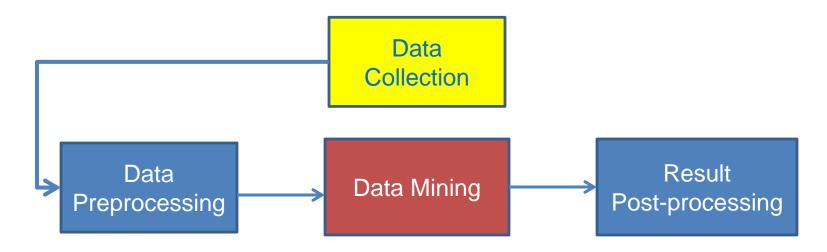
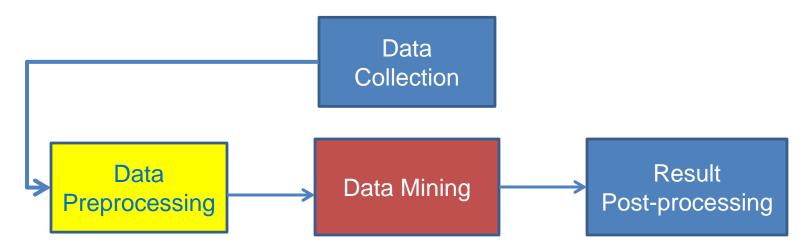

DATA MINING LECTURE 2

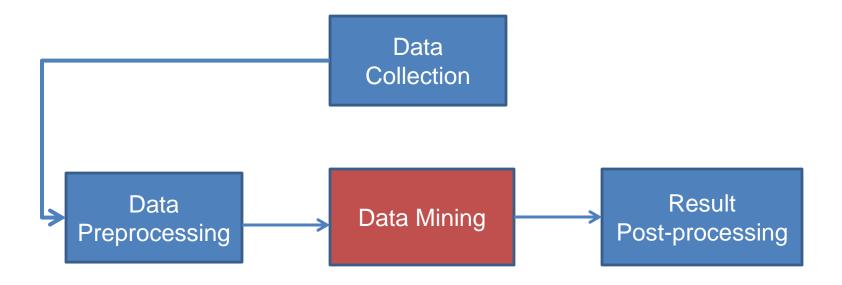

Data Preprocessing

Exploratory Analysis


Post-processing

Mining is not the only step in the analysis process

- Today there is an abundance of data online
 - Facebook, Twitter, Wikipedia, Web, City data, Open data initiatives, etc.
- Collecting the data is a separate task
 - Customized crawlers, use of public APIs
 - Respect of crawling etiquette
- How should we store them?
- In many cases when collecting data we also need to label them
 - E.g., how do we identify fraudulent transactions?
 - E.g., how do we elicit user preferences?



- Preprocessing: Real data is noisy, incomplete and inconsistent. Data cleaning is required to make sense of the data
 - Techniques: Sampling, Dimensionality Reduction, Feature selection.
- The preprocessing step determines the input to the data mining algorithm
 - A dirty work, but someone has to do it.
 - It is often the most important step for the analysis

- Post-Processing: Make the data actionable and useful to the user
 - Statistical analysis of importance of results
 - Visualization

Mining is not the only step in the analysis process

Pre- and Post-processing are often data mining tasks as well

Data Quality

- Examples of data quality problems:
 - Noise and outliers
 - Missing values
 - Duplicate data

A mistake or a millionaire?

Missing values

Inconsistent duplicate entries

Tid	Refund	Marital Status	Taxable Income	Cheat	
1	Yes	Single	125K	No	
2	No	Married	100K	No	
3	No	Single	70K	No	
4	Yes	Married	120K	No	
5	No	Divorced	10000K	Yes	
6	No	NULL	60K	No	
7	Yes	Divorced	220K	NULL	
8	No	Single	85K	Yes	
9	No	Married	90K	No	
9	No	Single	90K	No	

Sampling

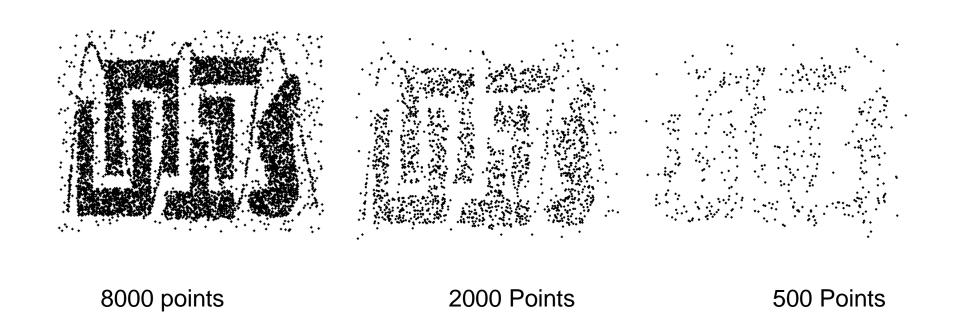
- Sampling is the main technique employed for data selection.
 - It is often used for both the preliminary investigation of the data and the final data analysis.
- Statisticians sample because obtaining the entire set of data of interest is too expensive or time consuming.
 - Example: What is the average height of a person in loannina?
 - We cannot measure the height of everybody
- Sampling is used in data mining because processing the entire set of data of interest is too expensive or time consuming.
 - Example: We have 1M documents. What fraction of pairs has at least 100 words in common?
 - Computing number of common words for all pairs requires 10¹² comparisons
 - Example: What fraction of tweets in a year contain the word "Greece"?
 - 500M tweets per day, if 100 characters on average, 86.5TB to store all tweets

Sampling ...

