
DATA MINING

LECTURE 3
Frequent Itemsets and Association Rules

This is how it all started…

• Rakesh Agrawal, Tomasz Imielinski, Arun N. Swami:
Mining Association Rules between Sets of Items in
Large Databases. SIGMOD Conference 1993: 207-
216

• Rakesh Agrawal, Ramakrishnan Srikant: Fast
Algorithms for Mining Association Rules in Large
Databases. VLDB 1994: 487-499

• These two papers are credited with the birth of Data
Mining

• For a long time people were fascinated with
Association Rules and Frequent Itemsets
• Some people (in industry and academia) still are.

http://www.informatik.uni-trier.de/~ley/db/conf/sigmod/sigmod93.html
http://www.informatik.uni-trier.de/~ley/db/conf/vldb/vldb94.html

3

Market-Basket Data

• A large set of items, e.g., things sold in a
supermarket.

• A large set of baskets, each of which is a small
subset of the items, e.g., the things one customer
buys on one day.

TID Items

1 Bread, Milk

2 Bread, Diaper, Beer, Eggs

3 Milk, Diaper, Beer, Coke

4 Bread, Milk, Diaper, Beer

5 Bread, Milk, Diaper, Coke

Items: {Bread, Milk, Diaper, Beer, Eggs, Coke}

Baskets: Transactions

4

Frequent itemsets

• Goal: find combinations of items (itemsets) that

occur frequently

• Called Frequent Itemsets

TID Items

1 Bread, Milk

2 Bread, Diaper, Beer, Eggs

3 Milk, Diaper, Beer, Coke

4 Bread, Milk, Diaper, Beer

5 Bread, Milk, Diaper, Coke

Examples of frequent itemsets 𝑠 𝐼 ≥ 3

{Bread}: 4

{Milk} : 4

{Diaper} : 4

{Beer}: 3

{Diaper, Beer} : 3

{Milk, Bread} : 3

Support 𝑠 𝐼 : number of

transactions that contain

itemset I

5

Market-Baskets – (2)

• Really, a general many-to-many mapping

(association) between two kinds of things, where the

one (the baskets) is a set of the other (the items)

• But we ask about connections among “items,” not “baskets.”

• The technology focuses on common/frequent events,

not rare events (“long tail”).

6

Applications – (1)

• Items = products; baskets = sets of products

someone bought in one trip to the store.

• Example application: given that many people buy

beer and diapers together:

• Run a sale on diapers; raise price of beer.

• Only useful if many buy diapers & beer.

7

Applications – (2)

• Baskets = Web pages; items = words.

• Example application: Unusual words appearing

together in a large number of documents, e.g.,

“Brad” and “Angelina,” may indicate an interesting

relationship.

8

Applications – (3)

• Baskets = sentences; items = documents

containing those sentences.

• Example application: Items that appear together

too often could represent plagiarism.

• Notice items do not have to be “in” baskets.

Definitions

• Itemset

• A collection of one or more items

• Example: {Milk, Bread, Diaper}

• k-itemset

• An itemset that contains k items

• Support (s)

• Count: Frequency of occurrence of an itemset
• E.g. s({Milk, Bread,Diaper}) = 2

• Fraction: Fraction of transactions that contain an itemset
• E.g. s({Milk, Bread, Diaper}) = 40%

• Frequent Itemset

• An itemset 𝐼 whose support is greater than or equal to a

minsup threshold, 𝑠 𝐼 ≥minsup

TID Items

1 Bread, Milk

2 Bread, Diaper, Beer, Eggs

3 Milk, Diaper, Beer, Coke

4 Bread, Milk, Diaper, Beer

5 Bread, Milk, Diaper, Coke

Mining Frequent Itemsets task

• Input: Market basket data, threshold minsup

• Output: All frequent itemsets with support ≥ minsup

• Problem parameters:
• N (size): number of transactions

• Wallmart: billions of baskets per year

• Web: billions of pages

• d (dimension): number of (distinct) items

• Wallmart sells more than 100,000 items

• Web: billions of words

• w: max size of a basket

• M: Number of possible itemsets.

M = 2𝑑

The itemset lattice

null

AB AC AD AE BC BD BE CD CE DE

A B C D E

ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE

ABCD ABCE ABDE ACDE BCDE

ABCDE

Given d items, there are 2d

possible itemsets

Representation of all possible

itemsets and their relationships

A Naïve Algorithm
• Brute-force approach: Every itemset is a candidate :

• Consider all itemsets in the lattice, and scan the data for each candidate to
compute the support

• Time Complexity ~ O(NMw) , Space Complexity ~ O(d)

• OR
• Scan the data, and for each transaction generate all possible itemsets. Keep

a count for each itemset in the data.

• Time Complexity ~ O(N2w) , Space Complexity ~ O(M)

• Expensive since M = 2d !!!
• No solution that considers all candidates is acceptable!

