Online Social Networks and Media

Network Ties
STRONG AND WEAK TIES
Triadic Closure

If two people in a social network have a friend in common, then there is an increased likelihood that they will become friends themselves at some point in the future.
Triadic Closure

Snapshots over time:
Clustering Coefficient

(Local) clustering coefficient for a node is the probability that two randomly selected friends of a node are friends with each other *(form a triangle)*

\[
C_i = \frac{2|\{e_{jk}\}|}{k_i(k_i - 1)} \quad \text{for } e_{jk} \in E, u_i, u_j \in N_i, k \text{ size of } N_i, N_i \text{ neighborhood of } u_i
\]

Fraction of the friends of a node that are friends with each other (i.e., connected)

\[
C_i^{(1)} = \frac{\sum_{i \text{ triangles centered at node } i}}{\sum_{i \text{ triples centered at node } i}}
\]
Clustering Coefficient

Ranges from 0 to 1

1/6

1/2
Triadic Closure

If A knows B and C, B and C are likely to become friends, but WHY?

1. Opportunity
2. Trust
3. Incentive of A (latent stress for A, if B and C are not friends, dating back to social psychology, e.g., relating low clustering coefficient to suicides)
The Strength of Weak Ties Hypothesis

Mark Granovetter, in the late 1960s

Many people learned information leading to their current job through personal contacts, often described as acquaintances rather than closed friends

Two aspects

- Structural
- Local (interpersonal)
Bridges and Local Bridges

An edge between A and B is a bridge if deleting that edge would cause A and B to lie in two different components.

AB the only “route” between A and B.

extremely rare in social networks.
Bridges and Local Bridges

An edge between A and B is a *local bridge* if deleting that edge would increase the distance between A and B to a value strictly more than 2.

Span of a local bridge: distance of the its endpoints if the edge is deleted.
An edge is a local bridge, if and only if, it is not part of any triangle in the graph.
The Strong Triadic Closure Property

- Levels of strength of a link
- Strong and weak ties
- May vary across different times and situations

Annotated graph
The Strong Triadic Closure Property

If a node A has edges to nodes B and C, then the B-C edge is especially likely to form if both A-B and A-C are strong ties.

A node A violates the Strong Triadic Closure Property, if it has strong ties to two other nodes B and C, and there is no edge (strong or weak tie) between B and C.

A node A satisfies the Strong Triadic Property if it does not violate it.
The Strong Triadic Closure Property
Local Bridges and Weak Ties

Local distinction: weak and strong ties ->
 Global structural distinction: local bridges or not

Claim:
If a node A in a network satisfies the Strong Triadic Closure
and is involved in at least two strong ties, then any local bridge
it is involved in must be a weak tie

Proof: by contradiction

Relation to job seeking?
The role of simplifying assumptions:

- Useful when they lead to statements robust in practice, making sense as **qualitative conclusions** that hold in approximate forms even when the **assumptions are relaxed**

- Stated precisely, so possible to test them in real-world data

- A framework to explain surprising facts
Tie Strength and Network Structure in Large-Scale Data

How to test these prediction on large social networks?
Tie Strength and Network Structure in Large-Scale Data

Communication network: “who-talks-to-whom”

Strength of the tie: time spent talking during an observation period

Cell-phone study [Omnela et. al., 2007]

“who-talks-to-whom network”, covering 20% of the national population

- **Nodes**: cell phone users
- **Edge**: if they make phone calls to each other in both directions over 18-week observation periods

Is it a “social network”? Cells generally used for personal communication + no central directory, thus cell-phone numbers exchanged among people who already know each other

Broad structural features of large social networks (*giant component*, 84% of nodes)
Generalizing Weak Ties and Local Bridges

So far:
✓ Either weak or strong
✓ Local bridge or not

Tie Strength: Numerical quantity (= number of min spent on the phone)

Quantify “local bridges”, how?
Generalizing Weak Ties and Local Bridges

Bridges
“almost” local bridges

Neighborhood overlap of an edge e_{ij}

\[
\frac{|N_i \cap N_j|}{|N_i \cup N_j|}
\]

(*) In the denominator we do not count A or B themselves

Jaccard coefficient

A: B, E, D, C
F: C, J, G

1/6

When is this value 0?
Generalizing Weak Ties and Local Bridges

Neighborhood overlap = 0: edge is a local bridge
Small value: “almost” local bridges
Generalizing Weak Ties and Local Bridges: Empirical Results

