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CLUSTERING




What Is a Clustering?

In general a grouping of objects such that the objects in a
group (cluster) are similar (or related) to one another and
different from (or unrelated to) the objects in other groups

Inter-cluster
Intra-cluster distances are
distances are maximized

minimized @




-
Clustering Algorithms

- K-means and Its variants

- Hierarchical clustering

- DBSCAN



MIXTURE MODELS AND
THE EM ALGORITHM




-
Model-based clustering

In order to understand our data, we will assume that there
IS a generative process (a model) that creates/describes
the data, and we will try to find the model that best fits the
data.

- Models of different complexity can be defined, but we will assume
that our model is a distribution from which data points are sampled

- Example: the data is the height of all people in Greece

In most cases, a single distribution is not good enough to
describe all data points: different parts of the data follow a
different distribution

- Example: the data is the height of all people in Greece and China

- We need a mixture model
- Different distributions correspond to different clusters in the data.



Gaussian Distribution

- Example: the data is the height of all people In
Greece

- Experience has shown that this data follows a Gaussian
(Normal) distribution

- Reminder: Normal distribution:

1 _(x=w?
e 202

Pl = 21O

- 4 = mean, o = standard deviation



Gaussian Model

What is a model?

- A Gaussian distribution is fully defined by the mean
1 and the standard deviation o

- We define our model as the pair of parameters
0 = (o)

This Is a general principle: a model is defined as
a vector of parameters 6



-
Fitting the model

- We want to find the normal distribution that best
fits our data
- Find the best values for y and o
- But what does best fit mean?



-
Maximum Likelihood Estimation (MLE)

Find the most likely parameters given the data. Given
the data observations X, find 6 that maximizes
P(O|X)

- Problem: We do not know how to compute P(6|X)

Using Bayes Rule:

peolx) < PXIOPO)

P(X)

If we have no prior information about &, or X, we can
assume uniform.Maximizing P(6|X) is the same as
maximizing P(X|0)



-
Maximum Likelihood Estimation (MLE)

We have a vector X = (x4, ..., x,,) of values and we want to
fit a Gaussian N(u, o) model to the data

- Our parameter setis ¢ = (u,0)
Probability of observing point x; given the parameters 6
_(xi=w)?

Vzme©
Probability of observing all points (assume independence)

P(x;]6) =

ik 1 _=w?
P(X|0) = HP(xiw) = 1_[ e 202
i=1 i=1 Vemo

We want to find the parameters 6 = (u, o) that maximize
the probability P(X|60)



-
Maximum Likelihood Estimation (MLE)

The probability P(X|6) as a function of 8 is called the
Likelihood function

1 (mw?
L(6) = 1_[ e 207
) 210

It is usually easier to work with the Log-Likelihood
function

o O —w? 1
LL(9)=—Z 1202” —Enloan—nloga
i=1

Maximum Likelihood Estimation
- Find parameters u, o that maximize LL(6)

n n

1 1
p= ) Xi= i 0 = —Z(xi—u)z = oy

n
=1 =
‘ Sample Mean =1

Sample Variance
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Figure 9.3. 200 points from a Gaussian distribution and their log probability for different parameter
values.



Mixture of Gaussians

Suppose that you have the heights of people from
Greece and China and the distribution looks like
the figure below (dramatization)
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(a) Probability density function for (b) 20,000 points generated from the
the mixture model. mixture model.

Figure 9.2. Mixture model consisting of two normal distributions with means of -4 and 4, respectively.
Both distributions have a standard deviation of 2.



Mixture of Gaussians

- In this case the data is the result of the mixture of
two Gaussians
- One for Greek people, and one for Chinese people

- Identifying for each value which Gaussian is most likely
fo have generated it will give us a clustering.

(a) Probability density function for (b) 20,000 points generated from the
the mixture model. mixture model.

Figure 9.2. Mixture model consisting of twe normal distributions with means of -4 and 4, respectively.
Both distributions have a standard deviation of 2.



