DATA MINING
LECTURE 3

Frequent Itemsets and Association Rules




This is how It all started...

Rakesh Agrawal, Tomasz Imielinski, Arun N. Swami:.
Mining Association Rules between Sets of ltems in
Large Databases. SIGMOD Conference 1993: 207-

216
Rakesh Agrawal, Ramakrishnan Srikant: Fast

Algorithms for Mining Association Rules in Large
Databases. VLDB 1994: 487-499

These two papers are credited with the birth of Data
Mining

For a long time people were fascinated with
Association Rules and Frequent ltemsets

- Some people (in industry and academia) still are.


http://www.informatik.uni-trier.de/~ley/db/conf/sigmod/sigmod93.html
http://www.informatik.uni-trier.de/~ley/db/conf/vldb/vldb94.html

Market-Basket Data

A large set of items, e.g., things sold in a
supermarket.

A large set of baskets, each of which is a small
subset of the items, e.g., the things one customer
buys on one day.

ltems: {Bread, Milk, Diaper, Beer, Eggs, Coke}
TID Items

Bread, Milk

Bread, Diaper, Beer, Eggs
Milk, Diaper, Beer, Coke
Bread, Milk, Diaper, Beer
Bread, Milk, Diaper, Coke

Baskets: Transactions
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Frequent itemsets

Goal: find combinations of items (itemsets) that
occur frequently
- Called Freguent Itemsets

Support s(I): number of
transactions that contain

TID Items )

1 |Bread, Milk itemset /

2 Bread, Diaper, Beer, Eggs Examples of frequent itemsets s(/) = 3
3 Milk, Diaper, Beer, Coke {Bread}: 4

4 Bread, Milk, Diaper, Beer {Milk} : 4

5 Bread, Milk, Diaper, Coke | | {Diaper}:4

{Beer}: 3
{Diaper, Beer} : 3
{Milk, Bread} : 3




Market-Baskets — (2)

Really, a general many-to-many mapping
(association) between two kinds of things, where the
one (the baskets) is a set of the other (the items)

- But we ask about connections among “items,” not “baskets.”

The technology focuses on common/frequent events,
not rare events (“long tail”).



R
Applications — (1)

ltems = products; baskets = sets of products
someone bought in one trip to the store.

Example application: given that many people buy
beer and diapers together:

- Run a sale on diapers; raise price of beer.
Only useful if many buy diapers & beer.



Applications — (2)

Baskets = Web pages; items = words.

Example application: Unusual words appearing
together in a large number of documents, e.qg.,
“Brad” and “Angelina,” may indicate an interesting
relationship.



S N
Applications — (3)

Baskets = sentences; items = documents
containing those sentences.

Example application: Items that appear together
too often could represent plagiarism.

Notice items do not have to be “in” baskets.



Definitions
ltemset TID  Items
A collection of one or more items |1 Bread, Milk
Example: {Milk, Bread, Diaper} 2 Bread, Diaper, Beer, Eggs
k-itemset 3 Milk, Diaper, Beer, Coke
: : . 4 Bread, Milk, Diaper, Beer
An itemset that contains k items . .
5 Bread, Milk, Diaper, Coke
Support (S)

Count: Frequency of occurrence of an itemset
E.g. s({Milk, Bread,Diaper}) = 2

Fraction: Fraction of transactions that contain an itemset
E.g. s({Milk, Bread, Diaper}) = 40%
Frequent ltemset

An itemset I whose support is greater than or equal to a
minsup threshold, s(I) =minsup



Mining Frequent Itemsets task

Input: Market basket data, threshold minsup
Output: All frequent itemsets with support = minsup

Problem parameters:

- N (size): number of transactions
Wallmart: billions of baskets per year
Web: billions of pages

- d (dimension): number of (distinct) items
Wallmart sells more than 100,000 items
Web: billions of words

- W: max size of a basket

- M: Number of possible itemsets.

M =24



The itemset lattice

Representation of all possible
itemsets and their relationships

Given d items, there are 2¢

possible itemsets



-
A Naive Algorithm

Brute-force approach: Every itemset is a candidate :

- Consider all itemsets in the lattice, and scan the data for each candidate to
compute the support

- Time Complexity ~ O(NMw) , Space Complexity ~ O(d)
OR

- Scan the data, and for each transaction generate all possible itemsets. Keep
a count for each itemset in the data.

