
DATA MINING 

LECTURE 3 
Frequent Itemsets and Association Rules 



This is how it all started… 

• Rakesh Agrawal, Tomasz Imielinski, Arun N. Swami: 
Mining Association Rules between Sets of Items in 
Large Databases. SIGMOD Conference 1993: 207-
216 

• Rakesh Agrawal, Ramakrishnan Srikant: Fast 
Algorithms for Mining Association Rules in Large 
Databases. VLDB 1994: 487-499 

 

• These two papers are credited with the birth of Data 
Mining 

• For a long time people were fascinated with 
Association Rules and Frequent Itemsets 
• Some people (in industry and academia) still are. 

http://www.informatik.uni-trier.de/~ley/db/conf/sigmod/sigmod93.html
http://www.informatik.uni-trier.de/~ley/db/conf/vldb/vldb94.html
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Market-Basket Data 

• A large set of items, e.g., things sold in a 
supermarket. 

• A large set of baskets, each of which is a small 
subset of the items, e.g., the things one customer 
buys on one day. 

TID Items 

1 Bread, Milk 

2 Bread, Diaper, Beer, Eggs 

3 Milk, Diaper, Beer, Coke  

4 Bread, Milk, Diaper, Beer 

5 Bread, Milk, Diaper, Coke  

 

Items: {Bread, Milk, Diaper, Beer, Eggs, Coke} 

Baskets: Transactions 
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Frequent itemsets 

• Goal: find combinations of items (itemsets) that 

occur frequently 

• Called Frequent Itemsets 

TID Items 

1 Bread, Milk 

2 Bread, Diaper, Beer, Eggs 

3 Milk, Diaper, Beer, Coke  

4 Bread, Milk, Diaper, Beer 

5 Bread, Milk, Diaper, Coke  

 

Examples of frequent itemsets 𝑠 𝐼  ≥ 3 

{Bread}: 4 

{Milk} : 4 

{Diaper} : 4 

{Beer}: 3 

{Diaper, Beer} : 3 

{Milk, Bread} : 3 

Support 𝑠 𝐼 : number of 

transactions that contain 

itemset I 
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Market-Baskets – (2) 

• Really, a general many-to-many mapping 

(association) between two kinds of things, where the 

one (the baskets) is a set of the other (the items)  

• But we ask about connections among “items,” not “baskets.” 

 

• The technology focuses on common/frequent events, 

not rare events (“long tail”). 
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Applications – (1) 

• Items = products; baskets = sets of products 

someone bought in one trip to the store. 

 

• Example application: given that many people buy 

beer and diapers together: 

• Run a sale on diapers; raise price of beer. 

• Only useful if many buy diapers & beer. 
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Applications – (2) 

• Baskets = Web pages; items = words. 

 

• Example application: Unusual words appearing 

together in a large number of documents, e.g., 

“Brad” and “Angelina,” may indicate an interesting 

relationship. 
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Applications – (3) 

• Baskets = sentences; items = documents 

containing those sentences. 

 

• Example application: Items that appear together 

too often could represent plagiarism. 

• Notice items do not have to be “in” baskets. 



Definitions 

• Itemset 

• A collection of one or more items 

• Example: {Milk, Bread, Diaper} 

• k-itemset 

• An itemset that contains k items 

• Support (s) 

• Count: Frequency of occurrence of an itemset 
• E.g.   s({Milk, Bread,Diaper}) = 2  

• Fraction: Fraction of transactions that contain an itemset 
• E.g.   s({Milk, Bread, Diaper}) = 40% 

• Frequent Itemset 

• An itemset 𝐼 whose support is greater than or equal to a 

minsup threshold, 𝑠 𝐼 ≥minsup 

 

TID Items 

1 Bread, Milk 

2 Bread, Diaper, Beer, Eggs 

3 Milk, Diaper, Beer, Coke  

4 Bread, Milk, Diaper, Beer 

5 Bread, Milk, Diaper, Coke  

 



Mining Frequent Itemsets task 

• Input: Market basket data, threshold minsup  

• Output: All frequent itemsets with support ≥ minsup 

 

• Problem parameters: 
• N (size): number of transactions 

• Wallmart: billions of baskets per year 

• Web: billions of pages 

• d (dimension): number of (distinct) items 

• Wallmart sells more than 100,000 items 

• Web: billions of words 

• w: max size of a basket 

• M: Number of possible itemsets. 

 

 

M = 2𝑑 



The itemset lattice 

 

null

AB AC AD AE BC BD BE CD CE DE

A B C D E

ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE

ABCD ABCE ABDE ACDE BCDE

ABCDE

Given d items, there are 2d 

possible  itemsets 

Representation of all possible 

itemsets and their relationships 



A Naïve Algorithm 
• Brute-force approach: Every itemset is a candidate :  

• Consider all itemsets in the lattice, and scan the data for each candidate to 
compute the support  

• Time Complexity ~ O(NMw) , Space Complexity ~ O(d) 

• OR 
• Scan the data, and for each transaction generate all possible itemsets. Keep 

a count for each itemset in the data. 

• Time Complexity ~ O(N2w) , Space Complexity ~ O(M) 

 

• Expensive since M = 2d !!! 
• No solution that considers all candidates is acceptable! 

