Information Networks

Failures and Epidemics In
Networks

Lecture 12




e Spread In Networks

§ Understanding the spread of viruses (or rumors,
iInformation, failures etc) is one of the driving
forces behind network analysis

predict and prevent epidemic outbreaks (e.g. the
SARS outbreak)

protect computer networks (e.g. against worms)
predict and prevent cascading failures (U.S. power
grid)
understanding of fads, rumors, trends

« viral marketing

anti-terrorism?



B Percolation in Networks

8 . Each of the network is
randomly set as occupied or not-occupied. We
are interested in measuring the size of the
largest connected component of occupied
vertices

8 . Each of the network is
randomly set as occupied or not-occupied. We
are interested in measuring the size of the
largest component of nodes connected by
occupied edges

§ Good model for failures or attacks



B Percolation Threshold

§ How many nodes should be occupied in
order for the network to not have a giant
component? (the network does not

)



y Percolation Threshold for the
f 1 configuration model

§ If p, Is the fraction of nodes with degree k, then if
a fraction g of the nodes is occupied, the
probability of a node to have degree m Is

s aKO m
pm = a. pk g:l (1- q)k
k=m mﬂ

§8 This defines a new configuration model
apply the known threshold

§ For scale free graphs we have q. = 0 for power
law exponent less than 3!

there is always a giant component (the network
always percolates)



BN Percolation threshold

§ An analysis for general graphs is and
general occupation probabilities Is
possible

for scale free graphs it yields the same results

§ But ... if the nodes are removed
preferentially (according to degree), then it
IS easy to disconnect a scale free graph by
removing a small fraction of the edges



g Network resilience

§ Scale-free graphs are resilient to random attacks, but
sensitive to targeted attacks. For random networks there
IS smaller difference between the two
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B Real networks

Internet WWW
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e Cascading failures

§ Each node has a load and a capacity that
says how much load it can tolerate.

§ When a node I1s removed from the network
its load Is redistributed to the remaining
nodes.

§ If the load of a node exceeds Its capacity,
then the node falls



e Cascading fallures: example

§8 The load of a node is the betweeness
centrality of the node
8 The capacity of the node is C = (1+b)L

the parameter b captures the additional load a
node can handle
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Fig. 2. Cascading failure in scale-free networks with scaling exponent v = 3, as trig-
gered by the removal of one node chosen at random (squares), or among those with
largest connectivities (stars) or highest loads (circles). Each curve corresponds to the
average over b triggers and 10 realizations of the network. The error bars represent the
standard deviation. The number of nodes in the largest component is 5000 < N < 5100.



e 1he SIR model

§ Each node may be in the following states
Susceptible: healthy but not immune
Infected: has the virus and can actively propagate it

Recovered: (or Removed/Immune/Dead) had the
virus but it is no longer active

§8 Infection rate p: probability of getting infected by
a neighbor per unit time

§ Immunization rate g: probability of a node
getting recovered per unit time



e [ he SIR model

§ It can be shown that virus propagation can
e reduced to the bond-percolation
oroblem for appropriately chosen
orobabilities

again, there is no percolation threshold for
scale-free graphs




I A simple SIR model

§ Time proceeds In discrete time-steps

§ If a node is infected at time t it infects all
Its neighbors with probability p

§ Then the node becomes recovered (g =1)

Time 2 Time 3

Time 1



The caveman small-world graphs
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ease spreading dynamics on a network generated by the a-model at clustered and
random extremes.



B The SIS model

each node may be healthy (susceptible) or
iInfected

a healthy node that has an infected neighbor
becomes infected with probability p

an infected node becomes healthy with
probability g

spreading rate r=p/q



B Epidemic Threshold

§ The epidemic threshold for the SIS model is a
value r_ such that for r < r_ the virus dies out,
while for r > r_ the virus spreads.

