Online Social Networks and Media

Link Analysis and Web Search
How to Organize the Web

First try: Human curated Web directories
Yahoo, DMOZ, LookSmart
How to organize the web

• **Second try:** Web Search
 – Information Retrieval investigates:
 • Find relevant docs in a small and trusted set e.g., Newspaper articles, Patents, etc. (“needle-in-a-haystack”)
 • Limitation of keywords (synonyms, polysemy, etc)

But: Web is huge, full of untrusted documents, random things, web spam, etc.

- Everyone can create a web page of high production value
- Rich diversity of people issuing queries
- Dynamic and constantly-changing nature of web content
Size of the Search Index

The size of the World Wide Web: Estimated size of Google's index

- Google

The size of the World Wide Web: Estimated size of Yahoo Search index

- Yahoo Search

The size of the World Wide Web: Estimated size of Bing index

- Bing

http://www.worldwidewebsize.com/
How to organize the web

• Third try (the Google era): using the web graph
 – Swift from relevance to *authoritativeness*
 – It is not only important that a page is relevant, but that it is also important on the web

• For example, what kind of results would we like to get for the query “greek newspapers”?
Link Analysis

• Not all web pages are equal on the web

• The links act as endorsements:
 – When page \(p \) links to \(q \) it **endorses** the content of the content of \(q \)

What is the simplest way to measure importance of a page on the web?
Rank by Popularity

• Rank pages according to the number of incoming edges (in-degree, degree centrality)

1. Red Page
2. Yellow Page
3. Blue Page
4. Purple Page
5. Green Page
• It is not important only how many link to you, but also how important are the people that link to you.
• Good authorities are pointed by good authorities
 – Recursive definition of importance
THE PAGERANK ALGORITHM
PageRank

• **Good** authorities should be pointed by **good** authorities
 – The value of a node is the value of the nodes that point to it.

• **How do we implement that?**
 – Assume that we have a unit of authority to distribute to all nodes.
 • Initially each node gets $\frac{1}{n}$ amount of authority
 – Each node **distributes** the authority value they have to their neighbors
 – The authority value of each node is the sum of the authority fractions it collects from its neighbors.

$$w_v = \sum_{u \rightarrow v} \frac{1}{d_{out}(u)} w_u$$

\(w_v\): the **PageRank value** of node \(v\)

Recursive definition
A simple example

Solving the system of equations we get the authority values for the nodes:

- $w = \frac{1}{2}$
- $w = \frac{1}{4}$
- $w = \frac{1}{4}$
A more complex example

\[w_1 = \frac{1}{3} w_4 + \frac{1}{2} w_5 \]
\[w_2 = \frac{1}{2} w_1 + w_3 + \frac{1}{3} w_4 \]
\[w_3 = \frac{1}{2} w_1 + \frac{1}{3} w_4 \]
\[w_4 = \frac{1}{2} w_5 \]
\[w_5 = w_2 \]

\[w_v = \sum_{u \rightarrow v} \frac{1}{d_{out}(u)} w_u \]
Computing PageRank weights

• A simple way to compute the weights is by iteratively updating the weights

• PageRank Algorithm

Initialize all PageRank weights to $\frac{1}{n}$

Repeat:

$$w_v = \sum_{u \rightarrow v} \frac{1}{d_{out}(u)} w_u$$

Until the weights do not change

• This process converges
PageRank

Initially, all nodes PageRank 1/8

✓ As a kind of “fluid” that circulates through the network
✓ The total PageRank in the network remains constant (no need to normalize)
A simple way to check whether an assignment of numbers forms an equilibrium set of PageRank values: check that they sum to 1, and that when apply the Basic PageRank Update Rule, we get the same values back.

If the network is strongly connected, then there is a unique set of equilibrium values.
Random Walks on Graphs

• The algorithm defines a random walk on the graph

• Random walk:
 – Start from a node chosen uniformly at random with probability $\frac{1}{n}$.
 – Pick one of the outgoing edges uniformly at random
 – Move to the destination of the edge
 – Repeat.