- The key principle for effective sampling is the following:
 - using a sample will work almost as well as using the entire data sets, if the sample is representative
 - A sample is representative if it has approximately the same property (of interest) as the original set of data
 - Otherwise we say that the sample introduces some bias
 - What happens if we take a sample from the university campus to compute the average height of a person at loannina?

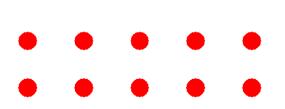
Types of Sampling

- Simple Random Sampling
 - There is an equal probability of selecting any particular item
- Sampling without replacement
 - As each item is selected, it is removed from the population
- Sampling with replacement
 - Objects are not removed from the population as they are selected for the sample.
 - In sampling with replacement, the same object can be picked up more than once. This makes analytical computation of probabilities easier
 - E.g., we have 100 people, 51 are women P(W) = 0.51, 49 men P(M) = 0.49. If I pick two persons what is the probability P(W,W) that both are women?
 - Sampling with replacement: P(W,W) = 0.51²
 - Sampling without replacement: P(W,W) = 51/100 * 50/99


Types of Sampling

- Stratified sampling
 - Split the data into several groups; then draw random samples from each group.
 - Ensures that all groups are represented.
 - Example 1. I want to understand the differences between legitimate and fraudulent credit card transactions. 0.1% of transactions are fraudulent. What happens if I select 1000 transactions at random?
 - I get 1 fraudulent transaction (in expectation). Not enough to draw any conclusions. Solution: sample 1000 legitimate and 1000 fraudulent transactions

Probability Reminder: If an event has probability p of happening and I do N trials, the expected number of times the event occurs is pN


- Example 2. I want to answer the question: Do web pages that are linked have on average more words in common than those that are not? I have 1M pages, and 1M links, what happens if I select 10K pairs of pages at random?
 - Most likely I will not get any links. Solution: sample 10K random pairs, and 10K links

Sample Size

Sample Size

 What sample size is necessary to get at least one object from each of 10 groups.

A data mining challenge

- You have N integers and you want to sample one integer uniformly at random. How do you do that?
- The integers are coming in a stream: you do not know the size of the stream in advance, and there is not enough memory to store the stream in memory. You can only keep a constant amount of integers in memory
- How do you sample?
 - Hint: if the stream ends after reading n integers the last integer in the stream should have probability 1/n to be selected.
- Reservoir Sampling:
 - Standard interview question for many companies

Reservoir sampling

- Algorithm: With probability 1/n select the n-th item of the stream and replace the previous choice.
- Claim: Every item has probability 1/N to be selected after N items have been read.
- Proof
 - What is the probability of the n-th item to be selected?
 - $\frac{1}{n}$
 - What is the probability of the n-th item to survive for N-n rounds?
 - $\left(1-\frac{1}{n+1}\right)\left(1-\frac{1}{n+2}\right)\cdots\left(1-\frac{1}{N}\right)$

Proof by Induction

- We want to show that the probability the n-th item is selected after $N \ge n$ items have been seen is 1/N
- Induction on the number of steps
 - Base of the induction: For N = n, the probability that the n-th item is selected is 1/n
 - Inductive Hypothesis: Assume that it is true for N
 - Inductive Step: The probability that the item is still selected after N + 1 items is

$$\frac{1}{N}\left(1 - \frac{1}{N+1}\right) = \frac{1}{N+1}$$

A (detailed) data preprocessing example

 Suppose we want to mine the comments/reviews of people on <u>Yelp</u> and <u>Foursquare</u>.

Mining Task

- Collect all reviews for the top-10 most reviewed restaurants in NY in Yelp
 - (thanks to Hady Law)
- Find few terms that best describe the restaurants.
- Algorithm?

Example data

- I heard so many good things about this place so I was pretty juiced to try it. I'm from Cali and I heard Shake Shack is comparable to IN-N-OUT and I gotta say, Shake Shake wins hands down. Surprisingly, the line was short and we waited about 10 MIN. to order. I ordered a regular cheeseburger, fries and a black/white shake. So yummerz. I love the location too! It's in the middle of the city and the view is breathtaking. Definitely one of my favorite places to eat in NYC.
- I'm from California and I must say, Shake Shack is better than IN-N-OUT, all day, err'day.
- Would I pay \$15+ for a burger here? No. But for the price point they are asking for, this is a definite bang for your buck (though for some, the opportunity cost of waiting in line might outweigh the cost savings) Thankfully, I came in before the lunch swarm descended and I ordered a shake shack (the special burger with the patty + fried cheese & portabella topping) and a coffee milk shake. The beef patty was very juicy and snugly packed within a soft potato roll. On the downside, I could do without the fried portabella-thingy, as the crispy taste conflicted with the juicy, tender burger. How does shake shack compare with in-and-out or 5-guys? I say a very close tie, and I think it comes down to personal affliations. On the shake side, true to its name, the shake was well churned and very thick and luscious. The coffee flavor added a tangy taste and complemented the vanilla shake well. Situated in an open space in NYC, the open air sitting allows you to munch on your burger while watching people zoom by around the city. It's an oddly calming experience, or perhaps it was the food coma I was slowly falling into. Great place with food at a great price.