TID Items

1 Bread, Milk

2 Bread, Diaper, Beer, Eggs

3 Milk, Diaper, Beer, Coke

4 Bread, Milk, Diaper, Beer

5 Bread, Milk, Diaper, Coke

N

Transactions List of

Candidates

M

w

13

Computation Model

• Typically, data is kept in flat files rather than in a

database system.

• Stored on disk.

• Stored basket-by-basket.

• We can expand a basket into pairs, triples, etc. as we read

the data.

• Use k nested loops, or recursion to generate all itemsets of size k.

• Data is too large to be loaded in memory.

Example file: retail
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

30 31 32

33 34 35

36 37 38 39 40 41 42 43 44 45 46

38 39 47 48

38 39 48 49 50 51 52 53 54 55 56 57 58

32 41 59 60 61 62

3 39 48

63 64 65 66 67 68

32 69

48 70 71 72

39 73 74 75 76 77 78 79

36 38 39 41 48 79 80 81

82 83 84

41 85 86 87 88

39 48 89 90 91 92 93 94 95 96 97 98 99 100 101

36 38 39 48 89

39 41 102 103 104 105 106 107 108

38 39 41 109 110

39 111 112 113 114 115 116 117 118

119 120 121 122 123 124 125 126 127 128 129 130 131 132 133

48 134 135 136

39 48 137 138 139 140 141 142 143 144 145 146 147 148 149

39 150 151 152

38 39 56 153 154 155

Example: items are positive integers,

and each basket corresponds to a line in

the file of space-separated integers

15

Computation Model – (2)

• The true cost of mining disk-resident data is

usually the number of disk I/O’s.

• In practice, association-rule algorithms read the

data in passes – all baskets read in turn.

• Thus, we measure the cost by the number of

passes an algorithm takes.

16

Main-Memory Bottleneck

• For many frequent-itemset algorithms, main

memory is the critical resource.

• As we read baskets, we need to count something, e.g.,

occurrences of pairs.

• The number of different things we can count is limited

by main memory.

• Swapping counts in/out is too slow

The Apriori Principle

• Apriori principle (Main observation):

– If an itemset is frequent, then all of its subsets must also
be frequent

– If an itemset is not frequent, then all of its supersets
cannot be frequent

– The support of an itemset never exceeds the support of
its subsets

– This is known as the anti-monotone property of support

∀𝑋, 𝑌: 𝑋 ⊆ 𝑌 ⇒ 𝑠 𝑋 ≥ 𝑠(𝑌)

Illustration of the Apriori principle

Found to be frequent

Frequent

subsets

Illustration of the Apriori principle

Found to be

Infrequent

null

AB AC AD AE BC BD BE CD CE DE

A B C D E

ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE

ABCD ABCE ABDE ACDE BCDE

ABCDE

null

AB AC AD AE BC BD BE CD CE DE

A B C D E

ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE

ABCD ABCE ABDE ACDE BCDE

ABCDEPruned

Infrequent supersets

R. Agrawal, R. Srikant: "Fast Algorithms for Mining Association Rules",

Proc. of the 20th Int'l Conference on Very Large Databases, 1994.

The Apriori algorithm

Level-wise approach
Ck = candidate itemsets of size k

Lk = frequent itemsets of size k

Candidate

generation

Frequent

itemset

generation

1. k = 1, C1 = all items

2. While Ck not empty

3. Scan the database to find which itemsets in

Ck are frequent and put them into Lk

4. Generate the candidate itemsets Ck+1 of

size k+1 using Lk

5. k = k+1

Candidate Generation

• Apriori principle:
• An itemset of size k+1 is candidate to be frequent only if

all of its subsets of size k are known to be frequent

Candidate generation:

• Construct a candidate of size k+1 by combining
frequent itemsets of size k
• If k = 1, take the all pairs of frequent items

• If k > 1, join pairs of itemsets that differ by just one item

• For each generated candidate itemset ensure that all
subsets of size k are frequent.

• Assumption: The items in an itemset are ordered

• Integers ordered in increasing order, strings ordered lexicographicly

• The order ensures that if item y > x appears before x, then x is not in

the itemset

• The itemsets in Lk are also ordered

Generate Candidates Ck+1

Create a candidate itemset of size k+1, by joining

two itemsets of size k, that share the first k-1 items

Item 1 Item 2 Item 3

1 2 3

1 2 5

1 4 5

Generate Candidates Ck+1

Create a candidate itemset of size k+1, by joining

two itemsets of size k, that share the first k-1 items

Item 1 Item 2 Item 3

1 2 3

1 2 5

1 4 5

1 2 3 5

• Assumption: The items in an itemset are ordered

• Integers ordered in increasing order, strings ordered in lexicographicly

• The order ensures that if item y > x appears before x, then x is not in

the itemset

• The itemsets in Lk are also ordered

Generate Candidates Ck+1

Create a candidate itemset of size k+1, by joining

two itemsets of size k, that share the first k-1 items

Item 1 Item 2 Item 3

1 2 3

1 2 5

1 4 5
1 2 4 5

Are we missing something?

