CMOS INTEGRATED CIRCUIT DESIGN TECHNIQUES

CMOS Logic Design

Survey on CMOS Digital Circuits

Dept. of Computer Science and Engineering

Y. Tsiatouhas

CMOS Integrated Circuit Design Techniques

Overview

1. Combinational – sequential logic
2. MOS transistor
3. CMOS logic
4. Complex gates
5. Standard cells

VLSI Systems and Computer Architecture Lab
Combinational and Sequential Logic

Combinational Logic

```
_outputs = f(inputs)
```

Sequential Logic

```
_outputs = f(inputs, state)
```

Boolean Algebra

Axioms and Theorems

<table>
<thead>
<tr>
<th>Equation</th>
<th>Equation</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x + 0 = x)</td>
<td>(x \cdot 1 = x)</td>
</tr>
<tr>
<td>(x + x = 1)</td>
<td>(x \cdot x = 0)</td>
</tr>
<tr>
<td>(x + x = x)</td>
<td>(x \cdot x = x)</td>
</tr>
<tr>
<td>(x + 1 = 1)</td>
<td>(x \cdot 0 = 0)</td>
</tr>
<tr>
<td>(x = x)</td>
<td></td>
</tr>
</tbody>
</table>

Permutation prop.:

\(x + y = y + x \)

\(x \cdot y = y \cdot x \)

Associative prop.:

\(x + (y + z) = (x + y) + z \)

\(x \cdot (y \cdot z) = (x \cdot y) \cdot z \)

Distributive prop.:

\(x(y + z) = xy + xz \)

\(x + (y \cdot z) = (x + y) \cdot (x + z) \)

De Morgan:

\(x + y = \overline{x} \cdot \overline{y} \)

\(x \cdot y = \overline{x + y} \)

\(x + xy = x \)

\(x \cdot (x + y) = x \)
Logic Gates

AND
\[F = x \land y \]
\[
\begin{array}{c|c|c|c|c}
 x & y & F \\
 0 & 0 & 0 \\
 0 & 1 & 0 \\
 1 & 0 & 0 \\
 1 & 1 & 1 \\
\end{array}
\]

NAND
\[F = \overline{x \land y} \]
\[
\begin{array}{c|c|c|c|c}
 x & y & F \\
 0 & 0 & 1 \\
 0 & 1 & 1 \\
 1 & 0 & 1 \\
 1 & 1 & 0 \\
\end{array}
\]

OR
\[F = x \lor y \]
\[
\begin{array}{c|c|c|c|c}
 x & y & F \\
 0 & 0 & 0 \\
 0 & 1 & 1 \\
 1 & 0 & 1 \\
 1 & 1 & 1 \\
\end{array}
\]

NOR
\[F = \overline{x \lor y} \]
\[
\begin{array}{c|c|c|c|c}
 x & y & F \\
 0 & 0 & 1 \\
 0 & 1 & 0 \\
 1 & 0 & 1 \\
 1 & 1 & 0 \\
\end{array}
\]

NOT
\[F = \overline{x} \]
\[
\begin{array}{c|c|c}
 x & F \\
 0 & 1 \\
 1 & 0 \\
\end{array}
\]

XOR
\[F = x \oplus y \]
\[
\begin{array}{c|c|c|c|c}
 x & y & F \\
 0 & 0 & 0 \\
 0 & 1 & 1 \\
 1 & 0 & 1 \\
 1 & 1 & 0 \\
\end{array}
\]

XNOR
\[F = x \oplus y \]
\[
\begin{array}{c|c|c|c|c}
 x & y & F \\
 0 & 0 & 1 \\
 0 & 1 & 0 \\
 1 & 0 & 1 \\
 1 & 1 & 0 \\
\end{array}
\]

BUFFER
\[F = x \]
\[
\begin{array}{c|c|c}
 x & F \\
 0 & 0 \\
 1 & 1 \\
\end{array}
\]

MOS Transistor

pMOS transistor
\[
\begin{array}{c}
 S \\
 G \\
 D \\
\end{array}
\]

nMOS transistor
\[
\begin{array}{c}
 G \\
 D \\
 S \\
\end{array}
\]

n-type semiconductor substrate

p-type semiconductor substrate
The MOS Transistor as Switch

\[\begin{align*}
 s & \quad d \\
 g &= 0 \\
 s & \quad d \\
 g &= 1
\end{align*} \]

\[\begin{align*}
 s & \quad d \\
 g &= 0 \\
 s & \quad d \\
 g &= 1
\end{align*} \]