How the neighborhood overlap of an edge depends on its strength

(Hypothesis: the strength of weak ties predicts that neighborhood overlap should grow as tie strength grows)

- Sort the edges -> for each edge at which percentile
- Strength of connection (function of the percentile in the sorted order)

(*) Some deviation at the right-hand edge of the plot
Generalizing Weak Ties and Local Bridges: Empirical Results

How to test the following global (macroscopic) level hypothesis:

Hypothesis: weak ties serve to link different tightly-knit communities that each contain a large number of stronger ties
Delete edges from the network one at a time

- Starting with the strongest ties and working downwards in order of tie strength
 - giant component shrank steadily

- Starting with the weakest ties and upwards in order of tie strength
 - giant component shrank more rapidly, broke apart abruptly as a critical number of weak ties were removed
Social Media and Passive Engagement

People maintain large explicit lists of friends

Test:
How *online activity* is distributed across *links of different strengths*
Tie Strength on Facebook

Cameron Marlow, et al, 2009
At what extent each link was used for social interactions

Three (not exclusive) kinds of ties (links)

1. **Reciprocal (mutual) communication**: both send and received messages to friends at the other end of the link
2. **One-way communication**: the user send one or more message to the friend at the other end of the link
3. **Maintained relationship**: the user followed information about the friend at the other end of the link (click on content via News feed or visit the friend profile more than once)
Tie Strength on Facebook

More recent connections
Tie Strength on Facebook

Even for users with very large number of friends
- actually communicate: 10-20
- number of friends follow even passively <50

Passive engagement (keep up with friends by reading about them even in the absence of communication)
Tie Strength on Twitter

Huberman, Romero and Wu, 2009

Two kinds of links

- Follow
- Strong ties (friends): users to whom the user has *directed at least two messages* over the course if the observation period
Social Media and Passive Engagement

- Strong ties require continuous investment of time and effort to maintain (as opposed to weak ties)

- Network of strong ties still remain sparse

- How different links are used to convey information
Closure, Structural Holes and Social Capital

Different roles that nodes play in this structure.

Access to edges that span different groups is not equally distributed across all nodes.
Embeddedness

A has a large clustering coefficient

- **Embeddedness of an edge**: number of common neighbors of its endpoints (neighborhood overlap, local bridge if 0)

For A, all its edges have significant embeddedness

(sociology) if two individuals are connected by an embedded edge => trust
- “Put the interactions between two people on display”
Structural Holes

(sociology) B-C, B-D much riskier, also, possible contradictory constraints
Success in a large cooperation correlated to access to local bridges

B “spans a structural hole”
- B has access to information originating in multiple, non-interacting parts of the network
- An amplifier for creativity
- Source of power as a social “gate-keeping”

Social capital
ENFORCING STRONG TRIADIC CLOSURE
The Strong Triadic Closure Property

If we do not have the labels, how can we label the edges so as to satisfy the Strong Triadic Closure Property?
Problem Definition

• Goal: Label (color) ties of a social network as Strong or Weak so that the Strong Triadic Closure property holds.

• **MaxSTC Problem**: Find an edge labeling \((S, W)\) that satisfies the STC property and maximizes the number of Strong edges.

• **MinSTC Problem**: Find an edge labeling \((S, W)\) that satisfies the STC property and minimizes the number of Weak edges.
Complexity

• **Bad News**: MaxSTC and MinSTC are NP-hard problems!
 – Reduction from MaxClique to the MaxSTC problem.

• **MaxClique**: Given a graph $G = (V, E)$, find the maximum subset $V \subseteq V$ that defines a complete subgraph.
Reduction

• Given a graph G as input to the MaxClique problem
Reduction

• Given a graph G as input to the MaxClique problem
• Construct a new graph by adding a node u and a set of edges E_u to all nodes in G

MaxEgoSTC is at least as hard as MaxSTC

The labelings of pink and green edges are independent

MaxEgoSTC: Label the edges in E_u into Strong or Weak so as to satisfy STC and maximize the number of Strong edges
Reduction

• Given a graph G as input to the MaxClique problem
• Construct a new graph by adding a node u and a set of edges E_u to all nodes in G

MaxEgoSTC: Label the edges in E_u into Strong or Weak so as to satisfy STC and maximize the number of Strong edges
Reduction

- Given a graph G as input to the MaxClique problem
- Construct a new graph by adding a node u and a set of edges E_u to all nodes in G

MaxEgoSTC: Label the edges in E_u into Strong or Weak so as to satisfy STC and maximize the number of Strong edges

Find the max clique Q in G

Maximize Strong edges in E_u
Bad News: MaxSTC is hard to approximate.

