
Online Social Networks and 
Media  

Link Analysis and Web Search 



First try: Human curated Web directories 
Yahoo, DMOZ, LookSmart 

 

How to Organize the Web 



How to organize the web 

• Second try: Web Search 
– Information Retrieval investigates: 

• Find relevant docs in a small and trusted set e.g., 
Newspaper articles, Patents, etc. (“needle-in-a-
haystack”) 

• Limitation of keywords (synonyms, polysemy, etc) 

    But: Web is huge, full of untrusted documents, random 
 things, web spam, etc.  

 
   Everyone can create a web page of high production value 
   Rich diversity of people issuing queries 
   Dynamic and constantly-changing nature of web content 



Size of the Search Index 

http://www.worldwidewebsize.com/ 



How to organize the web 

• Third try (the Google era): using the web 
graph 

– Swift from relevance to authoritativeness 

– It is not only important that a page is relevant, but 
that it is also important on the web 

• For example, what kind of results would we 
like to get for the query “greek newspapers”? 

 



Link Analysis 
 

• Not all web pages are equal on the web 

• The links act as endorsements: 

– When page p links to q it endorses the content of 
the content of q 

What is the simplest way to 
measure importance of a 
page on the web? 
 



Rank by Popularity 

• Rank pages according to the number of 
incoming edges (in-degree, degree centrality) 

1. Red Page 

2. Yellow Page 

3. Blue Page 

4. Purple Page 

5. Green Page 

𝑣2 

𝑣3 

𝑣4 𝑣5 

𝑣1 



Popularity 

 

 

 

 

 

 

• It is not important only how many link to you, but also 
how important are the people that link to you. 

• Good authorities are pointed by good authorities 
– Recursive definition of importance 



THE PAGERANK ALGORITHM 



PageRank 
• Good authorities should be pointed by good 

authorities 
– The value of a node is the value of the nodes that 

point to it. 

• How do we implement that? 
– Assume that we have a unit of authority to distribute 

to all nodes. 

• Initially each node gets 
1

𝑛
 amount of authority 

– Each node distributes the authority value they have 
to their neighbors 

– The authority value of each node is the sum of the 
authority fractions it collects from its neighbors. 

𝑤𝑣 =  
1

𝑑𝑜𝑢𝑡 𝑢
𝑤𝑢

𝑢→𝑣

 
𝑤𝑣: the PageRank value of node 𝑣 

Recursive definition 



A simple example 

• Solving the system of equations we get the 
authority values for the nodes 

– w = ½  w = ¼  w = ¼  

w w 

w 

w + w + w = 1  

w =  w + w  

w = ½ w 

w = ½ w 



A more complex example 

w1 = 1/3 w4 + 1/2 w5 

w2 = 1/2 w1 + w3 + 1/3 w4 

w3 = 1/2 w1 + 1/3 w4 

w4 = 1/2 w5 

w5 = w2  

𝑤𝑣 =  
1

𝑑𝑜𝑢𝑡 𝑢
𝑤𝑢

𝑢→𝑣

 

𝑣2 

𝑣3 

𝑣4 𝑣5 

𝑣1 



Computing PageRank weights 

• A simple way to compute the weights is by 
iteratively updating the weights 

• PageRank Algorithm 
 
 
 
 
 
 

• This process converges 
 

Initialize all PageRank weights to 
1

𝑛
 

Repeat: 

 𝑤𝑣 =  
1

𝑑𝑜𝑢𝑡 𝑢
𝑤𝑢𝑢→𝑣  

Until the weights do not change 



PageRank 

Initially, all nodes PageRank 1/8 

  As a kind of “fluid” that circulates through the network 
  The total PageRank in the network remains constant (no need 
to normalize) 



PageRank: equilibrium 

 A simple way to check whether an assignment of numbers forms  an 
equilibrium set of PageRank values: check that they sum to 1, and that when 
apply the Basic PageRank Update Rule, we get the same values back. 
 

 If the network is strongly connected, then there is a unique set of equilibrium 
values. 



Random Walks on Graphs 

• The algorithm defines a random walk on the graph 

 

• Random walk: 
– Start from a node chosen uniformly at random with 

probability 
1

𝑛
. 

