

Introduction to networks Lecture 1

No Lecture this Thursday

Introductions

- My name in finnish: Panajotis Tsaparas
 - I am from Greece
 - I graduated from University of Toronto
 - Web searching and Link Analysis
 - In University of Helsinki for the past year
- Tutor: Evimaria Terzi
 - also Greek

Knowledge of Greek is not required

Course overview

- The course goal
 - To read some recent and interesting papers on information networks
 - Understand the underlying techniques
 - Think about interesting problems
- Prerequisites:
 - Mathematical background on discrete math, graph theory, probabilities
 - The course will be more "theoretical", but your project may be more "practical"
- Style
 - Both slides and blackboard

Topics

- Measuring Real Networks
- Models for networks
- Scale Free and Small World networks
- Distributed hashing and Peer-to-Peer search
- The Web graph
 - Web crawling, searching and ranking
- Temporal analysis of data
- Gossip and Epidemics
- Clustering and classification
- Biological networks

Homework

- Two or three assignments of the following three types
 - Reaction paper
 - Problem Set
 - Presentation
- Project: Select your favorite network/algorithm/model and
 - do an experimental analysis
 - do a theoretical analysis
 - do a in-depth survey
- No final exam
- Final Grade: 50% assignments, 50% project (or 60%,40%)
- Tutorials: will be arranged on demand

Web page has been (partially) updated

http://www.cs.helsinki.fi/u/tsaparas/InformationNetworks/

What is an information network?

- Network: a collection of entities that are interconnected
 - A link (edge) between two entities (nodes) denotes an interaction between two entities
 - We view this interaction as information exchange, hence, Information Networks
 - The term encompasses more general networks

Why do we care about networks?

Because they are everywhere

 more and more systems can be modeled as networks

Because they are growing

- Iarge scale problems
- Because we have the computational power to study them
 - task: to develop the tools

- Links denote a social interaction
 - Networks of acquaintances

Other Social networks

- actor networks
- co-authorship networks
- director networks
- phone-call networks
- e-mail networks
- IM networks
 - Microsoft buddy network
- Bluetooth networks
- sexual networks

Knowledge (Information) Networks

- Nodes store information, links associate information
 - Citation network (directed acyclic)
 - The Web (directed)

Other Information Networks

- Peer-to-Peer networks
- Word networks
- Networks of Trust
 - epinions

Technological networks

Networks built for distribution of commodity

- The Internet
 - router level
 - AS level

ISP network

The Opte Project

Other Technological networks

- Power Grids
- Airline networks
- Telephone networks
- Transportation Networks
 - roads, railways, pedestrian traffic
- Software networks

Biological systems represented as networks
 Protein-Protein Interaction Networks

Other Biological networks

Gene regulation networks

The Food Web

Neural Networks

- The world is full with networks. What do we do with them?
 - understand their topology and measure their properties
 - study their evolution and dynamics
 - create realistic models
 - create algorithms that make use of the network structure

Mathematical Tools

- Graph theory
- Probability theory
- Linear Algebra

- Graph G=(V,E)
 - V = set of vertices
 - E = set of edges

undirected graph E={(1,2),(1,3),(2,3),(3,4),(4,5)}

- Graph G=(V,E)
 - V = set of vertices
 - E = set of edges

directed graph E={<1,2>, <2,1> <1,3>, <3,2>, <3,4>, <4,5>}

- degree d(i) of node i
 - number of edges incident on node i

- degree sequence (distribution)
 - [d(i),d(2),d(3),d(4),d(5)]
 - [2,2,2,1,1]

- in-degree d_{in}(i) of node i
 - number of edges pointing to node i
- out-degree d_{out}(i) of node i
 - number of edges leaving node i
- in-degree sequence (distribution)
 - **[**1,2,1,1,1]
- out-degree sequence (distribution)
 - **[**2,1,2,1,0]

- Path from node i to node j: a sequence of edges (directed or undirected from node i to node j)
 - path length: number of edges on the path
 - nodes i and j are connected
 - cycle: a path that starts and ends at the same node