Good News: There exists a 2-approximation algorithm for the MinSTC problem.
 – The number of weak edges it produces is at most two times those of the optimal solution.

The algorithm comes by reducing our problem to a coverage problem.
Set Cover

• **The Set Cover problem:**
 – We have a universe of elements $U = \{x_1, \ldots, x_N\}$
 – We have a collection of subsets of U, $S = \{S_1, \ldots, S_n\}$, such that $\bigcup_i S_i = U$
 – We want to find the **smallest sub-collection** $C \subseteq S$ of S, such that $\bigcup_{i \in C} S_i = U$

 • The sets in C **cover** the elements of U
Example

• The universe U of elements is the set of customers of a store.

• Each set corresponds to a product p sold in the store: $S_p = \{ \text{customers that bought } p \}$

• Set cover: Find the minimum number of products (sets) that cover all the customers (elements of the universe)
Example

• The universe U of elements is the set of customers of a store.

• Each set corresponds to a product p sold in the store: $S_p = \{\text{customers that bought } p\}$

• Set cover: Find the minimum number of products (sets) that cover all the customers (elements of the universe)
Example

• The universe U of elements is the set of customers of a store.
• Each set corresponds to a product p sold in the store: $S_p = \{\text{customers that bought } p\}$
• Set cover: Find the minimum number of products (sets) that cover all the customers (elements of the universe)
Vertex Cover

• Given a graph $G = (V, E)$ find a subset of vertices $S \subseteq V$ such that for each edge $e \in E$ at least one endpoint of e is in S.
 – Special case of set cover, where all elements are edges and sets the set of edges incident on a node.
 • Each element is covered by exactly two sets
Vertex Cover

• Given a graph $G = (V, E)$ find a subset of vertices $S \subseteq V$ such that for each edge $e \in E$ at least one endpoint of e is in S.
 – Special case of set cover, where all elements are edges and sets the set of edges incident on a node.
 • Each element is covered by exactly two sets
MinSTC and Coverage

• What is the relationship between the MinSTC problem and Coverage?

• Hint: A labeling satisfies STC if for any two edges \((u, v)\) and \((v, w)\) that form an open triangle at least one of the edges is labeled weak.
Coverage

• Intuition
 – STC property implies that there cannot be an open triangle with both strong edges
 – For every open triangle: a weak edge must cover the triangle

 ![Diagram of a triangle with edges]

 – MinSTC can be mapped to the Minimum Vertex Cover problem.
Dual Graph

- Given a graph G, we create the dual graph D:
 - For every edge in G we create a node in D.
 - Two nodes in D are connected if the corresponding edges in G participate in an open triangle.

Initial Graph G

Dual Graph D
Minimum Vertex Cover - MinSTC

- Solving MinSTC on G is reduced to solving a Minimum Vertex Cover problem on D.

\[\text{Diagram showing network with edges and vertices labeled } A, B, C, D, E, F, \text{ and } AC, AB, CF, AE, BC, CD, DE. \]
Approximation Algorithms

Approximation algorithms for the **Minimum Vertex Cover** problem:

<table>
<thead>
<tr>
<th>Maximal Matching Algorithm</th>
<th>Greedy Algorithm</th>
</tr>
</thead>
<tbody>
<tr>
<td>▪ Output a maximal matching</td>
<td>▪ Greedily select each time the vertex that covers most uncovered edges.</td>
</tr>
<tr>
<td>• Maximal Matching: A collection of non-adjacent edges of the graph where no additional edges can be added.</td>
<td></td>
</tr>
</tbody>
</table>

Approximation Factor: 2

Approximation Factor: \(\log n \)

Given a vertex cover for dual graph \(D \), the corresponding edges of \(G \) are labeled **Weak** and the remaining edges **Strong**.
Experiments

