecting the base cell-0, due to its
distance (5F) from this base cell (no physical proximity of
their storage nodes). However, the word-line that activates
cell-E is adjacent to the word-line of cell-0, while in addition
both cells share the same bit-line. Consequently, read or write
operations on cell-E may disturb cell-0 leading it to an
erroneous logic state. For example, consider the strong
capacitive coupling between two adjacent word-lines, which
are located on the same conducting layer and routed side by
side for a long distance. The activation of a word-line may
raise the voltage level of its adjacent word-line. Thus,
depending on the value of cells’ common bit-line, the leakage
current of cell-0 may be increased when read/write operations
are performed on cell-E [20-21]. We will call this kind of
faults Neighborhood Word-Line Sensitive Faults (NWSF).
From this point of view a five-cells “cross” type neighborhood
involving cells 0, 1, 2, 3 and E (like Type-1 although not
identical) seems to be more attractive since it covers a possible
influence on cell-0 from read/write operations on cell-E. On
the other hand, the NPSF model assumption that all cells in a
deleted neighborhood affect the base cell with their data
pattern, implies that this cross type neighborhood, which
includes cell-E, will induce a lot of redundant operations
increasing the test application time cost.

A better approach is to keep the �-Type neighborhood
and enhance the TLAPNPSF�T algorithm with a limited
number of proper additional operations (whenever is needed)
to ensure the detection of NWSFs along with NPSFs. This
way we can achieve the same fault coverage as the five-cells
“cross” type neighborhood but at a considerably lower cost.
Initially, note that the base cell-0 and cell-E in Fig. 2, share a
common drain and a common bit-line. Moreover, cell-E is the
top cell-1 of an adjacent neighbourhood. Next, we will call
cell-E the adjoining cell of the neighbourhood under
consideration. The TLAPNPSF�T algorithm ensures all
possible conditions required for NWSF testing since the base
cell is assigned as cell-0 and the adjoining cell is assigned as
cell-1. Consequently, every possible transition-write operation
on the adjoining cell will take place for every possible value
on the base cell during the TLAPNPSF�T algorithm
application. Thus, the cost of testing remains 82n operations.

However, in order to cover extreme conditions we may
wish to test NWSFs for every possible combination in the
deleted neighborhood of the base cell. This implies that for
NWSFs detection we must perform both a 0	1 transition-
write and a 1	0 transition-write on the adjoining cell, for
every possible pattern in the neighborhood of the base cell.
Using the TLAPNPSF�T algorithm, the assumption “for
every possible pattern in the deleted neighborhood” is not true
since both the top cell of a neighbourhood and the adjoining
cell are assigned as cell-1 in their neighbourhoods. Thus, at
least one combination related to the top cell value is not
applicable. For the rest cells 0, 2 and 3 of the neighborhood
every combination is feasible.

user
Text Box
111

Next, we will provide a solution to the above problem.
Initially, with
A|BT> we denote a right-oriented triangle
where a transition-write to the logic value A is performed on
the adjoining cell with the base cell carrying the logic value B
and top cell carrying the logic value T {A, B, T�[0, 1]}.
Similarly with <TB|A
 we refer to a left oriented triangle.
During the application of the TLAPNPSF�T algorithm we
observe the following cases. Choosing the left-to-right
direction for the algorithm application (that is the write
operations start from the leftmost word-line), when a
transition-write operation on the adjoining cell of a right-
oriented triangle is performed, the only possible condition is