§ For homogeneous graphs, :
1
G
§ For scale free graphs
_ (k)
. =7
(k)
§8 For exponent less than 3, the variance is infinite,
and the epidemic threshold is zero




B An eigenvalue point of view

§ Consider the SIS model, where
neighbor may infect a node with probability
p. The probability of getting cured is g

8§ If A is the adjacency matrix of the network,
then the virus dies out if

Al(A)£g

§ That Is, the epidemic threshold is r.=1/A,(A)
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B Percolation in Networks

8 . Each of the network is
randomly set as occupied or not-occupied. We
are interested in measuring the size of the
largest connected component of occupied
vertices

8 . Each of the network is
randomly set as occupied or not-occupied. We
are interested in measuring the size of the
largest component of nodes connected by
occupied edges

§ Good model for failures or attacks



g Network resilience

§ Scale-free graphs are resilient to random attacks, but
sensitive to targeted attacks. For random networks there
IS smaller difference between the two

Scale-free
1.0 ,_.'_ 10777717
08 | {08 %1 (b) -
0.6 do6 F o -
(ﬂ | L }

04 | {04 b o -
02 o il 102 | .

- D':h—l—.—.—. I = 4 mumn

{}l::]' I : ; DG 1 e =
00 02 04 06 06 10 00 02 04 06 08 10



e 1he SIR model

§ Each node may be in the following states
Susceptible: healthy but not immune
Infected: has the virus and can actively propagate it

Recovered: (or Removed/Immune/Dead) had the
virus but it is no longer active

§8 Infection rate p: probability of getting infected by
a neighbor at time t

§ Immunization rate g: probability of a node
getting recovered at time t



B The SIS model

each node may be healthy (susceptible) or
iInfected

a healthy node that has an infected neighbor
becomes infected with probability p

an infected node becomes healthy with
probability g

spreading rate r=p/q



B Epidemic Threshold

§ The epidemic threshold for the SIS model is a
value r_ such that for r < r_ the virus dies out,
while for r > r_ the virus spreads.

§ For homogeneous graphs, :
1
G
§ For scale free graphs
_ (k)
. =7
(k)
§8 For exponent less than 3, the variance is infinite,
and the epidemic threshold is zero




N An eigenvalue point of view

§ Time proceeds in discrete timesteps. At time t,

an infected node u infects a healthy neighbor v with
probability p.

node u becomes healthy with probability g

§ If A Is the adjacency matrix of the network, then
the virus dies out If

Al(A)£g

§ That is, the epidemic threshold is r.=1/A;(A)



g Multiple copies model

§ Each node may have multiple copies of the
same virus

V. state vector
* v, : number of virus copies at node |

§ Attime t = 0, the state vector is initialized to v°

§ Attime t,
For each node |
For each of the v virus copies at node |
the copy Is propagated to a neighbor | with prob p
the copy dies with probability g



Analysis

§ The expected state of the system at time t is
given by
v =(pA +(L- g)i v
8§ Asta « -
if \,(pA+(1-q)l)<10 A(A)<g/pthenv'® 0
- the probability that all copies die converges to 1
if \,(pA+(1-q)l)=10 A, (A)=qg/pthenVv'® c
= the probability that all copies die converges to 1
if \,(pA+(1-q)l)>10 A (A)=g/pthenVv'® ¥

= the probability that all copies die converges to a constant < 1



BN [mmunization

§ Given a network that contains viruses,
which nodes should we iImmunize in order
to contain the spread of the virus?

§ The flip side of the percolation theory



A |mmunization of SF graphs

§ Uniform immunization vs Targeted
Immunization
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M |mMmunizing aquaintances

§ Pick a fraction f of nodes In the graph, and
Immunize one of their acquaintances

you should gravitate towards nodes with high
degree




Mumber of removed nodes

§ Repeatedly remove the node with the
highest value In the principal eigenvector
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§ Real graphs
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g GOoSssIp

§ Gossip can also be thought of as a virus
that propagates in a social network.

§ Understanding gossip propagation Is
Important for understanding social
networks, but also for marketing purposes

§ Provides also a for
the network




N Independent cascade model

§ Each node may be (has the gossip)
or (does not have the gossip)

§ Time proceeds at discrete time-steps. At
time t, every node v that became active In
time t-1 actives a non-active neighbor w
with probability p,,. If it fails, it does not try
again

the same as the simple SIR model



e A simple SIR model

§ Time proceeds In discrete time-steps

§ If a node u Is Infected at time t It infects
neighbor v with probabillity p,,

§ Then the node becomes recovered (g =1)

Time 2 Time 3

Time 1



e Linear threshold model

§ Each node may be (has the gossip) or
(does not have the gossip)

§ Every directed edge (u,v) in the graph has a weight b,
such that .
ab, £1

v is a neighbor of u

§ Each node u has a threshold value T (set uniformly at
random)

§ Time proceeds in discrete time-steps. Attime t an
Inactive node u becomes active if

é. bVU > TU

v is an active neighbor of u



B |INnfluence maximization

§ for a set of nodes A (target
set) the influence s(A) Is the expected number of
active nodes at the end of the diffusion process

If the gossip Is originally placed in the nodes In
A.