What about this candidate?

• Assumption: The items in an itemset are ordered

• Integers ordered in increasing order, strings ordered in lexicographicly

• The order ensures that if item y > x appears before x, then x is not in

the itemset

• The itemsets in Lk are also ordered

Generating Candidates Ck+1 in SQL

• self-join Lk

insert into Ck+1

select p.item1, p.item2, …, p.itemk, q.itemk

from Lk p, Lk q

where p.item1=q.item1, …, p.itemk-1=q.itemk-1, p.itemk < q.itemk

• L3={abc, abd, acd, ace, bcd}

• Generating candidate set C4

• Self-join: L3*L3

Example

item1 item2 item3

a b c

a b d

a c d

a c e

b c d

item1 item2 item3

a b c

a b d

a c d

a c e

b c d

p.item1=q.item1,p.item2=q.item2, p.item3< q.item3

• L3={abc, abd, acd, ace, bcd}

• Generating candidate set C4

• Self-join: L3*L3

Example

p.item1=q.item1,p.item2=q.item2, p.item3< q.item3

item1 item2 item3

a b c

a b d

a c d

a c e

b c d

item1 item2 item3

a b c

a b d

a c d

a c e

b c d

• L3={abc, abd, acd, ace, bcd}

• Generating candidate set C4

• Self-join: L3*L3

Example

p.item1=q.item1,p.item2=q.item2, p.item3< q.item3

{a,b,c} {a,b,d}

{a,b,c,d}

item1 item2 item3

a b c

a b d

a c d

a c e

b c d

item1 item2 item3

a b c

a b d

a c d

a c e

b c d

C4 ={abcd}

• L3={abc, abd, acd, ace, bcd}

• Generating candidate set C4

• Self-join: L3*L3

Example

p.item1=q.item1,p.item2=q.item2, p.item3< q.item3

C4 ={abcd

 acde}

{a,c,d} {a,c,e}

{a,c,d,e}

item1 item2 item3

a b c

a b d

a c d

a c e

b c d

item1 item2 item3

a b c

a b d

a c d

a c e

b c d

Item Count

Bread 4
Coke 2
Milk 4
Beer 3
Diaper 4
Eggs 1

Itemset Count

{Bread,Milk} 3
{Bread,Beer} 2
{Bread,Diaper} 3
{Milk,Beer} 2
{Milk,Diaper} 3
{Beer,Diaper} 3

Itemset Count

{Bread,Milk,Diaper} 2

Items (1-itemsets)

Pairs (2-itemsets)

(No need to generate
candidates involving Coke
or Eggs)

Triplets (3-itemsets)

minsup = 3

If every subset is considered,
6
1

 +
6
2

 +
6
3

 = 6 + 15 + 20 = 41

With support-based pruning,
6
1

 +
4
2

 + 1 = 6 + 6 + 1 = 13

Illustration of the Apriori principle

Only this triplet has all subsets to be frequent

But it is below the minsup threshold

TID Items

1 Bread, Milk

2 Bread, Diaper, Beer, Eggs

3 Milk, Diaper, Beer, Coke

4 Bread, Milk, Diaper, Beer

5 Bread, Milk, Diaper, Coke

Generate Candidates Ck+1

• Are we done? Are all the candidates valid?

• Pruning step:
• For each candidate (k+1)-itemset create all subset k-itemsets

• Remove a candidate if it contains a subset k-itemset that is
not frequent

Item 1 Item 2 Item 3

1 2 3

1 2 5

1 4 5

1 2 3 5

Is this a valid candidate?

No. Subsets (1,3,5) and (2,3,5) should also be frequent

Apriori principle

• L3={abc, abd, acd, ace, bcd}

• Self-joining: L3*L3

– abcd from abc and abd

– acde from acd and ace

• C4={abcd, acde}

• Pruning:

– abcd is kept since all subset itemsets are

in L3

– acde is removed because ade is not in L3

• C4={abcd}

{a,c,d} {a,c,e}

{a,c,d,e}

acd ace ade cde
 X

Example
{a,b,c} {a,b,d}

{a,b,c,d}

abc abd acd bcd

Example II

 Itemset Count

{Beer,Diaper} 3
{Bread,Diaper} 3
{Bread,Milk} 3
{Diaper, Milk} 3

Itemset Count

{Beer,Diaper} 3
{Bread,Diaper} 3
{Bread,Milk} 3
{Diaper, Milk} 3

Itemset

{Bread,Diaper,Milk}

{Bread,Diaper}

{Bread,Milk}

{Diaper, Milk}

• We have all frequent k-itemsets Lk

• Step 1: self-join Lk

• Create set Ck+1 by joining frequent k-itemsets that

share the first k-1 items

• Step 2: prune

• Remove from Ck+1 the itemsets that contain a subset

k-itemset that is not frequent

Generate Candidates Ck+1

Computing Frequent Itemsets

• Given the set of candidate itemsets Ck, we need to compute

the support and find the frequent itemsets Lk.