First cut

- Do simple processing to "normalize" the data (remove punctuation, make into lower case, clear white spaces, other?)
- Break into words, keep the most popular words

the 27514	the 16710	the 16010	the 14241
and 14508	and 9139	and 9504	and 8237
i 13088	a 8583	i 7966	a 8182
a 12152	i 8415	to 6524	i 7001
to 10672	to 7003	a 6370	to 6727
of 8702	in 5363	it 5169	of 4874
ramen 8518	it 4606	of 5159	you 4515
was 8274	of 4365	is 4519	it 4308
is 6835	is 4340	sauce 4020	is 4016
it 6802	burger 432	in 3951	was 3791
in 6402	was 4070	this 3519	pastrami 3748
for 6145	for 3441	was 3453	in 3508
but 5254	but 3284	for 3327	for 3424
that 4540	shack 3278	you 3220	sandwich 2928
you 4366	shake 3172	that 2769	that 2728
with 4181	that 3005	but 2590	but 2715
pork 4115	you 2985	food 2497	on 2247
my 3841	my 2514	on 2350	this 2099
this 3487	line 2389	my 2311	my 2064
wait 3184	this 2242	cart 2236	with 2040
not 3016	fries 2240	chicken 2220	not 1655
we 2984	on 2204	with 2195	your 1622
at 2980	are 2142	rice 2049	so 1610
on 2922	with 2095	so 1825	have 1585

First cut

wait 3184

not 3016

we 2984

at 2980

on 2922

- Do simple processing to "normalize" the data (remove punctuation, make into lower case, clear white spaces, other?)
- Break into words, keep the most popular words

this 2242

fries 2240

on 2204

are 2142

with 2095

the 27514 and 14508 i 13088 a 12152 to 10672 of 8702 ramen 8518 was 8274 is 6835 it 6802 in 6402 for 6145 but 5254 that 4540 you 4366 with 4181	the 16710 and 9139 a 8583 i 8415 to 7003 in 5363 it 4606 of 4365 is 4340 burger 432 was 4070 for 3441 but 3284 shack 3278 shake 3172 that 3005	the 16010 and 9504 i 7966 to 6524 a 6370 it 5169 of 5159 is 4519 sauce 4020 in 3951 this 3519 was 3453 for 3327 you 3220 that 2769 but 2590	the 14241 and 8237 a 8182 i 7001 to 6727 of 4874 you 4515 it 4308 is 4016 was 3791 pastrami 3748 in 3508 for 3424 sandwich 2928 that 2728 but 2715 on 2247
	that 3005 you 2985		but 2715 on 2247
my 3841 this 3487	my 2514 line 2389	ost frequent	words are st

Most frequent words are stop words

cart 2236	- 1 CEE
chicken 2220	not 1655
with 2195	your 1622
	so 1610
rice 2049	have 1585
so 1825	nave 1505

Second cut

- Remove stop words
 - Stop-word lists can be found online.

a, about, above, after, again, against, all, am, an, and, any, are, aren't, as, at, be, be cause, been, before, being, below, between, both, but, by, can't, cannot, could, could n't, did, didn't, do, does, doesn't, doing, don't, down, during, each, few, for, from, f urther, had, hadn't, has, hasn't, have, haven't, having, he, he'd, he'll, he's, her, he re, here's, hers, herself, him, himself, his, how, how's, i, i'd, i'll, i'm, i've, if, in, into, is, isn't, it, it's, its, itself, let's, me, more, most, mustn't, my, myself, no, nor, not, of, off, on, once, only, or, other, ought, our, ours, ourselves, out, over, own, same, shan't, she, she'd, she'll, she's, should, shouldn't, so, some, such, than, that, that's, the, their, theirs, them, themselves, then, there, there's, these, they, they'd, they'll, they're, they've, this, those, through, to, too, under, until, up, very, was, wasn't, we, we'd, we'll, we're, we've, were, weren't, what, what's, when, when's, where, where's, which, while, who, who's, whom, why, why's, with, won't, would, would n't, you, you'd, you'll, you're, you've, your, yours, yourself, yourselves,

Second cut

- Remove stop words
 - Stop-word lists can be found online.

ramen 8572
pork 4152
wait 3195
good 2867
place 2361
noodles 2279
ippudo 2261
buns 2251
broth 2041
like 1902
just 1896
get 1641
time 1613
one 1460
really 1437
go 1366
food 1296
bowl 1272
can 1256
great 1172
best 1167

burger 4340 shack 3291 shake 3221 line 2397 fries 2260 good 1920 burgers 1643 wait 1508 just 1412 cheese 1307 like 1204 food 1175 get 1162 place 1159 one 1118 long 1013 go 995 time 951 park 887 can 860 best 849

sauce 4023 food 2507 cart 2239 chicken 2238 rice 2052 hot 1835 white 1782 line 1755 good 1629 lamb 1422 halal 1343 just 1338 get 1332 one 1222 like 1096 place 1052 go 965 can 878 night 832 time 794 long 792 people 790

pastrami 3782 sandwich 2934 place 1480 good 1341 get 1251 katz's 1223 just 1214 like 1207 meat 1168 one 1071 deli 984 best 965 go 961 ticket 955 food 896 sandwiches 813 can 812 beef 768 order 720 pickles 699 time 662