TID Items 

1 Bread, Milk 

2 Bread, Diaper, Beer, Eggs 

3 Milk, Diaper, Beer, Coke 

4 Bread, Milk, Diaper, Beer 

5 Bread, Milk, Diaper, Coke 
 

N

Transactions List of

Candidates

M

w
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Computation Model 

• Typically, data is kept in flat files rather than in a 

database system. 

• Stored on disk. 

• Stored basket-by-basket. 

• We can expand a basket into pairs, triples, etc. as we read 

the data. 

• Use k  nested loops, or recursion to generate all itemsets of size k. 

 

• Data is too large to be loaded in memory. 



Example file: retail 
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29  

30 31 32  

33 34 35  

36 37 38 39 40 41 42 43 44 45 46  

38 39 47 48  

38 39 48 49 50 51 52 53 54 55 56 57 58  

32 41 59 60 61 62  

3 39 48  

63 64 65 66 67 68  

32 69  

48 70 71 72  

39 73 74 75 76 77 78 79  

36 38 39 41 48 79 80 81  

82 83 84  

41 85 86 87 88  

39 48 89 90 91 92 93 94 95 96 97 98 99 100 101  

36 38 39 48 89  

39 41 102 103 104 105 106 107 108  

38 39 41 109 110  

39 111 112 113 114 115 116 117 118  

119 120 121 122 123 124 125 126 127 128 129 130 131 132 133  

48 134 135 136  

39 48 137 138 139 140 141 142 143 144 145 146 147 148 149  

39 150 151 152  

38 39 56 153 154 155  

Example: items are positive integers, 

and each basket corresponds to a line in 

the file of space-separated integers 
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Computation Model – (2) 

• The true cost of mining disk-resident data is 

usually the number of disk I/O’s. 

• In practice, association-rule algorithms read the 

data in passes  –  all baskets read in turn. 

 

• Thus, we measure the cost by the number of 

passes an algorithm takes. 
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Main-Memory Bottleneck 

• For many frequent-itemset algorithms, main 

memory is the critical resource. 

• As we read baskets, we need to count something, e.g., 

occurrences of pairs. 

• The number of different things we can count is limited 

by main memory. 

• Swapping counts in/out is too slow 



The Apriori Principle 

• Apriori principle (Main observation): 

– If an itemset is frequent, then all of its subsets must also 
be frequent 

– If an itemset is not frequent, then all of its supersets 
cannot be frequent 

– The support of an itemset never exceeds the support of 
its subsets 

 

 

– This is known as the anti-monotone property of support 

∀𝑋, 𝑌: 𝑋 ⊆ 𝑌 ⇒ 𝑠 𝑋 ≥ 𝑠(𝑌) 



Illustration of the Apriori principle 

Found to be frequent 

Frequent 

subsets   



Illustration of the Apriori principle 

Found to be 

Infrequent 

null

AB AC AD AE BC BD BE CD CE DE

A B C D E

ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE

ABCD ABCE ABDE ACDE BCDE

ABCDE

null

AB AC AD AE BC BD BE CD CE DE

A B C D E

ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE

ABCD ABCE ABDE ACDE BCDE

ABCDEPruned 

Infrequent supersets 



R. Agrawal, R. Srikant: "Fast Algorithms for Mining Association Rules",  

Proc. of the 20th Int'l Conference on Very Large Databases, 1994.  

The Apriori algorithm 

Level-wise approach 
Ck = candidate itemsets of size k 

Lk = frequent itemsets of size k 

Candidate 

generation 

Frequent 

itemset 

generation 

1. k = 1, C1 = all items 

2. While Ck not empty 

3. Scan the database to find which itemsets in 

Ck are frequent and put them into Lk 

4. Generate the candidate itemsets Ck+1 of 

size k+1  using Lk 

5. k = k+1 



Candidate Generation 

• Apriori principle: 
• An itemset of size k+1 is candidate to be frequent only if 

all of its subsets of size k are known to be frequent 

 

Candidate generation: 

• Construct a candidate of size k+1 by combining 
frequent itemsets of size k 
• If k = 1, take the all pairs of frequent items 

• If k > 1, join pairs of itemsets that differ by just one item 

• For each generated candidate itemset ensure that all 
subsets of size k are frequent. 



• Assumption: The items in an itemset are ordered 

• Integers ordered in increasing order, strings ordered lexicographicly  

• The order ensures that if item y > x appears before x, then x is not in 

the itemset 

• The itemsets in Lk are also ordered 

Generate Candidates Ck+1 

Create a candidate itemset of size k+1, by joining 

two itemsets of size k, that share the first k-1 items 

Item 1 Item 2 Item 3 

1 2 3 

1 2 5 

1 4 5 



Generate Candidates Ck+1 

Create a candidate itemset of size k+1, by joining 

two itemsets of size k, that share the first k-1 items 

Item 1 Item 2 Item 3 

1 2 3 

1 2 5 

1 4 5 

1 2 3 5 

• Assumption: The items in an itemset are ordered 

• Integers ordered in increasing order, strings ordered in lexicographicly  

• The order ensures that if item y > x appears before x, then x is not in 

the itemset 

• The itemsets in Lk are also ordered 



Generate Candidates Ck+1 

Create a candidate itemset of size k+1, by joining 

two itemsets of size k, that share the first k-1 items 

Item 1 Item 2 Item 3 

1 2 3 

1 2 5 

1 4 5 
1 2 4 5 

Are we missing something? 

