Information Networks

Rank Aggregation Lecture 10

Announcement

- § The second assignment will be a presentation
 - you must read a paper and present the main idea in 20 minutes
 - § Deadline: May 3rd, submit slides
 - § Presentations will take place in the last week
 - If you have problem with english you can come and see me, it is possible to do a reaction paper, but it will require reading at least two papers
- § Papers for presentation
 - § papers in the reading list that were not presented in class
 - § additional papers will be posted soon
 - § notify me soon (or come to discuss it) about which paper you will be presenting
- § Projects
 - § Deadline: May 17th (can be extended for difficult projects)
 - § Arrange a meeting to discuss about your project

Rank Aggregation

§ Given a set of rankings R₁,R₂,...,R_m of a set of objects X₁,X₂,...,X_n produce a single ranking R that is in agreement with the existing rankings

Examples

- § Voting
 - § rankings $R_1, R_2, ..., R_m$ are the voters, the objects $X_1, X_2, ..., X_n$ are the candidates.

Examples

- § Combining multiple scoring functions
 - § rankings R₁,R₂,...,R_m are the scoring functions, the objects X₁,X₂,...,X_n are data items.
 - Combine the PageRank scores with termweighting scores
 - Combine scores for multimedia items
 - § color, shape, texture
 - Combine scores for database tuples
 - § find the best hotel according to price and location

Examples

- § Combining multiple sources
 - § rankings $R_1, R_2, ..., R_m$ are the sources, the objects $X_1, X_2, ..., X_n$ are data items.
 - meta-search engines for the Web
 - distributed databases
 - P2P sources

Variants of the problem

- § Combining scores
 - § we know the scores assigned to objects by each ranking, and we want to compute a single score
- § Combining ordinal rankings
 - § the scores are not known, only the ordering is known
 - § the scores are known but we do not know how, or do not want to combine them
 - e.g. price and star rating



- § Each object X_i has m scores (r_{i1},r_{i2},...,r_{im})
- § The score of object X_i is computed using an aggregate scoring function f(r_{i1},r_{i2},...,r_{im})

	R_1	R_2	R_3
X ₁	1	0.3	0.2
X ₂	0.8	0.8	0
X_3	0.5	0.7	0.6
X ₄	0.3	0.2	8.0
X ₅	0.1	0.1	0.1

- § Each object X_i has m scores
 (r_{i1},r_{i2},...,r_{im})
- § The score of object X_i is computed using an aggregate scoring function f(r_{i1},r_{i2},...,r_{im})
 § f(r_{i1},r_{i2},...,r_{im}) = min{r_{i1},r_{i2},...,r_{im}}

	R_1	R_2	R_3	R
X_1	1	0.3	0.2	0.2
X ₂	8.0	0.8	0	0
X_3	0.5	0.7	0.6	0.5
X ₄	0.3	0.2	0.8	0.2
X ₅	0.1	0.1	0.1	0.1

- § Each object X_i has m scores (r_{i1},r_{i2},...,r_{im})
- § The score of object X_i is computed using an aggregate scoring function f(r_{i1},r_{i2},...,r_{im})
 § f(r_{i1},r_{i2},...,r_{im}) = max{r_{i1},r_{i2},...,r_{im}}

	R_1	R_2	R_3	R
X_1	1	0.3	0.2	1
X ₂	0.8	0.8	0	8.0
X_3	0.5	0.7	0.6	0.7
X_4	0.3	0.2	0.8	8.0
X ₅	0.1	0.1	0.1	0.1

- § Each object X_i has m scores
 (r_{i1},r_{i2},...,r_{im})
- § The score of object X_i is computed using an aggregate scoring function $f(r_{i1}, r_{i2}, ..., r_{im})$