• The Random Surfer model
 – Users wander on the web, following links.
Example

• Step 0
Example

- Step 0
Example

• Step 1
Example

• Step 1
Example

• Step 2
Example

• Step 2
Example

• Step 3
Example

• Step 3
Example

• Step 4...
Random walk

- Question: what is the probability p_i^t of being at node i after t steps?

\[
\begin{align*}
p_1^0 &= \frac{1}{5} & p_1^t &= \frac{1}{3} p_4^{t-1} + \frac{1}{2} p_5^{t-1} \\
p_2^0 &= \frac{1}{5} & p_2^t &= \frac{1}{2} p_1^{t-1} + p_3^{t-1} + \frac{1}{3} p_4^{t-1} \\
p_3^0 &= \frac{1}{5} & p_3^t &= \frac{1}{2} p_1^{t-1} + \frac{1}{3} p_4^{t-1} \\
p_4^0 &= \frac{1}{5} & p_4^t &= \frac{1}{2} p_5^{t-1} \\
p_5^0 &= \frac{1}{5} & p_5^t &= p_2^{t-1}
\end{align*}
\]
Markov chains

- A Markov chain describes a **discrete time stochastic process** over a set of states
 \[S = \{s_1, s_2, \ldots, s_n\} \]
 according to a transition probability matrix \(P = \{P_{ij}\} \)
 - \(P_{ij} \) = probability of moving to state \(j \) when at state \(i \)

- Matrix \(P \) has the property that the entries of all **rows sum to 1**
 \[\sum_j P[i, j] = 1 \]
 A matrix with this property is called **stochastic**

- **State probability distribution**: The vector \(p^t = (p_1^t, p_2^t, \ldots, p_n^t) \) that stores the probability of being at state \(s_i \) after \(t \) steps

- **Memorylessness property**: The next state of the chain depends only at the current state and not on the past of the process (**first order MC**)
 - Higher order MCs are also possible

- **Markov Chain Theory**: After infinite steps the state probability vector **converges** to a unique distribution if the chain is **irreducible** (possible to get from any state to any other state) and **aperiodic**
Random walks

- Random walks on graphs correspond to Markov Chains
 - The set of states S is the set of nodes of the graph G
 - The transition probability matrix is the probability that we follow an edge from one node to another

$$P[i, j] = \frac{1}{\text{deg}_{\text{out}}(i)}$$
An example

\[
A = \begin{bmatrix}
0 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 0 \\
1 & 1 & 1 & 0 & 0 \\
1 & 0 & 0 & 1 & 0
\end{bmatrix}
\]

\[
P = \begin{bmatrix}
0 & 1/2 & 1/2 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
1/3 & 1/3 & 1/3 & 0 & 0 \\
1/2 & 0 & 0 & 1/2 & 0
\end{bmatrix}
\]

![Graph](image-url)
Node Probability vector

• The vector $p^t = (p_i^t, p_2^t, \ldots, p_n^t)$ that stores the probability of being at node v_i at step t

• p_i^0 = the probability of starting from state i (usually) set to uniform

• We can compute the vector p^t at step t using a vector-matrix multiplication

$$p^t = p^{t-1} P$$
An example

$$P = \begin{bmatrix} 0 & 1/2 & 1/2 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 1/3 & 1/3 & 1/3 & 0 & 0 \\ 1/2 & 0 & 0 & 1/2 & 0 \end{bmatrix}$$

\[
\begin{align*}
p_1^t &= \frac{1}{3} p_{4}^{t-1} + \frac{1}{2} p_{5}^{t-1} \\
p_2^t &= \frac{1}{2} p_1^{t-1} + p_3^{t-1} + \frac{1}{3} p_4^{t-1} \\
p_3^t &= \frac{1}{2} p_1^{t-1} + \frac{1}{3} p_4^{t-1} \\
p_4^t &= \frac{1}{2} p_5^{t-1} \\
p_5^t &= p_2^{t-1}
\end{align*}
\]
Stationary distribution

- The **stationary distribution** of a random walk with transition matrix P, is a probability distribution π, such that $\pi = \pi P$

- The stationary distribution is an **eigenvector** of matrix P — the principal left eigenvector of P — stochastic matrices have maximum eigenvalue 1

- The probability π_i is the fraction of times that we visited state i as $t \to \infty$

- **Markov Chain Theory**: The random walk converges to a unique stationary distribution independent of the initial vector if the graph is strongly connected, and not bipartite.
Computing the stationary distribution

