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Random Walks on Graphs 

• Random walk: 

• Start from a node chosen uniformly at random with 

probability 
1

𝑛
. 

• Pick one of the outgoing edges uniformly at random 

• Move to the destination of the edge 

• Repeat. 



Random walk 

• Question: what is the probability 𝑝𝑖
𝑡 of being at 

node 𝑖 after  𝑡 steps? 
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Stationary distribution 

• After many many steps (𝑡 →  ∞) the probabilities 
converge (updating the probabilities does not 
change the numbers) 
 

• The converged probabilities define the stationary 
distribution of a random walk 𝜋 

 
• The probability 𝜋𝑖 is the fraction of times that we 
visited  state 𝑖 as 𝑡 →  ∞ 
 

• Markov Chain Theory: The random walk converges 
to a unique stationary distribution independent of 
the initial vector if the graph is strongly connected, 
and not bipartite.  
 
 



Random walk with Restarts 

• This is the random walk used by the PageRank algorithm 
• At every step with probability α do a step of the random walk (follow 

a random link) 

• With probability 1-α restart the random walk from a randomly 
selected node. 

• The effect of the restart is that paths followed are never 
too long. 
• In expectation paths have length 1/α 

• Restarts can also be from a specific node in the graph 
(always start the random walk from there) 

• What is the effect of that? 
• The nodes that are close to the starting node have higher 

probability to be visited. 

• The probability defines a notion of proximity between the starting 
node and all the other nodes in the graph 



ABSORBING RANDOM 

WALKS 



Random walk with absorbing nodes 

• What happens if we do a random walk on this 
graph? What is the stationary distribution? 

 

 

 

 

 

 

• All the probability mass on the red sink node: 
• The red node is an absorbing node 



Random walk with absorbing nodes 

• What happens if we do a random walk on this graph? 
What is the stationary distribution? 

 

 

 

 

 

 

 

• There are two absorbing nodes: the red and the blue. 

• The probability mass will be divided between the two 



Absorption probability 

• If there are more than one absorbing nodes in the 

graph a random walk that starts from a non-

absorbing node will be absorbed in one of them 

with some probability 

• The probability of absorption gives an estimate of how 

close the node is to red or blue 

 

 

 



Absorption probability 

• Computing the probability of being absorbed: 
• The absorbing nodes have probability 1 of being absorbed in 

themselves and zero of being absorbed in another node. 

• For the non-absorbing nodes, take the (weighted) average of 
the absorption probabilities of your neighbors  

• if one of the neighbors is the absorbing node, it has probability 1 

• Repeat until convergence (= very small change in probs) 

𝑃 𝑅𝑒𝑑 𝐺𝑟𝑒𝑒𝑛 =
1

4
𝑃 𝑅𝑒𝑑 𝑌𝑒𝑙𝑙𝑜𝑤 +

1

4
 

𝑃 𝑅𝑒𝑑 𝑌𝑒𝑙𝑙𝑜𝑤 =
2

3
 

2 

2 

1 

1 

1 
2 

1 

𝑃 𝑅𝑒𝑑 𝑃𝑖𝑛𝑘 =
2

3
𝑃 𝑅𝑒𝑑 𝑌𝑒𝑙𝑙𝑜𝑤 +

1

3
𝑃(𝑅𝑒𝑑|𝐺𝑟𝑒𝑒𝑛) 

𝑃 𝑅𝑒𝑑 𝑅𝑒𝑑 = 1 , 𝑃 𝑅𝑒𝑑 𝐵𝑙𝑢𝑒 = 0 



Absorption probability 

• Computing the probability of being absorbed: 
• The absorbing nodes have probability 1 of being absorbed in 

themselves and zero of being absorbed in another node. 

• For the non-absorbing nodes, take the (weighted) average of 
the absorption probabilities of your neighbors  

• if one of the neighbors is the absorbing node, it has probability 1 

• Repeat until convergence (= very small change in probs) 
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Why do we care? 

• Why do we care to compute the absorption 
probability to sink nodes? 

• Given a graph (directed or undirected) we can 
choose to make some nodes absorbing. 
• Simply direct all edges incident on the chosen nodes towards 

them and remove outgoing edges. 