• Scan the data, and use a hash structure to keep a counter

for each candidate itemset that appears in the data

TID Items

1 Bread, Milk

2 Bread, Diaper, Beer, Eggs

3 Milk, Diaper, Beer, Coke

4 Bread, Milk, Diaper, Beer

5 Bread, Milk, Diaper, Coke

N

Transactions Hash Structure

k

Buckets

Ck

A simple hash structure

• Create a dictionary (hash table) that stores the

candidate itemsets as keys, and the number of

appearances as the value.

• Initialize with zero

• Increment the counter for each itemset that you

see in the data

Example

Suppose you have 15 candidate

itemsets of length 3:

C3 = {

{1 4 5}, {1 2 4}, {4 5 7}, {1 2 5}, {4 5 8},

{1 5 9}, {1 3 6}, {2 3 4}, {5 6 7}, {3 4 5},

{3 5 6}, {3 5 7}, {6 8 9}, {3 6 7}, {3 6 8}

}

Hash table stores the counts of the

candidate itemsets as they have been

computed so far

Key Value

{3 6 7} 0

{3 4 5} 1

{1 3 6} 3

{1 4 5} 5

{2 3 4} 2

{1 5 9} 1

{3 6 8} 0

{4 5 7} 2

{6 8 9} 0

{5 6 7} 3

{1 2 4} 8

{3 5 7} 1

{1 2 5} 0

{3 5 6} 1

{4 5 8} 0

Example

A new tuple {1,2,3,5,6} generates the

following itemsets of length 3:

{1 2 3}, {1 2 5}, {1 2 6}, {1 3 5}, {1 3 6},

{1 5 6}, {2 3 5}, {2 3 6}, {3 5 6},

Increment the counters for the itemsets

in the dictionary

Key Value

{3 6 7} 0

{3 4 5} 1

{1 3 6} 3

{1 4 5} 5

{2 3 4} 2

{1 5 9} 1

{3 6 8} 0

{4 5 7} 2

{6 8 9} 0

{5 6 7} 3

{1 2 4} 8

{3 5 7} 1

{1 2 5} 0

{3 5 6} 1

{4 5 8} 0

Example

A new tuple {1,2,3,5,6} generates the

following itemsets of length 3:

{1 2 3}, {1 2 5}, {1 2 6}, {1 3 5}, {1 3 6},

{1 5 6}, {2 3 5}, {2 3 6}, {3 5 6},

Increment the counters for the itemsets

in the dictionary

Key Value

{3 6 7} 0

{3 4 5} 1

{1 3 6} 4

{1 4 5} 5

{2 3 4} 2

{1 5 9} 1

{3 6 8} 0

{4 5 7} 2

{6 8 9} 0

{5 6 7} 3

{1 2 4} 8

{3 5 7} 1

{1 2 5} 1

{3 5 6} 2

{4 5 8} 0

C1 L1 C2 L2 C3
Filter Filter Construct Construct

First

pass

Second

pass

All

items

All pairs

of items

from L1

 Count

the pairs

 Count

the items

Frequent

items

Frequent

pairs

The frequent itemset algorithm

41

A-Priori for All Frequent Itemsets

• One pass for each k.

• Needs room in main memory to count each

candidate k -set.

• For typical market-basket data and reasonable

support (e.g., 1%), k = 2 requires the most

memory.

42

Picture of A-Priori

Item counts

Pass 1 Pass 2

Frequent items

Counts of

 pairs of

 frequent

 items

43

Details of Main-Memory Counting

• Two approaches:

1. Count all pairs, using a “triangular matrix” = one

dimensional array that stores the lower diagonal.

2. Keep a table of triples [i, j, c] = “the count of the pair

of items {i, j } is c.”

• (1) requires only 4 bytes/pair.

• Note: always assume integers are 4 bytes.

• (2) requires 12 bytes/pair, but only for those pairs

with count > 0.

44

4 per pair

Method (1) Method (2)

12 per

occurring pair

45

Triangular-Matrix Approach

• Number items 1, 2,…
• Requires table of size O(n) to convert item names to

consecutive integers.

• Count {i, j } only if i < j.

• Keep pairs in the order {1,2}, {1,3},…, {1,n }, {2,3},
{2,4},…,{2,n }, {3,4},…, {3,n },…{n -1,n }.

• Find pair {i, j } at the position

 (i –1)(n –i /2) + j – i.

• Total number of pairs n (n –1)/2; total bytes about 2n2.

46

A-Priori Using Triangular Matrix for Counts

Item counts

Pass 1 Pass 2

Freq-

quent

items

Counts of

 pairs of

 frequent

 items

Old

 item

#’s

47

Details of Approach #2

• Total bytes used is about 12p, where p is the

number of pairs that actually occur.

