
DATA MINING

LECTURE 13
Absorbing Random walks

Coverage

Random Walks on Graphs

• Random walk:

• Start from a node chosen uniformly at random with

probability
1

𝑛
.

• Pick one of the outgoing edges uniformly at random

• Move to the destination of the edge

• Repeat.

Random walk

• Question: what is the probability 𝑝𝑖
𝑡 of being at

node 𝑖 after 𝑡 steps?

𝑣2

𝑣3

𝑣4 𝑣5

𝑣1

𝑝3
0 =
1

5

𝑝4
0 =
1

5

𝑝5
0 =
1

5

𝑝1
𝑡 =
1

3
𝑝4
𝑡−1 +
1

2
𝑝5
𝑡−1

𝑝2
𝑡 =
1

2
𝑝1
𝑡−1

+ 𝑝3
𝑡−1 +
1

3
𝑝4
𝑡−1

𝑝3
𝑡 =
1

2
𝑝1
𝑡−1 +

1

3
𝑝4
𝑡−1

𝑝4
𝑡 =
1

2
𝑝5
𝑡−1

𝑝5
𝑡 = 𝑝2

𝑡−1

𝑝1
0 =
1

5

𝑝2
0 =
1

5

Stationary distribution

• After many many steps (𝑡 → ∞) the probabilities
converge (updating the probabilities does not
change the numbers)

• The converged probabilities define the stationary
distribution of a random walk 𝜋

• The probability 𝜋𝑖 is the fraction of times that we
visited state 𝑖 as 𝑡 → ∞

• Markov Chain Theory: The random walk converges
to a unique stationary distribution independent of
the initial vector if the graph is strongly connected,
and not bipartite.

Random walk with Restarts

• This is the random walk used by the PageRank algorithm
• At every step with probability α do a step of the random walk (follow

a random link)

• With probability 1-α restart the random walk from a randomly
selected node.

• The effect of the restart is that paths followed are never
too long.
• In expectation paths have length 1/α

• Restarts can also be from a specific node in the graph
(always start the random walk from there)

• What is the effect of that?
• The nodes that are close to the starting node have higher

probability to be visited.

• The probability defines a notion of proximity between the starting
node and all the other nodes in the graph

ABSORBING RANDOM

WALKS

Random walk with absorbing nodes

• What happens if we do a random walk on this
graph? What is the stationary distribution?

• All the probability mass on the red sink node:
• The red node is an absorbing node

Random walk with absorbing nodes

• What happens if we do a random walk on this graph?
What is the stationary distribution?

• There are two absorbing nodes: the red and the blue.

• The probability mass will be divided between the two

Absorption probability

• If there are more than one absorbing nodes in the

graph a random walk that starts from a non-

absorbing node will be absorbed in one of them

with some probability

• The probability of absorption gives an estimate of how

close the node is to red or blue

Absorption probability

• Computing the probability of being absorbed:
• The absorbing nodes have probability 1 of being absorbed in

themselves and zero of being absorbed in another node.

• For the non-absorbing nodes, take the (weighted) average of
the absorption probabilities of your neighbors

• if one of the neighbors is the absorbing node, it has probability 1

• Repeat until convergence (= very small change in probs)

𝑃 𝑅𝑒𝑑 𝐺𝑟𝑒𝑒𝑛 =
1

4
𝑃 𝑅𝑒𝑑 𝑌𝑒𝑙𝑙𝑜𝑤 +

1

4

𝑃 𝑅𝑒𝑑 𝑌𝑒𝑙𝑙𝑜𝑤 =
2

3

2

2

1

1

1
2

1

𝑃 𝑅𝑒𝑑 𝑃𝑖𝑛𝑘 =
2

3
𝑃 𝑅𝑒𝑑 𝑌𝑒𝑙𝑙𝑜𝑤 +

1

3
𝑃(𝑅𝑒𝑑|𝐺𝑟𝑒𝑒𝑛)

𝑃 𝑅𝑒𝑑 𝑅𝑒𝑑 = 1 , 𝑃 𝑅𝑒𝑑 𝐵𝑙𝑢𝑒 = 0

Absorption probability

• Computing the probability of being absorbed:
• The absorbing nodes have probability 1 of being absorbed in

themselves and zero of being absorbed in another node.

