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Jaccard Similarity

• The Jaccard similarity (Jaccard coefficient) of two sets S1, 
S2 is the size of their intersection divided by the size of 
their union.
• JSim (S1, S2) = |S1S2| / |S1S2|.

• Extreme behavior:
• Jsim(X,Y) = 1, iff X = Y

• Jsim(X,Y) = 0 iff X,Y have no elements in common

• JSim is symmetric

3 in intersection.

8 in union.

Jaccard similarity

= 3/8



Cosine Similarity

• Sim(X,Y) = cos(X,Y)
• The cosine of the angle between X and Y

• If the vectors are aligned (correlated) angle is zero degrees and 
cos(X,Y)=1

• If the vectors are orthogonal (no common coordinates) angle is 90 
degrees and cos(X,Y) = 0

• Cosine is commonly used for comparing documents, where we 
assume that the vectors are normalized by the document length.



Application: Recommendations

• Recommendation systems

• When a user buys or rates an item we want to 

recommend other items that the user may like

• Initially applied to books, but now recommendations are 

everywhere: songs, movies, products, restaurants, hotels, etc.

• Commonly used algorithms:

• Find the k users most similar to the user at hand and 

recommend items that they like.

• Find the items most similar to the items that the user 

has previously liked, and recommend these items.



Application: Finding near duplicates

• Find duplicate and near-duplicate documents 

from a web crawl.

• Why is it important:

• Identify mirrored web pages, and avoid indexing them, 

or serving them multiple times

• Find replicated news stories and cluster them under a 

single story.

• Identify plagiarism

• Near duplicate documents differ in a few 

characters, words or sentences



Finding similar items

• The problems we have seen so far have a 

common component

• We need a quick way to find highly similar items to a 

query item

• OR, we need a method for finding all pairs of items that 

are highly similar.

• Also known as the Nearest Neighbor problem, or 

the All Nearest Neighbors problem



SKETCHING 

AND 

LOCALITY SENSITIVE 

HASHING
Thanks to:

Rajaraman and Ullman, “Mining Massive Datasets”

Evimaria Terzi, slides for Data Mining Course. 



Problem

• Given a (large) collection of documents find all 

pairs of documents which are near duplicates

• Their similarity is very high

• What if we want to find identical documents?



Main issues

• What is the right representation of the document 

when we check for similarity?

• E.g., representing a document as a set of characters 

will not do (why?)

• When we have billions of documents, keeping the 

full text in memory is not an option.

• We need to find a shorter representation

• How do we do pairwise comparisons of billions of 

documents?

• If we wanted exact match it would be ok, can we 

replicate this idea?
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Three Essential Techniques for Similar 

Documents

1. Shingling : convert documents, emails, etc., 

to sets.

2. Minhashing : convert large sets to short 

signatures, while preserving similarity.

3. Locality-Sensitive Hashing (LSH): focus on 

pairs of signatures likely to be similar.
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The Big Picture

Docu-

ment

The set

of strings

of length k

that appear

in the doc-

ument

Signatures :

short integer

vectors that

represent the

sets, and

reflect their

similarity

Locality-

sensitive

Hashing

Candidate

pairs :

those pairs

of signatures

that we need

to test for

similarity.
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Shingles

• A k -shingle (or k -gram) for a document is a 

sequence of k characters that appears in the 

document.

• Example: document = abcab. k=2

• Set of 2-shingles = {ab, bc, ca}.

• Option: regard shingles as a bag, and count ab twice.

• Represent a document by its set of k-shingles.



Shingling

• Shingle: a sequence of k contiguous characters

a rose is a rose is a rose

a rose is 

rose is a

rose is a 

ose is a r

se is a ro

e is a ros

is a rose

is a rose 

s a rose i

a rose is

a rose is 



Shingling

• Shingle: a sequence of k contiguous characters

a rose is a rose is a rose

a rose is 

rose is a

rose is a 

ose is a r

se is a ro

e is a ros

is a rose

is a rose 

s a rose i

a rose is

a rose is 

a rose is 

rose is a

rose is a 

ose is a r

se is a ro

e is a ros

is a rose

is a rose 

s a rose i

a rose is
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Working Assumption

• Documents that have lots of shingles in common 
have similar text, even if the text appears in 
different order.

• Careful: you must pick k large enough, or most 
documents will have most shingles.
• Extreme case k = 1: all documents are the same

• k = 5 is OK for short documents; k = 10 is better for long 
documents.