• The absorbing random walk provides a measure of 
proximity of non-absorbing nodes to the chosen 
nodes. 
• Useful for understanding proximity in graphs 

• Useful for propagation in the graph 

• E.g, some nodes have positive opinions for an issue, some have 
negative, to which opinion is a non-absorbing node closer? 



Example 

• In this undirected graph we want to learn the 

proximity of nodes to the red and blue nodes 
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Example 

• Make the nodes absorbing 

2 

2 

1 

1 

1 
2 

1 



Absorption probability 

• Compute the absorbtion probabilities for red and 

blue 

𝑃 𝑅𝑒𝑑 𝑃𝑖𝑛𝑘 =
2

3
𝑃 𝑅𝑒𝑑 𝑌𝑒𝑙𝑙𝑜𝑤 +

1

3
𝑃(𝑅𝑒𝑑|𝐺𝑟𝑒𝑒𝑛) 

𝑃 𝑅𝑒𝑑 𝐺𝑟𝑒𝑒𝑛 =
1

5
𝑃 𝑅𝑒𝑑 𝑌𝑒𝑙𝑙𝑜𝑤 +

1

5
𝑃 𝑅𝑒𝑑 𝑃𝑖𝑛𝑘 +

1

5
 

𝑃 𝑅𝑒𝑑 𝑌𝑒𝑙𝑙𝑜𝑤 =
1

6
𝑃 𝑅𝑒𝑑 𝐺𝑟𝑒𝑒𝑛 +

1

3
𝑃 𝑅𝑒𝑑 𝑃𝑖𝑛𝑘 +

1

3
 

0.52 

0.48 

0.42 

0.58 

0.57 

0.43 2 

2 

1 

1 

1 
2 

1 
𝑃 𝐵𝑙𝑢𝑒 𝑃𝑖𝑛𝑘 = 1 − 𝑃 𝑅𝑒𝑑 𝑃𝑖𝑛𝑘  

𝑃 𝐵𝑙𝑢𝑒 𝐺𝑟𝑒𝑒𝑛 = 1 −  𝑃 𝑅𝑒𝑑 𝐺𝑟𝑒𝑒𝑛  

𝑃 𝐵𝑙𝑢𝑒 𝑌𝑒𝑙𝑙𝑜𝑤 = 1 − 𝑃 𝑅𝑒𝑑 𝑌𝑒𝑙𝑙𝑜𝑤  



Penalizing long paths 

• The orange node has the same probability of 

reaching red and blue as the yellow one 

 

 

 

 

 

 

• Intuitively though it is further away 
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Penalizing long paths 

• Add an universal absorbing node to which each 

node gets absorbed with probability α.  
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With probability α the random walk dies 

 

With probability (1-α) the random walk 

continues as before 

The longer the path from a node to an  

absorbing node the more likely the random 

walk dies along the way, the lower the 

absorbtion probability 

e.g. 



Random walk with restarts 

• Adding a jump with probability α to a  universal absorbing node 
seems similar to Pagerank  

 

• Random walk with restart: 
• Start a random walk from node u 

• At every step with probability α, jump back to u 

• The probability of being at node v after large number of steps defines again a 
similarity between nodes u,v 

 

• The Random Walk With Restarts (RWS) and Absorbing Random 
Walk (ARW) are similar but not the same 
• RWS computes the probability of paths from the starting node u to a node v, 

while AWR the probability of paths from a node v, to the absorbing node u. 

• RWS defines a distribution over all nodes, while AWR defines a probability for 
each node 

• An absorbing node blocks the random walk, while restarts simply bias towards 
starting nodes 

• Makes a difference when having multiple (and possibly competing) absorbing nodes 

 



Propagating values 

• Assume that Red has a positive value and Blue a 
negative value 
• Positive/Negative class, Positive/Negative opinion 

• We can compute a value for all the other nodes by 
repeatedly averaging the values of the neighbors 
• The value of node u is the expected value at the point of absorption 

for a random walk that starts from u 

𝑉(𝑃𝑖𝑛𝑘) =
2

3
𝑉(𝑌𝑒𝑙𝑙𝑜𝑤) +

1

3
𝑉(𝐺𝑟𝑒𝑒𝑛) 