• For the non-absorbing nodes, take the (weighted) average of
the absorption probabilities of your neighbors

• if one of the neighbors is the absorbing node, it has probability 1

• Repeat until convergence (= very small change in probs)

𝑃 𝐵𝑙𝑢𝑒 𝑃𝑖𝑛𝑘 =
2

3
𝑃 𝐵𝑙𝑢𝑒 𝑌𝑒𝑙𝑙𝑜𝑤 +

1

3
𝑃(𝐵𝑙𝑢𝑒|𝐺𝑟𝑒𝑒𝑛)

𝑃 𝐵𝑙𝑢𝑒 𝐺𝑟𝑒𝑒𝑛 =
1

4
𝑃 𝐵𝑙𝑢𝑒 𝑌𝑒𝑙𝑙𝑜𝑤 +

1

2

𝑃 𝐵𝑙𝑢𝑒 𝑌𝑒𝑙𝑙𝑜𝑤 =
1

3

2

2

1

1

1
2

1

𝑃 𝐵𝑙𝑢𝑒 𝐵𝑙𝑢𝑒 = 1 , 𝑃 𝐵𝑙𝑢𝑒 𝑅𝑒𝑑 = 0

Why do we care?

• Why do we care to compute the absorption
probability to sink nodes?

• Given a graph (directed or undirected) we can
choose to make some nodes absorbing.
• Simply direct all edges incident on the chosen nodes towards

them and remove outgoing edges.

• The absorbing random walk provides a measure of
proximity of non-absorbing nodes to the chosen
nodes.
• Useful for understanding proximity in graphs

• Useful for propagation in the graph

• E.g, some nodes have positive opinions for an issue, some have
negative, to which opinion is a non-absorbing node closer?

Example

• In this undirected graph we want to learn the

proximity of nodes to the red and blue nodes

2

2

1

1

1
2

1

Example

• Make the nodes absorbing

2

2

1

1

1
2

1

Absorption probability

• Compute the absorbtion probabilities for red and

blue

𝑃 𝑅𝑒𝑑 𝑃𝑖𝑛𝑘 =
2

3
𝑃 𝑅𝑒𝑑 𝑌𝑒𝑙𝑙𝑜𝑤 +

1

3
𝑃(𝑅𝑒𝑑|𝐺𝑟𝑒𝑒𝑛)