§
$$f(r_{i1}, r_{i2}, ..., r_{im}) = r_{i1} + r_{i2} + ... + r_{im}$$

	R_1	R_2	R_3	R
X ₁	1	0.3	0.2	1.5
X ₂	8.0	0.8	0	1.6
X_3	0.5	0.7	0.6	1.8
X ₄	0.3	0.2	0.8	1.3
X ₅	0.1	0.1	0.1	0.3

Top-k

- § Given a set of n objects and m scoring lists sorted in decreasing order, find the top-k objects according to a scoring function f
- \$ top-k: a set T of k objects such that f(r_{j1},...,r_{jm}) ≤
 f(r_{i1},...,r_{im}) for every object X_i in T and every
 object X_i not in T
- § Assumption: The function f is monotone § $f(r_1,...,r_m) \le f(r_1',...,r_m')$ if $r_i \le r_i'$ for all i
- § Objective: Compute top-k with the minimum cost

Cost function

- § We want to minimize the number of accesses to the scoring lists
- § Sorted accesses: sequentially access the objects in the order in which they appear in a list § cost C_s
- § Random accesses: obtain the cost value for a specific object in a list
 - § cost C_r
- § If s sorted accesses and r random accesses minimize s C_s + r C_r

Example

R_1				
X ₁	1			
X_2	0.8			
X_3	0.5			
X_4	0.3			
X ₅	0.1			

R_2				
X_2	8.0			
X_3	0.7			
X ₁	0.3			
X ₄	0.2			
X ₅	0.1			

R_3				
X_4	8.0			
X_3	0.6			
X ₁	0.2			
X ₅	0.1			
X_2	0			

§ Compute top-2 for the sum aggregate function

R_1			
X ₁	1		
X_2	8.0		
X_3	0.5		
X_4	0.3		
X ₅	0.1		

R_2				
X_2	8.0			
X_3	0.7			
X ₁	0.3			
X_4	0.2			
X ₅	0.1			

R_3				
X_4	0.8			
X_3	0.6			
X_1	0.2			
X ₅	0.1			
X_2	0			

R	R ₁		R_2		R_2		R	3
X_1	1		X_2	8.0	X_4	0.8		
X_2	8.0		X_3	0.7	X_3	0.6		
X_3	0.5		X ₁	0.3	X_1	0.2		
X ₄	0.3		X ₄	0.2	X ₅	0.1		
X ₅	0.1		X_5	0.1	X_2	0		

F	R ₁		R_2		R_2		R	3
X_1	1		X_2	8.0	X_4	8.0		
X_2	8.0		X_3	0.7	X_3	0.6		
X_3	0.5		X ₁	0.3	X ₁	0.2		
X_4	0.3		X_4	0.2	X_5	0.1		
X ₅	0.1		X_5	0.1	X_2	0		

F	R ₁		R_2		R ₂		R	3
X_1	1		X_2	8.0		X_4	8.0	
X_2	8.0		X_3	0.7		X_3	0.6	
X_3	0.5		X ₁	0.3		X ₁	0.2	
X ₄	0.3		X ₄	0.2		X ₅	0.1	
X ₅	0.1		X ₅	0.1		X_2	0	

R	1		R_2		R_2		R_2		R ₂		3
X_1	1		X_2	8.0		X_4	8.0				
X_2	0.8		X_3	0.7		X_3	0.6				
X_3	0.5		X_1	0.3		$\left(\chi_{1}^{2}\right)$	0.2				
X_4	0.3		X_4	0.2		X_5	0.1				
X ₅	0.1		X ₅	0.1		X_2	0				

2. Perform random accesses to obtain the scores of all seen objects

F	R ₁		R_2		R_2		R ₂		3
X_1	1		X_2	8.0		X_4	8.0		
X_2	8.0		X_3	0.7		X_3	0.6		
X ₃	0.5		X ₁	0.3		X ₁	0.2		
X ₄	0.3		X ₄	0.2		X_5	0.1		
X ₅	0.1		X_5	0.1		X_2	0		

Compute score for all objects and find the top-k

R	21	R_2		R_3	
X_1	1	X_2	8.0	X_4	0.8
X_2	8.0	X_3	0.7	X_3	0.6
X_3	0.5	X ₁	0.3	X ₁	0.2
X ₄	0.3	X ₄	0.2	X_5	0.1
X ₅	0.1	X ₅	0.1	X_2	0