What about this candidate? 

• Assumption: The items in an itemset are ordered 

• Integers ordered in increasing order, strings ordered in lexicographicly  

• The order ensures that if item y > x appears before x, then x is not in 

the itemset 

• The itemsets in Lk are also ordered 



Generating Candidates Ck+1 in SQL 

 

• self-join Lk  

insert into Ck+1 

select p.item1, p.item2, …, p.itemk, q.itemk 

from Lk p, Lk q 

where p.item1=q.item1, …, p.itemk-1=q.itemk-1, p.itemk < q.itemk 

 



• L3={abc, abd, acd, ace, bcd} 

• Generating candidate set C4  

• Self-join: L3*L3 

Example  

item1 item2 item3 

a b c 

a b d 

a c d 

a c e 

b c d 

item1 item2 item3 

a b c 

a b d 

a c d 

a c e 

b c d 

p.item1=q.item1,p.item2=q.item2, p.item3< q.item3 



• L3={abc, abd, acd, ace, bcd} 

• Generating candidate set C4  

• Self-join: L3*L3 

Example  

p.item1=q.item1,p.item2=q.item2, p.item3< q.item3 

item1 item2 item3 

a b c 

a b d 

a c d 

a c e 

b c d 

item1 item2 item3 

a b c 

a b d 

a c d 

a c e 

b c d 



• L3={abc, abd, acd, ace, bcd} 

• Generating candidate set C4  

• Self-join: L3*L3 

Example  

p.item1=q.item1,p.item2=q.item2, p.item3< q.item3 

{a,b,c} {a,b,d} 

{a,b,c,d} 

item1 item2 item3 

a b c 

a b d 

a c d 

a c e 

b c d 

item1 item2 item3 

a b c 

a b d 

a c d 

a c e 

b c d 

C4 ={abcd} 



• L3={abc, abd, acd, ace, bcd} 

• Generating candidate set C4  

• Self-join: L3*L3 

Example  

p.item1=q.item1,p.item2=q.item2, p.item3< q.item3 

C4 ={abcd 

        acde} 

{a,c,d} {a,c,e} 

{a,c,d,e} 

item1 item2 item3 

a b c 

a b d 

a c d 

a c e 

b c d 

item1 item2 item3 

a b c 

a b d 

a c d 

a c e 

b c d 



Item Count

Bread 4
Coke 2
Milk 4
Beer 3
Diaper 4
Eggs 1

Itemset Count

{Bread,Milk} 3
{Bread,Beer} 2
{Bread,Diaper} 3
{Milk,Beer} 2
{Milk,Diaper} 3
{Beer,Diaper} 3

Itemset Count 

{Bread,Milk,Diaper} 2 

 

Items (1-itemsets)  

Pairs (2-itemsets)  

 
(No need to generate 
candidates involving Coke 
or Eggs)  

Triplets (3-itemsets)  

minsup = 3 

If every subset is considered,  
6
1

 + 
6
2

 + 
6
3

 = 6 + 15 + 20 = 41 

With support-based pruning, 
6
1

 + 
4
2

 + 1  = 6 + 6 + 1 = 13 

Illustration of the Apriori principle 

Only this triplet has all subsets to be frequent 

But it is below the minsup threshold 

TID Items 

1 Bread, Milk 

2 Bread, Diaper, Beer, Eggs 

3 Milk, Diaper, Beer, Coke  

4 Bread, Milk, Diaper, Beer 

5 Bread, Milk, Diaper, Coke  

 



Generate Candidates Ck+1 

• Are we done? Are all the candidates valid? 

 

 

 

 

 

 

 

 

• Pruning step:  
• For each candidate (k+1)-itemset create all subset k-itemsets  

• Remove a candidate if it contains a subset k-itemset that is 
not frequent 

Item 1 Item 2 Item 3 

1 2 3 

1 2 5 

1 4 5 

1 2 3 5 

Is this a valid candidate? 

No. Subsets (1,3,5) and (2,3,5) should also be frequent 

Apriori principle 



• L3={abc, abd, acd, ace, bcd} 

• Self-joining: L3*L3 

– abcd  from abc and abd 

– acde  from acd and ace 

• C4={abcd, acde} 

• Pruning: 

– abcd is kept since all subset itemsets are 

in L3  

– acde is removed because ade is not in L3 

• C4={abcd} 

{a,c,d} {a,c,e} 

{a,c,d,e} 

acd ace ade cde 
  X 

Example  
{a,b,c} {a,b,d} 

{a,b,c,d} 

abc abd acd bcd 

    



Example II 

 Itemset Count 

{Beer,Diaper} 3 
{Bread,Diaper} 3 
{Bread,Milk} 3 
{Diaper, Milk} 3 

 

Itemset Count 

{Beer,Diaper} 3 
{Bread,Diaper} 3 
{Bread,Milk} 3 
{Diaper, Milk} 3 

 

Itemset 

{Bread,Diaper,Milk} 

 

{Bread,Diaper} 

{Bread,Milk} 

{Diaper, Milk} 

 

 

 



• We have all frequent k-itemsets Lk 

• Step 1: self-join Lk  

• Create set Ck+1 by joining frequent k-itemsets that 

share the first k-1 items 

• Step 2: prune 

• Remove from Ck+1 the itemsets that contain a subset  

k-itemset that is not frequent 

Generate Candidates Ck+1 



Computing Frequent Itemsets 

• Given the set of candidate itemsets Ck, we need to compute 

the support and find the frequent itemsets Lk.  