𝑃 𝑅𝑒𝑑 𝐺𝑟𝑒𝑒𝑛 =
1

5
𝑃 𝑅𝑒𝑑 𝑌𝑒𝑙𝑙𝑜𝑤 +

1

5
𝑃 𝑅𝑒𝑑 𝑃𝑖𝑛𝑘 +

1

5

𝑃 𝑅𝑒𝑑 𝑌𝑒𝑙𝑙𝑜𝑤 =
1

6
𝑃 𝑅𝑒𝑑 𝐺𝑟𝑒𝑒𝑛 +

1

3
𝑃 𝑅𝑒𝑑 𝑃𝑖𝑛𝑘 +

1

3

0.52

0.48

0.42

0.58

0.57

0.43 2

2

1

1

1
2

1
𝑃 𝐵𝑙𝑢𝑒 𝑃𝑖𝑛𝑘 = 1 − 𝑃 𝑅𝑒𝑑 𝑃𝑖𝑛𝑘

𝑃 𝐵𝑙𝑢𝑒 𝐺𝑟𝑒𝑒𝑛 = 1 − 𝑃 𝑅𝑒𝑑 𝐺𝑟𝑒𝑒𝑛

𝑃 𝐵𝑙𝑢𝑒 𝑌𝑒𝑙𝑙𝑜𝑤 = 1 − 𝑃 𝑅𝑒𝑑 𝑌𝑒𝑙𝑙𝑜𝑤

Penalizing long paths

• The orange node has the same probability of

reaching red and blue as the yellow one

• Intuitively though it is further away
0.52

0.48

0.42

0.58

0.57

0.43 2

2

1

1

1
2

1
𝑃 𝐵𝑙𝑢𝑒 𝑂𝑟𝑎𝑛𝑔𝑒 = 𝑃 𝐵𝑙𝑢𝑒 𝑌𝑒𝑙𝑙𝑜𝑤 1

𝑃 𝑅𝑒𝑑 𝑂𝑟𝑎𝑛𝑔𝑒 = 𝑃 𝑅𝑒𝑑 𝑌𝑒𝑙𝑙𝑜𝑤

0.57

0.43

Penalizing long paths

• Add an universal absorbing node to which each

node gets absorbed with probability α.

1-α
α

α

α α

1-α
1-α

1-α

𝑃 𝑅𝑒𝑑 𝐺𝑟𝑒𝑒𝑛 = (1 − 𝛼)
1

5
𝑃 𝑅𝑒𝑑 𝑌𝑒𝑙𝑙𝑜𝑤 +

1

5
𝑃 𝑅𝑒𝑑 𝑃𝑖𝑛𝑘 +

1

5

With probability α the random walk dies

With probability (1-α) the random walk

continues as before

The longer the path from a node to an

absorbing node the more likely the random

walk dies along the way, the lower the

absorbtion probability

e.g.

Random walk with restarts

• Adding a jump with probability α to a universal absorbing node
seems similar to Pagerank

• Random walk with restart:
• Start a random walk from node u

• At every step with probability α, jump back to u

• The probability of being at node v after large number of steps defines again a
similarity between nodes u,v

• The Random Walk With Restarts (RWS) and Absorbing Random
Walk (ARW) are similar but not the same
• RWS computes the probability of paths from the starting node u to a node v,

while AWR the probability of paths from a node v, to the absorbing node u.

• RWS defines a distribution over all nodes, while AWR defines a probability for
each node

• An absorbing node blocks the random walk, while restarts simply bias towards
starting nodes

• Makes a difference when having multiple (and possibly competing) absorbing nodes

Propagating values

• Assume that Red has a positive value and Blue a
negative value
• Positive/Negative class, Positive/Negative opinion

• We can compute a value for all the other nodes by
repeatedly averaging the values of the neighbors
• The value of node u is the expected value at the point of absorption

for a random walk that starts from u

𝑉(𝑃𝑖𝑛𝑘) =
2

3
𝑉(𝑌𝑒𝑙𝑙𝑜𝑤) +

1

3
𝑉(𝐺𝑟𝑒𝑒𝑛)

𝑉 𝐺𝑟𝑒𝑒𝑛 =
1

5
𝑉(𝑌𝑒𝑙𝑙𝑜𝑤) +

1

5
𝑉(𝑃𝑖𝑛𝑘) +

1

5
 −
2

5

𝑉 𝑌𝑒𝑙𝑙𝑜𝑤 =
1

6
𝑉 𝐺𝑟𝑒𝑒𝑛 +

1

3
𝑉(𝑃𝑖𝑛𝑘) +

1

3
 −
1

6

+1

-1

0.05 -0.16

0.16 2

2

1

1

1
2

1

Electrical networks and random walks

• Our graph corresponds to an electrical network

• There is a positive voltage of +1 at the Red node, and a
negative voltage -1 at the Blue node

• There are resistances on the edges inversely proportional to
the weights (or conductance proportional to the weights)

• The computed values are the voltages at the nodes

+1

𝑉(𝑃𝑖𝑛𝑘) =
2

3
𝑉(𝑌𝑒𝑙𝑙𝑜𝑤) +

1

3
𝑉(𝐺𝑟𝑒𝑒𝑛)

𝑉 𝐺𝑟𝑒𝑒𝑛 =
1

5
𝑉(𝑌𝑒𝑙𝑙𝑜𝑤) +

1

5
𝑉(𝑃𝑖𝑛𝑘) +

1

5
 −
2

5

𝑉 𝑌𝑒𝑙𝑙𝑜𝑤 =
1

6
𝑉 𝐺𝑟𝑒𝑒𝑛 +

1

3
𝑉(𝑃𝑖𝑛𝑘) +

1

3
 −
1

6

+1

-1
2

2

1

1

1
2

1

0.05 -0.16

0.16

Opinion formation

• The value propagation can be used as a model of opinion formation.