R					
X_3	1.8				
X ₂	1.6				
X_1	1.5				
X ₄	1.3				

- § X₅ cannot be in the top-2 because of the monotonicity property
 - $f(X_5) \le f(X_1) \le f(X_3)$

F	R ₁	R_2		R_3	
X_1	1	X_2	8.0	X_4	8.0
X ₂	8.0	X_3	0.7	X_3	0.6
X_3	0.5	X ₁	0.3	X_1	0.2
X ₄	0.3	X ₄	0.2	X_5	0.1
X_5	0.1	X_5	0.1	X_2	0

R					
X_3	1.8				
X ₂	1.6				
X ₁	1.5				
X_4	1.3				



§ The algorithm is cost optimal under some probabilistic assumptions for a restricted class of aggregate functions

1. Access the elements sequentially

R_1					
X ₁	1				
X_2	0.8				
X_3	0.5				
X ₄	0.3				
X ₅	0.1				

R_2					
X_2	0.8				
X_3	0.7				
X_1	0.3				
X ₄	0.2				
X_5	0.1				

R_3					
X_4	0.8				
X_3	0.6				
X ₁	0.2				
X_5	0.1				
X_2	0				

- 1. At each sequential access
 - a. Set the threshold t to be the aggregate of the scores seen in this access

F	R ₁	R_2		R_3	
X_1	1	X_2	8.0	X_4	8.0
X_2	8.0	X_3	0.7	X_3	0.6
X_3	0.5	X ₁	0.3	X_1	0.2
X ₄	0.3	X ₄	0.2	X ₅	0.1
X ₅	0.1	X_5	0.1	X_2	0

t = 2.6

- 1. At each sequential access
 - b. Do random accesses and compute the score of the objects seen

R	1	R_2		R_3	
X_1	1	X_2	8.0	X_4	8.0
X ₂	8.0	X_3	0.7	X_3	0.6
X_3	0.5	X ₁	0.3	X ₁	0.2
X ₄	0.3	X ₄	0.2	X ₅	0.1
X ₅	0.1	X ₅	0.1	X ₂	0

t =	2.6

X ₁	1.5
X_2	1.6
X_4	1.3

- 1. At each sequential access
 - c. Maintain a list of top-k objects seen so far

R ₁		R_2		R_3		
X_1	1		X_2	8.0	X_4	8.0
X ₂	8.0		X_3	0.7	X_3	0.6
X_3	0.5		X ₁	0.3	X ₁	0.2
X ₄	0.3		X ₄	0.2	X ₅	0.1
X ₅	0.1		X ₅	0.1	X_2	0

t = 3	2.6
-------	-----

X_2	1.6
X_1	1.5

- 1. At each sequential access
 - d. When the scores of the top-k are greater or equal to the threshold, stop

R_1		R_2		R_3	
X_1	1	X_2	8.0	X_4	0.8
X_2	8.0	X_3	0.7	X_3	0.6
X_3	0.5	X ₁	0.3	X ₁	0.2
X_4	0.3	X_4	0.2	X_5	0.1
X ₅	0.1	X ₅	0.1	X_2	0

= 2.1

X_3	1.8
X_2	1.6

- 1. At each sequential access
 - d. When the scores of the top-k are greater or equal to the threshold, stop

R_1		R_2		R_3	
X_1	1	X_2	8.0	X_4	0.8
X_2	8.0	X_3	0.7	X ₃	0.6
X_3	0.5	X ₁	0.3	X ₁	0.2
X ₄	0.3	X_4	0.2	X ₅	0.1
X ₅	0.1	X_5	0.1	X_2	0

+		1	\cap
L	_	4	.0

X_3	1.8
X_2	1.6

2. Return the top-k seen so far

R_1		R_2		R_3	
X_1	1	X_2	8.0	X_4	8.0
X_2	0.8	X_3	0.7	X_3	0.6
X_3	0.5	X ₁	0.3	X ₁	0.2
X_4	0.3	X ₄	0.2	X ₅	0.1
X_5	0.1	X ₅	0.1	X_2	0

4		\bigcap
	_ \	
	1	1.0

X_3	1.8
X_2	1.6

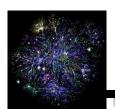


§ From the monotonicity property for any object not seen, the score of the object is less than the threshold