- **Experimental Goal**: Does our labeling have any practical utility?
Datasets

- **Actors**: Collaboration network between movie actors. (IMDB)
- **Authors**: Collaboration network between authors. (DBLP)
- **Les Miserables**: Network of co-appearances between characters of Victor Hugo's novel. (D. E. Knuth)
- **Karate Club**: Social network of friendships between 34 members of a karate club. (W. W. Zachary)
- **Amazon Books**: Co-purchasing network between books about US politics. (http://www.orgnet.com/)

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Number of Nodes</th>
<th>Number of Edges</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actors</td>
<td>1,986</td>
<td>103,121</td>
</tr>
<tr>
<td>Authors</td>
<td>3,418</td>
<td>9,908</td>
</tr>
<tr>
<td>Les Miserables</td>
<td>77</td>
<td>254</td>
</tr>
<tr>
<td>Karate Club</td>
<td>34</td>
<td>78</td>
</tr>
<tr>
<td>Amazon Books</td>
<td>105</td>
<td>441</td>
</tr>
</tbody>
</table>
Comparison of Greedy and Maximal Matching

<table>
<thead>
<tr>
<th></th>
<th>Greedy</th>
<th>Maximal Matching</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Strong</td>
<td>Weak</td>
</tr>
<tr>
<td>Actors</td>
<td>11,184</td>
<td>91,937</td>
</tr>
<tr>
<td>Authors</td>
<td>3,608</td>
<td>6,300</td>
</tr>
<tr>
<td>Les Miserables</td>
<td>128</td>
<td>126</td>
</tr>
<tr>
<td>Karate Club</td>
<td>25</td>
<td>53</td>
</tr>
<tr>
<td>Amazon Books</td>
<td>114</td>
<td>327</td>
</tr>
</tbody>
</table>
Measuring Tie Strength

• **Question**: Is there a correlation between the assigned labels and the *empirical strength* of the edges?
• Three *weighted graphs*: Actors, Authors, Les Miserables.
 – **Strength**: amount of *common activity*.

<table>
<thead>
<tr>
<th></th>
<th>Strong</th>
<th>Weak</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actors</td>
<td>1.4</td>
<td>1.1</td>
</tr>
<tr>
<td>Authors</td>
<td>1.34</td>
<td>1.15</td>
</tr>
<tr>
<td>Les Miserables</td>
<td>3.83</td>
<td>2.61</td>
</tr>
</tbody>
</table>

• The differences are *statistically significant*
Measuring Tie Strength

• Frequent common activity may be an artifact of frequent activity.

• Fraction of activity devoted to the relationship
 – **Strength**: Jaccard Similarity of activity

 \[
 \text{Jaccard Similarity} = \frac{\text{Common Activities}}{\text{Union of Activities}}
 \]

Mean Jaccard similarity for Strong, Weak Edges

<table>
<thead>
<tr>
<th></th>
<th>Strong</th>
<th>Weak</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actors</td>
<td>0.06</td>
<td>0.04</td>
</tr>
<tr>
<td>Authors</td>
<td>0.145</td>
<td>0.084</td>
</tr>
</tbody>
</table>

• The differences are statistically significant
The Strength of Weak Ties

• [Granovetter] People learn information leading to jobs through acquaintances (Weak ties) rather than close friends (Strong ties).

• [Easly and Kleinberg] Graph theoretic formalization:
 – Acquaintances (Weak ties) act as bridges between different groups of people with access to different sources of information.
 – Close friends (Strong ties) belong to the same group of people, and are exposed to similar sources of information.
Datasets with known communities

- **Amazon Books**

- **Karate Club**
 - Two fractions within the members of the club.
Weak Edges as Bridges

- Edges between communities (inter-community) \Rightarrow Weak
 - R_W = Fraction of inter-community edges that are labeled Weak.
- Strong \Rightarrow Edges within the community (intra-community).
 - P_S = Fraction of Strong edges that are intra-community edges

<table>
<thead>
<tr>
<th></th>
<th>P_S</th>
<th>R_W</th>
</tr>
</thead>
<tbody>
<tr>
<td>Karate Club</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Amazon Books</td>
<td>0.81</td>
<td>0.69</td>
</tr>
</tbody>
</table>
Karate Club graph
Extensions

• Allow for **edge additions**

 – Still a *coverage problem*: an open triangle can be covered with either a weak edge or an added edge

• Allow **k types of strong** of edges

 – *Vertex Coloring* of the *dual graph* with a neutral color
 – Approximation algorithm for $k=2$ types, hard to approximate for $k > 2$
POSITIVE AND NEGATIVE TIES
Structural Balance

What about negative edges?