– Pick one of the outgoing edges uniformly at random 

– Move to the destination of the edge 

– Repeat. 

 

• The Random Surfer model 
– Users wander on the web, following links. 

 



Example 

• Step 0 
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Example 

• Step 0 

𝑣2 

𝑣3 

𝑣4 𝑣5 

𝑣1 



Example 

• Step 1 
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Example 

• Step 1 
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Example 

• Step 2 
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Example 

• Step 2 
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Example 

• Step 3 
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Example 

• Step 3 
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Example 

• Step 4… 

𝑣2 

𝑣3 

𝑣4 𝑣5 

𝑣1 



Random walk 

• Question: what is the probability 𝑝𝑖
𝑡 of being 

at node 𝑖 after  𝑡 steps? 
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Markov chains 
• A Markov chain describes a discrete time stochastic process over a set of 

states 
𝑆 = {𝑠1, 𝑠2, … , 𝑠𝑛} 

    according to a transition probability matrix 𝑃 = {𝑃𝑖𝑗} 
– 𝑃𝑖𝑗 = probability of moving to state 𝑗 when at state 𝑖 

 
• Matrix 𝑃 has the property that the entries of all rows sum to 1 

 𝑃 𝑖, 𝑗 = 1

𝑗

 

     A matrix with this property is called stochastic 
 

• State probability distribution: The vector 𝑝𝑡 =  (𝑝1
𝑡 , 𝑝2
𝑡 , … , 𝑝𝑛

𝑡 ) that stores 
the probability of being at state 𝑠𝑖 after 𝑡 steps 

 

• Memorylessness property: The next state of the chain depends only at the 
current state and not on the past of the process (first order MC) 
– Higher order MCs are also possible 

 

• Markov Chain Theory: After infinite steps the state probability vector 
converges to a unique distribution if the chain is irreducible (possible to get from 
any state to any other state) and aperiodic 



Random walks 

• Random walks on graphs correspond to 
Markov Chains 

– The set of states 𝑆 is the set of nodes of the graph 
𝐺 

– The transition probability matrix is the probability 
that we follow an edge from one node to another 

𝑃 𝑖, 𝑗 = 1/ deg𝑜𝑢𝑡(𝑖) 



An example 
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Node Probability vector 

• The vector 𝑝𝑡 =  (𝑝𝑖
𝑡, 𝑝2
𝑡 , … , 𝑝𝑛

𝑡 ) that stores 
the probability of being at node 𝑣𝑖  at step 𝑡 

 

• 𝑝𝑖
0= the probability of starting from state 
𝑖 (usually) set to uniform 

 

• We can compute the vector 𝑝𝑡 at step t using a 
vector-matrix multiplication 

𝑝𝑡 = 𝑝𝑡−1 𝑃 



An example 
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Stationary distribution 

• The stationary distribution of a random walk with 
transition matrix 𝑃, is a probability distribution 𝜋, such 
that 𝜋 =  𝜋𝑃 
 

• The stationary distribution is an eigenvector of matrix 𝑃 
– the principal left eigenvector of P – stochastic matrices have 

maximum eigenvalue 1 
 

• The probability 𝜋𝑖 is the fraction of times that we visited  
state 𝑖 as 𝑡 →  ∞ 
 

• Markov Chain Theory: The random walk converges to a 
unique stationary distribution independent of the initial 
vector if the graph is strongly connected, and not 
bipartite.  
 
 



Computing the stationary distribution 

• The Power Method 
 
 
 
 
 

• After many iterations qt → 𝜋 regardless of the initial 
vector 𝑞0 

• Power method because it computes 𝑞𝑡 = 𝑞0𝑃𝑡 

 
• Rate of convergence 

– determined by the second eigenvalue 
|𝜆
2
|

|𝜆
1
|
 

Initialize 𝑞0 to some distribution  
Repeat   
 𝑞𝑡 = 𝑞𝑡−1𝑃 
Until convergence 



The stationary distribution 

• What is the meaning of the stationary 
distribution 𝜋 of a random walk? 