Mixture model

- Avalue x; Is generated according to the following
Process:

- First select the nationality

- With probability 7, select Greece, with probability 7. select
China (T[G + T = 1)

- Given the nationality, generate the point from the
corresponding Gaussian

¢ P(xilec) ~ N(‘Llc, Uc) If China




e
Mixture Model

- Our model has the following parameters

6 = (g, ¢, lig, O, HENGE)
Mixture probabilties [Gg: parameters of the Greek distribution
0c: parameters of the China distribution




e
Mixture Model

Our model has the following parameters
0 = (7g, ¢, Ue) TG, ey Oc)

Mixture probabilities Distribution Parameters

For value x;, we have:
P(x;|0) = mgP(x;165) + mcP(x;6c)
For all values X = (x4, ..., x,)

Pexie) = | [Peale)

We want to estimate the parameters that maximize
the Likelihood of the data



e
Mixture Model

Our model has the following parameters
0 = (7g, ¢, Ue) TG, ey Oc)

Mixture probabilities Distribution Parameters

For value x;, we have:
P(x;|0) = mgP(x;165) + mcP(x;6c)
For all values X = (x4, ..., x,)

Pexie) = | [Peale)

We want to estimate the parameters that maximize
the Likelihood of the data



Mixture Models

- Once we have the parameters
O = (g, e, Ue, Ue, Oc, Oc) We can estimate the
membership probabilities P(G|x;) and P(C|x;) for
each point x;:
- This is the probability that point x; belongs to the Greek

or the Chinese population (cluster) RSN aE ke,
distribution N (ug, o) for Greek

P(x;|G)P(G)

P(x;|G)P(G) + P(x;|C)P(C)
P(x;105)mg

 P(x;106)mg + P(x;]0c)mc

P(Glx;) =




EM (Expectation Maximization) Algorithm

Initialize the values of the parameters in © to some
random values

Repeat until convergence
- E-Step: Given the parameters 0 estimate the membership
probabilities P(G|x;) and P(C|x;)

- M-Step: Compute the parameter values that (in expectation)
maximize the data likelihood

n n
1 1 :
= —z P(C|xi) Mo = —Z P(G'xi) Fraction of
" i=1 n i=1 population in G,C

n

1
Tnxm Z P(Clxx He = — Z P(Glx)x;  [MLE Estimates
‘= ¢i= if 7’s were fixed

Uc

n n

chm)(xl He)? o zp(mxlxxl Ho)?

n*nc n*mg



Relationship to K-means

E-Step: Assignment of points to clusters
- K-means: hard assignment, EM: soft assignment

M-Step: Computation of centroids

- K-means assumes common fixed variance (spherical
clusters)

- EM: can change the variance for different clusters or
different dimensions (ellipsoid clusters)

If the variance is fixed then both minimize the
same error function
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Figure 9.4. EM clustering of a two-dimensional point set with three clusters.
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Figure 9.5. EM clustering of a two-dimensional point set with two clusters of differing density.



(b) Clusters produced by K-means clustering.

Figure 9.6. Mixture model and K-means clustering of a set of two-dimensional points.



CLUSTERING
EVALUATION




Clustering Evaluation

- How do we evaluate the “goodness” of the resulting
clusters?

- But “clustering lies in the eye of the beholder”!

- Then why do we want to evaluate them?
- To avoid finding patterns in noise
- To compare clusterings, or clustering algorithms
- To compare against a “ground truth”



Clusters found
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-
Different Aspects of Cluster Validation

Determining the clustering tendency of a set of data, i.e.,
distinguishing whether non-random structure actually exists in the
data.

Comparing the results of a cluster analysis to externally known
results, e.g., to externally given class labels.

Evaluating how well the results of a cluster analysis fit the data
without reference to external information.

- Use only the data

Comparing the results of two different sets of cluster analyses to
determine which is better.

Determining the ‘correct’ number of clusters.

For 2, 3, and 4, we can further distinguish whether we want to
evaluate the entire clustering or just individual clusters.