• Model:
• Opinions are values in [-1,1]

• Every user 𝑢 has an internal opinion 𝑠𝑢, and expressed opinion 𝑧𝑢.
• The expressed opinion minimizes the personal cost of user 𝑢:

𝑐 𝑧𝑢 = 𝑠𝑢 − 𝑧𝑢
2 + 𝑤𝑢 𝑧𝑢 − 𝑧𝑣

2

𝑣:𝑣 is a friend of 𝑢

• Minimize deviation from your beliefs and conflicts with the society

• If every user tries independently (selfishly) to minimize their personal
cost then the best thing to do is to set 𝑧𝑢to the average of all opinions:

𝑧𝑢 =
𝑠𝑢 + 𝑤𝑢𝑧𝑢𝑣:𝑣 is a friend of 𝑢

1 + 𝑤𝑢𝑣:𝑣 is a friend of 𝑢

• This is the same as the value propagation we described before!

Example

• Social network with internal opinions

2

2

1

1

1
2

1

s = +0.5

s = -0.3

s = -0.1 s = +0.2

s = +0.8

Example

2

2

1

1

1
2

1

1

1

1 1

1

s = +0.5

s = -0.3

s = -0.1 s = -0.5

s = +0.8

The external opinion for each node is

computed using the value propagation

we described before

• Repeated averaging

Intuitive model: my opinion is a

combination of what I believe and

what my social network believes.

One absorbing node per user with

value the internal opinion of the user

One non-absorbing node per user

that links to the corresponding

absorbing node

z = +0.22 z = +0.17

z = -0.03
z = 0.04

z = -0.01

Hitting time

• A related quantity: Hitting time H(u,v)

• The expected number of steps for a random walk

starting from node u to end up in v for the first time

• Make node v absorbing and compute the expected number of

steps to reach v

• Assumes that the graph is strongly connected, and there are no

other absorbing nodes.

• Commute time H(u,v) + H(v,u): often used as a

distance metric

• Proportional to the total resistance between nodes u,

and v

Transductive learning

• If we have a graph of relationships and some labels on some
nodes we can propagate them to the remaining nodes
• Make the labeled nodes to be absorbing and compute the probability

for the rest of the graph

• E.g., a social network where some people are tagged as spammers

• E.g., the movie-actor graph where some movies are tagged as action
or comedy.

• This is a form of semi-supervised learning
• We make use of the unlabeled data, and the relationships

• It is also called transductive learning because it does not
produce a model, but just labels the unlabeled data that is at
hand.
• Contrast to inductive learning that learns a model and can label any

new example

Implementation details

• Implementation is in many ways similar to the

PageRank implementation

• For an edge (𝑢, 𝑣)instead of updating the value of v we

update the value of u.

• The value of a node is the average of its neighbors

• We need to check for the case that a node u is

absorbing, in which case the value of the node is not

updated.

• Repeat the updates until the change in values is very

small.

COVERAGE

Example

• Promotion campaign on a social network
• We have a social network as a graph.

• People are more likely to buy a product if they have a friend who
has the product.

• We want to offer the product for free to some people such that
every person in the graph is covered: they have a friend who has
the product.

• We want the number of free products to be as small as possible

Example

One possible selection

• Promotion campaign on a social network
• We have a social network as a graph.

• People are more likely to buy a product if they have a friend who
has the product.

• We want to offer the product for free to some people such that
every person in the graph is covered: they have a friend who has
the product.

• We want the number of free products to be as small as possible

Example

A better selection

• Promotion campaign on a social network
• We have a social network as a graph.

• People are more likely to buy a product if they have a friend who
has the product.