• Beats triangular matrix if no more than1/3 of possible

pairs actually occur.

• May require extra space for retrieval structure, e.g.,

a hash table.

ASSOCIATION RULES

Association Rule Mining

• Given a set of transactions, find rules that will predict the
occurrence of an item based on the occurrences of other
items in the transaction

Market-Basket transactions

TID Items

1 Bread, Milk

2 Bread, Diaper, Beer, Eggs

3 Milk, Diaper, Beer, Coke

4 Bread, Milk, Diaper, Beer

5 Bread, Milk, Diaper, Coke

Example of Association Rules

{Diaper} {Beer},

{Milk, Bread} {Eggs,Coke},

{Beer, Bread} {Milk},

Implication means co-occurrence,

not causality!

Mining Association Rules

Example:

Beer}Diaper,Milk{

4.0
5

2

|T|

)BeerDiaper,,Milk(

s

67.0
3

2

)Diaper,Milk(

)BeerDiaper,Milk,(

c

 Association Rule

– An implication expression of the form

X Y, where X and Y are itemsets

– {Milk, Diaper} {Beer}

 Rule Evaluation Metrics

– Support (s)

 Fraction of transactions that contain both X

and Y = the probability P(X,Y) that X and Y

occur together

– Confidence (c)

 How often Y appears in transactions that

contain X = the conditional probability P(Y|X)

that Y occurs given that X has occurred.

TID Items

1 Bread, Milk

2 Bread, Diaper, Beer, Eggs

3 Milk, Diaper, Beer, Coke

4 Bread, Milk, Diaper, Beer

5 Bread, Milk, Diaper, Coke

 Problem Definition

– Input: Market-basket data, minsup, minconf values

– Output: All rules with items in I having s ≥ minsup and c≥ minconf

Mining Association Rules

• Two-step approach:

1. Frequent Itemset Generation

– Generate all itemsets whose support minsup

2. Rule Generation

– Generate high confidence rules from each frequent itemset,

where each rule is a partitioning of a frequent itemset into Left-

Hand-Side (LHS) and Right-Hand-Side (RHS)

Frequent itemset: {A,B,C,D}

E.g., Rule: ABCD

BCD A, ACD B , ABD C, ABC D,

CD AB, BD AC, BC AD, AD BC, AB CD, AC BD,

D ABC, C ABD, B ACD, A BCD

All Candidate rules:

Association Rule anti-monotonicity

• In general, confidence does not have an anti-
monotone property with respect to the size of the
itemset:
 c(ABC D) can be larger or smaller than c(AB D)

• But confidence is anti-monotone w.r.t. number of
items on the RHS of the rule (or monotone with
respect to the LHS of the rule)

• e.g., L = {A,B,C,D}:

 c(ABC D) c(AB CD) c(A BCD)

Rule Generation for Apriori Algorithm
ABCD=>{ }

BCD=>A ACD=>B ABD=>C ABC=>D

BC=>ADBD=>ACCD=>AB AD=>BC AC=>BD AB=>CD

D=>ABC C=>ABD B=>ACD A=>BCD

Lattice of rules created by the RHS

ABCD=>{ }

BCD=>A ACD=>B ABD=>C ABC=>D

BC=>ADBD=>ACCD=>AB AD=>BC AC=>BD AB=>CD

D=>ABC C=>ABD B=>ACD A=>BCD

Pruned

Rules

Low

Confidence

Rule

Rule Generation for APriori Algorithm

• Candidate rule is generated by merging two rules that
share the same prefix
in the RHS

• join(CDAB,BDAC)
would produce the candidate
rule D ABC

• Prune rule D ABC if its
subset ADBC does not have
high confidence

• Essentially we are doing APriori on the RHS

BD->ACCD->AB

D->ABC

RESULT

POST-PROCESSING

Compact Representation of Frequent

Itemsets
• Some itemsets are redundant because they have identical

support as their supersets

• Number of frequent itemsets

• Need a compact representation

TID A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10

1 1 1 1 1 1 1 1 1 1 1 0

2 1 1 1 1 1 1 1 1 1 1 0

3 1 1 1 1 1 1 1 1 1 1 0

4 1 1 1 1 1 1 1 1 1 1 0

5 1 1 1 1 1 1 1 1 1 1 0

6 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0

7 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0

8 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0

9 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0

10 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0

11 0 1 1 1 1 1 1 1 1 1 1

12 0 1 1 1 1 1 1 1 1 1 1

13 0 1 1 1 1 1 1 1 1 1 1

14 0 1 1 1 1 1 1 1 1 1 1

15 0 1 1 1 1 1 1 1 1 1 1

10

1

10
3

k k

Maximal Frequent Itemsets

null

AB AC AD AE BC BD BE CD CE DE

A B C D E

ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE

ABCD ABCE ABDE ACDE BCDE

ABCDE
Border

Infrequent

Itemsets

Maximal

Itemsets

An itemset is maximal frequent if none of its immediate supersets is

frequent

Maximal itemsets = positive border

Maximal: no superset has this property

Negative Border

null

AB AC AD AE BC BD BE CD CE DE

A B C D E

ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE

ABCD ABCE ABDE ACDE BCDE

ABCDE
Border

Infrequent

Itemsets

Itemsets that are not frequent, but all their immediate subsets are

frequent.