- Time Complexity ~ O(N2V) , Space Complexity ~ O(M)

Expensive since M = 24 11l
- No solution that considers all candidates is acceptable!

Transactions List of
Candidates
ID | Items
Bread, Milk

Bread, Diaper, Beer, Eggs
Milk, Diaper, Beer, Coke

Bread, Milk, Diaper, Beer
Bread, Milk, Diaper, Coke
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Computation Model

Typically, data is kept in flat files rather than in a
database system.

- Stored on disk.

- Stored basket-by-basket.

- We can expand a basket into pairs, triples, etc. as we read

the data.
Use k nested loops, or recursion to generate all itemsets of size k.

Data Is too large to be loaded in memory.



Example file: retall

0123456780910 1112 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
30 31 32

33 34 35

36 37 38 39 40 41 42 43 44 45 46

38 39 47 48 _ o

38 39 48 49 50 51 52 53 54 55 56 57 58 Example: items are positive integers,

22331429 60 61 62 and each basket corresponds to a line in

63 64 65 66 67 68 the file of space-separated integers
32 69

48 70 71 72

39 73 74 75 76 77 78 79

36 38 39 41 48 79 80 81

82 83 84

41 85 86 87 88

39 48 89 90 91 92 93 94 95 96 97 98 99 100 101

36 38 39 48 89

39 41 102 103 104 105 106 107 108

38 39 41 109 110

39 111 112 113 114 115 116 117 118

119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
48 134 135 136

39 48 137 138 139 140 141 142 143 144 145 146 147 148 149
39 150 151 152

38 39 56 153 154 155



Computation Model — (2)

The true cost of mining disk-resident data Is
usually the number of disk |/O’s.

In practice, association-rule algorithms read the
data in passes — all baskets read in turn.

Thus, we measure the cost by the number of
passes an algorithm takes.



Main-Memory Bottleneck

For many frequent-itemset algorithms, main
memory Is the critical resource.

- As we read baskets, we need to count something, e.g.,
occurrences of pairs.

- The number of different things we can count is limited
by main memory.

- Swapping counts in/out is too slow



-
The Apriori Principle

 Apriori principle (Main observation):

If an itemset Is frequent, then all of its subsets must also
be frequent

If an itemset is not frequent, then all of its supersets
cannot be frequent

The support of an itemset never exceeds the support of
Its subsets

VX,Y:X CY = s(X) = s(Y)

This i1s known as the anti-monotone property of support



lllustration of the Apriori principle

Frequent

—— e ——
o —_—

Figure 6.3. An illustration of the Apriori principle. If {c,d, e} is frequent, then all subsets of this

itemset are frequent.
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lllustration of the Apriori principle

Found to be
Infrequent



The Apriori algorithm

C, = candidate itemsets of size k

Level-wise approach L, = frequent itemsets of size k

1. k=1, C, =allitems

2. While C, not empty

\

B3 Scan the database to find which itemsets In

itemset

e - Cy are frequent and put them into L,

o4 Generate the candidate itemsets Cy,; of
CICeitl  size k+1 using L,

5. k=k+1

R. Agrawal, R. Srikant: "Fast Algorithms for Mining Association Rules",
Proc. of the 20th Int'l| Conference on Very Large Databases, 1994.



Candidate Generation

Apriori principle:
- An itemset of size k+1 is candidate to be frequent only if
all of its subsets of size k are known to be frequent

Candidate generation:

Construct a candidate of size k+1 by combining
frequent itemsets of size k

- If k = 1, take the all pairs of frequent items

- If k > 1, join pairs of itemsets that differ by just one item

- For each generated candidate itemset ensure that all
subsets of size k are frequent.