- The **Power Method**

```
Initialize $q^0$ to some distribution
Repeat
\[ q^t = q^{t-1} P \]
Until convergence
```

- After **many** iterations $q^t \to \pi$ regardless of the initial vector q^0
- Power method because it computes $q^t = q^0 P^t$

- Rate of convergence
 - determined by the second eigenvalue $\frac{\lambda_2}{\lambda_1}$
The stationary distribution

• What is the meaning of the stationary distribution π of a random walk?
• $\pi(i)$: the probability of being at node i after very large (infinite) number of steps
• $\pi = p_0 P^\infty$, where P is the transition matrix, p_0 the original vector
 – $P(i, j)$: probability of going from i to j in one step
 – $P^2(i, j)$: probability of going from i to j in two steps (probability of all paths of length 2)
 – $P^\infty(i, j) = \pi(j)$: probability of going from i to j in infinite steps – starting point does not matter.
The PageRank random walk

• Vanilla random walk
 – make the adjacency matrix stochastic and run a random walk

\[
P = \begin{bmatrix}
0 & 1/2 & 1/2 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 0 \\
1/3 & 1/3 & 1/3 & 0 & 0 \\
1/2 & 0 & 0 & 1/2 & 0
\end{bmatrix}
\]
The PageRank random walk

• What about sink nodes?
 – what happens when the random walk moves to a node without any outgoing inks?

\[
P = \begin{bmatrix}
0 & 1/2 & 1/2 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
1/3 & 1/3 & 1/3 & 0 & 0 \\
1/2 & 0 & 0 & 1/2 & 0 \\
0 & 0 & 0 & 0 & 0
\end{bmatrix}
\]
The PageRank random walk

• Replace these row vectors with a vector \(v \)
 – typically, the uniform vector

\[
P' = P + dv^T
\]

\[
d = \begin{cases}
1 & \text{if } i \text{ is sink} \\
0 & \text{otherwise}
\end{cases}
\]
The PageRank random walk

• What about loops?
 – Spider traps
The PageRank random walk

• Add a **random jump** to vector v with prob $1 - \alpha$
 – typically, to a uniform vector
• Restarts after $1/(1 - \alpha)$ steps in expectation
 – Guarantees irreducibility, convergence

$$P'' = \alpha P' + (1 - \alpha) uv^T$$

where u is the vector of all 1s

Random walk with restarts
PageRank algorithm [BP98]

• The Random Surfer model
 – pick a page at random
 – with probability $1 - \alpha$ jump to a random page
 – with probability α follow a random outgoing link

• Rank according to the stationary distribution

$$PR(p) = \alpha \sum_{q \rightarrow p} \frac{PR(q)}{|Out(q)|} + (1 - \alpha) \frac{1}{n}$$

$\alpha = 0.85$ in most cases

1. Red Page
2. Purple Page
3. Yellow Page
4. Blue Page
5. Green Page
PageRank: Example
Stationary distribution with random jump

- If v is the jump vector

\[
p^0 = v \\
p^1 = \alpha p^0 P' + (1 - \alpha)v = \alpha v P' + (1 - \alpha)v \\
p^2 = \alpha p^1 P' + (1 - \alpha)v = \alpha^2 v P' P' + (1 - \alpha)v \alpha P' + (1 - \alpha)v \\
\vdots \\
p^n = (1 - \alpha)v + (1 - \alpha)v \alpha P' + (1 - \alpha)v \alpha^2 P' P' + \ldots \\
= (1 - \alpha)(I - \alpha P')^{-1}
\]

- With the random jump the shorter paths are more important, since the weight decreases exponentially
 - makes sense when thought of as a restart

- If v is not uniform, we can bias the random walk towards the nodes that are close to v
 - Personalized and Topic-Specific Pagerank.
Effects of random jump

• Guarantees convergence to unique distribution
• Motivated by the concept of random surfer
• Offers additional flexibility
 – personalization
 – anti-spam
• Controls the rate of convergence
 – the second eigenvalue of matrix P'' is α
Random walks on undirected graphs

• For undirected graphs, the stationary distribution of a random walk is proportional to the degrees of the nodes
 – Thus in this case a random walk is the same as degree popularity

• This is not longer true if we do random jumps
 – Now the short paths play a greater role, and the previous distribution does not hold.
PageRank implementation