Minimal: no subset has this property

Border

• Border = Positive Border + Negative Border

• Itemsets such that all their immediate subsets are

frequent and all their immediate supersets are

infrequent.

• Either the positive, or the negative border is

sufficient to summarize all frequent itemsets.

Closed Itemsets

• An itemset is closed if none of its immediate supersets

has the same support as the itemset

TID Items

1 {A,B}

2 {B,C,D}

3 {A,B,C,D}

4 {A,B,D}

5 {A,B,C,D}

Itemset Support

{A} 4

{B} 5

{C} 3

{D} 4

{A,B} 4

{A,C} 2

{A,D} 3

{B,C} 3

{B,D} 4

{C,D} 3

Itemset Support

{A,B,C} 2

{A,B,D} 3

{A,C,D} 2

{B,C,D} 3

{A,B,C,D} 2

Maximal vs Closed Itemsets

TID Items

1 ABC

2 ABCD

3 BCE

4 ACDE

5 DE

null

AB AC AD AE BC BD BE CD CE DE

A B C D E

ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE

ABCD ABCE ABDE ACDE BCDE

ABCDE

124 123 1234 245 345

12 124 24 4 123 2 3 24 34 45

12 2 24 4 4 2 3 4

2 4

Transaction

Ids

Not supported

by any

transactions

Maximal vs Closed Frequent Itemsets

null

AB AC AD AE BC BD BE CD CE DE

A B C D E

ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE

ABCD ABCE ABDE ACDE BCDE

ABCDE

124 123 1234 245 345

12 124 24 4 123 2 3 24 34 45

12 2 24 4 4 2 3 4

2 4

Minimum support = 2

Closed = 9

Maximal = 4

Closed

and

maximal

Closed but not

maximal

Maximal vs Closed Itemsets

Frequent

Itemsets

Closed

Frequent

Itemsets

Maximal

Frequent

Itemsets

Pattern Evaluation

• Association rule algorithms tend to produce too many rules but
many of them are uninteresting or redundant
• Redundant if {A,B,C} {D} and {A,B} {D} have same support &

confidence
• Summarization techniques

• Uninteresting, if the pattern that is revealed does not offer useful
information.
• Interestingness measures: a hard problem to define

• Interestingness measures can be used to prune/rank the
derived patterns
• Subjective measures: require human analyst

• Objective measures: rely on the data.

• In the original formulation of association rules, support &
confidence are the only measures used

Computing Interestingness Measure

• Given a rule X Y, information needed to compute rule

interestingness can be obtained from a contingency table

𝑌 𝑌

𝑋 f11 f10 f1+

𝑋 f01 f00 f0+

f+1 f+0 N

Contingency table for X Y

f11: support of X and Y

f10: support of X and Y

f01: support of X and Y

f00: support of X and Y

Used to define various measures

 support, confidence, lift, Gini,

 J-measure, etc.

𝑋: itemset X appears in tuple

𝑌: itemset Y appears in tuple

𝑋 : itemset X does not appear in tuple

𝑌 : itemset Y does not appear in tuple

Drawback of Confidence

Coffee

Coffee

Tea 15 5 20

Tea 75 5 80

90 10 100

Association Rule: Tea Coffee

Confidence= 𝑃(Coffee|Tea) =
15

20
= 0.75

Although confidence is high, rule is misleading

• 𝑃(Coffee) =
90

100
= 0.9

• 𝑃(Coffee|Tea) = 0.9375

Number of people that

drink coffee and tea

Number of people that

drink coffee but not tea

Number of people that

drink coffee

Number of people that

drink tea

Statistical Independence

• Population of 1000 students

• 600 students know how to swim (S)

• 700 students know how to bike (B)

• 420 students know how to swim and bike (S,B)

• P(S,B) = 420/1000 = 0.42

• P(S) P(B) = 0.6 0.7 = 0.42

• P(S,B) = P(S) P(B) => Statistical independence

Statistical Independence

• Population of 1000 students

• 600 students know how to swim (S)

• 700 students know how to bike (B)

• 500 students know how to swim and bike (S,B)

• P(S,B) = 500/1000 = 0.5

• P(S) P(B) = 0.6 0.7 = 0.42

• P(S,B) > P(S) P(B) => Positively correlated

Statistical Independence

• Population of 1000 students

• 600 students know how to swim (S)

• 700 students know how to bike (B)

• 300 students know how to swim and bike (S,B)

• P(S,B) = 300/1000 = 0.3

• P(S) P(B) = 0.6 0.7 = 0.42

• P(S,B) < P(S) P(B) => Negatively correlated

Statistical-based Measures

• Measures that take into account statistical dependence

• Lift/Interest/PMI

Lift =
𝑃(𝑌|𝑋)

𝑃(𝑌)
=

𝑃(𝑋, 𝑌)

𝑃 𝑋 𝑃(𝑌)
= Interest

In text mining it is called: Pointwise Mutual Information

• Piatesky-Shapiro

PS = 𝑃 𝑋, 𝑌 − 𝑃 𝑋 𝑃(𝑌)

• All these measures measure deviation from independence
• The higher, the better (why?)