- § The algorithm is instance cost-optimal
 - § within a constant factor of the best algorithm on any database

Combining rankings

- § In many cases the scores are not known
 - § e.g. meta-search engines scores are proprietary information
- § ... or we do not know how they were obtained
 - § one search engine returns score 10, the other 100. What does this mean?
- § ... or the scores are incompatible
 - § apples and oranges: does it make sense to combine price with distance?
- § In this cases we can only work with the rankings



The problem

- § Input: a set of rankings $R_1, R_2, ..., R_m$ of the objects $X_1, X_2, ..., X_n$. Each ranking R_i is a total ordering of the objects
 - § for every pair X_i,X_j either X_i is ranked above X_j or X_i is ranked above X_i
- § Output: A total ordering R that aggregates rankings R₁,R₂,...,R_m

Voting theory

- § A voting system is a rank aggregation mechanism
- § Long history and literature
 - § criteria and axioms for good voting systems

What is a good voting system?

- § The Condorcet criterion
 - § if object A defeats every other object in a pairwise majority vote, then A should be ranked first
- § Extended Condorcet criterion
 - § if the objects in a set X defeat in pairwise comparisons the objects in the set Y then the objects in X should be ranked above those in Y
- § Not all voting systems satisfy the Condorcet criterion!

Pairwise majority comparisons

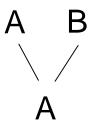
- § Unfortunately the Condorcet winner does not always exist
 - § irrational behavior of groups

	V_1	V_2	V_3
1	A	В	C
2	В	С	Α
3	С	Α	В

A > B B > C C > A

	V_1	V_2	V_3
7	A	Δ	Ш
2	В	Е	Α
3	С	Α	В
4	D	В	С
5	Е	С	D

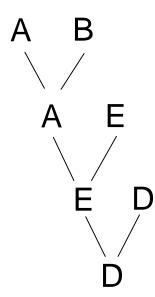
	V_1	V ₂	V_3
1	A	D	Ш
2	В	Е	Α
3	С	Α	В
4	D	В	С
5	Ш	С	D



	V_1	V_2	V_3
1	A	D	Ш
2	В	Ш	Α
3	С	Α	В
4	D	В	С
5	ш	С	D

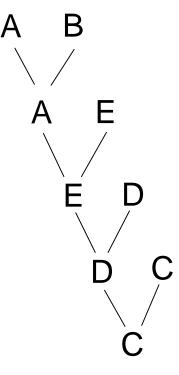


	V_1	V_2	V_3
1	Α	О	Ш
2	В	Е	Α
3	С	Α	В
4	D	В	С
5	Е	C	D



§ Resolve cycles by imposing an agenda

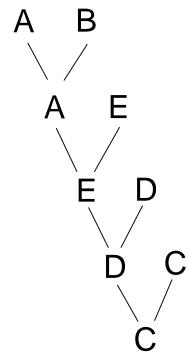
	V_1	V_2	V_3
1	Α	D	Е
2	В	Е	Α
3	С	Α	В
4	D	В	С
5	Е	С	D



§ C is the winner

§ Resolve cycles by imposing an agenda

	V_1	V_2	V_3
1	A	D	Е
2	В	Е	Α
3	С	Α	В
4	D	В	С
5	Е	С	D



§ But everybody prefers A or B over C

- § The voting system is not Pareto optimal
 - § there exists another ordering that everybody prefers
- § Also, it is sensitive to the order of voting

Plurality vote

§ Elect first whoever has more 1st position votes

voters	10	8	7
1	Α	С	В
2	В	Α	С
3	C	В	A

§ Does not find a Condorcet winner (C in this case)

Plurality with runoff

§ If no-one gets more than 50% of the 1st position votes, take the majority winner of the first two

voters	10	8	7	2
1	Α	С	В	В
2	В	Α	С	Α
3	С	В	Α	С

first round: A 10, B 9, C 8

second round: A 18, B 9

winner: A

Plurality with runoff

§ If no-one gets more than 50% of the 1st position votes, take the majority winner of the first two

voters	10	8	7	2
1	Α	С	В	Α
2	В	Α	С	В
3	С	В	Α	С

change the order of A and B in the last column

first round: A 12, B 7, C 8 second round: A 12, C 15

winner: C!