-
Measures of Cluster Validity

Numerical measures that are applied to judge various aspects
of cluster validity, are classified into the following three types.

- External Index: Used to measure the extent to which cluster labels
match externally supplied class labels.
E.g., entropy, precision, recall
- Internal Index: Used to measure the goodness of a clustering
structure without reference to external information.
E.g., Sum of Squared Error (SSE)
- Relative Index: Used to compare two different clusterings or

clusters.

Often an external or internal index is used for this function, e.g., SSE or
entropy

Sometimes these are referred to as criteria instead of indices

- However, sometimes criterion is the general strategy and index is the
numerical measure that implements the criterion.



Measuring Cluster Validity Via Correlation

Two matrices

Similarity or Distance Matrix
One row and one column for each data point
An entry is the similarity or distance of the associated pair of points
“Incidence” Matrix
One row and one column for each data point
An entry is 1 if the associated pair of points belong to the same cluster
An entry is 0 if the associated pair of points belongs to different clusters

Compute the correlation between the two matrices

Since the matrices are symmetric, only the correlation between
n(n-1) / 2 entries needs to be calculated.

High correlation (positive for similarity, negative for
distance) indicates that points that belong to the same
cluster are close to each other.

Not a good measure for some density or contiguity based
clusters.



Measuring Cluster Validity Via Correlation

- Correlation of incidence and proximity matrices
for the K-means clusterings of the following two

data sets.
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Using Similarity Matrix for Cluster Validation

- QOrder the similarity matrix with respect to cluster
labels and inspect visually.
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Using Similarity Matrix for Cluster Validation

- Clusters in random data are not so crisp
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Using Similarity Matrix for Cluster Validation

- Clusters in random data are not so crisp
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Using Similarity Matrix for Cluster Validation

- Clusters in random data are not so crisp
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Using Similarity Matrix for Cluster Validation
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» Clusters in more complicated figures are not well separated
« This technique can only be used for small datasets since it requires a
guadratic computation



e
Internal Measures: SSE

Internal Index: Used to measure the goodness of a
clustering structure without reference to external
Information

- Example: SSE

SSE is good for comparing two clusterings or two clusters
(average SSE).

Can also be used to estimate the number of clusters

-
o

|
|
|
|

SSE
© B N W M O O N ® ©




Estimating the “right” number of clusters

- Typical approach: find a “knee” in an internal measure curve.

[y
o

|
|
|
|

SSE
O P N W A O O N O ©

2 5 10 15 20 25 30
K

- Question: why not the k that minimizes the SSE?
- Forward reference: minimize a measure, but with a “simple” clustering

- Desirable property: the clustering algorithm does not require
the number of clusters to be specified (e.g., DBSCAN)



SSE

- SSE curve for a more complicated data set
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Internal Measures

SSE of clusters found using K-means



Internal Measures: Cohesion and Separation

Cluster Cohesion: Measures how closely related

are objects in a cluster
Cluster Separation: Measure how distinct or well-
separated a cluster is from other clusters

Example: Squared Error
- Cohesion is measured by the within cluster sum of squares (SSE)
WSS = Z Z (x—c)° We want this to be small
i xeC;
- Separation is measured by the between cluster sum of squares
BSS =) mi(c—c,)’
i

We want this to be large
* Where m; is the size of cluster i, c the overall mean

BSS =) > (x-y)

XECi yECJ



Internal Measures: Cohesion and Separation

A proximity graph based approach can also be used for
cohesion and separation.
Cluster cohesion is the sum of the weight of all links within a cluster.

Cluster separation is the sum of the weights between nodes in the cluster
and nodes outside the cluster.

cohesion separation



Internal measures — caveats

Internal measures have the problem that the
clustering algorithm did not set out to optimize
this measure, so it i1s will not necessarily do well
with respect to the measure.

An internal measure can also be used as an
objective function for clustering



Framework for Cluster Validity

Need a framework to interpret any measure.
For example, if our measure of evaluation has the value, 10, is that
good, fair, or poor?