• Store the graph in adjacency list, or list of edges
• Keep current pagerank values and new pagerank values
• Go through edges and update the values of the destination nodes.
• Repeat until the difference between the pagerank vectors (L_1 or L_∞ difference) is below some small value ε.
A (Matlab-friendly) PageRank algorithm

- Performing vanilla power method is now too expensive – the matrix is not sparse

\[
q^0 = \nu \\
t = 1 \\
\text{repeat} \quad q^t = (P'')^T q^{t-1} \\
\delta = \|q^t - q^{t-1}\| \\
t = t + 1 \\
\text{until } \delta < \epsilon
\]

Efficient computation of \(y = (P'')^T x \)

\[
y = \alpha P^T x \\
\beta = \|x\|_1 - \|y\|_1 \\
y = y + \beta \nu
\]

\(P = \) normalized adjacency matrix

\(P' = P + d\nu^T \), where \(d_i \) is 1 if \(i \) is sink and 0 o.w.

\(P'' = \alpha P' + (1-\alpha)uv^T \), where \(u \) is the vector of all 1s
PageRank history

• Huge advantage for Google in the early days
 – It gave a way to get an idea for the value of a page, which was useful in many different ways
 • Put an order to the web.
 – After a while it became clear that the anchor text was probably more important for ranking
 – Also, link spam became a new (dark) art
• Flood of research
 – Numerical analysis got rejuvenated
 – Huge number of variations
 – Efficiency became a great issue.
 – Huge number of applications in different fields
 • Random walk is often referred to as PageRank.
THE HITS ALGORITHM
The HITS algorithm

• Another algorithm proposed around the same time as PageRank for using the hyperlinks to rank pages
 – Kleinberg: then an intern at IBM Almaden
 – IBM never made anything out of it
Query dependent input

Root set obtained from a text-only search engine

Root Set
Query dependent input
Query dependent input
Query dependent input
Hubs and Authorities [K98]

- Authority is not necessarily transferred directly between authorities.
- Pages have double identity:
 - hub identity
 - authority identity
- Good hubs point to good authorities.
- Good authorities are pointed by good hubs.
Hubs and Authorities

• Two kind of weights:
 – Hub weight
 – Authority weight

• The hub weight is the sum of the authority weights of the authorities pointed to by the hub

• The authority weight is the sum of the hub weights that point to this authority.
HITS Algorithm

- Initialize all weights to 1.
- Repeat until convergence
 - O operation: hubs collect the weight of the authorities
 \[h_i = \sum_{j:i \to j} a_j \]
 - I operation: authorities collect the weight of the hubs
 \[a_i = \sum_{j:j \to i} h_j \]
 - Normalize weights under some norm
HITS and eigenvectors

- The HITS algorithm is a power-method eigenvector computation
- In vector terms
 - $a^t = A^T h^{t-1}$ and $h^t = A a^{t-1}$
 - $a^t = A^T A a^{t-1}$ and $h^t = A A^T h^{t-1}$
 - Repeated iterations will converge to the eigenvectors
- The **authority** weight vector a is the eigenvector of $A^T A$ and the **hub** weight vector h is the eigenvector of $A A^T$

- The vectors a and h are called the **singular vectors** of the matrix A
Singular Value Decomposition

\[A = U \Sigma V^T = [\tilde{u}_1 \quad \tilde{u}_2 \quad \ldots \quad \tilde{u}_r] [\sigma_1 \quad \sigma_2 \quad \ldots \quad \sigma_r] [\tilde{v}_1 \quad \tilde{v}_2 \quad \ldots \quad \tilde{v}_r] \]

- \(r \): rank of matrix \(A \)
- \(\sigma_1 \geq \sigma_2 \geq \ldots \geq \sigma_r \): singular values (square roots of eig-val's \(AA^T, A^TA \))
- \(\tilde{u}_1, \tilde{u}_2, \ldots, \tilde{u}_r \): left singular vectors (eig-vectors of \(AA^T \))
- \(\tilde{v}_1, \tilde{v}_2, \ldots, \tilde{v}_r \): right singular vectors (eig-vectors of \(A^TA \))

\[A = \sigma_1 \tilde{u}_1 \tilde{v}_1^T + \sigma_2 \tilde{u}_2 \tilde{v}_2^T + \ldots + \sigma_r \tilde{u}_r \tilde{v}_r^T \]
Why does the Power Method work?