The Full CMOS Switch

\[\begin{align*}
 s & \quad d \\
 c &= 0 \\
 s & \quad d \\
 c &= 1
\end{align*} \]

\[\begin{align*}
 s & \quad d \\
 c &= 0 \\
 s & \quad d \\
 c &= 1
\end{align*} \]
The Impact of Threshold Voltage

CMOS Logic

Inverter – NOT Gate
The P-network and N-network are complementary logic networks.

Static CMOS Circuits

- Each time (except input transition intervals) the output of a static CMOS gate is always attached either to the V_{DD} power supply or the Gnd power supply. When a CMOS circuit is in the quiescent state, it is prohibitive for the two power supplies V_{DD} and Gnd to be connected (in a short circuit).

- The connection of the output to the V_{DD} power supply is through the pMOS network while the connection of the output to the Gnd power supply is through the nMOS network. When these networks are in a conducting state, behave as a low resistance resistor. In the opposite case, their resistance is considered to be infinite.
NAND Gate

- Circuit diagram of a NAND gate with inputs A and B, and output F.
- Karnaugh Map for the NAND gate, showing the truth table.
- Multiple Inputs NAND circuit with inputs B, C, and X.

NOR Gate

- Circuit diagram of a NOR gate with inputs A and B, and output F.
- Karnaugh Map for the NOR gate, showing the truth table.
- Symbol for the NOR gate.

CMOS Logic Design
AND and OR Gates

\[F_p = A \cdot B \]

\[F_n = \overline{A} \cdot \overline{B} \]

\[F = A + B \]

\[F = \overline{A} \cdot \overline{B} \]

Complex Gates

Implementation of the function:

\[F = ((A \cdot B) + (C \cdot D)) \]

pMOS network

nMOS network

\[\overline{F} = ((A \cdot B) + (C \cdot D)) \]

\[F = (\overline{A} + \overline{B}) \cdot (\overline{C} + \overline{D}) \]
CMOS Pass Gate

Symbols

- **nMOS**
 - Off: \(V_{in} = 0 \), \(V_{out} = Z \)
 - On: \(V_{in} = 1 \), \(V_{out} = 1 \)

<table>
<thead>
<tr>
<th>(C = '0')</th>
<th>nMOS off</th>
<th>pMOS off</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_{in} = 0), (V_{out} = 2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(V_{in} = 1), (V_{out} = 2)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(C = '1')</th>
<th>nMOS on</th>
<th>pMOS on</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_{in} = 0), (V_{out} = 0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(V_{in} = 1), (V_{out} = 1)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tri-State Inverter

Truth Table

<table>
<thead>
<tr>
<th>(V_{in})</th>
<th>(C)</th>
<th>(V_{out})</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>0</td>
<td>Z</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Symbol
Multiplexer

Truth Table

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>S</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>0</td>
<td>0</td>
<td>0 (B)</td>
</tr>
<tr>
<td>X</td>
<td>1</td>
<td>0</td>
<td>1 (B)</td>
</tr>
<tr>
<td>0</td>
<td>X</td>
<td>1</td>
<td>0 (A)</td>
</tr>
<tr>
<td>1</td>
<td>X</td>
<td>1</td>
<td>1 (A)</td>
</tr>
</tbody>
</table>

Latch

Truth Table

<table>
<thead>
<tr>
<th>D</th>
<th>CLK</th>
<th>Q</th>
<th>Qbar</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>Memory</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>Memory</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
D Flip-Flop

CMOS Edge Triggered D Flip-Flop

D Flip-Flop Operation

Positive Edge-Triggered D Flip-Flop

Truth Table

<table>
<thead>
<tr>
<th>D</th>
<th>CLK</th>
<th>Q</th>
<th>Qbar</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>0</td>
<td>X</td>
<td>0</td>
</tr>
<tr>
<td>X</td>
<td>1</td>
<td>X</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>X</td>
<td>1</td>
<td>Memory</td>
<td></td>
</tr>
</tbody>
</table>

CMOS Logic Design