Statistics provide a framework for cluster validity

The more “non-random” a clustering result is, the more likely it
represents valid structure in the data

Can compare the values of an index that result from random data or
clusterings to those of a clustering result.

If the value of the index is unlikely, then the cluster results are valid

For comparing the results of two different sets of cluster

analyses, a framework is less necessary.

However, there is the question of whether the difference between two
index values is significant



Statistical Framework for SSE
Example

Compare SSE of 0.005 against three clusters in random data

Histogram of SSE for three clusters in 500 random data sets of
100 random points distributed in the range 0.2 — 0.8 for x and y
Value 0.005 is very unlikely
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Statistical Framework for Correlation

Correlation of incidence and proximity matrices for the
K-means clusterings of the following two data sets.

80

)
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S
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X X Correlation

Corr =-0.9235 Corr = -0.5810



Empirical p-value

If we have a measurement v (e.g., the SSE value)
..ahd we have N measurements on random datasets

...the empirical p-value is the fraction of
measurements in the random data that have value
less or equal than value v (or greater or equal if we
want to maximize)

- 1.e., the value in the random dataset is at least as good as
that in the real data

We usually require that p-value < 0.05

Hard question: what is the right notion of a random
dataset?



External Measures for Clustering Validity

Assume that the data is labeled with some class
labels

- E.g., documents are classified into topics, people classified
according to their income, politicians classified according to
the political party.

- This is called the “ground truth”

In this case we want the clusters to be homogeneous

with respect to classes

- Each cluster should contain elements of mostly one class

- Each class should ideally be assigned to a single cluster

This does not always make sense
- Clustering is not the same as classification
- ...but this is what people use most of the time



-.

Confusion matrix

- = number of points

-m; = points in cluster | i | | o .

- ¢; = points in class |

.
----I
¢ pl] — nij/miZ probablllty -.

of element from cluster | P11 .
to be assigned in class | P21 Pz P2 .

*n; ;= points in cluster |
coming from class |

Cluster 3



ERENENE
Measures .

Cluster 3 P31

- Entropy: ----.

- Of acluster i: e; = — X7, p;; logp;;
- Highest when uniform, zero when single class
- Of a clustering: e = Y, ~e;
- Purity:

- Of a cluster I: p; = maxp;;
J

- Of a clustering: p(C) = ZK = — Di



-.

2
Measures
Cluster 2 ysPst D22 D23

Cluster 3 P31

- Precision: ----.

- Of cluster i with respect to class j: Prec(i,)) = p;;
- Recall:

- Of cluster | with respect to class |: Rec(i,j) = %
J

- F-measure:

- Harmonic Mean of Precision and Recall:
o 2 * Prec(i,j) * Rec(i,])
F(@i,j) = — —
Prec(i,j) + Rec(i, )




-.

Measures

Precision/Recall for clusters and clusterings

- Assign to cluster i the class k; such that k; = argmaxn;;
J

- Precision:
. Nik.
- Of cluster i: Prec(i) = m‘
- Of the clustering: Prec(C) = %,;~* Prec(i)
- Recall:
- Of cluster i: Rec(i) =

- Of the clustering: Rec(C) -~ Zi%Rec(i)

- F-measure:
- Harmonic Mean of Precision and Recall



Good and bad clustering

Cluster 1

Cluster 3

- 38I

Cluster 3

Purity: (0.94, 0.81, 0.85) Purity: (0.38, 0.38, 0.38)
— overall 0.86 — overall 0.38
Precision: (0.94, 0.81, 0.85) Precision: (0.38, 0.38, 0.38)
— overall 0.86 — overall 0.38
Recall: (0.85, 0.9, 0.85) Recall: (0.35, 0.42, 0.38)