Second cut

really 1437

go 1366

food 1296

bowl 1272

great 1172

best 1167

can 1256

- Remove stop words
 - Stop-word lists can be found online.

```
ramen 8572
                        burger 4340
                                             sauce 4023
                                                                   pastrami 3782
pork 4152
                        shack 3291
                                             food 2507
                                                                   sandwich 2934
wait 3195
                        shake 3221
                                             cart. 2239
                                                                   place 1480
good 2867
                        line 2397
                                             chicken 2238
                                                                   good 1341
place 2361
                        fries 2260
                                             rice 2052
                                                                   get 1251
noodles 2279
                        good 1920
                                             hot 1835
                                                                   katz's 1223
ippudo 2261
                        burgers 1643
                                             white 1782
                                                                   just 1214
buns 2251
                        wait 1508
                                             line 1755
                                                                   like 1207
broth 2041
                        just 1412
                                             good 1629
                                                                   meat 1168
like 1902
                        cheese 1307
                                             lamb 1422
                                                                   one 1071
just 1896
                        like 1204
                                             halal 1343
                                                                   deli 984
get 1641
                        food 1175
                                             just 1338
                                                                   best 965
time 1613
                        get 1162
                                             get 1332
                                                                   ao 961
one 1460
```

Commonly used words in reviews, not so interesting

J	
TOLIA TOTO	p.
go 995	g
time 951	Ca
park 887	n
can 860	t:
best 849	10
	200

prace 1032
go 965
can 878
night 832
time 794
long 792
people 790

can 812 beef 768 order 720 pickles 699 time 662

IDF

- Important words are the ones that are unique to the document (differentiating) compared to the rest of the collection
 - All reviews use the word "like". This is not interesting
 - We want the words that characterize the specific restaurant
- Document Frequency DF(w): fraction of documents that contain word w.

$$DF(w) = \frac{D(w)}{D}$$

D(w): num of docs that contain word w

D: total number of documents

Inverse Document Frequency IDF(w):

$$IDF(w) = \log\left(\frac{1}{DF(w)}\right)$$

- Maximum when unique to one document : IDF(w) = log(D)
- Minimum when the word is common to all documents: IDF(w) = 0

TF-IDF

- The words that are best for describing a document are the ones that are important for the document, but also unique to the document.
- TF(w,d): term frequency of word w in document d
 - Number of times that the word appears in the document
 - Natural measure of importance of the word for the document
- IDF(w): inverse document frequency
 - Natural measure of the uniqueness of the word w
- TF-IDF(w,d) = TF(w,d) \times IDF(w)

Third cut

Ordered by TF-IDF

```
ramen 3057.4176194 fries 806.08537330 lamb 985.655290756243
akamaru 2353.24196 custard 729.607519 halal 686.038812717726
noodles 1579.68242 shakes 628.4738038 53rd 375.685771863491
broth 1414.7133955 shroom 515.7790608 gyro 305.809092298788
miso 1252.60629058 burger 457.2646379 pita 304.984759446376
hirata 709.1962086 crinkle 398.347221 cart 235.902194557873
hakata 591.7643688 burgers 366.624854 platter 139.45990308004
shiromaru 587,1591 madison 350,939350 chicken/lamb 135,852520
noodle 581.8446147 shackburger 292.42 carts 120.274374158359
tonkotsu 529.59457 'shroom 287.823136 hilton 84.2987473324223
ippudo 504.5275695 portobello 239.806 lamb/chicken 82.8930633
buns 502.296134008 custards 211.83782 yogurt 70.0078652365545
ippudo's 453.60926 concrete 195.16992 52nd 67.5963923222322
modern 394.8391629 bun 186.9621782983 6th 60.7930175345658
egg 367.3680056967 milkshakes 174.996 4am 55.4517744447956
shoyu 352.29551922 concretes 165.7861 yellow 54.4470265206673
chashu 347.6903490 portabello 163.483 tzatziki 52.95945713886 fries 131.613054313392
karaka 336.1774235 shack's 159.334353 lettuce 51.3230168022681
kakuni 276.3102111 patty 152.22603588 sammy's 50.656872045869
ramens 262,4947006 ss 149,66803104461 sw 50,5668577816893 3
bun 236.5122638036 patties 148.068287 platters 49.906597000310
wasabi 232.3667512 cam 105.9496067806 falafel 49.479699521204
dama 221.048168927 milkshake 103.9720 sober 49.2211422635451
brulee 201.1797390 lamps 99.011158998 moma 48.1589121730374
```

pastrami 1931.94250908298 katz's 1120.62356508209 rye 1004.28925735888 corned 906.113544700399 pickles 640.487221580035 reuben 515.779060830666 matzo 430.583412389887 sally 428.110484707471 harry 226.323810772916 mustard 216.079238853014 cutter 209.535243462458 carnegie 198.655512713779 katz 194.387844446609 knish 184.206807439524 sandwiches 181.415707218 brisket 131.945865389878 salami 127.621117258549 knishes 124.339595021678 delicatessen 117.488967607 2 deli's 117.431839742696 carver 115.129254649702 brown's 109.441778045519 matzoh 108.22149937072

Third cut

- TF-IDF takes care of stop words as well
- We do not need to remove the stopwords since they will get IDF(w) = 0

Decisions, decisions...

- When mining real data you often need to make some decisions
 - What data should we collect? How much? For how long?
 - Should we throw out some data that does not seem to be useful?