𝑉 𝐺𝑟𝑒𝑒𝑛 =  
1

5
𝑉(𝑌𝑒𝑙𝑙𝑜𝑤) +

1

5
𝑉(𝑃𝑖𝑛𝑘) +

1

5
 −
2

5
 

𝑉 𝑌𝑒𝑙𝑙𝑜𝑤 =  
1

6
𝑉 𝐺𝑟𝑒𝑒𝑛 +

1

3
𝑉(𝑃𝑖𝑛𝑘) +

1

3
 −
1

6
 

+1 

-1 

0.05 -0.16 

0.16 2 

2 

1 

1 

1 
2 

1 



Electrical networks and random walks 

• Our graph corresponds to an electrical network 

• There is a positive voltage of +1 at the Red node, and a 
negative voltage -1 at the Blue node 

• There are resistances on the edges inversely proportional to 
the weights (or conductance proportional to the weights) 

• The computed values are the voltages at the nodes 
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Opinion formation 

• The value propagation can be used as a model of opinion formation. 

• Model: 
• Opinions are values in [-1,1] 

• Every user 𝑢 has an internal opinion 𝑠𝑢, and expressed opinion 𝑧𝑢. 
• The expressed opinion minimizes the personal cost of user 𝑢: 

𝑐 𝑧𝑢 = 𝑠𝑢 − 𝑧𝑢
2 +  𝑤𝑢 𝑧𝑢 − 𝑧𝑣

2

𝑣:𝑣 is a friend of 𝑢

 

 

• Minimize deviation from your beliefs and conflicts with the society 

 

• If every user tries independently (selfishly) to minimize their personal 
cost then the best thing to do is to set 𝑧𝑢to the average of all opinions: 

𝑧𝑢 =
𝑠𝑢 +  𝑤𝑢𝑧𝑢𝑣:𝑣 is a friend of 𝑢

1 +  𝑤𝑢𝑣:𝑣 is a friend of 𝑢

  

 

• This is the same as the value propagation we described before! 



Example 

• Social network with internal opinions 

2 

2 

1 

1 

1 
2 

1 

s = +0.5 

s = -0.3 

s = -0.1 s = +0.2 

s = +0.8 



Example 
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The external opinion for each node is 

computed using the value propagation 

we described before 

• Repeated averaging 

Intuitive model: my opinion is a 

combination of what I believe and 

what my social network believes. 

One absorbing node per user with 

value the internal opinion of the user 

 

One non-absorbing node per user 

that links to the corresponding 

absorbing node 

z = +0.22 z = +0.17 
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Hitting time 

• A related quantity: Hitting time H(u,v) 

• The expected number of steps for a random walk 

starting from node u to end up in v for the first time 

• Make node v absorbing and compute the expected number of 

steps to reach v 

• Assumes that the graph is strongly connected, and there are no 

other absorbing nodes. 

• Commute time H(u,v) + H(v,u): often used as a 

distance metric 

• Proportional to the total resistance between nodes u, 

and v 



Transductive learning 

• If we have a graph of relationships and some labels on some 
nodes we can propagate them to the remaining nodes  
• Make the labeled nodes to be absorbing and compute the probability 

for the rest of the graph 

• E.g., a social network where some people are tagged as spammers 

• E.g., the movie-actor graph where some movies are tagged as action 
or comedy.  

 

• This is a form of semi-supervised learning  
• We make use of the unlabeled data, and the relationships 

 

• It is also called transductive learning because it does not 
produce a model, but just labels the unlabeled data that is at 
hand. 
• Contrast to inductive learning that learns a model and can label any 

new example 



Implementation details 

• Implementation is in many ways similar to the 

PageRank implementation 

• For an edge (𝑢, 𝑣)instead of updating the value of v we 

update the value of u.  

• The value of a node is the average of its neighbors 

• We need to check for the case that a node u is 

absorbing, in which case the value of the node is not 

updated. 

• Repeat the updates until the change in values is very 

small. 



COVERAGE 



Example 

• Promotion campaign on a social network 
• We have a social network as a graph.  

• People are more likely to buy a product if they have a friend who 
has the product.  

• We want to offer the product for free to some people such that 
every person in the graph is covered: they have a friend who has 
the product. 

• We want the number of free products to be as small as possible 



Example 

One possible selection 

• Promotion campaign on a social network 
• We have a social network as a graph.  