• Scan the data, and use a hash structure to keep a counter 

for each candidate itemset that appears in the data 

TID Items 

1 Bread, Milk 

2 Bread, Diaper, Beer, Eggs 

3 Milk, Diaper, Beer, Coke 

4 Bread, Milk, Diaper, Beer 

5 Bread, Milk, Diaper, Coke 
 

N

Transactions Hash Structure

k

Buckets

Ck 



A simple hash structure 

• Create a dictionary (hash table) that stores the 

candidate itemsets as keys, and the number of 

appearances as the value. 

• Initialize with zero 

• Increment the counter for each itemset that you 

see in the data 



Example 

Suppose you have 15 candidate 

itemsets of length 3:  

 

C3 = { 

{1 4 5}, {1 2 4}, {4 5 7}, {1 2 5}, {4 5 8},  

{1 5 9}, {1 3 6}, {2 3 4}, {5 6 7}, {3 4 5},  

{3 5 6}, {3 5 7}, {6 8 9}, {3 6 7}, {3 6 8} 

} 

 

Hash table stores the counts of the 

candidate itemsets as they have been 

computed so far 

Key Value 

{3 6 7} 0 

{3 4 5} 1 

{1 3 6}  3 

{1 4 5} 5 

{2 3 4} 2 

{1 5 9} 1 

{3 6 8} 0 

{4 5 7} 2 

{6 8 9} 0 

{5 6 7} 3 

{1 2 4} 8 

{3 5 7} 1 

{1 2 5} 0 

{3 5 6} 1 

{4 5 8}  0 



Example 

A new tuple {1,2,3,5,6} generates the 

following itemsets of length 3:  

 

{1 2 3}, {1 2 5}, {1 2 6}, {1 3 5}, {1 3 6},  

{1 5 6}, {2 3 5}, {2 3 6}, {3 5 6},  

 

Increment the counters for the itemsets 

in the dictionary 

Key Value 

{3 6 7} 0 

{3 4 5} 1 

{1 3 6}  3 

{1 4 5} 5 

{2 3 4} 2 

{1 5 9} 1 

{3 6 8} 0 

{4 5 7} 2 

{6 8 9} 0 

{5 6 7} 3 

{1 2 4} 8 

{3 5 7} 1 

{1 2 5} 0 

{3 5 6} 1 

{4 5 8}  0 



Example 

A new tuple {1,2,3,5,6} generates the 

following itemsets of length 3:  

 

{1 2 3}, {1 2 5}, {1 2 6}, {1 3 5}, {1 3 6},  

{1 5 6}, {2 3 5}, {2 3 6}, {3 5 6},  

 

Increment the counters for the itemsets 

in the dictionary 

Key Value 

{3 6 7} 0 

{3 4 5} 1 

{1 3 6}  4 

{1 4 5} 5 

{2 3 4} 2 

{1 5 9} 1 

{3 6 8} 0 

{4 5 7} 2 

{6 8 9} 0 

{5 6 7} 3 

{1 2 4} 8 

{3 5 7} 1 

{1 2 5} 1 

{3 5 6} 2 

{4 5 8}  0 



C1 L1 C2 L2 C3 
Filter Filter Construct Construct 

First 

pass 

Second 

pass 

All 

items 

All pairs 

of items 

from L1 

  Count 

the pairs 

  Count 

the items 

Frequent 

items 

Frequent 

pairs 

The frequent itemset algorithm 
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A-Priori for All Frequent Itemsets 

• One pass for each k. 

• Needs room in main memory to count each 

candidate k -set. 

• For typical market-basket data and reasonable 

support (e.g., 1%), k = 2 requires the most 

memory. 
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Picture of A-Priori 

   

Item counts 

Pass 1 Pass 2 

Frequent items 

Counts of 

  pairs of 

 frequent 

   items 
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Details of Main-Memory Counting 

• Two approaches: 

1. Count all pairs, using a “triangular matrix” = one 

dimensional array that stores the lower diagonal. 

2. Keep a table of triples [i, j, c] = “the count of the pair 

of items {i, j } is c.” 

• (1) requires only 4 bytes/pair. 

• Note: always assume integers are 4 bytes. 

• (2) requires 12 bytes/pair, but only for those pairs 

with count > 0. 
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4 per pair 

Method (1) Method (2) 

12 per 

occurring pair 
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Triangular-Matrix Approach 

• Number items 1, 2,… 
• Requires table of size O(n) to convert item names to 

consecutive integers. 

• Count {i, j } only if i < j.  

• Keep pairs in the order {1,2}, {1,3},…, {1,n }, {2,3}, 
{2,4},…,{2,n }, {3,4},…, {3,n },…{n -1,n }. 

• Find pair {i, j } at the position           

 (i –1)(n –i /2) + j – i. 