• If a matrix R is real and symmetric, it has real eigenvalues and eigenvectors: $(\lambda_1, w_1), (\lambda_2, w_2), \ldots, (\lambda_r, w_r)$
 - r is the rank of the matrix
 - $|\lambda_1| \geq |\lambda_2| \geq \cdots \geq |\lambda_r|$

• For any matrix R, the eigenvectors w_1, w_2, \ldots, w_r of R define a basis of the vector space
 - For any vector x, $Rx = a_1 w_1 + a_2 w_2 + \cdots + a_r w_r$

• After t multiplications we have:
 - $R^t x = \lambda_1^{t-1} a_1 w_1 + \lambda_2^{t-1} a_2 w_2 + \cdots + \lambda_r^{t-1} a_r w_r$

• Normalizing (divide by λ_1^{t-1}) leaves only the term w_1.
Example

Initialize

```
1 "hubs" 1
1 "authorities" 1
```

Diagram showing connections between hubs and authorities.
Step 1: O operation
Step 1: L operation

Example

hubs

authorities
Example

Step 1: Normalization (Max norm)

<table>
<thead>
<tr>
<th>hubs</th>
<th>authorities</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/3</td>
<td></td>
</tr>
<tr>
<td>2/3</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1/3</td>
<td></td>
</tr>
</tbody>
</table>

- 1/3 → 1: 1
- 2/3 → 5/6
- 1 → 5/6
- 2/3 → 2/6
- 1/3 → 1/6
Example

Step 2: O step

```
  1    1
11/6  5/6
16/6  5/6
  7/6  2/6
  1/6  1/6
```

hubs authorities
Example

Step 2: I step

```
          1     33/6
         /           \
        /             \
11/6     27/6
        /             \
        /             \
16/6     23/6
        /             \
        /             \
  7/6     7/6
        /             \
        /             \
 1/6     1/6
```

hubs authorities
Example

Step 2: Normalization

```
  6/16  |  1  
   ▶    |     
  11/16 |  27/33
   ▶    |     
    1   |  23/33
   ▶    |     
  7/16  |  7/33
   ▶    |     
  1/16  |  1/33

hubs    | authorities
```
Example

Convergence

<table>
<thead>
<tr>
<th></th>
<th>hubs</th>
<th>authorities</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.4</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>0.75</td>
<td></td>
<td>0.8</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>0.6</td>
</tr>
<tr>
<td>0.3</td>
<td></td>
<td>0.14</td>
</tr>
<tr>
<td>0</td>
<td></td>
<td>0</td>
</tr>
</tbody>
</table>
The SALSA algorithm

- Perform a random walk on the bipartite graph of hubs and authorities alternating between the two hubs and authorities.
The SALSA algorithm

- Start from an authority chosen uniformly at random
 - e.g. the red authority
The SALSA algorithm

- Start from an authority chosen uniformly at random
 - e.g. the red authority
- Choose one of the in-coming links uniformly at random and move to a hub
 - e.g. move to the yellow authority with probability 1/3
The SALSA algorithm

• Start from an authority chosen uniformly at random
 – e.g. the red authority

• Choose one of the in-coming links uniformly at random and move to a hub
 – e.g. move to the yellow authority with probability 1/3

• Choose one of the out-going links uniformly at random and move to an authority
 – e.g. move to the blue authority with probability 1/2
The SALSA algorithm

• Formally we have probabilities:
 – a_i: probability of being at authority i
 – h_j: probability of being at hub j
• The probability of being at authority i is computed as:
 \[a_i = \sum_{j \in N_{in}(i)} \frac{1}{d_{out}(j)} h_j \]
• The probability of being at hub j is computed as
 \[h_j = \sum_{i \in N_{out}(j)} \frac{1}{d_{in}(i)} a_i \]
• Repeated computation converges
The SALSA algorithm [LM00]

• In matrix terms
 – $A_c = \text{the matrix } A \text{ where columns are normalized to sum to 1}$
 – $A_r = \text{the matrix } A \text{ where rows are normalized to sum to 1}$

• The hub computation
 – $h = A_c a$

• The authority computation
 – $a = A_r^T h = A_r^T A_c a$

• In MC terms the transition matrix
 – $P = A_r A_c^T$

$h_2 = \frac{1}{3} a_1 + \frac{1}{2} a_2$

$a_1 = h_1 + \frac{1}{2} h_2 + \frac{1}{3} h_3$
ABSORBING RANDOM WALKS
LABEL PROPAGATION
OPINION FORMATION ON SOCIAL NETWORKS
Random walk with absorbing nodes

• What happens if we do a random walk on this graph? What is the stationary distribution?