Initially, a complete graph (or clique): every edge either + or -

Let us first look at individual triangles

- Lets look at 3 people => 4 cases
- See if all are equally possible (local property)
Structural Balance

Case (a): 3 +
- Mutual friends

Case (b): 2 +, 1 -
- A is friend with B and C, but B and C do not get well together

Case (c): 1 +, 2 -
- A and B are friends with a mutual enemy

Case (d): 3 -
- Mutual enemies
Structural Balance

Case (a): 3 +
- Mutually friends
- Stable or balanced

Case (b): 2 +, 1 -
- A is friend with B and C, but B and C do not get well together
- *Implicit force to make B and C friends (- => +) or turn one of the + to -*
- Unstable

Case (c): 1 +, 2 -
- A and B are friends with a mutual enemy
- Stable or balanced

Case (d): 3 -
- Mutual enemies
- *Forces to team up against the third (turn 1 – to +)*
- Unstable
Structural Balance

A labeled complete graph is balanced if every one of its triangles is balanced.

Structural Balance Property: For every set of three nodes, if we consider the three edges connecting them, either all three of these are labeled +, or else exactly one of them is labeled – (odd number of +)

What does a balanced network look like?
The Structure of Balanced Networks

Balance Theorem: If a labeled *complete* graph is balanced,
(a) all pairs of nodes are friends, or
(b) the nodes can be divided *into two groups* X and Y, such that every pair of nodes in X like each other, every pair of nodes in Y like each other, and every one in X is the enemy of every one in Y.

From a local to a global property

Proof ...
Applications of Structural Balance

- How a network evolves over time
- Political science: International relationships (I)

The conflict of Bangladesh’s separation from Pakistan in 1972

USA support to Pakistan?
Applications of Structural Balance

✓ International relationships (I)

The conflict of Bangladesh’s separation from Pakistan in 1972 (II)
Applications of Structural Balance

✓ International relationships (II)

(a) Three Emperors' League 1872–81
(b) Triple Alliance 1882
(c) German-Russian Lapse 1890

(d) French-Russian Alliance 1891–94
(e) Entente Cordiale 1904
(f) British-Russian Alliance 1907

Figure 5.5: The evolution of alliances in Europe, 1872-1907 (the nations GB, Fr, Ru, It, Ge, and AH are Great Britain, France, Russia, Italy, Germany, and Austria-Hungary respectively). Solid dark edges indicate friendship while dotted red edges indicate enmity. Note how the network slides into a balanced labeling — and into World War I. This figure and example are from Antal, Krapivsky, and Redner [20].
A Weaker Form of Structural Balance

Weak Structural Balance Property: There is no set of three nodes such that the edges among them consist of exactly two positive edges and one negative edge.
A Weaker Form of Structural Balance

Weakly Balance Theorem: If a labeled complete graph is weakly balanced, its nodes can be divided *into groups* in such a way that every two nodes belonging to the same group are friends, and every two nodes belonging to different groups are enemies.

Proof ...
A Weaker Form of Structural Balance
Trust, distrust and directed graphs

Evaluation of products and trust/distrust of other users

Directed Graphs

A trusts B, B trusts C, A ? C

A distrusts B, B distrusts C, A ? C
If distrust enemy relation, +
A distrusts means that A is better than B, -

Depends on the application
Rating political books or Consumer rating electronics products
Generalizing

1. Non-complete graphs

2. Instead of all triangles, “most” triangles, approximately divide the graph

We shall use the original (“non-weak” definition of structural balance)
Thee possible relations
- Positive edge
- Negative edge
- Absence of an edge

What is a good definition of balance in a non-complete graph?
Balance Definition for General Graphs

1. Based on triangles (local view)
2. Division of the network (global view)

A (non-complete) graph is balanced if it can be completed by adding edges to form a signed complete graph that is balanced.
Balance Definition for General Graphs
Balance Definition for General Graphs

1. Based on triangles (local view)
2. Division of the network (global view)

A (non-complete) graph is balanced if it possible to divide the nodes into two sets X and Y, such that any edge with both ends inside X or both ends inside Y is positive and any edge with one end in X and one end in Y is negative.