 

• Total number of pairs n (n –1)/2; total bytes about 2n2. 
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A-Priori Using Triangular Matrix for Counts 

Item counts 

Pass 1 Pass 2 

Freq-  

quent  

items   

Counts of 

 pairs of 

 frequent 

   items 

Old   

  item   

#’s   
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Details of Approach #2 

• Total bytes used is about 12p, where p  is the 

number of pairs that actually occur. 

• Beats triangular matrix if no more than1/3 of possible 

pairs actually occur. 

 

• May require extra space for retrieval structure, e.g., 

a hash table. 



ASSOCIATION RULES 



Association Rule Mining 

• Given a set of transactions, find rules that will predict the 
occurrence of an item based on the occurrences of other 
items in the transaction 

Market-Basket transactions 

TID Items 

1 Bread, Milk 

2 Bread, Diaper, Beer, Eggs 

3 Milk, Diaper, Beer, Coke  

4 Bread, Milk, Diaper, Beer 

5 Bread, Milk, Diaper, Coke  

 

Example of Association Rules 

{Diaper}  {Beer}, 

{Milk, Bread}  {Eggs,Coke}, 

{Beer, Bread}  {Milk}, 

Implication means co-occurrence, 

not causality! 



Mining Association Rules 

Example: 

Beer}Diaper,Milk{ 

4.0
5

2

|T|

)BeerDiaper,,Milk(



s

67.0
3

2

)Diaper,Milk(

)BeerDiaper,Milk,(





c

 Association Rule 

– An implication expression of the form          

X  Y, where X and Y are itemsets 

– {Milk, Diaper}  {Beer}  

 Rule Evaluation Metrics 

– Support (s) 

 Fraction of transactions that contain both X 

and Y = the probability P(X,Y) that X and Y 

occur together 

– Confidence (c) 

 How often Y appears in transactions that 

contain X = the conditional probability P(Y|X) 

that Y occurs given that X has occurred. 

 

TID Items 

1 Bread, Milk 

2 Bread, Diaper, Beer, Eggs 

3 Milk, Diaper, Beer, Coke  

4 Bread, Milk, Diaper, Beer 

5 Bread, Milk, Diaper, Coke  

 

 Problem Definition 

– Input: Market-basket data, minsup, minconf values 

– Output: All rules with items in I having s ≥ minsup and c≥ minconf 



Mining Association Rules 

• Two-step approach:  

1. Frequent Itemset Generation 

– Generate all itemsets whose support  minsup 

 

2. Rule Generation 

– Generate high confidence rules from each frequent itemset, 

where each rule is a partitioning of a frequent itemset into Left-

Hand-Side (LHS) and Right-Hand-Side (RHS) 

 

 

Frequent itemset: {A,B,C,D} 

E.g., Rule:          ABCD  

BCD A,          ACD B ,        ABD C,        ABC D,  

CD AB,    BD AC,    BC AD,    AD  BC,  AB CD,  AC  BD,   

D ABC,         C ABD,          B ACD,         A BCD 

All Candidate rules: 



Association Rule anti-monotonicity 

• In general, confidence does not have an anti-
monotone property with respect to the size of the 
itemset:  
 c(ABC D) can be larger or smaller than c(AB D) 

 

• But confidence is anti-monotone w.r.t. number of 
items on the RHS of the rule (or monotone with 
respect to the LHS of the rule) 

 

• e.g., L = {A,B,C,D}: 
  
 c(ABC  D)  c(AB  CD)  c(A  BCD) 

  



Rule Generation for Apriori Algorithm 
ABCD=>{ }

BCD=>A ACD=>B ABD=>C ABC=>D

BC=>ADBD=>ACCD=>AB AD=>BC AC=>BD AB=>CD

D=>ABC C=>ABD B=>ACD A=>BCD

Lattice of rules created by the RHS 

ABCD=>{ }

BCD=>A ACD=>B ABD=>C ABC=>D

BC=>ADBD=>ACCD=>AB AD=>BC AC=>BD AB=>CD

D=>ABC C=>ABD B=>ACD A=>BCD

Pruned 

Rules 

Low 

Confidence 

Rule 



Rule Generation for APriori Algorithm 

• Candidate rule is generated by merging two rules that 
share the same prefix 
in the RHS 

 

• join(CDAB,BDAC) 
would produce the candidate 
rule D  ABC 

 

• Prune rule D  ABC if its 
subset ADBC does not have 
high confidence 

 

• Essentially we are doing APriori on the RHS  

BD->ACCD->AB

D->ABC



RESULT  

POST-PROCESSING 



Compact Representation of Frequent 

Itemsets 
• Some itemsets are redundant because they have identical 

support as their supersets 

 

 

 

 

 

 

 
 

 

 

• Number of frequent itemsets 
 

• Need a compact representation 

TID A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10

1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

3 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

4 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

5 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

6 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0

7 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0

8 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0

9 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0

10 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0

11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1

12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1

13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1

14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1

15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1
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Maximal Frequent Itemsets 

null

AB AC AD AE BC BD BE CD CE DE

A B C D E

ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE

ABCD ABCE ABDE ACDE BCDE

ABCDE
Border 

Infrequent 

Itemsets 

Maximal 

Itemsets 

An itemset is maximal frequent if none of its immediate supersets is 

frequent 

Maximal itemsets = positive border 

Maximal: no superset has this property 



Negative Border 

null

AB AC AD AE BC BD BE CD CE DE

A B C D E

ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE

ABCD ABCE ABDE ACDE BCDE

ABCDE
Border 

Infrequent 

Itemsets 

Itemsets that are not frequent, but all their immediate subsets are 

frequent. 