• Alternative ways to define shingles:
• Use words instead of characters

• Anchor on stop words (to avoid templates)
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Shingles: Compression Option

• To compress long shingles, we can hash them to 

(say) 4 bytes.

ℎ: 𝑉𝑘 → 0,1 64

• Represent a doc by the set of hash values of its k-

shingles.

• Shingle 𝑠 will be represented by the 64-bit integer ℎ(𝑠)

• From now on we will assume that shingles are 

integers

• Collisions are possible, but very rare



Fingerprinting

• Hash shingles to 64-bit integers

a rose is 

rose is a

rose is a 

ose is a r

se is a ro

e is a ros

is a rose

is a rose 

s a rose i

a rose is

1111

2222

3333

4444

5555

6666

7777

8888

9999

0000

Set of Shingles Set of 64-bit integers
Hash function

(Rabin’s fingerprints)
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Basic Data Model: Sets

• Document: A document is represented as a set
shingles (more accurately, hashes of shingles)

• Document similarity: Jaccard similarity of the sets of 
shingles.
• Common shingles over the union of shingles

• Sim (C1, C2) = |C1C2|/|C1C2|.

• Although we use the documents as our driving 
example the techniques we will describe apply to any 
kind of sets.

• E.g., similar customers or items.



Signatures

• Problem: shingle sets are still too large to be kept in memory.

• Key idea: “hash” each set S to a small signature Sig (S), such 
that:

1. Sig (S) is small enough that we can fit a signature in main memory 
for each set.

2. Sim (S1, S2) is (almost) the same as the “similarity” of Sig (S1) and 
Sig (S2). (signature preserves similarity).

• Warning: This method can produce false negatives, and false 
positives (if an additional check is not made).
• False negatives: Similar items deemed as non-similar

• False positives: Non-similar items deemed as similar
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From Sets to Boolean Matrices

• Represent the data as a boolean matrix M

• Rows = the universe of all possible set elements 

• In our case, shingle fingerprints take values in [0…264-1]

• Columns = the sets 

• In our case, documents, sets of shingle fingerprints

• M(r,S) = 1 in row r and column S if and only if r is a 

member of S.

• Typical matrix is sparse.

• We do not really materialize the matrix



Example

• Universe: U = {A,B,C,D,E,F,G}

• X = {A,B,F,G}

• Y = {A,E,F,G}

• Sim(X,Y) = 
3

5

X Y

A 1 1

B 1 0

C 0 0

D 0 0

E 0 1

F 1 1

G 1 1



Example

• Universe: U = {A,B,C,D,E,F,G}

• X = {A,B,F,G}

• Y = {A,E,F,G}

• Sim(X,Y) = 
3

5

X Y

A 1 1

B 1 0

C 0 0

D 0 0

E 0 1

F 1 1

G 1 1

At least one of the columns has value 1



Example

• Universe: U = {A,B,C,D,E,F,G}

• X = {A,B,F,G}

• Y = {A,E,F,G}

• Sim(X,Y) = 
3

5

X Y

A 1 1

B 1 0

C 0 0

D 0 0

E 0 1

F 1 1

G 1 1

Both columns have value 1
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Minhashing

• Pick a random permutation of the rows (the 

universe U).

• Define “hash” function for set S

• h(S) = the index of the first row (in the permuted order) 

in which column S has 1.

same as:

• h(S) = the index of the first element of S in the permuted 

order.

• Use k (e.g., k = 100) independent random 

permutations to create a signature.