-
Generate Candidates C, ,,

« Assumption: The items in an itemset are ordered
* Integers ordered in increasing order, strings ordered lexicographicly

« The order ensures that if item y > x appears before x, then x is not in
the itemset

* The itemsets in L, are also ordered

1 2 3
1 2 5
1 4 5



-
Generate Candidates C, ,,

« Assumption: The items in an itemset are ordered

* Integers ordered in increasing order, strings ordered in lexicographicly

« The order ensures that if item y > x appears before x, then x is not in
the itemset

* The itemsets in L, are also ordered

S . |
1 4

5




-
Generate Candidates C, ,,

« Assumption: The items in an itemset are ordered

* Integers ordered in increasing order, strings ordered in lexicographicly

« The order ensures that if item y > x appears before x, then x is not in
the itemset

* The itemsets in L, are also ordered

5 Are we missing something?

What about this candidate?

= : -}----




-
Generating Candidates C,,, In SQL

- self-join L,
insert into C, ,,
select p.itemy, p.item,, ..., p.item,, g.item,
fromL, p,L,qQ

where p.item,=q.item,, ..., p.item,_,=q.item, ,, p.item, < q.item,



-
Example
» L,={abc, abd, acd, ace, bcd}

* Generating candidate set C,

a b C

a C

o O O T T
o O QO QO

b
C
C
C

o 9 9 O
o 9 9 9
o d® Q9 QA

p.item,=g.item,,p.item,=g.item,, p.item,;< g.item,



-
Example

» L,={abc, abd, acd, ace, bcd}
» Generating candidate set C,
« Self-join: L;*L,

p.item,=q.item,,p.item,=q.item,, p.itemg< g.item,



-
Example

» L,={abc, abd, acd, ace, bcd}
* Generating candidate set C,

« Self-join: L,*L, C, ={abcd}
a b C a b C

{a,b,c} {a,b,d}

N

{a,b,c,d}

b
C
C
C

o O QO QO

b
C
C
C

o 9 9 9
o 9 9 O
o O QO o

p.item,=g.item,,p.item,=g.item,, p.item,;< g.item,



-
Example

» L,={abc, abd, acd, ace, bcd}

* Generating candidate set C,

acde}
a b C a b C
a e ¢ a b s {a,cd} | {ace}
a C d a C d \ /
a C e a C e {a,c,d,e}
b C d b C d

p.item,=g.item,,p.item,=g.item,, p.item,;< g.item,



-
lllustration of the Apriori principle

ltem Count
Bread 4
Milk 4 \
Beer 3
4

DiaEer

Items (1-itemsets)

minsup = 3

ltemset Count
{Bread,Milk} 3
{Bread,Diaper} 3
{Milk,Beer} 2
{Milk,Diaper} 3
{Beer,Diaper} 3

If every subset is considered,

(?)+(g)+(g)=6+15+
With support-based pruning,

1 2

)+ (})+1=6+6+1=13

20 =41

N

TID Items

1 Bread, Milk

Bread, Diaper, Beer, Eggs
Milk, Diaper, Beer, Coke
Bread, Milk, Diaper, Beer
Bread, Milk, Diaper, Coke

g bl wN

Pairs (2-itemsets)
(No need to generate

candidates involving Coke
or Eggs)

Triplets (3-itemsets)

Itemset

Count

{Bread,Milk,Diaper}

2

Only this triplet has all subsets to be frequent
But it is below the minsup threshold



Generate Candidates C, ,,

- Are we done? Are all the candidates valid?

| I

1 2
1 4 5

Is this a valid candidate?

. Pruning step: Apriori principle

- For each candidate (k+1)-itemset create all subset k-itemsets

- Remove a candidate if it contains a subset k-itemset that is
not frequent



Example

» L,={abc, abd, acd, ace, bcd} {a,b,c}\é ;,b,d}
« Self-joining: L,*L, {?’P’Ci’q}

— abcd from abc and abd

¥ <

abc abd acd bcd

— acde from acd and ace
A A A
« C,={abcd, acde}
° Pruning: {a,c,d} {a,c,e}
— abcd is kept since all subset itemsets are {a € e}
in L, NN
gl ¥ < T
— acde is removed because ade is notin L, acd ace ade cde
v N X