Minimal: no subset has this property 



Border 

• Border = Positive Border + Negative Border 

• Itemsets such that all their immediate subsets are 

frequent and all their immediate supersets are 

infrequent. 

 

• Either the positive, or the negative border is 

sufficient to summarize all frequent itemsets. 



Closed Itemsets 

• An itemset is closed if none of its immediate supersets 

has the same support as the itemset 

 

TID Items

1 {A,B}

2 {B,C,D}

3 {A,B,C,D}

4 {A,B,D}

5 {A,B,C,D}

Itemset Support

{A} 4

{B} 5

{C} 3

{D} 4

{A,B} 4

{A,C} 2

{A,D} 3

{B,C} 3

{B,D} 4

{C,D} 3

Itemset Support

{A,B,C} 2

{A,B,D} 3

{A,C,D} 2

{B,C,D} 3

{A,B,C,D} 2



Maximal vs Closed Itemsets 

TID Items

1 ABC

2 ABCD

3 BCE

4 ACDE

5 DE

null

AB AC AD AE BC BD BE CD CE DE

A B C D E

ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE

ABCD ABCE ABDE ACDE BCDE

ABCDE

124 123 1234 245 345

12 124 24 4 123 2 3 24 34 45

12 2 24 4 4 2 3 4

2 4

Transaction 

Ids 

Not supported 

by any 

transactions 



Maximal vs Closed Frequent Itemsets 

null

AB AC AD AE BC BD BE CD CE DE

A B C D E

ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE

ABCD ABCE ABDE ACDE BCDE

ABCDE

124 123 1234 245 345

12 124 24 4 123 2 3 24 34 45

12 2 24 4 4 2 3 4

2 4

Minimum support = 2 

# Closed = 9 

# Maximal = 4 

Closed 

and 

maximal 

Closed but not 

maximal 



Maximal vs Closed Itemsets 

Frequent

Itemsets

Closed

Frequent

Itemsets

Maximal

Frequent

Itemsets



Pattern Evaluation 

• Association rule algorithms tend to produce too many rules but 
many of them are uninteresting or redundant 
• Redundant if {A,B,C}  {D} and {A,B}  {D}  have same support & 

confidence 
• Summarization techniques 

• Uninteresting, if the pattern that is revealed does not offer useful 
information. 
• Interestingness measures: a hard problem to define 

 

• Interestingness measures can be used to prune/rank the 
derived patterns 
• Subjective measures: require human analyst 

• Objective measures: rely on the data. 

 

• In the original formulation of association rules, support & 
confidence are the only measures used 



Computing Interestingness Measure 

• Given a rule X  Y, information needed to compute rule 

interestingness can be obtained from a contingency table 

𝑌 𝑌   

𝑋 f11 f10 f1+ 

𝑋  f01 f00 f0+ 

f+1 f+0 N 

Contingency table for X  Y 

f11: support of X and Y 

f10: support of X and Y 

f01: support of X and Y 

f00: support of X and Y 

Used to define various measures 

 support, confidence, lift, Gini, 

   J-measure, etc. 

𝑋: itemset X appears in tuple 

𝑌: itemset Y appears in tuple 

𝑋 : itemset X does not appear in tuple 

𝑌 : itemset Y does not appear in tuple 



Drawback of Confidence 

 

Coffee 

 

Coffee 

Tea 15 5 20 

Tea 75 5 80 

90 10 100 

Association Rule: Tea  Coffee 

 

Confidence= 𝑃(Coffee|Tea)  =  
15

20
= 0.75 

Although confidence is high, rule is misleading 

• 𝑃(Coffee)  =  
90

100
= 0.9 

• 𝑃(Coffee|Tea)  =  0.9375 

Number of people that 

drink coffee and tea 

Number of people that 

drink coffee but not tea 

Number of people that 

drink coffee 

Number of people that 

drink tea 



Statistical Independence 

• Population of 1000 students 

• 600 students know how to swim (S) 

• 700 students know how to bike (B) 

• 420 students know how to swim and bike (S,B) 

 

• P(S,B) = 420/1000 = 0.42 

• P(S)  P(B) = 0.6  0.7 = 0.42 

 

• P(S,B) = P(S)  P(B) => Statistical independence 



Statistical Independence 

• Population of 1000 students 

• 600 students know how to swim (S) 

• 700 students know how to bike (B) 

• 500 students know how to swim and bike (S,B) 

 

• P(S,B) = 500/1000 = 0.5 

• P(S)  P(B) = 0.6  0.7 = 0.42 

 

• P(S,B) > P(S)  P(B) => Positively correlated 



Statistical Independence 

• Population of 1000 students 

• 600 students know how to swim (S) 

• 700 students know how to bike (B) 

• 300 students know how to swim and bike (S,B) 

 

• P(S,B) = 300/1000 = 0.3 

• P(S)  P(B) = 0.6  0.7 = 0.42 

 

• P(S,B) < P(S)  P(B) => Negatively correlated 



Statistical-based Measures 

• Measures that take into account statistical dependence 
 

• Lift/Interest/PMI 

 

Lift =  
𝑃(𝑌|𝑋)

𝑃(𝑌)
=

𝑃(𝑋, 𝑌)

𝑃 𝑋 𝑃(𝑌)
= Interest 

 

In text mining it is called: Pointwise Mutual Information  

 
• Piatesky-Shapiro 

 

PS = 𝑃 𝑋, 𝑌 − 𝑃 𝑋 𝑃(𝑌) 
 

• All these measures measure deviation from independence 
• The higher, the better (why?) 