Example of minhash signatures

• Input matrix

elem

ent S1 S2 S3 S4

A 1 0 1 0

B 1 0 0 1

C 0 1 0 1

D 0 1 0 1

E 0 1 1 1

F 1 0 1 0

G 1 0 1 0

A

C

G

F

B

E

D

index elem

ent S1 S2 S3 S4

1 A 1 0 1 0

2 C 0 1 0 1

3 G 1 0 1 0

4 F 1 0 1 0

5 B 1 0 0 1

6 E 0 1 1 1

7 D 0 1 0 1

1 2 1 2

Random

Permutation



Example of minhash signatures

• Input matrix

elem

ent S1 S2 S3 S4

A 1 0 1 0

B 1 0 0 1

C 0 1 0 1

D 0 1 0 1

E 0 1 1 1

F 1 0 1 0

G 1 0 1 0

D

B

A

C

F

G

E

index elem

ent S1 S2 S3 S4

1 D 0 1 0 1

2 B 1 0 0 1

3 A 1 0 1 0

4 C 0 1 0 1

5 F 1 0 1 0

6 G 1 0 1 0

7 E 0 1 1 1

2 1 3 1

Random

Permutation



Example of minhash signatures

• Input matrix

elem

ent S1 S2 S3 S4

A 1 0 1 0

B 1 0 0 1

C 0 1 0 1

D 0 1 0 1

E 0 1 1 1

F 1 0 1 0

G 1 0 1 0

C

D

G

F

A

B

E

index elem

ent S1 S2 S3 S4

1 C 0 1 0 1

2 D 0 1 0 1

3 G 1 0 1 0

4 F 1 0 1 0

5 A 1 0 1 0

6 B 1 0 0 1

7 E 0 1 1 1

3 1 3 1

Random

Permutation



Example of minhash signatures

• Input matrix

S1 S2 S3 S4

A 1 0 1 0

B 1 0 0 1

C 0 1 0 1

D 0 1 0 1

E 0 1 1 1

F 1 0 1 0

G 1 0 1 0

S1 S2 S3 S4

h1 1 2 1 2

h2 2 1 3 1

h3 3 1 3 1

≈

• Sig(S) = vector of hash values 
• e.g., Sig(S2) = [2,1,1]

• Sig(S,i) = value of the i-th hash 

function for set S
• E.g., Sig(S2,3) = 1

Signature matrix
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Hash function Property

Pr(h(S1) = h(S2)) = Sim(S1,S2)

• where the probability is over all choices of  
permutations. 

• Why?
• The first row where one of the two sets has value 1

belongs to the union.

• Recall that union contains rows with at least one 1.

• We have equality if both sets have value 1, and this row 
belongs to the intersection



Example

• Universe: U = {A,B,C,D,E,F,G}

• X = {A,B,F,G}

• Y = {A,E,F,G}

• Union = 

{A,B,E,F,G}

• Intersection = 

{A,F,G}

X Y

A 1 1

B 1 0

C 0 0

D 0 0

E 0 1

F 1 1

G 1 1

D

*

*

C

*

*

*

X Y

D 0 0

C 0 0

Rows C,D could be anywhere 

they do not affect the probability



Example

• Universe: U = {A,B,C,D,E,F,G}

• X = {A,B,F,G}

• Y = {A,E,F,G}

• Union = 

{A,B,E,F,G}

• Intersection = 

{A,F,G}

X Y

A 1 1

B 1 0

C 0 0

D 0 0

E 0 1

F 1 1

G 1 1

D

*

*

C

*

*

*

X Y

D 0 0

C 0 0

The * rows belong to the union



Example

• Universe: U = {A,B,C,D,E,F,G}

• X = {A,B,F,G}

• Y = {A,E,F,G}

• Union = 

{A,B,E,F,G}

• Intersection = 

{A,F,G}

X Y

A 1 1

B 1 0

C 0 0

D 0 0

E 0 1

F 1 1

G 1 1

D

*

*

C

*

*

*

X Y

D 0 0

C 0 0

The question is what is the value 

of the first * element



Example

• Universe: U = {A,B,C,D,E,F,G}

• X = {A,B,F,G}

• Y = {A,E,F,G}

• Union = 

{A,B,E,F,G}

• Intersection = 

{A,F,G}

X Y

A 1 1

B 1 0

C 0 0

D 0 0

E 0 1

F 1 1

G 1 1

D

*

*

C

*

*

*

X Y

D 0 0

C 0 0

If it belongs to the intersection 

then h(X) = h(Y)



Example

• Universe: U = {A,B,C,D,E,F,G}

• X = {A,B,F,G}

• Y = {A,E,F,G}

• Union = 

{A,B,E,F,G}

• Intersection = 

{A,F,G}

X Y

A 1 1

B 1 0

C 0 0

D 0 0

E 0 1

F 1 1

G 1 1

D

*

*

C

*

*

*

X Y

D 0 0

C 0 0

Every element of the union is equally likely 

to be the * element

Pr(h(X) = h(Y)) = 
| A,F,G |

| A,B,E,F,G |
=

3
5
= Sim(X,Y)



Zero similarity is preserved

High similarity is well approximated
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Similarity for Signatures

• The similarity of signatures  is the fraction of the 
hash functions in which they agree.