- overall 0.87 — overall 0.39



Another clustering

--

Cluster 2 Cluster _1:
Purity: 1

Cluster 3 Precision: 1
Recall: 0.35




External Measures of Cluster Validity:
Entropy and Purity

Table 5.9. K-means Clustering Results for LA Document Data Set

Cluster | Entertainment | Financial | Foreign | Metro | National | Sports | Entropy | Purity
1 3 5 40 506 96 27 1.2270 | 0.7474
2 4 7 280 29 39 2 1.1472 | 0.7756
3 1 1 1 7 4 671 0.1813 | 0.9796
4 10 162 3 119 73 2 1.7487 | 0.4390
5 331 22 5 70 13 23 1.3976 | 0.7134
6 5 358 12 212 48 13 1.5523 | 0.5525
Total 354 555 341 943 273 738 1.1450 | 0.7203

entropy For each cluster, the class distribution of the data is calculated first, i.e., for cluster j
we compute p;;, the ‘probability’ that a member of cluster 7 belongs to class ¢ as follows:
Pi; = méj/mj, where m; is the number of values in cluster j and m,; is the number of values
of class ¢ in cluster 7. Then using this class distribution, the entropy of each cluster 5 is
calculated using the standard formula e; = Zf=1péj log, psj, where the L is the number of
classes. The total entropy for a set of clusters is calculated as the sum of the entropies of each
cluster weighted by the size of each cluster, i.e., e = Zil e, where m; is the size of cluster

1, K 1s the number of clusters, and m is the total number of data points.

purity Using the terminology derived for entropy, the purity of cluster j, is given by purity; =
max p;; and the overall purity of a clustering by purity = Zfil L purity;.



Final Comment on Cluster Validity

“The validation of clustering structures is the most
difficult and frustrating part of cluster analysis.

Without a strong effort in this direction, cluster
analysis will remain a black art accessible only to
those true believers who have experience and
great courage.”

Algorithms for Clustering Data, Jain and Dubes



SEQUENCE
SEGMENTATION




Sequential data

Sequential data (or time series) refers to data that appear

In a specific order.

- The order defines a time axis, that differentiates this data from
other cases we have seen so far

Examples
- The price of a stock (or of many stocks) over time
- Environmental data (pressure, temperature, precipitation etc) over
time
- The sequence of queries in a search engine, or the frequency of a
single query over time
- The words in a document as they appear in order
- A DNA sequence of nucleotides
- Event occurrences in a log over time
- Etc...
Time series: usually we assume that we have a vector of
numeric values that change over time.



Time-series data
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Time series analysis

The addition of the time axis defines new sets of
problems

- Discovering periodic patterns in time series

- Defining similarity between time series

- Finding bursts, or outliers

Also, some existing problems need to be revisited
taking sequential order into account

- Association rules and Frequent Itemsets in sequential
data

- Summarization and Clustering: Sequence
Segmentation



Sequence Segmentation

Goal: discover structure in the sequence and
provide a concise summary

Given a sequence T, segment It into K contiguous
segments that are as homogeneous as possible

Similar to clustering but now we require the
points in the cluster to be contiguous

Commonly used for summarization of histograms
in databases



Example

RA




Basic definitions

Sequence T = {t,t,, ...,ty}: an ordered set of N d-dimensional real
points t; € R¢

A K-segmentation S: a partition of T into K contiguous segments

{s1,55 -, Sk}
- Each segment s € S is represented by a single vector i € R%(the
representative of the segment -- same as the centroid of a cluster)

Error E(S): The error of replacing individual points with
representatives

- Different error functions, define different representatives.

Sum of Squares Error (SSE):

ES) = ) ) (t-u)?

SES tes
Representative of segment s with SSE: mean u, = |?1|2t65 t



The K-segmentation problem

Given a sequence | of length /' and a value /7, find a

-segmentation of | such that
the error - is minimized.

Similar to K-means clustering, but now we need
the points in the clusters to respect the order of
the sequence.

- This actually makes the problem easier.



Basic Definitions

- Observation: a K-segmentation S is defined by K + 1
boundary points by, by, ..., bx_1, bg.