• People are more likely to buy a product if they have a friend who 
has the product.  

• We want to offer the product for free to some people such that 
every person in the graph is covered: they have a friend who has 
the product. 

• We want the number of free products to be as small as possible 



Example 

A better selection 

• Promotion campaign on a social network 
• We have a social network as a graph.  

• People are more likely to buy a product if they have a friend who 
has the product.  

• We want to offer the product for free to some people such that 
every person in the graph is covered: they have a friend who has 
the product. 

• We want the number of free products to be as small as possible 



Dominating set 

• Our problem is an instance of the dominating set 

problem  

 

• Dominating Set: Given a graph 𝐺 = (𝑉, 𝐸), a set 

of vertices 𝐷 ⊆ 𝑉 is a dominating set if  for each 

node u in V, either u is in D, or u has a neighbor 

in D. 

 

• The Dominating Set Problem: Given a graph 

𝐺 = (𝑉, 𝐸) find a dominating set of minimum size. 

 



Set Cover 

• The dominating set problem is a special case of 

the Set Cover problem 

 

• The Set Cover problem: 

• We have a universe of elements 𝑈 = 𝑥1, … , 𝑥𝑁  

• We have a collection of subsets of U, 𝑺 = {𝑆1, … , 𝑆𝑛}, 
such that  𝑆𝑖𝑖 = 𝑈 

• We want to find the smallest sub-collection 𝑪 ⊆ 𝑺 of 𝑺, 
such that  𝑆𝑖 = 𝑈𝑆𝑖∈𝑪

 

• The sets in 𝑪 cover the elements of U 



An application of Set Cover 

• Suppose that we want to create a catalog (with 

coupons) to give to customers of a store: 

• We want for every customer, the catalog to contain a 

product bought by the customer (this is a small store) 

• How can we model this as a set cover problem? 



Applications 

• The universe U of elements is 

the set of customers of a store. 

• Each set corresponds to a 

product p sold in the store:  
𝑆𝑝 = {𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑠 𝑡ℎ𝑎𝑡 𝑏𝑜𝑢𝑔ℎ𝑡 𝑝} 

• Set cover: Find the minimum 

number of products (sets) that 

cover all the customers 

(elements of the universe) 
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Applications 

• The universe U of elements is 

the set of customers of a store. 

• Each set corresponds to a 

product p sold in the store:  
𝑆𝑝 = {𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑠 𝑡ℎ𝑎𝑡 𝑏𝑜𝑢𝑔ℎ𝑡 𝑝} 

• Set cover: Find the minimum 

number of products (sets) that 

cover all the customers 

(elements of the universe) 
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milk 

coffee 
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Applications 

• The universe U of elements is 

the set of customers of a store. 

• Each set corresponds to a 

product p sold in the store:  
𝑆𝑝 = {𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑠 𝑡ℎ𝑎𝑡 𝑏𝑜𝑢𝑔ℎ𝑡 𝑝} 

• Set cover: Find the minimum 

number of products (sets) that 

cover all the customers 

(elements of the universe) 

coke 

beer 

milk 

coffee 

tea 



Applications 

• Dominating Set (or Promotion Campaign) as Set 

Cover: 

• The universe U is the set of nodes V 

• Each node 𝑢 defines a set 𝑆𝑢 consisting of the node 𝑢 
and all of its neighbors 

• We want the minimum number of sets 𝑆𝑢 (nodes) that 

cover all the nodes in the graph. 

• Many more… 



Best selection variant 

• Suppose that we have a budget K of how big our 

set cover can be 

• We only have K products to give out for free. 

• We want to cover as many customers as possible. 

 

• Maximum-Coverage Problem: Given a universe 

of elements 𝑈, a collection 𝑺 of subsets of 𝑈, and 

a budget K, find a sub-collection 𝑪 ⊆ 𝑺 of size at 

most K, such that the number of covered 

elements  𝑆𝑖𝑆𝑖∈𝑪
 is maximized. 



Complexity 

• Both the Set Cover and the Maximum Coverage 

problems are NP-complete 

• What does this mean? 

• Why do we care? 