Shortest Path from node i to node j also known as BFS path, or geodesic path

The longest shortest path in the graph

Undirected graph

- Connected graph: a graph where there every pair of nodes is connected
- Disconnected graph: a graph that is not connected
- Connected Components: subsets of vertices that are connected

Fully Connected Graph

- Clique K_n
- A graph that has all possible n(n-1)/2 edges

- Strongly connected graph: there exists a path from every i to every j
- Weakly connected graph: If edges are made to be undirected the graph is connected

Subgraphs

- Subgraph: Given V' ⊆ V, and E' ⊆ E, the graph G'=(V',E') is a subgraph of G.
- Induced subgraph: Given
 V' ⊆ V, let E' ⊆ E is the set of all edges between the nodes in V'. The graph G'=(V',E'), is an induced subgraph of G

Connected Undirected graphs without cycles

Bipartite graphs

 Graphs where the set V can be partitioned into two sets L and R, such that all edges are between nodes in L and R, and there is no edge within L or R

- Adjacency Matrix
 - symmetric matrix for undirected graphs

$$A = \begin{bmatrix} 0 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 \end{bmatrix}$$

Adjacency Matrix

unsymmetric matrix for undirected graphs

$$A = \begin{bmatrix} 0 & 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

Eigenvalues and Eigenvectors

- The value λ is an eigenvalue of matrix A if there exists a non-zero vector x, such that Ax=λx. Vector x is an eigenvector of matrix A
 - The largest eigenvalue is called the principal eigenvalue
 - The corresponding eigenvector is the principal eigenvector
 - Corresponds to the direction of maximum change

Random Walks

- Start from a node, and follow links uniformly at random.
- Stationary distribution: The fraction of times that you visit node i, as the number of steps of the random walk approaches infinity
 - if the graph is strongly connected, the stationary distribution converges to a unique vector.

Random Walks

- stationary distribution: principal left eigenvector of the normalized adjacency matrix
 - x = xP
 - for undirected graphs, the degree distribution

$$P = \begin{bmatrix} 0 & 1/2 & 1/2 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 1/2 & 0 & 1/2 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 \end{bmatrix}$$

Probability Theory

Probability Space: pair <Ω,P>

- Ω: sample space
- \blacksquare P: probability measure over subsets of Ω
- Random variable X: $\Omega \rightarrow R$
 - Probability mass function P[X=x]

Expectation

$$\mathsf{E}[\mathsf{X}] = \sum_{\mathsf{x} \in \Omega} \mathsf{x} \mathsf{P}[\mathsf{X} = \mathsf{x}]$$

Classes of random graphs

- A class of random graphs is defined as the pair <G_n,P> where G_n the set of all graphs of size n, and P a probability distribution over the set G_n
- Erdös-Renyi graphs: each edge appears with probability p
 - when p=1/2, we have a uniform distribution

Asymptotic Notation

For two functions f(n) and g(n)

- f(n) = O(g(n)) if there exist positive numbers
 c and N, such that f(n) ≤ c g(n), for all n≥N
- f(n) = Ω(g(n)) if there exist positive numbers
 c and N, such that f(n) ≥ c g(n), for all n≥N
- $f(n) = \Theta(g(n))$ if f(n)=O(g(n)) and $f(n)=\Omega(g(n))$
- f(n) = o(g(n)) if $\lim f(n)/g(n) = 0$, as $n \rightarrow \infty$
- $f(n) = \omega(g(n))$ if $\lim f(n)/g(n) = \infty$, as $n \to \infty$

P and NP

- P: the class of problems that can be solved in polynomial time
- NP: the class of problems that can be verified in polynomial time
- NP-hard: problems that are at least as hard as any problem in NP

Approximation Algorithms

- NP-optimization problem: Given an instance of the problem, find a solution that minimizes (or maximizes) an objective function.
- Algorithm A is a factor c approximation for a problem, if for every input x,

 $A(x) \le c OPT(x)$ (minimization problem)

 $A(x) \ge c OPT(x)$ (maximization problem)

M. E. J. Newman, The structure and function of complex networks, SIAM Reviews, 45(2): 167-256, 2003