• We want to offer the product for free to some people such that
every person in the graph is covered: they have a friend who has
the product.

• We want the number of free products to be as small as possible

Dominating set

• Our problem is an instance of the dominating set

problem

• Dominating Set: Given a graph 𝐺 = (𝑉, 𝐸), a set

of vertices 𝐷 ⊆ 𝑉 is a dominating set if for each

node u in V, either u is in D, or u has a neighbor

in D.

• The Dominating Set Problem: Given a graph

𝐺 = (𝑉, 𝐸) find a dominating set of minimum size.

Set Cover

• The dominating set problem is a special case of

the Set Cover problem

• The Set Cover problem:

• We have a universe of elements 𝑈 = 𝑥1, … , 𝑥𝑁

• We have a collection of subsets of U, 𝑺 = {𝑆1, … , 𝑆𝑛},
such that 𝑆𝑖𝑖 = 𝑈

• We want to find the smallest sub-collection 𝑪 ⊆ 𝑺 of 𝑺,
such that 𝑆𝑖 = 𝑈𝑆𝑖∈𝑪

• The sets in 𝑪 cover the elements of U

An application of Set Cover

• Suppose that we want to create a catalog (with

coupons) to give to customers of a store:

• We want for every customer, the catalog to contain a

product bought by the customer (this is a small store)

• How can we model this as a set cover problem?

Applications

• The universe U of elements is

the set of customers of a store.

• Each set corresponds to a

product p sold in the store:
𝑆𝑝 = {𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑠 𝑡ℎ𝑎𝑡 𝑏𝑜𝑢𝑔ℎ𝑡 𝑝}

• Set cover: Find the minimum

number of products (sets) that

cover all the customers

(elements of the universe)

coke

beer

milk

coffee

tea

Applications

• The universe U of elements is

the set of customers of a store.

• Each set corresponds to a

product p sold in the store:
𝑆𝑝 = {𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑠 𝑡ℎ𝑎𝑡 𝑏𝑜𝑢𝑔ℎ𝑡 𝑝}

• Set cover: Find the minimum

number of products (sets) that

cover all the customers

(elements of the universe)

coke

beer

milk

coffee

tea

Applications

• The universe U of elements is

the set of customers of a store.

• Each set corresponds to a

product p sold in the store:
𝑆𝑝 = {𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑠 𝑡ℎ𝑎𝑡 𝑏𝑜𝑢𝑔ℎ𝑡 𝑝}

• Set cover: Find the minimum

number of products (sets) that

cover all the customers

(elements of the universe)

coke

beer

milk

coffee

tea

Applications

• Dominating Set (or Promotion Campaign) as Set

Cover:

• The universe U is the set of nodes V

• Each node 𝑢 defines a set 𝑆𝑢 consisting of the node 𝑢
and all of its neighbors

• We want the minimum number of sets 𝑆𝑢 (nodes) that

cover all the nodes in the graph.

• Many more…

Best selection variant

• Suppose that we have a budget K of how big our

set cover can be

• We only have K products to give out for free.

• We want to cover as many customers as possible.

• Maximum-Coverage Problem: Given a universe

of elements 𝑈, a collection 𝑺 of subsets of 𝑈, and

a budget K, find a sub-collection 𝑪 ⊆ 𝑺 of size at

most K, such that the number of covered

elements 𝑆𝑖𝑆𝑖∈𝑪
 is maximized.

Complexity

• Both the Set Cover and the Maximum Coverage

problems are NP-complete

• What does this mean?

• Why do we care?

• There is no algorithm that can guarantee finding

the best solution in polynomial time

• Can we find an algorithm that can guarantee to find a

solution that is close to the optimal?

• Approximation Algorithms.

Approximation Algorithms

• For an (combinatorial) optimization problem, where:
• X is an instance of the problem,

• OPT(X) is the value of the optimal solution for X,

• ALG(X) is the value of the solution of an algorithm ALG for X

ALG is a good approximation algorithm if the ratio of OPT(X) and
ALG(X) is bounded for all input instances X

• Minimum set cover: input X = (U,S) is the universe of elements
and the set collection, OPT(X) is the size of minimum set cover,
ALG(X) is the size of the set cover found by an algorithm ALG.