Example: Lift/Interest 

 

Coffee 

 

Coffee 

Tea 15 5 20 

Tea 75 5 80 

90 10 100 

           Association Rule: Tea  Coffee 
 

Confidence= P(Coffee|Tea) = 0.75 

but P(Coffee) = 0.9 

 Lift = 0.75/0.9= 0.8333 (< 1, therefore is negatively associated) 

= 0.15/(0.9*0.2) 



Another Example 
of the of, the 

Fraction of 

documents 
0.9 0.9 0.8 

P(of, the)  ≈ P of P(the) 

If I was creating a document by picking words randomly, (of, the) have 

more or less the same probability of appearing together by chance 

hong kong hong, kong 

Fraction of 

documents 
0.2 0.2 0.19 

P hong, kong  ≫ P hong P(kong) 

(hong, kong) have much lower probability to appear together by chance. 

The two words appear almost always only together  

obama karagounis obama, karagounis 

Fraction of 

documents 
0.2 0.2 0.001 

P obama, karagounis  ≪ 
P obama P(karagounis) 

(obama, karagounis) have much higher probability to appear together by chance. 

The two words appear almost never together  

No correlation 

Positive correlation 

Negative correlation 



Drawbacks of Lift/Interest/Mutual Information 

honk konk honk, konk 

Fraction of 

documents 
0.0001 0.0001 0.0001 

𝑀𝐼 ℎ𝑜𝑛𝑘, 𝑘𝑜𝑛𝑘 =  
0.0001

0.0001 ∗ 0.0001
= 10000 

hong kong hong, kong 

Fraction of 

documents 
0.2 0.2 0.19 

𝑀𝐼 ℎ𝑜𝑛𝑔, 𝑘𝑜𝑛𝑔 =  
0.19

0.2 ∗ 0.2
= 4.75 

Rare co-occurrences are deemed more interesting. 

But this is not always what we want 



ALTERNATIVE FREQUENT 

ITEMSET COMPUTATION 
Slides taken from Mining Massive Datasets course by 

Anand Rajaraman and Jeff Ullman. 



C1 L1 C2 L2 C3 
Filter Filter Construct Construct 

First 

pass 

Second 

pass 

All 

items 

All pairs 

of items 

from L1 

  Count 

the pairs 

  Count 

the items 

Frequent 

items 

Frequent 

pairs 

Finding the frequent pairs is usually 

the most expensive operation 
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Picture of A-Priori 

   

Item counts 

Pass 1 Pass 2 

Frequent items 

Counts of 

  pairs of 

 frequent 

   items 
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PCY Algorithm 

• During Pass 1 (computing frequent 

items) of Apriori, most memory is idle. 

 

• Use that memory to keep a hash table 

where pairs of items are hashed.  

• The hash table keeps just counts of the 

number of pairs hashed in each bucket, 

not the pairs themselves. 

Item counts 

Pass 1 
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Needed Extensions 

1. Pairs of items need to be generated from the 

input file; they are not present in the file. 

2. Memory organization: 

• Space to count each item. 

• One (typically) 4-byte integer per item. 

• Use the rest of the space for as many integers, 

representing buckets, as we can. 
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Picture of PCY 

Item counts 

Pass 1 

Hash 

table 
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Picture of PCY 

Item counts 

Pass 1 

Bucket Counts 
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PCY Algorithm – Pass 1 

FOR (each basket) { 

 FOR (each item in the basket) 

  add 1 to item’s count; 

 FOR (each pair of items in the basket) 

{ 

  hash the pair to a bucket; 

  add 1 to the count for that bucket 

 } 

} 
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Observations About Buckets 

• A bucket is frequent  if its count is at least the support 
threshold. 

 

• A bucket that a frequent pair hashes to is surely frequent. 
• We cannot use the hash table to eliminate any member of this 

bucket. 

• Even without any frequent pair, a bucket can be frequent. 
• Again, nothing in the bucket can be eliminated. 

• But in the best case, the count for a  bucket is less than 
the support s. 
• Now, all pairs that hash to this bucket can be eliminated as 

candidates, even if the pair consists of two frequent items. 

 

• On Pass 2 (frequent pairs), we only count pairs that hash 
to frequent buckets. 
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PCY Algorithm – Between Passes 

• Replace the buckets by a bit-vector: 
• 1 means the bucket is frequent; 0 means it is not. 

 

• 4-byte integers are replaced by bits, so the bit-
vector requires 1/32 of memory. 

 

• Also, find which items are frequent and list them 
for the second pass. 
• Same as with Apriori 



84 

Picture of PCY 

Hash 

table 

Item counts 

Bitmap 

Pass 1 Pass 2 

Frequent items 

Counts of 

candidate 

   pairs 
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PCY Algorithm – Pass 2 

• Count all pairs {i, j } that meet the conditions 

for being a candidate pair: 

1. Both i  and j  are frequent items. 

2. The pair {i, j }, hashes to a bucket number whose bit 

in the bit vector is 1. 