An actual review

- Too frequent data (stop words), too infrequent (errors?), erroneous data, missing data, outliers
- How should we weight the different pieces of data?
- Most decisions are application dependent. Some information may be lost but we can usually live with it (most of the times)
- We should make our decisions clear since they affect our findings.
- Dealing with real data is hard…

- In many cases it is important to normalize the data rather than use the raw values
- In this data, different attributes take very different range of values. For distance/similarity the small values will disappear
- We need to make them comparable

Temperature	Humidity	Pressure
30	0.8	90
32	0.5	80
24	0.3	95

- Divide by the maximum value for each attribute
 - Brings everything in the [0,1] range

Temperature	Humidity	Pressure
0.9375	1	0.9473
1	0.625	0.8421
0.75	0.375	1

new value = old value / max value

Temperature	Humidity	Pressure
30	0.8	90
32	0.5	80
24	0.3	95

- Subtract the minimum value and divide by the difference of the maximum value and minimum value for each attribute
 - Brings everything in the [0,1] range

Temperature	Humidity	Pressure
0.75	1	0.33
1	0.6	0
0	0	1

new value = (old value - min value) / (max value -min value)

Temperature	Humidity	Pressure
30	0.8	90
32	0.5	80
24	0.3	95

Are these documents similar?

	Word 1	Word 2	Word 3
Doc 1	28	50	22
Doc 2	12	25	13

- Are these documents similar?
- Divide by the sum of values for each document
 - Transform a vector into a distribution

	Word 1	Word 2	Word 3
Doc 1	0.28	0.5	0.22
Doc 2	0.24	0.5	0.26

	Word 1	Word 2	Word 3
Doc 1	28	50	22
Doc 2	12	25	13

Do these two users rate movies in a similar way?

	Movie 1	Movie 2	Movie 3
User 1	1	2	3
User 2	2	3	4

- Do these two users rate movies in a similar way?
- Subtract the mean value for each user
 - Captures the deviation from the average behavior

	Movie 1	Movie 2	Movie 3
User 1	-1	0	+1
User 2	-1	0	+1

	Movie 1	Movie 2	Movie 3
User 1	1	2	3
User 2	2	3	4

Exploratory analysis of data

- Summary statistics: numbers that summarize properties of the data
 - Summarized properties include frequency, location and spread
 - Examples: location mean

spread - standard deviation

 Most summary statistics can be calculated in a single pass through the data

Frequency and Mode

- The frequency of an attribute value is the percentage of time the value occurs in the data set
 - For example, given the attribute 'gender' and a representative population of people, the gender 'female' occurs about 50% of the time.
- The mode of a an attribute is the most frequent attribute value
- The notions of frequency and mode are typically used with categorical data

Percentiles

 For continuous data, the notion of a percentile is more useful.

Given an ordinal or continuous attribute x and a number p between 0 and 100, the pth percentile is a value x_p of x such that p% of the observed values of x are less than x_p .

• For instance, the 80th percentile is the value $x_{80\%}$ that is greater than 80% of all the values of x we have in our data.

Measures of Location: Mean and Median

- The mean is the most common measure of the location of a set of points.
- However, the mean is very sensitive to outliers.

$$mean(x) = \overline{x} = \frac{1}{m} \sum_{i=1}^{m} x_i$$

$$\operatorname{median}(x) = \left\{ \begin{array}{ll} x_{(r+1)} & \text{if } m \text{ is odd, i.e., } m = 2r+1 \\ \frac{1}{2}(x_{(r)} + x_{(r+1)}) & \text{if } m \text{ is even, i.e., } m = 2r \end{array} \right.$$

 Thus, the median or a trimmed mean is also commonly used.

Example

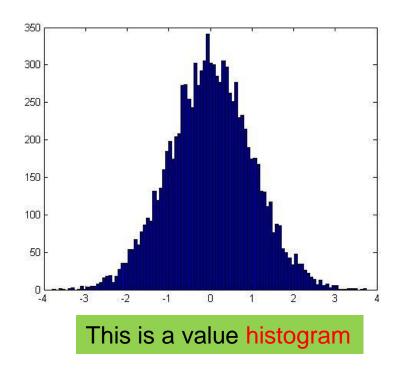
Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	10000K	Yes
6	No	NULL	60K	No
7	Yes	Divorced	220K	NULL
8	No	Single	85K	Yes
9	No	Married	90K	No
10	No	Single	90K	No

Mean: 1090K

Trimmed mean (remove min, max): 105K

Median: (90+100)/2 = 95K

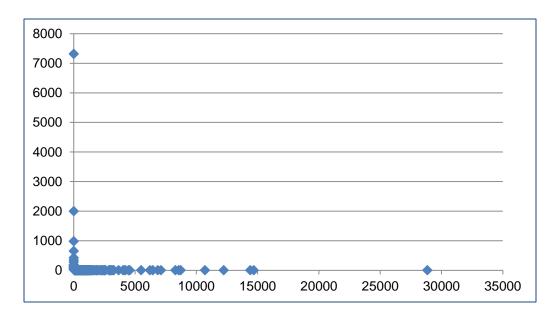
Measures of Spread: Range and Variance


- Range is the difference between the max and min
- The variance or standard deviation is the most common measure of the spread of a set of points.

$$var(x) = \frac{1}{m} \sum_{i=1}^{m} (x - \bar{x})^2$$

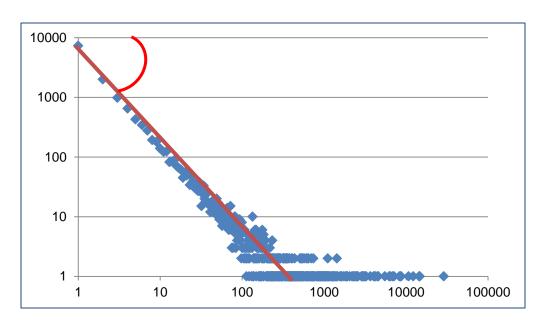
$$\sigma(x) = \sqrt{var(x)}$$

Normal Distribution


$$\phi(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}$$

- An important distribution that characterizes many quantities and has a central role in probabilities and statistics.
 - Appears also in the central limit theorem
- Fully characterized by the mean μ and standard deviation σ