• Maximum coverage: input X = (U,S,K) is the input instance,
OPT(X) is the coverage of the optimal algorithm, ALG(X) is the
coverage of the set found by an algorithm ALG.

Approximation Algorithms

• For a minimization problem, the algorithm ALG is an 𝛼-
approximation algorithm, for 𝛼 > 1, if for all input
instances X,

𝐴𝐿𝐺 𝑋 ≤ 𝛼𝑂𝑃𝑇 𝑋

• In simple words: the algorithm ALG is at most 𝛼 times
worse than the optimal.

• 𝛼 is the approximation ratio of the algorithm – we want 𝛼

to be as close to 1 as possible

• Best case: 𝛼 = 1 + 𝜖 and 𝜖 → 0, as 𝑛 → ∞ (e.g., 𝜖 =
1

𝑛
)

• Good case: 𝛼 = 𝑂(1) is a constant (e.g., 𝛼 = 2)
• OK case: 𝛼 = O(log 𝑛)
• Bad case 𝛼 = O(𝑛𝜖)

Approximation Algorithms

• For a maximization problem, the algorithm ALG is an 𝛼-
approximation algorithm, for 𝛼 < 1, if for all input instances X,

𝐴𝐿𝐺 𝑋 ≥ 𝛼𝑂𝑃𝑇 𝑋

• In simple words: the algorithm ALG achieves at least 𝛼 percent
of what the optimal achieves.

• 𝛼 is the approximation ratio of the algorithm – we want 𝛼 to be
as close to 1 as possible

• Best case: 𝛼 = 1 − 𝜖 and 𝜖 → 0, as 𝑛 → ∞(e.g., 𝜖 =
1

𝑛
)

• Good case: 𝛼 = 𝑂(1) is a constant (e.g., 𝑎 = 0.5)

• OK case: 𝛼 = 𝑂(
1

log 𝑛
)

• Bad case 𝛼 = O(𝑛−𝜖)

A simple approximation ratio for set cover

• Any algorithm for set cover has approximation ratio

𝛼 = |𝑆𝑚𝑎𝑥|, where 𝑆𝑚𝑎𝑥 is the set in 𝑺 with the largest

cardinality

• Proof:

• 𝑂𝑃𝑇(𝑋) ≥ 𝑁/|𝑆𝑚𝑎𝑥| 𝑁 ≤ |𝑆𝑚𝑎𝑥|𝑂𝑃𝑇(𝑋)

• 𝐴𝐿𝐺(𝑋) ≤ 𝑁 ≤ |𝑆𝑚𝑎𝑥|𝑂𝑃𝑇(𝑋)

• This is true for any algorithm.

• Not a good bound since it may be that |𝑆𝑚𝑎𝑥| = 𝑂(𝑁)

An algorithm for Set Cover

• What is the most natural algorithm for Set Cover?

• Greedy: each time add to the collection 𝑪 the set

𝑆𝑖 from 𝑺 that covers the most of the remaining

uncovered elements.

The GREEDY algorithm

GREEDY(U,S)

X= U

C = {}

while X is not empty do

For all 𝑆𝑖 ∈ 𝑺 let gain(𝑆𝑖) = |𝑆𝑖 ∩ 𝑋|

Let 𝑆∗ be such that 𝑔𝑎𝑖𝑛(𝑆∗) is maximum

C = C U {S*}

X = X\ S*

S = S\ S*

The number of elements

covered by 𝑆𝑖 not already

covered by 𝐶.