Positive Association axiom

§ Plurality with runoff violates the positive association axiom

§ Positive association axiom: positive changes in preferences for an object should not cause the ranking of the object to decrease

- § For each ranking, assign to object X, number of points equal to the number of objects it defeats
 - § first position gets n-1 points, second n-2, ..., last 0 points
- § The total weight of X is the number of points it accumulates from all rankings

voters	3	2	2
1 (3p)	Α	В	С
2 (2p)	В	С	D
3 (1p)	С	D	Α
4 (0p)	D	Α	В

A:
$$3*3 + 2*0 + 2*1 = 11p$$

B: $3*2 + 2*3 + 2*0 = 12p$
C: $3*1 + 2*2 + 2*3 = 13p$
D: $3*0 + 2*1 + 2*2 = 6p$

ВС
C
В
Α
D

§ Does not always produce Condorcet winner

§ Assume that D is removed from the vote

voters	3	2	2
1 (2p)	A	В	С
2 (1p)	В	С	Α
3 (0p)	С	Α	В

A:
$$3*2 + 2*0 + 2*1 = 7p$$

B: $3*1 + 2*2 + 2*0 = 7p$
C: $3*0 + 2*1 + 2*2 = 6p$

BC B A C

§ Changing the position of D changes the order of the other elements!

Independence of Irrelevant Alternatives

- § The relative ranking of X and Y should not depend on a third object Z
 - § heavily debated axiom

- § The Borda Count of an an object X is the aggregate number of pairwise comparisons that the object X wins
 - § follows from the fact that in one ranking X wins all the pairwise comparisons with objects that are under X in the ranking



Voting Theory

§ Is there a voting system that does not suffer from the previous shortcomings?

Arrow's Impossibility Theorem

- § There is no voting system that satisfies the following axioms
 - § Universality
 - all inputs are possible
 - § Completeness and Transitivity
 - for each input we produce an answer and it is meaningful
 - § Positive Assosiation
 - § Independence of Irrelevant Alternatives
 - § Non-imposition
 - § Non-dictatoriship
- § KENNETH J. ARROW Social Choice and Individual Values (1951). Won Nobel Prize in 1972

Kemeny Optimal Aggregation

- § Kemeny distance $K(R_1,R_2)$: The number of pairs of nodes that are ranked in a different order (Kendall-tau)
 - § number of bubble-sort swaps required to transform one ranking into another
- § Kemeny optimal aggregation minimizes

$$K(R,R_1, N,R_m) = \sum_{i=1}^{m} K(R,R_i)$$

- § Kemeny optimal aggregation satisfies the Condorcet criterion and the extended Condorcet criterion
 - § maximum likelihood interpretation: produces the ranking that is most likely to have generated the observed rankings
- § ...but it is NP-hard to compute
 - § easy 2-approximation by obtaining the best of the input rankings, but it is not "interesting"

Locally Kemeny optimal aggregation

§ A ranking R is locally Kemeny optimal if there is no bubble-sort swap that produces a ranking R' such that

$$K(R',R_1,...,R_m) \le K(R',R_1,...,R_m)$$

- § Locally Kemeny optimal is not necessarily Kemeny optimal
- § Definitions apply for the case of partial lists also

Locally Kemeny optimal aggregation

- § Locally Kemeny optimal aggregation can be computed in polynomial time
 - § At the i-th iteration insert the i-th element x in the bottom of the list, and bubble it up until there is an element y such that the majority places y over x
- § Locally Kemeny optimal aggregation satisfies the Condorcet and extended Condorcet criterion

Rank Aggregation algorithm [DKNS01]

- § Start with an aggregated ranking and make it into a locally Kemeny optimal aggregation
- § How do we select the initial aggregation?
 - § Use another aggregation method
 - Solution
 Solution</p