X|Y X >, where X, Y�[0, 1]. The condition
X|YX> is not
feasible for right-oriented triangles. This is true since: a) prior
to the transition-write operation on the adjoining cell both the
top cell and the adjoining cell always have the same value due
to the previous pattern application and b) the top cell is written
after the adjoining cell. On the other side, in left-oriented
triangles the top cell is written before the adjoining cell so that
a transition-write operation on the latter always result in the
<XY|X
 condition. In those triangles, the condition < X Y|X

is not feasible. Choosing the opposite direction (right-to-left)
for the algorithm application, the complementary situations
stand for the right and left oriented triangles respectively. This
observation provides a first solution to the NWSF testing
problem since applying twice the TLAPNPSF�T algorithm, in
both directions, every possible pattern in the neighborhood
will be present for both transition-write operations on the
adjoining cell (i.e. all conditions
X|Y X >,
X|YX>, <XY|X

and < X Y|X
 are feasible for every test pattern application).
Note that cells 2 and 3 are not considered in the previous
discussion since the required combinations in the
neighbourhood, with respect to these cells, are feasible for
every transition-write on the adjoining cell.

Obviously, a double application of the algorithm
increases undesirably the test cost to 162n operations,
although it remains less than the 194n operations for the Type-
1 neighborhood. However, many of these operations are
redundant and unnecessary since during the first algorithm
application all NPSFs of the �-Type neighborhood are
detected and located and the same stands for half of the
NWSFs. Indeed, in the left-to-right oriented application the
conditions
X|Y X > and <XY|X
 are already covered. In the
second application (pass), with the opposite direction, the only
target is the detection and location of the rest half NWSFs (i.e.
conditions
X|YX> and < X Y|X
). To attain this, in the
second application only the cells that play the role of the base
cell in triplets
A|BT> and <TB|A
 are read for each test
pattern that is written in the memory array and a transition-
write operation is performed on the adjoining cell. Thus, the
rest two conditions
X|YX> and < X Y|X
 are also covered.
An equivalent description for the second pass procedure is as
follows: after each test pattern application and for every word-
line where write operations were performed, read the cells that
have not been written. This approach is based on the following
observation: only the word-lines that contain cells with the

number assignment of the base cell also contain cells with the
number assignment of the top/adjoining cell; consequently
only these word-lines will be accessed for write operations on
the top/adjoining cells and the rest cells (the base cells) are
those that must be read.

Consequently, the total cost is reduced to 114n
operations and is analyzed as follows: 82n is the cost for the
initial application of the TLAPNPSF�T algorithm and 16n
write operations plus 16n read operations is the cost for the
second pass to cover the rest half NWSFs. Note that in the
second pass we do not have to initialize the memory array
since it is already initialized by the last pattern of the first
pass. The reduction of the test cost with respect to the Type-1
neighborhood is 41.2%. Next, in Fig. 5 the above algorithm is
presented under the name TLAPNPWSF�T.

(1) Initialize all cells with 0; read 0 from all cells;
(2) For j:=1 to k2k do

begin
 write(j); (left-to-right)
 read all cells;
end;

(3) For j:= 1 to k2k do
begin
 write(j); (right-to-left)
 read the cells that were not written in the word-lines
 involved in the write operations;
end;

Fig. 5: The TLAPNPWSF�� algorithm (k=4)

C. The worst case scenario
In the above discussion we treated NPSFs and NWSFs as

independent fault models and this seems to be a realistic
approach. Consequently, a possible worst case scenario is the
simultaneous occurrence of both NWSF and NPSF faults in a
neighborhood. We will call this case Neighborhood Word-Line
and Pattern Sensitive Faults (NWPSFs). In that situation and
considering right-oriented triangles, the activation of a NWSF
due to a transition-write operation on the adjoining cell may be
masked by the activation of an ANPSF in the neighborhood
due the subsequent transition-write on the top cell. The
opposite fault activation sequence may happen in left-oriented
triangles also resulting in fault masking.