C,={abcd}



Example |l

[temset

Count

{Beer,Diaper}
{Bread,Diaper}
{Bread,Milk}
{Diaper, Milk}

wWwww

[temset

Count

{Beer,Diaper}
{Bread,Diaper}
{Bread,Milk}
{Diaper, Milk}

wWwww

ltemset

/ {Bread,Diaper,Milk}

{Breadeiaper} vV
{Bread,Milk} \
{Diaper, Milk} \V



-
Generate Candidates C, ,,

* We have all frequent k-itemsets L,
- Step 1: self-join L,
« Create set C,,, by joining frequent k-itemsets that
share the first k-1 items
« Step 2: prune

* Remove from C,,, the itemsets that contain a subset
k-itemset that is not frequent



Computing Frequent ltemsets

Given the set of candidate itemsets C,, we need to compute
the support and find the frequent itemsets L,.

Scan the data, and use a hash structure to keep a counter

for each candidate itemset that appears in the data

Transactions

ID

Items

Bread, Milk

Bread, Diaper, Beer, Eggs

Milk, Diaper, Beer, Coke

Bread, Milk, Diaper, Beer

glh(w Nk |H

--— Z—>

Bread, Milk, Diaper, Coke

Hash Structure

Ck
]
]

Buckets

A

K

\J



A simple hash structure

Create a dictionary (hash table) that stores the
candidate itemsets as keys, and the number of
appearances as the value.

- Initialize with zero

Increment the counter for each itemset that you
see In the data



Example

Suppose you have 15 candidate
itemsets of length 3:

Cs={

{145},{124},{457},{125},{45 8},
{159},{136},{234},{567}, {345}
{356},{357},{689},{367}, {368}

}

Hash table stores the counts of the
candidate itemsets as they have been
computed so far

{367}
{345}
{13 6}
{145}
{2 3 4}
{159}
{3 6 8}
{457}
{6 8 9}
{567}
{124}
{357}
{125}
{3 5 6}
{45 8}

O r O kP 0 W O N O F,P NN U1 W +— O



Example {367} 0
{3 4 5} 1
A new tuple {1,2,3,5,6} generates the 11 3 6} 3
following itemsets of length 3: {14 5} 5
{2 3 4} 2
{123},{125},{126},{135},{136}, g 2 :i ;
{156}, {235},{2 36}, {356}, 57 ,
{6 8 9} 0
.Increme.nt. the counters for the itemsets {56 7) 3
in the dictionary
{124} 8
{357} 1
{125} 0
{3 5 6} 1
{45 8} 0



in the dictionary

{12 4)
{357}

Example e NG
{3 45} 1

A new tuple {1,2,3,5,6} generates the _
following itemsets of length 3: {145} 5
{2 3 4} 2
{123},{125},{126},{135},{136}, 59 1
{3 6 8} 0

156}, {235}, {236}, {356},

{ b b b } 457 ,
{6 8 9} 0
Increment the counters for the itemsets {567 3
8
1

@25 |1

{458} 0



The frequent itemset algorithm

A the items of items the pairs
items from L,

C, Filter L, Construct — C, _.@, L, —* Construct — C, ™
1;

| |

First Second
pass pass

Frequent Fr(_equent
items pairs



A-Priori for All Frequent ltemsets

One pass for each k.

Needs room in main memory to count each
candidate k -set.

For typical market-basket data and reasonable
support (e.g., 1%), k = 2 requires the most
memory.



Picture of A-Priori

ltem counts Freguent items

Counts of
pairs of

frequent
items

Pass 1 Pass 2



Detalls of Main-Memory Counting

Two approaches:

1. Count all pairs, using a “triangular matrix” = one
dimensional array that stores the lower diagonal.

2. Keep atable of triples [i, |, c] = “the count of the pair
of items{i,j}isc.”

(1) requires only 4 bytes/pair.
Note: always assume integers are 4 bytes.

(2) requires 12 bytes/pair, but only for those pairs
with count > 0.



12 per
occurring pair

4 per pair

Method (1) Method (2)



Triangular-Matrix Approach

Number items 1, 2,...

- Requires table of size O(n) to convert item names to
consecutive integers.

Count{i, j}onlyifi<j.
Keep pairs in the order {1,2}, {1,3},..., {1,n }, {2,3},
{2,4},...{2,n}, {3,4},...,{3,n},...{n-1,n}.
Find pair {i, | } at the position
(i-L(n—=1/2)+)—1.