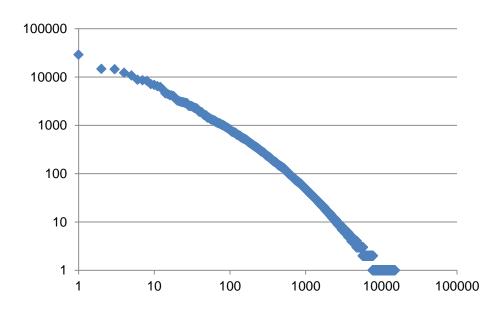
Not everything is normally distributed


Plot of number of words with x number of occurrences

 If this was a normal distribution we would not have a frequency as large as 28K

Power-law distribution

 We can understand the distribution of words if we take the log-log plot

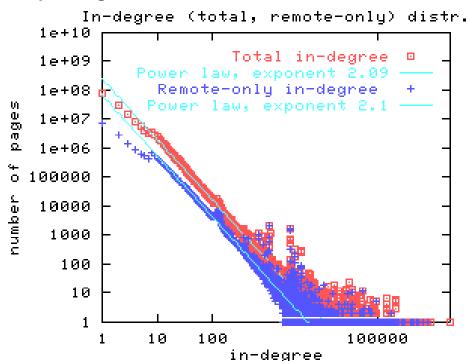

The slope of the line gives us the exponent α

Linear relationship in the log-log space

$$p(x = k) = k^{-a}$$

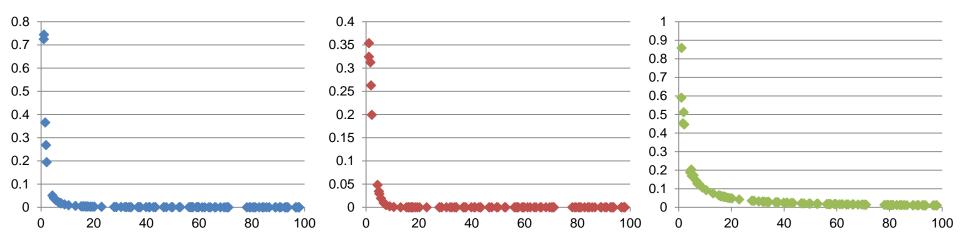
Zipf's law

 Power laws can be detected also by a linear relationship in the log-log space for the rank-frequency plot

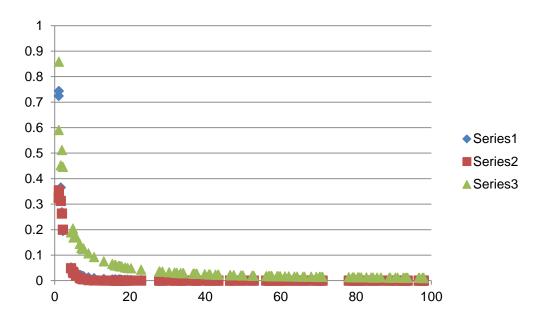


• f(r): Frequency of the r-th most frequent word

$$f(r) = r^{-\beta}$$


Power-laws are everywhere

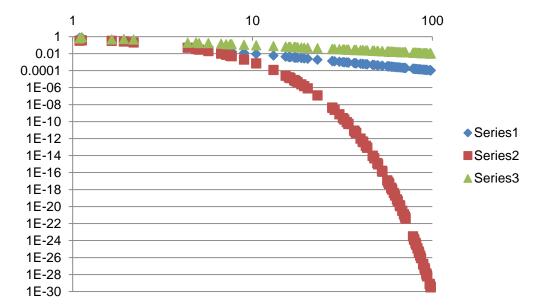
- Incoming and outgoing links of web pages, number of friends in social networks, number of occurrences of words, file sizes, city sizes, income distribution, popularity of products and movies
 - Signature of human activity?
 - A mechanism that explains everything?
 - Rich get richer process


The importance of correct representation

 Consider the following three plots which are histograms of values. What do you observe? What can you tell of the underlying function?

The importance of correct representation

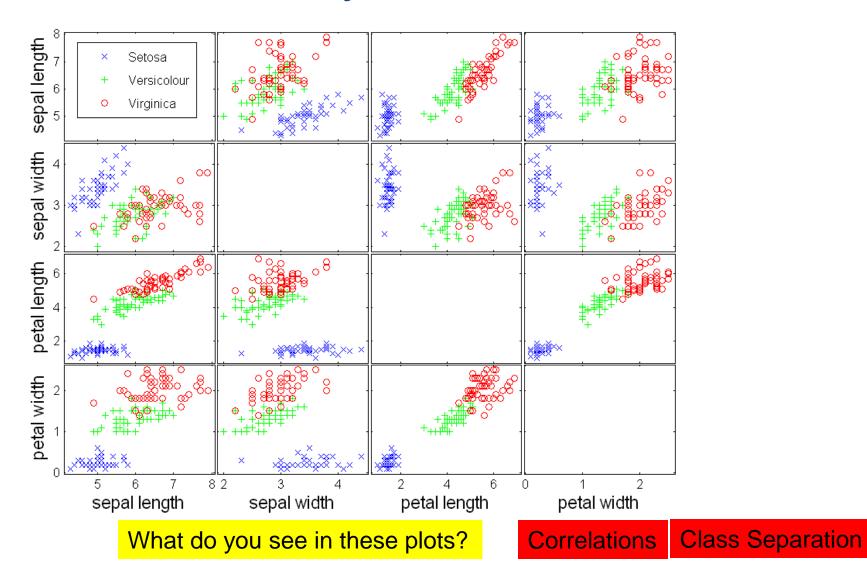
 Putting all three plots together makes it more clear to see the differences



 Green falls more slowly. Blue and Red seem more or less the same

The importance of correct representation

Making the plot in log-log space makes the differences more


clear

Green and Blue form straight lines. Red drops exponentially.