To overcome this masking problem, it is required to
perform a number of extra read operations. Considering the
above paradigm, a read operation on the base cell between the
write operation on its adjoining cell and the write operation on
its top cell will solve the problem since the effect of the first
activated fault mechanism will be detected before the
activation of the second one. Note that these extra read
operations are performed during the first pass of the memory
array and do not release us from reading the whole memory
array after each test pattern application, as the TLAPNPSF�T
algorithm requests. The second pass is also performed exactly
as it has been described in sub-section III.B, without extra
readings, just to cover the rest NWSF conditions. In this
second pass masking problems do not bother us since it is
guaranteed that any possible NPSF has been already detected
during the first pass.

user
Text Box
112

REFERENCES An equivalent description for the first pass procedure is
as follows: for every pattern that is written by the write(j)
procedure, after the write operations on a word-line, read the
cells of this word line that have not be written. This approach
is based on: a) the earlier observation that only the word-lines
accessed for write operations on the top/adjoining cells also
contain the base cells that must be read and b) accessing
sequentially the word-lines for the write operations, the word-
line of the base cell in a neighborhood is always between the
word-lines of its top and its adjoining cell.

[1] J. P. Hayes, "Testing Memories for Single-Cell Pattern-Sensitive Faults,"
IEEE Transactions on Computers, vol. 29, no. 3, pp. 249-254, 1980.

[2] A. J. van de Goor, “Testing Semiconductor Memories-Theory and
Practice,” John Wiley & Sons Ltd., 1991.

[3] D-C. Kang, S.M. Park and S-B Cho, “An Efficient Built-In Self Test
Algorithm for Neighborhood Pattern and Bit-Line-Sensitive Faults in
High Density Memories,” ETRI Journal, vol. 26, no. 6, pp. 520-534,
2004.

[4] J.A. Mandelman, R.H. Bennard, G.B Bronner, J.K. DeBrosse, R.
Divakaruni, Y. Li and C.J. Radens, “Challenges and Future Directions
for the Scaling of Dynamic Random-Access Memory (DRAM),” IBM
Journal of Research and Development, vol. 46, no. 2/3, pp. 187-212,
2002.

The extra cost, for all patterns, is 16n read operations
during the first pass of the memory array. Consequently, the
total cost is increased to 114n+16n=130n operations. The test
cost reduction with respect to the Type-1 neighborhood still
remains substantial and is equal to 33%. This third algorithm
is presented in Fig. 6 under the name TLAPNCPWSF�T.

[5] P. Mazumder and K. Chakraborty, “Testing and Testable Design of
High-Density Random-Access Memories,” Kluwer Academic
Publishers, 1996.

[6] M. Franklin, K. Saluja and K. Kinoshita, “A Built In Self Test Algorithm
for Row/Column Pattern Sensitive Faults in RAMs,” IEEE Journal of
Solid-State Circuits, vol. 25, no. 2, pp. 514-524, 1990.

(1) Initialize all cells with 0; read 0 from all cells;
(2) For j:=1 to k2k do

begin
 write(j); (left-to-right)
 {during write(j), after the write operations on a
 word-line, read the cells of this word-line that have
 not be written}
 read all cells;
end;

(3) For j:= 1 to k2k do
begin
 write(j); (right-to-left)
 read the cells that were not written in the word-lines
 involved in the write operations;
end;

Fig. 6: The TLAPNCPWSF�� algorithm (k=4)

[7] A.J. van de Goor and I.B.S. Tlili, “Disturb Neighborhood Pattern
Sensitive Fault,” IEEE Int. VLSI Test Symposium, pp. 37-45, 1997.

[8] D-C. Kang and S-B Cho, “An Efficient Built-In Self Test Algorithm for
Neighborhood Pattern and Bit-Line-Sensitive Faults in High Density
Memories,” IEEE KORUS, pp. 218-223, 2000.

[9] S. Banerjee, D.R. Chowdhury and B.B. Bhattacharya, “A Programmable
Built-In Self-Test for Embedded DRAMs,” IEEE Int. Workshop on
Memory Technology Design and Testing, pp. 58-63, 2005.

[10] S. Boutobza, M. Nicolaidis, K. M. Lamara and A. Costa, “A Transparent
Based Programmable Memory BIST,” IEEE European Test Symposium,
pp. 89-94, 2006.

[11] S. Banerjee, D.R. Chowdhury and B.B. Bhattacharya, “A Programmable
Built-In Self-Test for Embedded Memory Cores,” IETE Technical
Review, vol. 24, no. 4, pp. 287-311, 2007.