Greedy is not always optimal

coke

beer

milk

coffee

tea

coke

beer

milk

coffee

tea

Optimal Greedy

Greedy is not always optimal

coke

beer

milk

coffee

tea

coke

beer

milk

coffee

tea

Optimal Greedy

Greedy is not always optimal

coke

beer

milk

coffee

tea

coke

beer

milk

coffee

tea

Optimal Greedy

Greedy is not always optimal

coke

beer

milk

coffee

tea

coke

beer

milk

coffee

tea

Optimal Greedy

Greedy is not always optimal

coke

beer

milk

coffee

tea

coke

beer

milk

coffee

tea

Optimal Greedy

Greedy is not always optimal

• Selecting Coke
first forces us to
pick coffee as
well

• Milk and Beer
cover more
customers
together

coke

beer

milk

coffee

tea

coke

beer

milk

coffee

tea

Approximation ratio of GREEDY

• Good news: GREEDY has approximation ratio:

𝛼 = 𝐻 𝑆max = 1 + ln 𝑆max , 𝐻 𝑛 =
1

𝑘

𝑛

𝑘=1

𝐺𝑅𝐸𝐸𝐷𝑌 𝑋 ≤ 1 + ln 𝑆max 𝑂𝑃𝑇 𝑋 , for all X

• The approximation ratio is tight up to a constant
• Tight means that we can find a counter example with this ratio

OPT(X) = 2

GREEDY(X) = logN

=½logN

Maximum Coverage

• What is a reasonable algorithm?

GREEDY(U,S,K)

X = U

C = {}

while |C| < K

For all 𝑆𝑖 ∈ 𝑺 let gain(𝑆𝑖) = |𝑆𝑖 ∩ 𝑋|

Let 𝑆∗ be such that 𝑔𝑎𝑖𝑛(𝑆∗) is maximum

C = C U {S*}

X = X\ S*

S= S\ S*

The number of elements

covered by 𝑆𝑖 not already

covered by 𝐶.

Approximation Ratio for Max-K Coverage

• Better news! The GREEDY algorithm has

approximation ratio 𝛼 = 1 −
1

𝑒

𝐺𝑅𝐸𝐸𝐷𝑌 𝑋 ≥ 1 −
1

𝑒
𝑂𝑃𝑇 𝑋 , for all X

• The coverage of the Greedy solution is at least

63% that of the optimal

Proof of approximation ratio

• For a collection C, let 𝐹 𝐶 = 𝑆𝑖𝑆𝑖∈𝑪
 be the number of

elements that are covered.

• The function F has two properties:

• F is monotone:

𝐹 𝐴 ≤ 𝐹 𝐵 𝑖𝑓 𝐴 ⊆ 𝐵

• F is submodular:

𝐹 𝐴 ∪ 𝑆 − 𝐹 𝐴 ≥ 𝐹 𝐵 ∪ 𝑆 − 𝐹 𝐵 𝑖𝑓 𝐴 ⊆ 𝐵

• The addition of set 𝑆 to a set of nodes has greater effect
(more new covered items) for a smaller set.
• The diminishing returns property

Optimizing submodular functions

• Theorem:

If we want to optimizes a monotone and submodular

function F under cardinality constraints (size of set at

most K),

Then, the greedy algorithm that each time adds to the

solution 𝑪, the set 𝑆 that maximizes the gain

𝐹 𝑪 ∪ 𝑆 − 𝐹(𝑪) has approximation ratio 𝛼 = 1 −
1

𝑒

True for any monotone and submodular set function!

Other variants of Set Cover

• Hitting Set: select a set of elements so that you hit all
the sets (the same as the set cover, reversing the
roles)

• Vertex Cover: Select a set of vertices from a graph
such that you cover all edges (for every edge an
endpoint of the edge is in the set)
• There is a 2-approximation algorithm

• Edge Cover: Select a set of edges that cover all
vertices (for every vertex, there is one edge that has
as endpoint this vertex)
• There is a polynomial algorithm

OVERVIEW

Class Overview

• In this class you saw a set of tools for analyzing data
• Frequent Itemsets, Association Rules

• Sketching

• Recommendation Systems

• Clustering

• Singular Value Decomposition

• Classification

• Link Analysis Ranking

• Random Walks

• Coverage

• All these are useful when trying to make sense of the
data. A lot more tools exist.

• I hope that you found this interesting, useful and fun.