Total number of pairs n (n —1)/2; total bytes about 2n2.



A-Priori Using Triangular Matrix for Counts

Freg- | Old
guent || item

——— || items || #s

Item counts

Counts of

pairs of

frequent
items

Pass 1 Pass 2



Detalls of Approach #2

Total bytes used is about 12p, where p Is the
number of pairs that actually occur.

- Beats triangular matrix if no more thanl1/3 of possible
pairs actually occur.

May require extra space for retrieval structure, e.qg.,
a hash table.



ASSOCIATION RULES




-
Association Rule Mining

Given a set of transactions, find rules that will predict the
occurrence of an item based on the occurrences of other
items In the transaction

Market-Basket transactions o
Example of Association Rules

TID  Items |

1 Bread, Milk EI\D/IIi?IEeBr)}r;d{}Bie?I\E’ggS,Coke},

2 Bread, Diaper, Beer, Eggs {Beer, Bread} — {Milk},

3 Milk, Diaper, Beer, Coke

4 Bread, Milk, Diaper, Beer Implication means co-occurrence,
5 Bread, Milk, Diaper, Coke not causality!




-
Mining Association Rules

e Association Rule TID  Items
— An implication expression of the form 1 Bread, Milk
X — Y, where X and Y are itemsets 2 Bread, Diaper, Beer, Eggs
— {Milk, Diaper} — {Beer} 3 Milk, Diaper, Beer, Coke
e Rule Evaluation Metrics 4 Bread, Milk, Diaper, Beer
— Support (s) 5 Bread, Milk, Diaper, Coke
+ Fraction of transactions that contain both X :
and Y = the probability P(X.Y) that X and Y =XamPple: o
occur together {Milk, Diaper} = Beer
— Confidence (c) _ o(Milk, Diaper,Beer) _2 _, ,
¢ How often Y appears in transactions that 5= IT| 5
contain X = the conditional probability P(Y|X)
that Y occurs given that X has occurred. _ o(Milk, Diaper,Beer) 2 0.67

o o (Milk, Diaper) 3
e Problem Definition

— Input: Market-basket data, minsup, minconf values
— Output: All rules with items in | having s = minsup and cz minconf



Mining Association Rules

- Two-step approach:

1. Frequent Itemset Generation
— Generate all itemsets whose support > minsup

2. Rule Generation

— Generate high confidence rules from each frequent itemset,
where each rule is a partitioning of a frequent itemset into Left-
Hand-Side (LHS) and Right-Hand-Side (RHS)

Frequent itemset: {A,B,C,D}
E.g., Rule: AB—CD

All Candidate rules:

BCD —A, ACD —B, ABD —C, ABC —D,
cb -AB, BD -—->AC, BC —>AD, AD — BC, AB—->CD, AC - BD,
D —-ABC, C —-ABD, B —->ACD, A —-BCD



Association Rule anti-monotonicity

In general, confidence does not have an anti-
monotone property with respect to the size of the
itemset:

c(ABC —D) can be larger or smaller than c(AB —D)

But confidence Is anti-monotone w.r.t. number of
items on the RHS of the rule (or monotone with
respect to the LHS of the rule)

e.g., L={AB,C,D}:
c(ABC — D) > c(AB —» CD) > c(A — BCD)



Rule Generation for Apriori Algorithm
.

Low
Confiderfce

Lattice of rules created by the RHS



Rule Generation for APriori Algorithm

Candidate rule is generated by merging two rules that
share the same prefix

In the RHS

join(CD—AB,BD—AC)
would produce the candidate
rule D - ABC

Prune rule D — ABC If Its
subset AD—BC does not have
high confidence

Essentially we are doing APriori on the RHS



RESULT
POST-PROCESSING




Compact Representation of Frequent

ltemsets

Some itemsets are redundant because they have identical

support as their supersets

TID |A1|A2[A3[A4[A5| A6 | A7| A8| A9|A10[B1|[B2|B3|B4|B5|B6[B7[B8[B9|B10] C1|C2|C3|[ca|[cC5]|cC6]|C7]|C8]|C9o[C10

10
11
12

13
14
15

J

10
K

klz:oj.(

Number of frequent itemsets = 3

Need a compact representation



Maximal Frequent Itemsets

An itemset is maximal frequent if none of its immediate supersets is

frequent

Maximal > -

Infrequent
ltemsets

N\ Border

Maximal: no superset has this property



g/

Infrequent
ltemsets
Minimal: no subset has this property

ltemsets that are not frequent, but all their immediate subsets are

frequent.

