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Announcement

§ The first assignment will be handed out
after the spring break
§ The second assignment around middle of

April

§ You should send me an e-mail about the
type of project that you intend to do within
the next week.



Power Laws - Recap

§ A (continuous) random variable X follows a
power-law distribution if it has density function

§ A (continuous) random variable X follows a
Pareto distribution if it has cumulative function

§ A (discrete) random variable X follows Zipf’s law
if the frequency of the r-th largest value satisfies
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Power Laws – Generative processes

§ We have seen that power-laws appear in
various natural, or man-made systems

§ What are the processes that generate
power-laws?

§ Is there a “universal” mechanism?



Combination of exponentials

§ If variable Y is exponentially distributed

§ If variable X is exponentially related to Y

§ Then X follows a power law

§ Model for population of organisms
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Monkeys typing randomly

§ Consider the following generative model for a
language [Miller 57]
§ The space appears with probability qs
§ The remaining m letters appear with equal probability

(1-qs)/m

§ Frequency of words follows a power law!
§ Real language is  not random. Not all letter

combinations are equally probable, and there are
not many long words



Least effort principle

§ Let Cj be the cost of transmitting the j-th most
frequent word

§ The average cost is

§ The average information content is

§ Minimizing cost per information unit C/H yields
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Critical phenomena

§ When the characteristic scale of a system
diverges, we have a phase transition.
§ Critical phenomena happen at the vicinity

of the phase transition. Power-law
distributions appear



Percolation on a square lattice

§ Each cell is occupied with probability p

§ What is the mean cluster size?



Critical phenomena and power laws

§ For p < pc mean size is independent of the lattice size
§ For p > pc mean size diverges (proportional to the lattice

size - percolation)
§ For p = pc we obtain a power law distribution on the

cluster sizes

pc = 0.5927462…



Self Organized Criticality

§ Consider a dynamical system where trees appear in each cell with
probability p, and fires strike cells randomly

§ The system eventually stabilizes at the critical point, resulting in
power-law distribution of cluster (and fire) sizes



Preferential attachment

§ The main idea is that “the rich get richer”
§ first studied by Yule for the size of biological genera
§ revisited by Simon
§ reinvented multiple times

§ Also known as
§ Gibrat principle
§ cumulative advantage
§ Mathew effect



The Yule process

§ A genus obtains species with probability
proportional to its current size
§ Every m new species, the m+1 species

creates a new genus

§ The sizes of genera follows a power law
with

( )m12
k k~p +−



Preferential Attachment in Networks

§ First considered by [Price 65] as a model for
citation networks
§ each new paper is generated with m citations (mean)
§ new papers cite previous papers with probability

proportional to their indegree (citations)
§ what about papers without any citations?

• each paper is considered to have a “default” citation
• probability of citing a paper with degree k, proportional to k+1

§ Power law with exponent = 2+1/m



Barabasi-Albert model

§ Undirected(?) model: each node connects
to other nodes with probability proportional
to their degree
§ the process starts with some initial subgraph
§ each node comes with m edges

§ Results in power-law with exponent = 3



The LCD model [Bollobas-Riordan]

§ Self loops and multiple edges are allowed
§ A new vertex v, connects to a vertex u with

probability proportional to the degree of u,
counting the new edge.
§ The m edges are inserted sequentially,

thus the problem reduces to studying the
single edge problem



Linearized Chord Diagram

§ Consider 2n nodes labeled {1,2,…,2n}
placed on a line in order.



Linearized Chord Diagram

§ Generate a random matching of the
nodes.



Linearized Chord Diagram

§ Starting from left to right identify all endpoints until the
first right endpoint. This is node 1. Then identify all
endpoints until the second right endpoint to obtain node
2, and so on.



Linearized Chord Diagram

§ Uniform distribution over matchings gives uniform
distribution over all graphs in the preferential attachment
model



Linearized Chord Diagram

§ Uniform distribution over matchings gives uniform
distribution over all graphs in the preferential attachment
model
§ each supernode has degree proportional to the nodes it contains
§ consider adding a new chord, with the right endpoint being in the

rightmost position and the left being placed uniformly



Preferential attachment graphs

§ Expected diameter
§ if m = 1, the diameter is (log n)
§ if m > 1, the diameter is (log n/loglog n)

§ Expected clustering coefficient
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Weaknesses of the BA model

§ It is not directed (not good as a model for the Web) and when
directed it gives acyclic graphs

§ It focuses mainly on the (in-) degree and does not take into account
other parameters (out-degree distribution, components, clustering
coefficient)

§ It correlates age with degree which is not always the case
§ Yet, it was a significant contribution in the network research

§ Many variations have been considered some in order to address the
above problems
§ edge rewiring, appearance and disappearance
§ fitness parameters
§ variable mean degree
§ non-linear preferential attachment



Copying model

§ Each node has constant out-degree d
§ A new node selects uniformly one of the

existing nodes as a prototype
§ For the i-th outgoing link
§ with probability it copies the i-th link of the

prototype node
§ with probability 1- it selects the target of the

link uniformly at random



An example



Copying model properties

§ Power law degree distribution with
exponent = (2- )/(1- )
§ Number of bipartite cliques of size i x d is

ne-i

§ The model was meant to capture the
topical nature of the Web
§ It has also found applications in biological

networks



Other graph models

§ Cooper Frieze model
§ multiple parameters that allow for adding

vertices, edges, preferential attachment,
uniform linking

§ Directed graphs [Bollobas et al]
§ allow for preferential selection of both the

source and the destination
§ allow for edges from both new and old

vertices



Other interesting distributions

§ The log-normal distribution
§ The variable Y = log X  follows a normal

distribution
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Lognormal distribution

§ Generative model: Multiplicative process

§ Central Limit Theorem: If X1,X2,…,Xn are i.i.d.
variables with mean m and finite variance s, then
if Sn = X1+X2+…+Xn

§ When the multiplicative process has a reflective
boundary, it gives a power law distribution
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Double Pareto distribution

§ Run the multiplicative process for T steps,
where T is an exponentially distributed
random variable

§ Double Pareto: Combination of two Pareto
distributions
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