
Information Networks

Small World Networks
Lecture 5



Announcement

§ The first assignment is out
§ There will be a tutorial this Monday, April 4

where Evimaria will present some helpful
material and you can also ask questions
about the assignment



Small world Phenomena

§ So far we focused on obtaining graphs
with power-law distributions on the
degrees. What about other properties?
§ Clustering coefficient: real-life networks tend

to have high clustering coefficient
§ Short paths: real-life networks are “small

worlds”
§ Can we combine these two properties?



Small-world Graphs

§ According to Watts [W99]
§ Large networks (n >> 1)
§ Sparse connectivity (avg degree k << n)
§ No central node (kmax << n)
§ Large clustering coefficient (larger than in

random graphs of same size)
§ Short average paths (~log n, close to those of

random graphs of the same size)



The Caveman Model [W99]

§ The random graph
§ edges are generated completely at random
§ low avg. path length L logn/logk
§ high clustering coefficient C ~ k/n

§ The Caveman model
§ edges follow a structure
§ high avg. path length L ~ n/k
§ high clustering coefficient C ~ 1-O(1/k)

§ Can we interpolate between the two?



Mixing order with randomness

§ Inspired by the work of Solmonoff and Rapoport
§ nodes that share neighbors should have higher probability to be

connected
§ Generate an edge between i and j with probability proportional to Rij

§ When = 0, edges are determined by common neighbors
§ When = edges are independent of common neighbors
§ For intermediate values we obtain a combination of order and

randomness
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neighbors of i and j

p = very small probability



Algorithm

§ Start with a ring
§ For i = 1 … n
§ Select a vertex j with probability proportional

to Rij and generate an edge (i,j)
§ Repeat until k edges are added to each

vertex



Clustering coefficient – Avg path length

small world graphs



Watts and Strogatz model [WS98]

§ Start with a ring, where every node is connected to the
next k nodes

§ With probability p, rewire every edge (or, add a shortcut)
to a uniformly chosen destination.
§ Granovetter, “The strength of weak ties”

order randomness

p = 0 p = 10 < p < 1



Clustering Coefficient –
Characteristic Path Length

log-scale in p

When p = 0, C = 3(k-2)/4(k-1) ~ ¾
L = n/k

For small p, C ~ ¾
L ~ logn



Graph Theory Results

§ Graph theorist failed to be impressed.
Most of these results were known.
§ Bolobas and Chung 88
§ superimposing a random matching to a ring

yields diameter O(logn)



Milgram’s experiment revisited

§ What did Milgram’s experiment show?
§ (a) There are short paths in large networks

that connect individuals
§ (b) People are able to find these short paths

using a simple, greedy, decentralized
algorithm

§ Small world models take care of (a)
§ Kleinberg: what about (b)?



Kleinberg’s model

§ Consider a directed 2-dimensional lattice
§ For each vertex u add q shortcuts
§ choose vertex v as the destination of the shortcut with probability

proportional to [d(u,v)]-r

§ when r = 0, we have uniform probabilities



Searching in a small world

§ Given a source s and a destination t, define a greedy local search
algorithm that

1. knows the positions of the nodes on the grid
2. knows the neighbors and shortcuts of the current node
3. knows the neighbors and shortcuts of all nodes seen so far
4. operates greedily, each time moving as close to t as possible

§ Kleinberg proved the following
§ When r=2, an algorithm that uses only local information at each node

(not 2) can reach the destination in expected time O(log2n).
§ When r<2 a local greedy algorithm (1-4) needs expected time

(n(2-r)/3).
§ When r>2 a local greedy algorithm (1-4) needs expected time

(n(r-2)/(r-1)).
§ Generalizes for a d-dimensional lattice, when r=d (query time is

independent of the lattice dimension)
• d = 1, the Watts-Strogatz model



Searching in a small world

§ For r < 2, the graph has paths of logarithmic length
(small world), but a greedy algorithm cannot find them

§ For r > 2, the graph does not have short paths
§ For r = 2 is the only case where there are short paths,

and the greedy algorithm is able to find them



Proof of the upper bound



Proof of the upper bound



Extensions

§ If there are logn shortcuts, then the search
time is O(logn)
§ we save the time required for finding the

shortcut

§ If we know the shortcuts of logn neighbors
the time becomes O(log1+1/dn)



Other models

§ Lattice captures geographic distance. How do
we capture social distance (e.g. occupation)?
§ Hierarchical organization of groups
§ distance h(i,j) = height of Least Common Ancestor



Other models

§ Generate links between leaves with probability
proportional to b h(i,j)

§ b=2 the branching factor



Other models

§ Theorem: For =1 there is a polylogarithimic
search algorithm. For 1 there is no
decentralized algorithm with poly-log time
§ note that =1 and the exponential dependency results

in uniform probability of linking to the subtrees



Degree distributions

§ The small world models do not exhibit power law
distributions

§ Recently there are efforts towards creating scale
free small world networks



Searching Power-law networks

§ Kleinberg considered the case that you
can fix your network as you wish. What if
you cannot?
§ [Adamic et al.] Instead of performing

simple BFS flooding, pass the message to
the neighbor with the highest degree
§ Reduces the number of messages to

O(n(a-2)/(a-1))
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