 

• There is no algorithm that can guarantee finding 

the best solution in polynomial time 

• Can we find an algorithm that can guarantee to find a 

solution that is close to the optimal? 

• Approximation Algorithms. 



Approximation Algorithms 

• For an (combinatorial) optimization problem, where:  
• X is an instance of the problem,  

• OPT(X) is the value of the optimal solution for X,  

• ALG(X) is the value of the solution of an algorithm ALG for X 

ALG is a good approximation algorithm if the ratio of OPT(X) and 
ALG(X) is bounded for all input instances X 

 

• Minimum set cover: input X = (U,S) is the universe of elements 
and the set collection, OPT(X) is the size of minimum set cover, 
ALG(X) is the size of the set cover found by an algorithm ALG. 

 

• Maximum coverage: input X = (U,S,K) is the input instance, 
OPT(X) is the coverage of the optimal algorithm, ALG(X) is the 
coverage of the set found by an algorithm ALG. 

 

 



Approximation Algorithms 

• For a minimization problem, the algorithm ALG is an 𝛼-
approximation algorithm, for 𝛼 > 1, if for all input 
instances X,  

𝐴𝐿𝐺 𝑋 ≤ 𝛼𝑂𝑃𝑇 𝑋  

 

• In simple words: the algorithm ALG is at most 𝛼 times 
worse than the optimal. 

 
• 𝛼 is the approximation ratio of the algorithm – we want 𝛼 

to be as close to 1 as possible 

• Best case: 𝛼 = 1 + 𝜖 and 𝜖 → 0, as 𝑛 → ∞ (e.g., 𝜖 =
1

𝑛
)  

• Good case: 𝛼 = 𝑂(1) is a constant (e.g., 𝛼 = 2) 
• OK case: 𝛼 = O(log 𝑛)  
• Bad case 𝛼 = O(𝑛𝜖) 

 

 



Approximation Algorithms 

• For a maximization problem, the algorithm ALG is an 𝛼-
approximation algorithm, for 𝛼 < 1, if for all input instances X,  

𝐴𝐿𝐺 𝑋 ≥ 𝛼𝑂𝑃𝑇 𝑋  

 

• In simple words: the algorithm ALG achieves at least 𝛼 percent 
of what the optimal achieves. 

 

• 𝛼 is the approximation ratio of the algorithm – we want 𝛼 to be 
as close to 1 as possible 

• Best case: 𝛼 = 1 − 𝜖 and 𝜖 → 0, as 𝑛 → ∞(e.g., 𝜖 =
1

𝑛
)  

• Good case: 𝛼 = 𝑂(1) is a constant (e.g., 𝑎 = 0.5) 

• OK case: 𝛼 = 𝑂(
1

log 𝑛
) 

• Bad case 𝛼 = O( 𝑛−𝜖)  

 

 



A simple approximation ratio for set cover 

• Any algorithm for set cover has approximation ratio 

𝛼 =  |𝑆𝑚𝑎𝑥|, where 𝑆𝑚𝑎𝑥 is the set in 𝑺 with the largest 

cardinality  

 

• Proof: 

• 𝑂𝑃𝑇(𝑋) ≥ 𝑁/|𝑆𝑚𝑎𝑥|  𝑁 ≤  |𝑆𝑚𝑎𝑥|𝑂𝑃𝑇(𝑋) 

• 𝐴𝐿𝐺(𝑋)  ≤  𝑁 ≤  |𝑆𝑚𝑎𝑥|𝑂𝑃𝑇(𝑋) 

 

• This is true for any algorithm. 

• Not a good bound since it may be that |𝑆𝑚𝑎𝑥| = 𝑂(𝑁) 



An algorithm for Set Cover 

• What is the most natural algorithm for Set Cover? 

 

• Greedy: each time add to the collection 𝑪 the set 

𝑆𝑖 from 𝑺 that covers the most of the remaining 

uncovered elements. 



The GREEDY algorithm 

GREEDY(U,S) 

X= U 

C = {} 

while X is not empty do 

For all 𝑆𝑖 ∈ 𝑺 let gain(𝑆𝑖) = |𝑆𝑖 ∩ 𝑋|  

Let 𝑆∗ be such that 𝑔𝑎𝑖𝑛(𝑆∗) is maximum 

C = C U {S*} 

X = X\ S* 

S = S\ S* 

The number of elements 

covered by 𝑆𝑖 not already 

covered by 𝐶. 