•
$$y = \frac{1}{2x+\epsilon}$$
 $\log y \approx -\log x + c$
• $y = \frac{1}{x^2+\epsilon}$ $\log y \approx -2\log x + c$
• $y = 2^{-x} + \epsilon \log y \approx -x + c = -10^{\log x} + c$

Scatter Plot Array of Iris Attributes

Post-processing

- Visualization
 - The human eye is a powerful analytical tool
 - If we visualize the data properly, we can discover patterns and demonstrate trends
 - Visualization is the way to present the data so that patterns can be seen
 - E.g., histograms and plots are a form of visualization
 - There are multiple techniques (a field on its own)

Visualization on a map

John Snow, London 1854

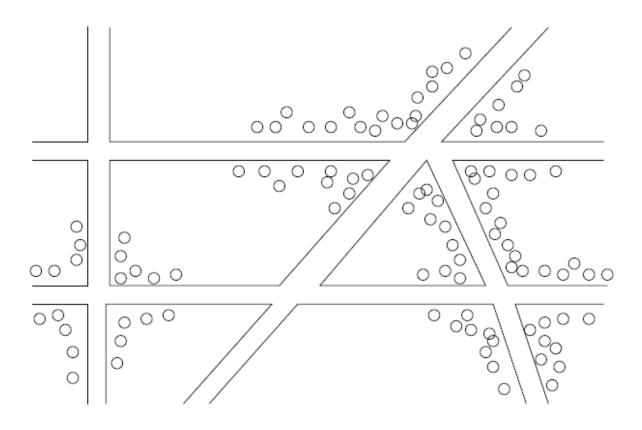
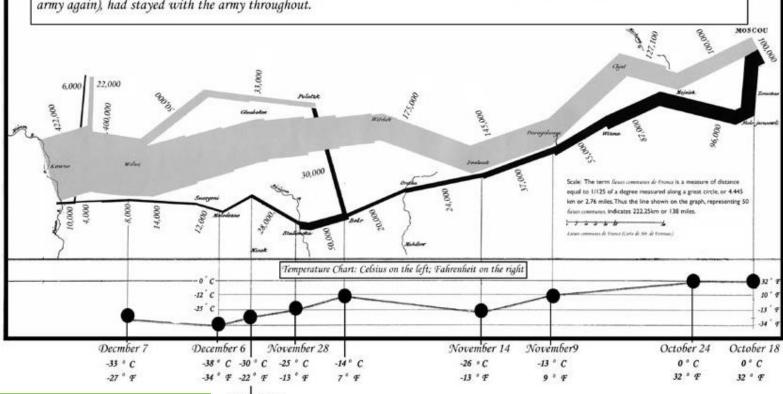


Figure 1.1: Plotting cholera cases on a map of London

Dimensionality Reduction

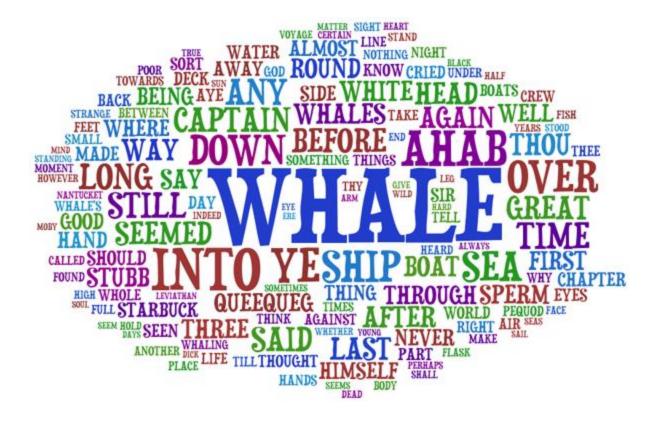

- The human eye is limited to processing visualizations in two (at most three) dimensions
- One of the great challenges in visualization is to visualize high-dimensional data into a twodimensional space
 - Dimensionality reduction
 - Distance preserving embeddings

Charles Minard map

Map representing the losses over time of French army troops during the Russian campaign, 1812-1813. Constructed by Charles Joseph Minard, Inspector General of Public Works retired.