• All the probability mass on the red sink node:
 – The red node is an absorbing node
Random walk with absorbing nodes

• What happens if we do a random walk on this graph? What is the stationary distribution?

• There are two absorbing nodes: the red and the blue.
• The probability mass will be divided between the two
Absorption probability

- If there are more than one absorbing nodes in the graph a random walk that starts from a non-absorbing node will be absorbed in one of them with some probability.
 - The probability of absorption gives an estimate of how close the node is to red or blue.
Absorption probability

• Computing the probability of being absorbed:
 – The absorbing nodes have probability 1 of being absorbed in themselves and zero of being absorbed in another node.
 – For the non-absorbing nodes, take the (weighted) average of the absorption probabilities of your neighbors
 • if one of the neighbors is the absorbing node, it has probability 1
 – Repeat until convergence (= very small change in probs)

\[
P(\text{Red}|\text{Pink}) = \frac{2}{3} P(\text{Red}|\text{Yellow}) + \frac{1}{3} P(\text{Red}|\text{Green})
\]

\[
P(\text{Red}|\text{Green}) = \frac{1}{4} P(\text{Red}|\text{Yellow}) + \frac{1}{4}
\]

\[
P(\text{Red}|\text{Yellow}) = \frac{2}{3}
\]
Absorption probability

- Computing the probability of being absorbed:
 - The absorbing nodes have probability 1 of being absorbed in themselves and zero of being absorbed in another node.
 - For the non-absorbing nodes, take the (weighted) average of the absorption probabilities of your neighbors
 - if one of the neighbors is the absorbing node, it has probability 1
 - Repeat until convergence (= very small change in probs)

\[
P(\text{Blue} | \text{Pink}) = \frac{2}{3} P(\text{Blue} | \text{Yellow}) + \frac{1}{3} P(\text{Blue} | \text{Green})
\]

\[
P(\text{Blue} | \text{Green}) = \frac{1}{4} P(\text{Blue} | \text{Yellow}) + \frac{1}{2}
\]

\[
P(\text{Blue} | \text{Yellow}) = \frac{1}{3}
\]
Why do we care?

• Why do we care to compute the absorption probability to sink nodes?

• Given a graph (directed or undirected) we can choose to make some nodes absorbing.
 – Simply direct all edges incident on the chosen nodes towards them.

• The absorbing random walk provides a measure of proximity of non-absorbing nodes to the chosen nodes.
 – Useful for understanding proximity in graphs
 – Useful for propagation in the graph
 • E.g., on a social network some nodes have high income, some have low income, to which income class is a non-absorbing node closer?
Example

• In this undirected graph we want to learn the proximity of nodes to the red and blue nodes
Example

• Make the nodes absorbing
Absorption probability

- Compute the absorption probabilities for red and blue

\[
P(\text{Red} | \text{Pink}) = \frac{2}{3} P(\text{Red} | \text{Yellow}) + \frac{1}{3} P(\text{Red} | \text{Green})
\]

\[
P(\text{Red} | \text{Green}) = \frac{1}{5} P(\text{Red} | \text{Yellow}) + \frac{1}{5} P(\text{Red} | \text{Pink}) + \frac{1}{5}
\]

\[
P(\text{Red} | \text{Yellow}) = \frac{1}{6} P(\text{Red} | \text{Green}) + \frac{1}{3} P(\text{Red} | \text{Pink}) + \frac{1}{3}
\]

\[
P(\text{Blue} | \text{Pink}) = 1 - P(\text{Red} | \text{Pink})
\]

\[
P(\text{Blue} | \text{Green}) = 1 - P(\text{Red} | \text{Green})
\]

\[
P(\text{Blue} | \text{Yellow}) = 1 - P(\text{Red} | \text{Yellow})
\]
Penalizing long paths

- The orange node has the same probability of reaching red and blue as the yellow one.

\[P(\text{Red}|\text{Orange}) = P(\text{Red}|\text{Yellow}) \]
\[P(\text{Blue}|\text{Orange}) = P(\text{Blue}|\text{Yellow}) \]

- Intuitively though it is further away.
Penalizing long paths

• Add an universal absorbing node to which each node gets absorbed with probability α.