The two definitions are equivalent: An arbitrary signed graph is balanced under the first definition, if and only if, it is balanced under the second definitions.
Balance Definition for General Graphs

Algorithm for dividing the nodes?
Balance Characterization

What prevents a network from being balanced?

- Start from a node and place nodes in X or Y
- Every time we cross a negative edge, change the set

Cycle with odd number of negative edges
Balance Definition for General Graphs

Cycle with odd number of - => unbalanced

Is there such a cycle with an odd number of -?
Balance Characterization

Claim: A signed graph is balanced, if and only if, it contains no cycles with an odd number of negative edges.

(proof by construction)

Find a balanced division: partition into sets X and Y, all edges inside X and Y positive, crossing edges negative.

Either succeeds or Stops with a cycle containing an odd number of -

Two steps:
1. Convert the graph into a reduced one with only negative edges
2. Solve the problem in the reduced graph
Balance Characterization: Step 1

a. Find *connected components* (*supernodes*) by considering only positive edges

b. Check: Do supernodes contain a negative edge between any pair of their nodes
 (a) Yes -> odd cycle (1)
 (b) No -> each supernode either X or Y
Balance Characterization: Step 1

3. Reduced problem: a node for each supernode, an edge between two supernodes if an edge in the original...
Balance Characterization: Step 2

Note: Only negative edges among supernodes

Start labeling by either X and Y
If successful, then label the nodes of the supernode correspondingly
✓ A cycle with an odd number, corresponds to a (possibly larger) odd cycle in the original
Balance Characterization: Step 2

Determining whether the graph is bipartite (there is no edge between nodes in X or Y, the only edges are from nodes in X to nodes in Y)

Use Breadth-First-Search (BFS)

Two type of edges: (1) between nodes in adjacent levels (2) between nodes in the same level

If only type (1), alternate X and Y labels at each level

If type (2), then odd cycle
Balance Characterization

An odd cycle is formed from two equal-length paths leading to an edge inside a single layer.
Generalizing

1. Non-complete graphs

2. Instead of all triangles, “most” triangles, approximately divide the graph
Approximately Balance Networks

a complete graph (or clique): every edge either + or -

Claim: If all triangles in a labeled complete graph are balanced, than either
(a) all pairs of nodes are friends or,
(b) the nodes can be divided into two groups X and Y, such that
 (i) every pair of nodes in X like each other,
 (ii) every pair of nodes in Y like each other, and
 (iii) every one in X is the enemy of every one in Y.

Claim: If at least 99.9% of all triangles in a labeled complete graph are balanced, then either,
(a) There is a set consisting of at least 90% of the nodes in which at least 90% of all pairs are friends, or,
(b) the nodes can be divided into two groups X and Y, such that
 (i) at least 90% of the pairs in X like each other,
 (ii) at least 90% of the pairs in Y like each other, and
 (iii) at least 90% of the pairs with one end in X and one in Y are enemies.

Not all, but most, triangles are balanced.
Claim: If at least 99.9\% of all triangles in a labeled complete graph are balanced, then either,
(a) There is a set consisting of at least 90\% of the nodes in which at least 90\% of all pairs are friends, or,
(b) the nodes can be divided into two groups X and Y, such that
 (i) at least 90\% of the pairs in X like each other,
 (ii) at least 90\% of the pairs in Y like each other, and
 (iii) at least 90\% of the pairs with one end in X and one in Y are enemies

Claim: Let ε be any number, such that $0 \leq \varepsilon < 1/8$. If at least $1 - \varepsilon$ of all triangles in a labeled complete graph are balanced, then either
(a) There is a set consisting of at least $1-\delta$ of the nodes in which at least $1-\delta$ of all pairs are friends, or,
(b) the nodes can be divided into two groups X and Y, such that
 (i) at least $1-\delta$ of the pairs in X like each other,
 (ii) at least $1-\delta$ of the pairs in Y like each other, and
 (iii) at least $1-\delta$ of the pairs with one end in X and one in Y are enemies

$\delta = 3\sqrt{\varepsilon}$
References

Networks, Crowds, and Markets (Chapter 3, 5)

S. Sintos, P. Tsaparas, Using Strong Triadic Closure to Characterize Ties in Social Networks. ACM International Conference on Knowledge Discovery and Data Mining (KDD), August 2014