Negative Border




Border

- Border = Positive Border + Negative Border

- ltemsets such that all their immediate subsets are
frequent and all their immediate supersets are
iInfrequent.

- Either the positive, or the negative border is
sufficient to summarize all frequent itemsets.



Closed ltemsets

- An itemset is closed if none of its iImmediate supersets
has the same support as the itemset

TID ltems ltemset |Support ltemset |Support
1 {A,B} {A} 4 {A,B,C} 2
2 | {BCD} - ® | 5 | | {BDH| 3 |
3 | {AB,C,D} {C} 3 {A,C,D} 2
4 | {AB,D) {D} 4 {8,CD} | 3
5 | {AB.C,D} {ABCD}| 2 |

{A,C} 2
{A,D} 3




_Transaction

Not supported

Maximal vs Closed Itemsets
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Maximal vs Closed Frequent ltemsets

Closed but not
maximal

Closed
and
maximal

# Closed =9

# Maximal = 4



Maximal vs Closed Itemsets

Frequent
ltemsets

Closed
Frequent
ltemsets

axims
reque
emse



Pattern Evaluation

Association rule algorithms tend to produce too many rules but
many of them are uninteresting or redundant
- Redundant if {A,B,C} —» {D} and {A,B} — {D} have same support &
confidence
Summarization techniques

- Uninteresting, if the pattern that is revealed does not offer useful
information.
Interestingness measures: a hard problem to define

Interestingness measures can be used to prune/rank the
derived patterns

- Subjective measures: require human analyst

- Objective measures: rely on the data.

In the original formulation of association rules, support &
confidence are the only measures used



I

Computing Interestingness Measure

Given a rule X — Y, information needed to compute rule
Interestingness can be obtained from a contingency table

Contingency table for X —> Y

Y Y
X 1:11 f10 1:1+
X 1:01 1:00 f0+
f,, f,q N

. itemset X appears in tUple\A

. itemset Y appears in tuple
. itemset X does not appear in tuple
. itemset Y does not appear in tuple

o
=

_h_h|—\_h_h
o

o
o

. support of X and Y
: support of X and Y
. support of X and Y
. support of X and Y

Used to define various measures

¢ support, confidence, lift, Gini,

J-measure, etc.




Drawback of Confidence

Number of people that

drink tea

Number of people that

drink coffee and tea

Number of people that
drink coffee but not tea

Coffee | Coffee
Tea 15 5 | 207
Tea 75 80
90 100
Association Rule: Tea — Coffee
Confidence= P(Coffee|Tea) = > = 0.75

Although confidence is high, rule is misleading

. P(Coffee) = — =0.9

100

« P(Coffee|Tea) = 0.9375

Number of people that

drink coffee




Statistical Independence

- Population of 1000 students
- 600 students know how to swim (S)
- 700 students know how to bike (B)
- 420 students know how to swim and bike (S,B)

- P(S,B) = 420/1000 = 0.42
- P(S)xP(B)=0.6 x0.7 =0.42

- P(S,B) = P(S) x P(B) => Statistical independence



Statistical Independence

- Population of 1000 students
- 600 students know how to swim (S)
- 700 students know how to bike (B)
- 500 students know how to swim and bike (S,B)

- P(S,B) = 500/1000 = 0.5
- P(S)xP(B)=0.6 x 0.7 =0.42

- P(S,B) > P(S) x P(B) => Positively correlated



Statistical Independence

- Population of 1000 students
- 600 students know how to swim (S)
- 700 students know how to bike (B)
- 300 students know how to swim and bike (S,B)

- P(S,B) = 300/1000 = 0.3
- P(S)xP(B)=0.6 x 0.7 =0.42

- P(S,B) < P(S) x P(B) => Negatively correlated



Statistical-based Measures

- Measures that take into account statistical dependence
- Lift/Interest/PMI

_P(YIX)  P(X,Y)

o _ _ —
Lift P(Y) PCOP ) nterest

In text mining it is called: Pointwise Mutual Information
- Piatesky-Shapiro
PS=P(X,Y) — P(X)P(Y)

- All these measures measure deviation from independence
- The higher, the better (why?)