• With multiple signatures we get a good 
approximation

S1 S2 S3 S4

A 1 0 1 0

B 1 0 0 1

C 0 1 0 1

D 0 1 0 1

E 0 1 1 1

F 1 0 1 0

G 1 0 1 0

S1 S2 S3 S4

1 2 1 2

2 1 3 1

3 1 3 1

≈

Actual Sig

(S1, S2) 0 0

(S1, S3) 3/5 2/3

(S1, S4) 1/7 0

(S2, S3) 0 0

(S2, S4) 3/4 1

(S3, S4) 0 0

Signature matrix



Is it now feasible?

• Assume a billion rows

• Hard to pick a random permutation of 1…billion

• Even representing a random permutation 

requires 1 billion entries!!!

• How about accessing rows in permuted order?

•



Being more practical

Approximating row permutations: pick k=100 hash 

functions (h1,…,hk)

for each row r 

for each hash function hi

compute hi (r ) 

for each column S that has 1 in row r

if hi (r ) is a smaller value than Sig(S,i) then

Sig(S,i) = hi (r);

Sig(S,i) will become the smallest value of hi(r) among all rows 

(shingles) for which column S has value 1 (shingle belongs in S); 

i.e., hi (r) gives the min index for the i-th permutation

In practice this means selecting the 

function parameters

In practice only the rows (shingles) 

that appear in the data

hi (r) = index of shingle r in permutation

S contains shingle r

Find the shingle r with minimum index



38

Example

Row S1 S2

A 1 0

B 0 1

C 1 1

D 1 0

E 0 1

h(x) = x+1 mod 5

h(0) = 1 1 -

g(0) = 3 3 -

h(1) = 2 1 2

g(1) = 0 3 0

h(2) = 3 1 2

g(2) = 2 2 0

h(3) = 4 1 2

g(3) = 4 2 0

h(4) = 0 1 0

g(4) = 1 2 0

Sig1 Sig2

Row S1 S2

E    0 1

A    1 0

B 0 1

C    1 1

D    1 0

Row S1 S2

B    0 1

E    0 1 

C    1 0

A 1 1

D   1 0

x

0

1

2

3

4

h(x)

1

2

3

4

0

g(x)

3

0

2

4

1

g(x) = 2x+1 mod 5
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Implementation – (4)

• Often, data is given by column, not row.

• E.g., columns = documents, rows = shingles.

• If so, sort matrix once so it is by row.

• And always compute hi (r ) only once for each 

row.
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Finding similar pairs

• Problem: Find all pairs of documents with 

similarity at least t = 0.8

• While the signatures of all columns may fit in 

main memory, comparing the signatures of all 

pairs of columns is quadratic in the number of 

columns.

• Example: 106 columns implies 5*1011 column-

comparisons.

• At 1 microsecond/comparison: 6 days.
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Locality-Sensitive Hashing

• What we want: a function f(X,Y) that tells whether or not X
and Y is a candidate pair: a pair of elements whose 
similarity must be evaluated.

• A simple idea: X and Y are a candidate pair if they have 
the same min-hash signature.
• Easy to test by hashing the signatures.

• Similar sets are more likely to have the same signature.

• Likely to produce many false negatives.
• Requiring full match of signature is strict, some similar sets will be lost.

• Improvement: Compute multiple signatures; candidate 
pairs should have at least one common signature. 
• Reduce the probability for false negatives.

! Multiple levels of Hashing!
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Signature matrix reminder

Matrix M

n hash functions

Sig(S):

signature for set S

hash function i

Sig(S,i)

signature for set S’

Sig(S’,i)

Prob(Sig(S,i) == Sig(S’,i)) = sim(S,S’)



43

Partition into Bands – (1)

• Divide the signature matrix Sig  into b bands of r

rows.

• Each band is a mini-signature with r hash functions.
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Partitioning into bands
Matrix Sig

r rows

per band

b bands

One

signature

n = b*r hash functions

b mini-signatures
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Partition into Bands – (2)

• Divide the signature matrix Sig  into b bands of r

rows.

• Each band is a mini-signature with r hash functions.

• For each band, hash the mini-signature to a hash 

table with k buckets.

• Make k as large as possible so that mini-signatures that 

hash to the same bucket are almost certainly identical.
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Matrix M

r rows b bands

321 5 64 7

Hash Table Columns 2 and 6

are (almost certainly) identical.