[12] J.Y. Kim, S.J. Hong and j. Kim, “Parallely Testable Design for Detection
of Neighborhood Pattern Sensitive Faults in High Density DRAMs,”
IEEE Int. Symposium on Circuits and Systems, pp. 5854-5857, 2005.

[13] Y-J. Huang and J-F. Li, “Testing Active Neighborhood Pattern-Sensitive
Faults of Ternary Content Addressable Memories,” IEEE European Test
Symposium, pp. 55-60, 2006. Finally, note that NWSFs may be also related to the

second adjacent word-line to the word-line of cell-0. However,
since cells 2 and 3 belong to this word-line as well as in the
neighborhood of cell-0, these NWSFs are covered along with
NPSFs during the application of any of the above three
algorithms.

[14] K-L. Cheng, M-F. Tsai and C-W Wu, “Efficient Neighborhood Pattern-
Sensitive Fault Test Algorithms for Semiconductor Memories,” IEEE
VLSI Test Symposium, pp. 225-230, 2001.

[15] B. Keeth and R.J. Baker, “DRAM Circuit Design: A Tutorial,” IEEE
Press, Series on Microelectronic Systems, 2001.

[16] Y. Matsubara, et al, “Fully Compatible Integration of High Density
Embedded DRAM with 65nm CMOS Technology (CMOS5),” IEEE
Electron Devices Meeting, pp. 423-426, 2003.

IV. CONCLUSIONS [17] C-H. Chung and J-W. Chien, “Memories Having Charge Storage Node at
Least Partially Located in a Trench in a Semiconductor Substrate and
Electrically Coupled to a Source/Drain Region Formed in the Substrate,”
US Patent 7,348,622 B2, 2008.

A neighborhood based on the physical design of folded
DRAM memory arrays is proposed in this work for NPSF
testing. This neighborhood consists of four memory cells in a
triangle fashion and is called the �-Type neighborhood. In
addition, the neighborhood word-line sensitive fault model
(NWSF) is introduced and the ability to cover NWSFs along
with NPSFs is discussed. Three new testing algorithms have
been derived for NPSFs and NWSFs detection and location
with test application time cost equal to 82n, 114n and 130n
respectively. Correspondingly the cost reduction, with respect
to the pertinent testing algorithm that is used for the Type-1
neighborhood, is 57.7%, 41.2% and 33%. Considering also the
cost of recently proposed March algorithms that rise up to 70n
and 100n [22-23], the proposed in this work algorithms turn to
be a viable test solution for nanometer DRAMs.

[18] H.D. Oberle and P. Muhmenthaler, “Test Patten Development and
Evaluation for DRAMs with Fault Simulator RAMSIM,” IEEE Int. Test
Conference, pp. 548-555, 1991.

[19] Z. Al-Ars, S. Hamdioui, G. Gaydadjiev, “Optimizing Test Length for
Soft Faults in DRAM Devices,” IEEE VLSI Test Sym., pp. 59-66, 2007.

[20] F. Karimi, S. Irrinki, T. Crosby, N. Park and F. Lombardi, “Parallel
Testing of Multi-Port Static Random Access Memories,”
Microelectronics Journal, vol. 34, pp. 3-21, 2003.

[21] D-S. Min and D. Langer, “Multiple Twisted Data Line Techniques for
Coupling Noise Reduction in Embedded DRAMS,” IEEE Custom
Integrated Circuits Conference, pp. 231-234, 1999.

[22] G. Harutunyan, V. Vardanian and Y. Zorian, “Minimal March Tests for
Dynamic Faults in Random Access Memories,” IEEE European Test
Symposium, pp. 43-48, 2006.

[23] A. Benso, A. Boisio, S. Carlo, G. Natale, P. Prinetto, “Automatic March
Test Generation for Static and Dynamic Faults in SRAMS,” IEEE
European Test Symposium, pp. 122-127, 2005.

user
Text Box
113