Example: Lift/Interest

Coffee | Coffee

Tea - 5 20

Tea 75 5 80
90 10 100

Association Rule: Tea — Coffee

Confidence= P(Coffee|Tea) = 0.75
but P(Coffee) = 0.9

= Lift = 0.75/0.9= 0.8333 (< 1, therefore is negatively associated)
= 0.15/(0.9*0.2)



Another Example
| of | the | ofithe

: P(of,the) = P(of)P(the
documents

If | was creating a document by picking words randomly, (of, the) have
more or less the same probability of appearing together by chance _

| hong | kong | hong. kong_

0 0o 019 P(hong, kong) > P(hong)P(kong)
documents

(hong, kong) have much lower probability to appear together by chance.

The two words appear almost always only together _
| obama | keragounis | obama keragounis [RSONSNTIUBNIINES

0.2 0.2 0.001 P(obama)P(karagounis)
documents

(obama, karagounis) have much higher probability to appear together by chance.

The two words appear almost never together _




Drawbacks of Lift/Interest/Mutual Information

| honk | konk | honk konk_

0.0001 0.0001 0.0001
documents

0.0001

MI(honk, konk) = 00001 = 00001 — 10000

| nong | kong |hong, kong
0.2 0.2 0-19
documents

019
0202

MI(hong, kong) = 4.75

Rare co-occurrences are deemed more interesting.
But this is not always what we want



ALTERNATIVE FREQUENT
ITEMSET COMPUTATION

Slides taken from Mining Massive Datasets course by
Anand Rajaraman and Jeff Uliman.
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itemT pairs
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PCY Algorithm

Item counts

During Pass 1 (computing frequent
items) of Apriori, most memory is idle.

Use that memory to keep a hash table
where pairs of items are hashed.

The hash table keeps just counts of the
number of pairs hashed in each bucket,
not the pairs themselves.

Pass 1



Needed Extensions

Pairs of items need to be generated from the
iInput file; they are not present in the file.

Memory organization:
Space to count each item.
* One (typically) 4-byte integer per item.
Use the rest of the space for as many integers,
representing buckets, as we can.



Picture of PCY

Pass 1
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Picture of PCY

Item counts

—> | Bucket Counts

Pass 1



PCY Algorithm — Pass 1

FOR (each basket) {
FOR (each item i1n the basket)
add 1 to i1item’s count;

FOR (each pair of items 1n the basket)
{
hash the palir to a bucket;

add 1 to the count for that bucket



Observations About Buckets

A bucket is frequent if its count is at least the support
threshold.

A bucket that a frequent pair hashes to is surely frequent.

- We cannot use the hash table to eliminate any member of this
bucket.

Even without any frequent pair, a bucket can be frequent.
- Again, nothing in the bucket can be eliminated.

But in the best case, the count for a bucket is less than
the support s.

- Now, all pairs that hash to this bucket can be eliminated as
candidates, even if the pair consists of two frequent items.

On Pass 2 (frequent pairs), we only count pairs that hash
to frequent buckets.



PCY Algorithm — Between Passes

Replace the buckets by a bit-vector:
- 1 means the bucket is frequent; O means it is not.

4-byte integers are replaced by bits, so the bit-
vector requires 1/32 of memory.

Also, find which items are frequent and list them
for the second pass.

- Same as with Apriori
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PCY Algorithm — Pass 2

Count all pairs {1, | } that meet the conditions
for being a candidate pair:
1. Bothi and| are frequent items.

2. The pair{i, ] }, hashes to a bucket number whose bit
in the bit vector is 1.

Notice both these conditions are necessary for
the pair to have a chance of being frequent.