Columns 6 and 7 are

surely different.
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Partition into Bands – (2)

• Divide the signature matrix Sig  into b bands of r
rows.
• Each band is a mini-signature with r hash functions.

• For each band, hash the mini-signature to a hash table 
with k buckets.
• Make k as large as possible so that mini-signatures that hash 

to the same bucket are almost certainly identical.

• Candidate column pairs are those that hash to the 
same bucket for at least 1 band.
• I.e., they have at least one mini-signature in common.

• Tune b and r to catch most similar pairs, but few non-
similar pairs.
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Analysis of LSH – What We Want

Similarity s of two sets

Probability

of sharing

a bucket

t

No chance

if s < t

Probability

= 1 if s > t
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What One Band of One Row Gives You

Similarity s of two sets

Probability

of sharing

a bucket

t

Remember:

probability of

equal hash-values

= similarity

Single hash signature

Prob(Sig(S,i) == Sig(S’,i)) = sim(S,S’)
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What b Bands of r Rows Gives You

Similarity s of two sets

Probability

of sharing

a bucket

t

s r 

All rows

of a band

are equal

1 -

Some row

of a band

unequal

( )b 

No bands

identical

1 -

At least

one band

identical

t ~ (1/b)1/r 
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Example: b = 20; r = 5

s 1-(1-sr)b

.2 .006

.3 .047

.4 .186

.5 .470

.6 .802

.7 .975

.8 .9996

t = 0.5
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Suppose S1, S2 are 80% Similar

• We want all 80%-similar pairs. Choose 20 bands of 5
integers/band.

• Probability S1, S2 identical in one particular band: 

(0.8)5 = 0.328.

• Probability S1, S2 are not  similar in any of the 20 bands:

(1-0.328)20 = 0.00035 

• i.e., about 1/3000-th of the 80%-similar column pairs are false negatives.

• Probability S1, S2 are similar in at least one of the 20 
bands: 

1-0.00035 = 0.999
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Suppose S1, S2 Only 40% Similar

• Probability S1, S2 identical in any one particular 
band: 

(0.4)5 = 0.01 .

• Probability S1, S2 are not identical in any of the 
20 bands: 

1 − 0.01 20 = 0.81

• False positive probability = 0.19. But false 
positives much lower for similarities << 40%. 
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LSH Summary

• Tune to get almost all pairs with similar 

signatures, but eliminate most pairs that do not 

have similar signatures.

• Check in main memory that candidate pairs 

really do have similar signatures.

• Optional: In another pass through data, check 

that the remaining candidate pairs really 

represent similar sets .



Locality-sensitive hashing (LSH)

• Big Picture: Construct hash functions h: Rd
 U 

such that for any pair of points p,q, for distance

function D we have:

• If D(p,q)≤r, then Pr[h(p)=h(q)] is high

• If D(p,q)≥cr, then Pr[h(p)=h(q)] is small

• Then, we can find close pairs by hashing

• LSH is a general framework: for a given distance

function D we need to find the right h
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LSH for Cosine Distance

• For cosine distance, there is a technique 

analogous to minhashing for generating a 

(d1,d2,(1-d1/180),(1-d2/180))- sensitive family 

for any d1 and d2.

• Called random hyperplanes.
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Random Hyperplanes

• Pick a random vector v, which determines a 

hash function hv with two buckets.

• hv(x) = +1 if v.x > 0; = -1 if v.x < 0.

• LS-family H = set of all functions derived from 

any vector.

• Claim: 

• Prob[h(x)=h(y)] = 1 – (angle between x and y)/180
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Proof of Claim

x

y

Look in the plane of x and y.

θ

hv(x) = +1

hv(x) = -1

For a random vector v the values of the 

hash functions hv(x) and hv(y) depend 

on where the vector v falls

hv(y) = -1

hv(y) = +1

hv(x) ≠ hv(y) when v falls into the 

shaded area.

What is the probability of this for 

a randomly chosen vector v?

θ

θ

P[hv(x) ≠ hv(y)] = 2θ/360 = θ/180

P[hv(x) = hv(y)] = 1- θ/180
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Signatures for Cosine Distance

• Pick some number of vectors, and hash your 

data for each vector.

• The result is a signature (sketch ) of +1’s and –

1’s that can be used for LSH like the minhash

signatures for Jaccard distance.
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Simplification

• We need not pick from among all possible vectors 

v to form a component of a sketch.

• It suffices to consider only vectors v consisting of 

+1 and –1 components.