With probability α the random walk dies

With probability $(1-\alpha)$ the random walk continues as before

The longer the path from a node to an absorbing node the more likely the random walk dies along the way, the lower the absorption probability

$$P(\text{Red}|\text{Green}) = (1 - \alpha) \left(\frac{1}{5} P(\text{Red}|\text{Yellow}) + \frac{1}{5} P(\text{Red}|\text{Pink}) + \frac{1}{5} \right)$$
Propagating values

- Assume that Red has a positive value and Blue a negative value
 - Positive/Negative class, Positive/Negative opinion
- We can compute a value for all the other nodes in the same way
 - This is the expected value for the node

\[
V(\text{Pink}) = \frac{2}{3} V(\text{Yellow}) + \frac{1}{3} V(\text{Green})
\]

\[
V(\text{Green}) = \frac{1}{5} V(\text{Yellow}) + \frac{1}{5} V(\text{Pink}) + \frac{1}{5} - \frac{2}{5}
\]

\[
V(\text{Yellow}) = \frac{1}{6} V(\text{Green}) + \frac{1}{3} V(\text{Pink}) + \frac{1}{3} - \frac{1}{6}
\]
Electrical networks and random walks

- Our graph corresponds to an electrical network
- There is a positive voltage of $+1$ at the Red node, and a negative voltage -1 at the Blue node
- There are resistances on the edges inversely proportional to the weights (or conductance proportional to the weights)
- The computed values are the voltages at the nodes

\[
V(Pink) = \frac{2}{3}V(Yellow) + \frac{1}{3}V(Green)
\]

\[
V(Green) = \frac{1}{5}V(Yellow) + \frac{1}{5}V(Pink) + \frac{1}{5} - \frac{2}{5}
\]

\[
V(Yellow) = \frac{1}{6}V(Green) + \frac{1}{3}V(Pink) + \frac{1}{3} - \frac{1}{6}
\]
Opinion formation

• The value propagation can be used as a model of opinion formation.
• Model:
 – Opinions are values in [-1,1]
 – Every user u has an internal opinion s_u, and expressed opinion z_u.
 – The expressed opinion minimizes the personal cost of user u:
 \[c(z_u) = (s_u - z_u)^2 + \sum_{v: v \text{ is a friend of } u} w_u (z_u - z_v)^2 \]
 • Minimize deviation from your beliefs and conflicts with the society

• If every user tries independently (selfishly) to minimize their personal cost then the best thing to do is to set z_u to the average of all opinions:
 \[z_u = \frac{s_u + \sum_{v: v \text{ is a friend of } u} w_u z_v}{1 + \sum_{v: v \text{ is a friend of } u} w_u} \]
 • This is the same as the value propagation we described before!
Example

- Social network with internal opinions
One absorbing node per user with value the **internal opinion** of the user

One non-absorbing node per user that links to the corresponding absorbing node

The **external opinion** for each node is computed using the value propagation we described before

- Repeated averaging

Intuitive model: my opinion is a combination of what I believe and what my social network believes.
Transductive learning

• If we have a graph of relationships and some labels on some nodes we can propagate them to the remaining nodes
 – Make the labeled nodes to be absorbing and compute the probability for the rest of the graph
 – E.g., a social network where some people are tagged as spammers
 – E.g., the movie-actor graph where some movies are tagged as action or comedy.

• This is a form of semi-supervised learning
 – We make use of the unlabeled data, and the relationships

• It is also called transductive learning because it does not produce a model, but just labels the unlabeled data that is at hand.
 – Contrast to inductive learning that learns a model and can label any new example
Implementation details

- Implementation is in many ways similar to the PageRank implementation
 - For an edge \((u, v)\) instead of updating the value of \(v\) we update the value of \(u\).
 - The value of a node is the average of its neighbors
 - We need to check for the case that a node \(u\) is absorbing, in which case the value of the node is not updated.
 - Repeat the updates until the change in values is very small.