Greedy is not always optimal 
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Greedy is not always optimal 

• Selecting Coke 
first forces us to 
pick coffee as 
well 

 

• Milk and Beer 
cover more 
customers 
together 

coke 

beer 

milk 

coffee 

tea 

coke 

beer 

milk 

coffee 

tea 



Approximation ratio of GREEDY 

• Good news: GREEDY has approximation ratio: 

𝛼 =  𝐻 𝑆max = 1 +  ln 𝑆max , 𝐻 𝑛 =  
1

𝑘

𝑛

𝑘=1

 

 
𝐺𝑅𝐸𝐸𝐷𝑌 𝑋 ≤ 1 +  ln 𝑆max 𝑂𝑃𝑇 𝑋 , for all X 

 

• The approximation ratio is tight up to a constant  
• Tight means that we can find a counter example with this ratio 

OPT(X) = 2 

GREEDY(X) = logN 

=½logN 



Maximum Coverage 

• What is a reasonable algorithm? 

GREEDY(U,S,K) 

X = U 

C = {} 

while |C| < K  

For all 𝑆𝑖 ∈ 𝑺 let gain(𝑆𝑖) = |𝑆𝑖 ∩ 𝑋|  

Let 𝑆∗ be such that 𝑔𝑎𝑖𝑛(𝑆∗) is maximum 

C = C U {S*} 

X = X\ S* 

S= S\ S* 

 

The number of elements 

covered by 𝑆𝑖 not already 

covered by 𝐶. 



Approximation Ratio for Max-K Coverage 

• Better news! The GREEDY algorithm has 

approximation ratio 𝛼 = 1 −
1

𝑒
 

𝐺𝑅𝐸𝐸𝐷𝑌 𝑋 ≥ 1 −
1

𝑒
𝑂𝑃𝑇 𝑋 , for all X 

 

 

• The coverage of the Greedy solution is at least 

63% that of the optimal 

 

 



Proof of approximation ratio 

• For a collection C, let 𝐹 𝐶 =  𝑆𝑖𝑆𝑖∈𝑪
 be the number of 

elements that are covered. 

• The function F has two properties: 

 

• F is monotone: 

𝐹 𝐴 ≤ 𝐹 𝐵  𝑖𝑓 𝐴 ⊆ 𝐵 

 

• F is submodular: 

𝐹 𝐴 ∪ 𝑆 − 𝐹 𝐴 ≥ 𝐹 𝐵 ∪ 𝑆 − 𝐹 𝐵   𝑖𝑓 𝐴 ⊆ 𝐵 

 

• The addition of set 𝑆 to a set of nodes has greater effect 
(more new covered items) for a smaller set. 
• The diminishing returns property 



Optimizing submodular functions 

• Theorem:  

 

If we want to optimizes a monotone and submodular 

function F under cardinality constraints (size of set at 

most K),  
 

Then, the greedy algorithm that each time adds to the 

solution 𝑪, the set 𝑆 that maximizes the gain 

𝐹 𝑪 ∪ 𝑆 − 𝐹(𝑪) has approximation ratio 𝛼 =  1 −
1

𝑒
 

 

 

True for any monotone and submodular set function! 



Other variants of Set Cover 

• Hitting Set: select a set of elements so that you hit all 
the sets (the same as the set cover, reversing the 
roles) 

 

• Vertex Cover: Select a set of vertices from a graph 
such that you cover all edges (for every edge an 
endpoint of the edge is in the set) 
• There is a 2-approximation algorithm 

 

• Edge Cover: Select a set of edges that cover all 
vertices (for every vertex, there is one edge that has 
as endpoint this vertex) 
• There is a polynomial algorithm 



OVERVIEW 



Class Overview 

• In this class you saw a set of tools for analyzing data 
• Frequent Itemsets, Association Rules 

• Sketching 

• Recommendation Systems 

• Clustering 

• Singular Value Decomposition 

• Classification 

• Link Analysis Ranking 

• Random Walks 

• Coverage 

• All these are useful when trying to make sense of the 
data. A lot more tools exist. 

• I hope that you found this interesting, useful and fun. 