RA

by =0,b, = N + 1 always.
- We only need to specify by, ..., by _1



Optimal solution for the k-segmentation problem

e Bellman’61: The K-segmentation problem can be
solved optimally using a standard dynamic
programming algorithm

Dynamic Programming:
- Construct the solution of the problem by using solutions
to problems of smaller size
Define the dynamic programming recursion
- Build the solution bottom up from smaller to larger
Instances

Define the dynamic programming table that stores the solutions
to the sub-problems



e
Rule of thumb

Most optimization problems where order is
iInvolved can be solved optimally in polynomial
time using dynamic programming.

- The polynomial exponent may be large though



Dynamic Programming Recursion

- Terminology:
- T[1,n]: subsequence {t,, t,, ..., t,}forn < N

- E(S[1,n], k): error of optimal segmentation of subsequence T[1,n] with
k. segments for k < K

- Dynamic Programming Recursion:

E(S[1,n], k)
= min JEGILjLk=D+ ) (= jaam)’
k<jsn-1 Y Hlj+1n]
| | “j+1stsn ]
| | |
Minimum over all possible  Error of optimal Error of k-th (last) segment
placements of the last segmentation S[1,]] when the last segment is

boundary point by, _4 with k-1 segments [j+1,n]



Dynamic programming table

- Two—dimensional table A[1...K,1...N|

Alk,n] = E(S[1,7n],k) }1\ i N

T

K
e .
E(S[1,n],k) = min {E(S[l,J],k—1)+ z (t —uy 1,n])}

k<jsn—-1
j+1stsn

- Fill the table top to bottom, left to right.
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1 n-3 n N

The cell A[3,n] stores the error of the
optimal solution 3-segmentation of T'[1, n|

In the cell (or in a different table) we also
store the position n — 3 of the boundary so
we can trace back the segmentation

A WODN B




Dynamic-programming algorithm

- Input: Sequence T, length N, K segments, error function E()

- For i=1to N //Initialize first row
— A[L,iI]=E(T[1...1]) //Error when everything is in one cluster

- For k=1 to K // Initialize diagonal
— Alk k] = 0/l Error when each point in its own cluster

- Fork=2to K
—Fori=k+1to N
« Alk,i] = minj<i{A[k-1,j]+E(T[j+1...i])}

- To recover the actual segmentation (not just the optimal
cost) store also the minimizing values |



-
Algorithm Complexity

- What is the complexity?
- NK cells to fill
- Computation per cell

. . 2
E(S[:l; n]) k) = kréljl<nn {E(S[l,]],k _ 1) + Zj+1$t$7’l(t _ ﬂ[j+1,n]) }

- O(N) boundaries to check per cell
« O(N) to compute the second term per checked boundary
- O(N3K) in the naive computation

- We can avoid the last O(N) factor by observing that

2 1 ?
D (= 3 (3 )
j+1<t<n

j+1stsn j+1stsn j

- We can compute in constant time by precomputing partial sums
- Precompute Y, t and Y oo, t? foralln=1..N

- Algorithm Complexity: O(N?K)



Heuristics

Top-down greedy (TD): O(NK)
- Introduce boundaries one at the time so that you get the
largest decrease in error, until K segments are created.

Bottom-up greedy (BU): O(NlogN)

- Merge adjacent points each time selecting the two
points that cause the smallest increase in the error until
K segments

Local Search Heuristics: O(NKI)

- Assign the breakpoints randomly and then move them
so that you reduce the error



Local Search Heuristics

Local Search refers to a class of heuristic optimization
algorithms where we start with some solution and we try
to reach an optimum by iteratively improving the solution

with small (local) changes

- Each solution has a set of neighboring solutions:
The set of solutions that can be created with the allowed local changes.

- Usually we move to the best of the neighboring solutions, or one
that improves our optimization function

Local Search algorithms are surprisingly effective

- For some problems they yield optimal solutions or solutions with
good approximation bounds

They have been studied extensively

- Simulated Annealing
- Taboo Search



Other time series analysis

Using signal processing techniques is common
for defining similarity between series

- Fast Fourier Transform
- Wavelets

Rich literature in the field