8 [KKTO3]: Given
an network, a diffusion model, and a value k,

identify a set A of k nodes in the network that
maximizes s(A).

§ The problem is NP-hard



B Submodular functions

§ Let f:2YaR be a function that maps the
subsets of universe U to the real numbers

§ The function f is submodular if
fSE{v})- f(s)2 f(TE{v})- £(T)
when SI T
the principle of diminishing returns



y Approximation algorithms for
B maximization of submodular functions

§ The problem: given a universe U, a function f, and a
value k compute the subset S of U of size k that
maximizes the value f(S)

§ The Greedy algorithm

at each round of the algorithm add to the solution set S the
element that causes the maximum increase in function f

§ Theorem: For any submodular function f, the Greedy
algorithm computes a solution S that is a (1-1/e)-
approximation of the optimal solution S

f(S) 2(1-1/e)f(S*)
f(S) i1s no worse than 63% of the optimal



e Submodularity of influence

§ How do we deal with the fact that influence
IS defined as an expectation?

§ Express s(A) as an expectation over the
Input rather than the choices of the
algorithm



BN Independent cascade model

§ Each edge (u,v) is considered only once, and it is
“activated” with probability p .

§ We can assume that all random choices have been
made in advance

generate a subgraph of the input graph where edge (u,v) is
iIncluded with probability p,,

propagate the gossip deterministically on the input graph
the active nodes at the end of the process are the nodes
reachable from the target set A
§ The influence function is obviously submodular when
propagation is deterministic

§ The weighted combination of submodular functions is
also a submodular function



e Linear Threshold model

§ Setting the thresholds in advance does not
work

§ For every node u, sample one of the
edges pointing to node u, with probabillity
b,, and make it “live”, or select no edge
with probability 1-> b,

§ Propagate deterministically on the
resulting graph



N Model equivalence

§ For a target set A, the following two
distributions are equivalent

The distribution over active sets obtained by
running the Linear Threshold model starting
from A

The distribution over sets of nodes reachable
from A, when live edges are selected as
previously described.



e Simple case: DAG

§ Compute the topological sort of the nodes
In the graph and consider them in this
order.

§ If S, neighbors of node | are active then the
probability that it becomes active is a b;

iI's

§ This Is also the probabillity that one of the
nodes in S, Is sampled

§ Proceed inductively



e General graphs

§ Let A, be the set of active nodes at the end
of the t-th iteration of the algorithm

§ Prob that inactive node v becomes active
at time t, given that it has not become
active so far, Is

o)
a ul A- A, bUV
[e]

ul A, U




R General graphs

§ Starting from the target set, at each step we
reveal the live edges from reachable nodes

§ Each live edge Is revealed only when the source
of the link becomes reachable

§ The probability that node v becomes reachable
at time t, given that it was not reachable at time
-1 1s the probability that there is an live edge
from the set A, — A,

o)
a ul Ag- A, bUV
[e]

1- a ul Ay q bUV




I Experiments
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™ Gossip as a method for diffusion of
i information

§8 In a sensor network a node acquires some new
iInformation. How does it propagate the
iInformation to the rest of the sensors with a small

number of messages”?

§ We want
all nodes to receive the message fast (in logn time)

the neighbors that are (spatially) closer to the node to
receive the information faster (in time independent of n)



B Information diffusion algorithms

§ Consider points on a lattice

§ Randomized rumor spreading: at each round each node
sends the message to a node chosen uniformly at
random

time to inform all nodes O(logn)
same time for a close neighbor to receive the message

§ Neighborhood flooding: a node sends the message to all
of its neighbors, one at the time, in a round robin fashion
a node at distance d receives the message in time O(d)
time to inform all nodes is O(/n)



B Spatial gossip algorithm

§ At each round, each node u sends the
message to the node v with probabillity
proportional to d ", where D is the
dimension of the latticeand 1 <r <2

§ The message goes from node u to node v
In time logarithmic in d . On the way It
stays within a small region containing both
uandv
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