All (Or Most) Freguent ltemsets
In less than 2 Passes

A-Priori, PCY, etc., take k passes to find
frequent itemsets of size k.

Other techniques use 2 or fewer passes for all
sSizes:

- Simple sampling algorithm.

- SON (Savasere, Omiecinski, and Navathe).

- Toivonen.



Simple Sampling Algorithm — (1)

Take a random sample of the market baskets.

Run Apriori or one of its improvements (for sets
of all sizes, not just pairs) in main memaory, so
you don’t pay for disk I/O each time you increase
the size of itemsets.

- Make sure the sample is such that there is enough
space for counts.



Main-Memory Picture
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&
Simple Algorithm — (2)

- Use as your support threshold a suitable,
scaled-back number.

- E.g., if your sample is 1/100 of the baskets, use
s /100 as your support threshold instead of s.

- You could stop here (single pass)
- What could be the problem?



. S
Simple Algorithm — Option

Optionally, verify that your guesses are truly
frequent in the entire data set by a second
pass (eliminate false positives)

But you don’t catch sets frequent in the whole
but not in the sample. (false negatives)

- Smaller threshold, e.g., s /125, helps catch more
truly frequent itemsets.
But requires more space.



SON Algorithm — (1)

~irst pass: Break the data into chunks that can be
orocessed in main memory.
Read one chunk at the time

- Find all frequent itemsets for each chunk.
- Threshold = s/number of chunks

An itemset becomes a candidate If it I1s found to
be frequent in any one or more chunks of the
baskets.



SON Algorithm — (2)

Second pass: count all the candidate itemsets
and determine which are frequent in the entire
set.

Key “monotonicity” idea: an itemset cannot be
frequent in the entire set of baskets unless it is
frequent in at least one subset.

- Why?



SON Algorithm — Distributed Version

This idea lends itself to distributed data
mining.
If baskets are distributed among many nodes,

compute frequent itemsets at each node, then
distribute the candidates from each node.

Finally, accumulate the counts of all
candidates.



Toivonen’s Algorithm — (1)

Start as in the simple sampling algorithm, but
lower the threshold slightly for the sample.

- Example: if the sample is 1% of the baskets, use s /125
as the support threshold rather than s /100.

- Goal is to avoid missing any itemset that is frequent in
the full set of baskets.



Toivonen’s Algorithm — (2)

- Add to the itemsets that are frequent in the
sample the negative border of these itemsets.

- An itemset is in the negative border if it is not
deemed frequent in the sample, but all its
Immediate subsets are.



.
Reminder: Negative Border

ltemset ABCD Is in the negative border if
and only If:

1. Itis not frequent in the sample, but

2. Allof ABC, BCD, ACD, and ABD are.

Item A Is Iin the negative border if and only if
It Is not frequent in the sample.

¢ Because the empty set is always frequent.

Unless there are fewer baskets than the support
threshold (silly case).
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Toivonen’s Algorithm — (3)

In a second pass, compute the support for all
candidate frequent itemsets from the first pass,
and also for their negative border.

If no itemset from the negative border turns out to
be frequent, then the candidates found to be
frequent in the whole data are exactly the
frequent itemsets.



e —
Toivonen's Algorithm — (4)

What if we find that something in the negative
border is actually frequent?

- We must start over again!

Try to choose the support threshold so the
probability of failure is low, while the number of

itemsets checked on the second pass fits in main-
memory.



100

If Something In the Negative Border Is
Frequent. . .

We broke through the
negative border. How
far does the problem

go?

Negative Border
tripletons

doubletons
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Theorem:

- If there Is an itemset that Is frequent in the whole,
but not frequent in the sample, then there is a
member of the negative border for the sample

that is frequent in the whole.



Proof: Suppose not; I.e.;

1.

There is an itemset S frequent in the whole but not
frequent in the sample, and

Nothing in the negative border is frequent in the
whole.

Let T be a smallest subset of S that Is not
frequent in the sample.

T Is frequent in the whole (S Is frequent +
monotonicity).

T Is In the negative border (else not
“smallest”).






FREQUENT ITEMSET
RESEARCH
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Figure 6.31. A summary of the various research activities in association analysis.