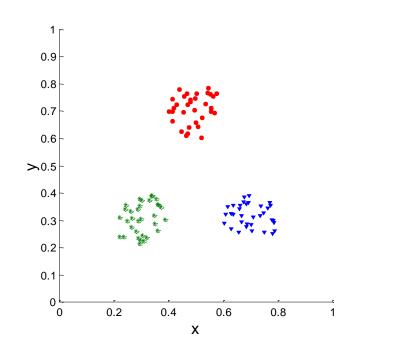
Paris, 20 November 1869

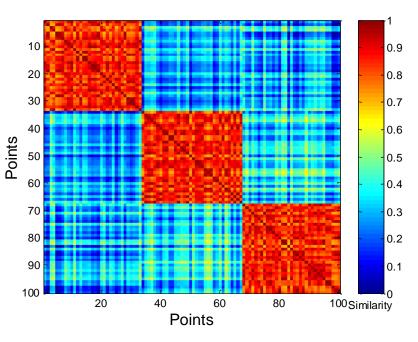
The number of men present at any given time is represented by the width of the grey line; one mm. indicates ten thousand men. Figures are also written besides the lines. Grey designates men moving into Russia; black, for those leaving. Sources for the data are the works of messrs. Thiers, Segur, Fezensac, Chambray and the unpublished diary of Jacob. who became an Army Pharmacist on 28 October. In order to visualize the army's losses more clearly, I have drawn this as if the units under prince Jerome and Marshall Davoust (temporarily seperated from the main body to go to Minsk and Mikilow, which then joined up with the main army again), had stayed with the army throughout.


December 1

Six types of data in one plot: size of army, temperature, direction, location, dates etc

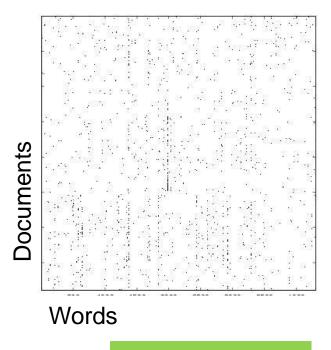
English text by Ward L. Kaiser

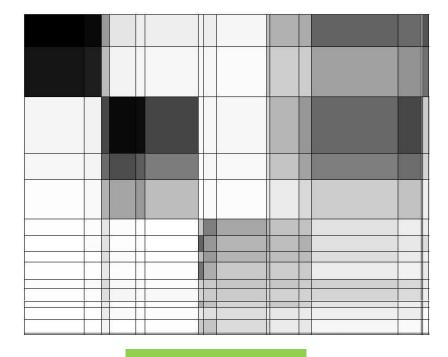

Word Clouds


 A fancy way to visualize a document or collection of documents.

Heatmaps

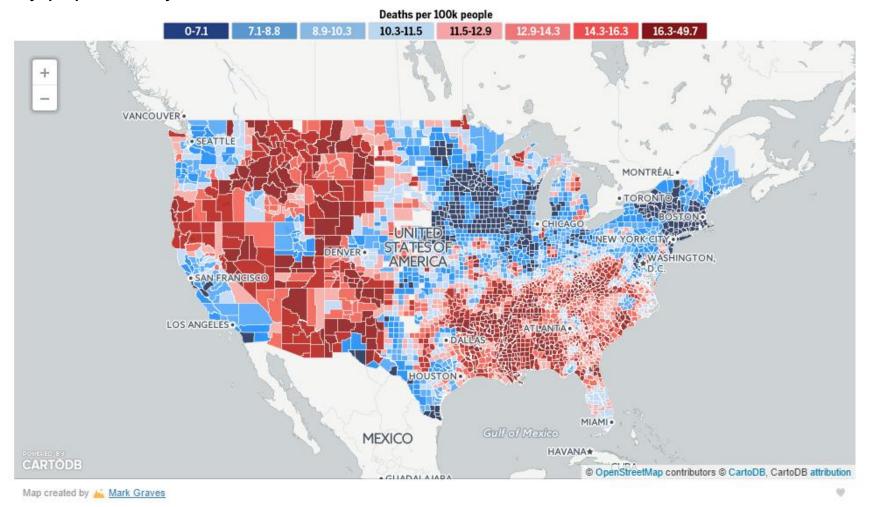
- Plot a point-to-point similarity matrix using a heatmap:
 - Deep red = high values (hot)
 - Dark blue = low values (cold)




The clustering structure becomes clear in the heatmap

Heatmaps

- Heatmap (grey scale) of the data matrix
 - Document-word frequencies


Before clustering

After clustering

Heatmaps

A very popular way to visualize data

Statistical Significance

- When we extract knowledge from a large dataset we need to make sure that what we found is not an artifact of randomness
 - E.g., we find that many people buy milk and toilet paper together.
 - But many (more) people buy milk and toilet paper independently
- Statistical tests compare the results of an experiment with those generated by a null hypothesis
 - E.g., a null hypothesis is that people select items independently.
- A result is interesting if it cannot be produced by randomness.
 - An important problem is to define the null hypothesis correctly:
 What is random?

Meaningfulness of Answers

- A big data-mining risk is that you will "discover" patterns that are meaningless.
- Statisticians call it Bonferroni's principle: (roughly) if you look in more places for interesting patterns than your amount of data will support, you are bound to find crap.
- The Rhine Paradox: a great example of how not to conduct scientific research.

Rhine Paradox – (1)

- Joseph Rhine was a parapsychologist in the 1950's who hypothesized that some people had Extra-Sensory Perception.
- He devised (something like) an experiment where subjects were asked to guess 10 hidden cards – red or blue.
- He discovered that almost 1 in 1000 had ESP they were able to get all 10 right!

Rhine Paradox – (2)

- He told these people they had ESP and called them in for another test of the same type.
- Alas, he discovered that almost all of them had lost their ESP.
 - Why?
- What did he conclude?
 - Answer on next slide.

Rhine Paradox – (3)

 He concluded that you shouldn't tell people they have ESP; it causes them to lose it.