Spearman's footrule distance

§ Spearman's footrule distance: The difference between the ranks R(i) and R'(i) assigned to object i

$$F(R,R') = \sum_{i=1}^{n} |R(i) - R'(i)|$$

§ Relation between Spearman's footrule and Kemeny distance

$$K(R,R') \le F(R,R') \le 2K(R,R')$$

Spearman's footrule aggregation

§ Find the ranking R, that minimizes

$$F(R,R_1, N, R_m) = \sum_{i=1}^{m} F(R,R_i)$$

- § The optimal Spearman's footrule aggregation can be computed in polynomial time
 - § It also gives a 2-approximation to the Kemeny optimal aggregation
- § If the median ranks of the objects are unique then this ordering is optimal

Example

R_1	
1	Α
2	В
3	С
4	D

R_2		
1	В	
2	Α	
3	D	
4	С	

F	R_3	
1	В	
2	С	
3	Α	
4	D	

R		
1	В	
2	Α	
3	С	
4	D	

```
A: (1,2,3)
B: (1,1,2)
C: (3,3,4)
D: (3,4,4)
```


§ Access the rankings sequentially

R_1	
1	Α
2	В
3	С
4	D

R_2		
1	В	
2	Α	
3	D	
4	С	

R_3	
1 B	
2	С
3	Α
4	D

R		
1		
2		
3		
4		

- § Access the rankings sequentially
 - § when an element has appeared in more than half of the rankings, output it in the aggregated ranking

F	R_1		R_2		R_2		R_2		R_2		R_2		R_2		R_2		F	R_3
1	Α		1	В	1	В												
2	В		2	Α	2	С												
3	С		3	D	3	Α												
4	D		4	С	4	D												

	R		
1	В		
2			
3			
4			

- § Access the rankings sequentially
 - § when an element has appeared in more than half of the rankings, output it in the aggregated ranking

F	R_1		R_2		R_2		R_2		R_3	
1	Α		1	В		1	В			
2	В		2	Α		2	С			
3	С		3	D		3	Α			
4	D		4	С		4	D			

	R		
1	В		
2	Α		
3			
4			

- § Access the rankings sequentially
 - § when an element has appeared in more than half of the rankings, output it in the aggregated ranking

R_1		R_2		R_3	
1	Α	1	В	1	В
2	В	2	Α	2	С
3	С	3	D	3	Α
4	D	4	С	4	D

	R		
1	В		
2	Α		
3	С		
4			

- § Access the rankings sequentially
 - § when an element has appeared in more than half of the rankings, output it in the aggregated ranking

R ₁		R_2		R_3	
1	Α	1	В	1	В
2	В	2	Α	2	С
3	С	3	D	3	Α
4	D	4	С	4	D

R		
1	В	
2	Α	
3	С	
4	D	



The Spearman's rank correlation

§ Spearman's rank correlation

$$S(R,R') = \sum_{i=1}^{n} (R(i) - R'(i))^{2}$$

- § Computing the optimal rank aggregation with respect to Spearman's rank correlation is the same as computing Borda Count
 - § Computable in polynomial time



Extensions and Applications

- § Rank distance measures between partial orderings and top-k lists
- § Similarity search
- § Ranked Join Indices
- § Analysis of Link Analysis Ranking algorithms
- § Connections with machine learning

References

- § Ron Fagin, Amnon Lotem, Moni Naor. Optimal aggregation algorithms for middleware, J. Computer and System Sciences 66 (2003), pp. 614-656. Extended abstract appeared in Proc. 2001 ACM Symposium on Principles of Database Systems (PODS '01), pp. 102-113.
- § Alex Tabbarok Lecture Notes
- § Ron Fagin, Ravi Kumar, D. Sivakumar Efficient similarity search and classification via rank aggregation, Proc. 2003 ACM SIGMOD Conference (SIGMOD '03), pp. 301-312.
- § Cynthia Dwork, Ravi Kumar, Moni Naor, D. Sivakumar. Rank Aggregation Methods for the Web. 10th International World Wide Web Conference, May 2001.
- § C. Dwork, R. Kumar, M. Naor, D. Sivakumar, "Rank Aggregation Revisited," WWW10; selected as Web Search Area highlight, 2001.