 

• Notice both these conditions are necessary for 

the pair to have a chance of being frequent. 
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All (Or Most) Frequent Itemsets  

in less than 2 Passes 

• A-Priori, PCY, etc., take k  passes to find 

frequent itemsets of size k. 

• Other techniques use 2 or fewer passes for all 

sizes: 

• Simple sampling algorithm. 

• SON (Savasere, Omiecinski, and Navathe). 

• Toivonen. 
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Simple Sampling Algorithm – (1) 

• Take a random sample of the market baskets. 

 

• Run Apriori or one of its improvements (for sets 

of all sizes, not just pairs) in main memory, so 

you don’t pay for disk I/O each time you increase 

the size of itemsets. 

• Make sure the sample is such that there is enough 

space for counts. 
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Main-Memory Picture 

Copy of 

sample 

baskets 

Space 

  for 

counts 
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Simple Algorithm – (2) 

• Use as your support threshold a suitable, 

scaled-back number. 

• E.g., if your sample is 1/100 of the baskets, use       

s /100 as your support threshold instead of s. 

 

• You could stop here (single pass) 

• What could be the problem? 
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Simple Algorithm – Option 

• Optionally, verify that your guesses are truly 

frequent in the entire data set by a second 

pass (eliminate false positives) 

 

• But you don’t catch sets frequent in the whole 

but not in the sample. (false negatives) 

• Smaller threshold, e.g., s /125, helps catch more 

truly frequent itemsets. 

• But requires more space. 
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SON Algorithm – (1) 

• First pass: Break the data into chunks that can be 

processed in main memory.  

• Read one chunk at the time 

• Find all frequent itemsets for each chunk. 

• Threshold = s/number of chunks 

 

• An itemset becomes a candidate if it is found to 

be frequent in any one or more chunks of the 

baskets. 
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SON Algorithm – (2) 

• Second pass: count all the candidate itemsets 

and determine which are frequent in the entire 

set. 

 

• Key “monotonicity” idea: an itemset cannot be 

frequent in the entire set of baskets unless it is 

frequent in at least one subset. 

• Why? 
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SON Algorithm – Distributed Version 

• This idea lends itself to distributed data 

mining. 

• If baskets are distributed among many nodes, 

compute frequent itemsets at each node, then 

distribute the candidates from each node. 

• Finally, accumulate the counts of all 

candidates. 
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Toivonen’s Algorithm – (1) 

• Start as in the simple sampling algorithm, but 

lower the threshold slightly for the sample. 

• Example: if the sample is 1% of the baskets, use s /125 

as the support threshold rather than s /100. 

• Goal is to avoid missing any itemset that is frequent in 

the full set of baskets. 
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Toivonen’s Algorithm – (2) 

• Add to the itemsets that are frequent in the 

sample the negative border of these itemsets. 

• An itemset is in the negative border if it is not 

deemed frequent in the sample, but all  its 

immediate subsets are. 
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Reminder: Negative Border 

• Itemset ABCD  is in the negative border if 

and only if: 

1. It is not frequent in the sample, but 

2. All of ABC, BCD, ACD, and ABD  are. 

• Item A  is in the negative border if and only if 

it is not frequent in the sample. 

 Because the empty set is always frequent. 

 Unless there are fewer baskets than the support 

threshold (silly case). 
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Picture of Negative Border 

    … 

 

triples 

 

pairs 

 

singletons 

Negative Border 

Frequent Itemsets 

from Sample 
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Toivonen’s Algorithm – (3) 

• In a second pass, compute the support for all 

candidate frequent itemsets from the first pass, 

and also for their negative border. 

• If no itemset from the negative border turns out to 

be frequent, then the candidates found to be 

frequent in the whole data are exactly the 

frequent itemsets. 
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Toivonen’s Algorithm – (4) 

• What if we find that something in the negative 

border is actually frequent? 

• We must start over again! 

 

• Try to choose the support threshold so the 

probability of failure is low, while the number of 

itemsets checked on the second pass fits in main-

memory. 
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If Something in the Negative Border is 

Frequent . . . 

    … 

 

tripletons 

 

doubletons 

 

singletons 

Negative Border 

Frequent Itemsets 

from Sample 

We broke through the 

negative border.  How 

far does the problem 

        go? 
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Theorem: 

• If there is an itemset that is frequent in the whole, 

but not frequent in the sample, then there is a 

member of the negative border for the sample 

that is frequent in the whole. 
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Proof: Suppose not; i.e.; 

1. There is an itemset S  frequent in the whole but not 

frequent in the sample, and 

2. Nothing in the negative border is frequent in the 

whole. 

• Let T  be a smallest subset of S  that is not 

frequent in the sample. 

• T  is frequent in the whole (S  is frequent + 

monotonicity). 

• T  is in the negative border (else not 

“smallest”). 



Example 

null

AB AC AD AE BC BD BE CD CE DE

A B C D E

ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE

ABCD ABCE ABDE ACDE BCDE

ABCDE
Border 



FREQUENT ITEMSET 

RESEARCH 




