CMOS INTEGRATED CIRCUIT DESIGN TECHNIQUES

University of Ioannina
Dept. of Computer Science and Engineering

Y. Tsiatouhas

CMOS Integrated Circuit Design Techniques

Overview

1. Reliability issues – Transient faults
2. Soft errors
3. Timing errors
4. Error tolerance design techniques
Reliability in Nanometer Technologies

The evolution (scaling) of CMOS technology results in:
- the reduction of the transistor size
- the increment of the operating frequency
- the reduction of the power supply voltage
- the increment of the transistors’ number in a die
which in turn affect the circuit noise margins and reduce their reliability.

Soft Error Rate (SER) increases with technology scaling.

SER vs V_{DD}

- Permanent Faults: faults that permanently affect the circuit operation.
- Temporary Faults: faults that do not affect permanently the circuit operation and are discriminated to:
 - Transient Faults: due to random fault generation mechanisms like power supply disturbance, electromagnetic interference, radiation e.t.c.
 - Intermittent Faults: due to the degradation of the circuit characteristics.

- On-Line Testing: testing procedures are performed during the circuit operation.
 - Concurrent Testing: testing is performed concurrently to the circuit normal operation.
 - Periodic Testing: testing is performed periodically when the circuit is in the idle mode of operation.
- Off-Line Testing: testing is performed when the circuit is not used (e.g. manufacturing testing).
Requirements

We need design techniques and architectures that will guarantee the correct operation under any circumstances. Techniques that will provide error resiliency or error detection/correction capabilities. We need self-checking and concurrent testing mechanisms. We need self-healing architectures that will dynamically react to overcome technology and environmental related variabilities and which will be capable to recover after an error generation and will operate correctly even in the presence of failures.

Towards this direction, error tolerance techniques have been proposed:

- error correction codes and self-checking circuits and checkers
- error mitigation techniques aiming to reduce error rates
- error detection and correction methodologies

Radiation and Soft Errors (I)

Problem with Soft Errors in VLSI circuits due to Single Event Transients (SETs) and Single Event Upsets (SEUs) generated by:

- emitted α-particles by package impurities
- cosmic ray particles (neutrons, protons and pions)
Transistors due to crosstalk, power supply disturbance or ground bounce and environmental variations (e.g., temperature gradients) contribute to timing error generation. Device aging (BTI, HCI effects) is also an important source of timing errors.

Timing verification turns to be a hard task. Moreover, the increased path delay deviations, due to process variations and the statistical behavior of nanodevices, as well as the manufacturing defects that affect circuit speed may result in timing errors that are not easily detectable (in terms of test cost) in high frequency and high device count ICs. Considering also the huge number of paths in modern circuit designs along with the complexity of testing, it is easy to realize that a significant number of defective ICs may pass the fabrication tests.

Modern systems running at multiple frequency and voltage levels may suffer from timing errors due to environmental and process related (and also data dependent) variabilities that can affect circuit performance.
Timing Errors (II)

Error free case

Timing Error generation!

Delayed Pulse by d

On-Line Testing

The Scan Design Topology of Intel

Separated System and Scan Flip-Flops

Extra cost of one Flip-Flop

On-Line Testing
Intel’s Error Resilience Approach

- Additional cost of: 1 Flip-Flop, 2 XOR, 1 AND and 1 OR per Flip-Flop!
- The error detection latency is high!

The BISER Architecture

Muller C-Element
The GRAAL Architecture

• Additional cost of: 1 Latch, 1 XOR, and 1 MUX per Flip-Flop!
The Razor Operation (I)

Error Free Case

Logic Stage S_0

Razor Flip-Flop

Logic Stage S_{n+1}

Error R_j

S_{j+1}

D_{CLK}

Error L

S_j

MUX

The Razor Operation (II)

Erroneous Case

• No error detection latency!
• One clock cycle cost for error correction!
The Time Dilation Topology

Additional cost of: 1 XOR, and 1 MUX per Flip-Flop.

The Time Dilation Operation (I)
The Time Dilation Operation (II)

- No error detection latency!
- One clock cycle cost for error correction!
The Time Dilation Architecture

Pipeline Organization

Pipeline Recovery

Re-execution with correct values at stage inputs
References