Example: Lift/Interest

Coffee

Coffee

Tea 15 5 20

Tea 75 5 80

90 10 100

 Association Rule: Tea Coffee

Confidence= P(Coffee|Tea) = 0.75

but P(Coffee) = 0.9

 Lift = 0.75/0.9= 0.8333 (< 1, therefore is negatively associated)

= 0.15/(0.9*0.2)

Another Example
of the of, the

Fraction of

documents
0.9 0.9 0.8

P(of, the) ≈ P of P(the)

If I was creating a document by picking words randomly, (of, the) have

more or less the same probability of appearing together by chance

hong kong hong, kong

Fraction of

documents
0.2 0.2 0.19

P hong, kong ≫ P hong P(kong)

(hong, kong) have much lower probability to appear together by chance.

The two words appear almost always only together

obama karagounis obama, karagounis

Fraction of

documents
0.2 0.2 0.001

P obama, karagounis ≪
P obama P(karagounis)

(obama, karagounis) have much higher probability to appear together by chance.

The two words appear almost never together

No correlation

Positive correlation

Negative correlation

Drawbacks of Lift/Interest/Mutual Information

honk konk honk, konk

Fraction of

documents
0.0001 0.0001 0.0001

𝑀𝐼 ℎ𝑜𝑛𝑘, 𝑘𝑜𝑛𝑘 =
0.0001

0.0001 ∗ 0.0001
= 10000

hong kong hong, kong

Fraction of

documents
0.2 0.2 0.19

𝑀𝐼 ℎ𝑜𝑛𝑔, 𝑘𝑜𝑛𝑔 =
0.19

0.2 ∗ 0.2
= 4.75

Rare co-occurrences are deemed more interesting.

But this is not always what we want

ALTERNATIVE FREQUENT

ITEMSET COMPUTATION
Slides taken from Mining Massive Datasets course by

Anand Rajaraman and Jeff Ullman.

C1 L1 C2 L2 C3
Filter Filter Construct Construct

First

pass

Second

pass

All

items

All pairs

of items

from L1

 Count

the pairs

 Count

the items

Frequent

items

Frequent

pairs

Finding the frequent pairs is usually

the most expensive operation

76

Picture of A-Priori

Item counts

Pass 1 Pass 2

Frequent items

Counts of

 pairs of

 frequent

 items

77

PCY Algorithm

• During Pass 1 (computing frequent

items) of Apriori, most memory is idle.

• Use that memory to keep a hash table

where pairs of items are hashed.

• The hash table keeps just counts of the

number of pairs hashed in each bucket,

not the pairs themselves.

Item counts

Pass 1

78

Needed Extensions

1. Pairs of items need to be generated from the

input file; they are not present in the file.

2. Memory organization:

• Space to count each item.

• One (typically) 4-byte integer per item.

• Use the rest of the space for as many integers,

representing buckets, as we can.

79

Picture of PCY

Item counts

Pass 1

Hash

table

80

Picture of PCY

Item counts

Pass 1

Bucket Counts

81

PCY Algorithm – Pass 1

FOR (each basket) {

 FOR (each item in the basket)

 add 1 to item’s count;

 FOR (each pair of items in the basket)

{

 hash the pair to a bucket;

 add 1 to the count for that bucket

 }

}

82

Observations About Buckets

• A bucket is frequent if its count is at least the support
threshold.

• A bucket that a frequent pair hashes to is surely frequent.
• We cannot use the hash table to eliminate any member of this

bucket.

• Even without any frequent pair, a bucket can be frequent.
• Again, nothing in the bucket can be eliminated.

• But in the best case, the count for a bucket is less than
the support s.
• Now, all pairs that hash to this bucket can be eliminated as

candidates, even if the pair consists of two frequent items.

• On Pass 2 (frequent pairs), we only count pairs that hash
to frequent buckets.

83

PCY Algorithm – Between Passes

• Replace the buckets by a bit-vector:
• 1 means the bucket is frequent; 0 means it is not.

• 4-byte integers are replaced by bits, so the bit-
vector requires 1/32 of memory.

• Also, find which items are frequent and list them
for the second pass.
• Same as with Apriori

84

Picture of PCY

Hash

table

Item counts

Bitmap

Pass 1 Pass 2

Frequent items

Counts of

candidate

 pairs

85

PCY Algorithm – Pass 2

• Count all pairs {i, j } that meet the conditions

for being a candidate pair:

1. Both i and j are frequent items.

2. The pair {i, j }, hashes to a bucket number whose bit

in the bit vector is 1.

• Notice both these conditions are necessary for

the pair to have a chance of being frequent.

86

All (Or Most) Frequent Itemsets

in less than 2 Passes

• A-Priori, PCY, etc., take k passes to find

frequent itemsets of size k.

• Other techniques use 2 or fewer passes for all

sizes:

• Simple sampling algorithm.

• SON (Savasere, Omiecinski, and Navathe).

• Toivonen.

87

Simple Sampling Algorithm – (1)

• Take a random sample of the market baskets.

• Run Apriori or one of its improvements (for sets

of all sizes, not just pairs) in main memory, so

you don’t pay for disk I/O each time you increase

the size of itemsets.

• Make sure the sample is such that there is enough

space for counts.

88

Main-Memory Picture

Copy of

sample

baskets

Space

 for

counts

89

Simple Algorithm – (2)

• Use as your support threshold a suitable,

scaled-back number.

• E.g., if your sample is 1/100 of the baskets, use

s /100 as your support threshold instead of s.

• You could stop here (single pass)

• What could be the problem?

90

Simple Algorithm – Option

• Optionally, verify that your guesses are truly

frequent in the entire data set by a second

pass (eliminate false positives)

• But you don’t catch sets frequent in the whole

but not in the sample. (false negatives)

• Smaller threshold, e.g., s /125, helps catch more

truly frequent itemsets.

• But requires more space.

91

SON Algorithm – (1)

• First pass: Break the data into chunks that can be

processed in main memory.

• Read one chunk at the time

• Find all frequent itemsets for each chunk.

• Threshold = s/number of chunks

• An itemset becomes a candidate if it is found to

be frequent in any one or more chunks of the

baskets.

92

SON Algorithm – (2)

• Second pass: count all the candidate itemsets

and determine which are frequent in the entire

set.

• Key “monotonicity” idea: an itemset cannot be

frequent in the entire set of baskets unless it is

frequent in at least one subset.

• Why?

93

SON Algorithm – Distributed Version

• This idea lends itself to distributed data

mining.

• If baskets are distributed among many nodes,

compute frequent itemsets at each node, then

distribute the candidates from each node.

• Finally, accumulate the counts of all

candidates.

94

Toivonen’s Algorithm – (1)

• Start as in the simple sampling algorithm, but

lower the threshold slightly for the sample.

• Example: if the sample is 1% of the baskets, use s /125

as the support threshold rather than s /100.

• Goal is to avoid missing any itemset that is frequent in

the full set of baskets.

95

Toivonen’s Algorithm – (2)

• Add to the itemsets that are frequent in the

sample the negative border of these itemsets.

• An itemset is in the negative border if it is not

deemed frequent in the sample, but all its

immediate subsets are.

96

Reminder: Negative Border

• Itemset ABCD is in the negative border if

and only if:

1. It is not frequent in the sample, but

2. All of ABC, BCD, ACD, and ABD are.

• Item A is in the negative border if and only if

it is not frequent in the sample.

 Because the empty set is always frequent.

 Unless there are fewer baskets than the support

threshold (silly case).

97

Picture of Negative Border

 …

triples

pairs

singletons

Negative Border

Frequent Itemsets

from Sample

98

Toivonen’s Algorithm – (3)

• In a second pass, compute the support for all

candidate frequent itemsets from the first pass,

and also for their negative border.

• If no itemset from the negative border turns out to

be frequent, then the candidates found to be

frequent in the whole data are exactly the

frequent itemsets.

99

Toivonen’s Algorithm – (4)

• What if we find that something in the negative

border is actually frequent?

• We must start over again!

• Try to choose the support threshold so the

probability of failure is low, while the number of

itemsets checked on the second pass fits in main-

memory.

100

If Something in the Negative Border is

Frequent . . .

 …

tripletons

doubletons

singletons

Negative Border

Frequent Itemsets

from Sample

We broke through the

negative border. How

far does the problem

 go?

101

Theorem:

• If there is an itemset that is frequent in the whole,

but not frequent in the sample, then there is a

member of the negative border for the sample

that is frequent in the whole.

102

Proof: Suppose not; i.e.;

1. There is an itemset S frequent in the whole but not

frequent in the sample, and

2. Nothing in the negative border is frequent in the

whole.

• Let T be a smallest subset of S that is not

frequent in the sample.

• T is frequent in the whole (S is frequent +

monotonicity).

• T is in the negative border (else not

“smallest”).

Example

null

AB AC AD AE BC BD BE CD CE DE

A B C D E

ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE

ABCD ABCE ABDE ACDE BCDE

ABCDE
Border

FREQUENT ITEMSET

RESEARCH