• 𝜋(𝑖): the probability of being at node i after very 
large (infinite) number of steps 

• 𝜋 = 𝑝0𝑃
∞, where 𝑃 is the transition matrix, 𝑝0 

the original vector  
– 𝑃 𝑖, 𝑗 : probability of going from i to j in one step 

– 𝑃2(𝑖, 𝑗): probability of going from i to j in two steps 
(probability of all paths of length 2) 

– 𝑃∞ 𝑖, 𝑗 = 𝜋(𝑗): probability of going from i to j in 
infinite steps – starting point does not matter. 



The PageRank random walk 

• Vanilla random walk 

– make the adjacency matrix stochastic and run a 
random walk 
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The PageRank random walk 

• What about sink nodes? 

– what happens when the random walk moves to a 
node without any outgoing inks? 
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The PageRank random walk 

• Replace these row vectors with a vector v 

– typically, the uniform vector 

P’ = P + dvT 
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The PageRank random walk 

• What about loops? 

– Spider traps 
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The PageRank random walk 

• Add a random jump to vector v with prob 1-α 

– typically, to a uniform vector 

• Restarts after 1/(1-α) steps in expectation 

– Guarantees irreducibility, convergence  

P’’ = αP’ + (1-α)uvT,  where u is the vector of all 1s 
Random walk with restarts 



PageRank algorithm [BP98] 

• The Random Surfer model 
– pick a page at random 

– with probability 1- α jump to a 
random page 

– with probability α follow a random 
outgoing link 

• Rank according to the stationary 
distribution 

•   
 

1. Red Page 

2. Purple Page  

3. Yellow Page 

4. Blue Page 

5. Green Page 

 
nqOut

qPR
pPR

pq

1
1

)(

)(
)(   



𝛼 =  0.85  in most cases 



PageRank: Example 



Stationary distribution with random 
jump 

• If 𝑣 is the jump vector 
𝑝0 = 𝑣 

𝑝1 = 𝛼𝑝0𝑃′ + 1 − 𝛼 𝑣 = 𝛼𝑣𝑃′ + 1 − 𝛼 𝑣 
𝑝2 = 𝛼𝑝1𝑃′ + 1 − 𝛼 𝑣 = 𝛼2𝑣𝑃′2 + 1 − 𝛼 𝑣𝛼𝑃′ + 1 − 𝛼 𝑣 

⋮ 
𝑝∞ = 1 − 𝛼 𝑣 + 1 − 𝛼 𝑣𝛼𝑃′ + 1 − 𝛼 𝑣𝛼2𝑃′2 + ⋯

= 1 − 𝛼 𝐼 − 𝛼𝑃′ −1 
 

• With the random jump the shorter paths are more important, since the 
weight decreases exponentially 
– makes sense when thought of as a restart 

 
• If 𝑣 is not uniform, we can bias the random walk towards the nodes that 

are close to 𝑣 
– Personalized and Topic-Specific Pagerank. 

 
 



Effects of random jump 

• Guarantees convergence to unique 
distribution 

• Motivated by the concept of random surfer 

• Offers additional flexibility  

– personalization 

– anti-spam 

• Controls the rate of convergence 

– the second eigenvalue of matrix 𝑃′′ is 𝛼 



Random walks on undirected graphs 

• For undirected graphs, the stationary 
distribution of a random walk is proportional 
to the degrees of the nodes 
– Thus in this case a random walk is the same as 

degree popularity 

 

• This is not longer true if we do random jumps 
– Now the short paths play a greater role, and the 

previous distribution does not hold. 



PageRank implementation 

• Store the graph in adjacency list, or list of 
edges 

• Keep current pagerank values and new 
pagerank values 

• Go through edges and update the values of 
the destination nodes. 

• Repeat until the difference between the 
pagerank vectors (𝐿1 or 𝐿∞ difference) is 
below some small value ε.  



A (Matlab-friendly) PageRank 
algorithm 

• Performing vanilla power method is now too 
expensive – the matrix is not sparse 

q0 = v 
t = 1 
repeat 
  
  
     t = t +1  
until δ < ε 

  1tTt q'P'q 
1tt qqδ 

Efficient computation of y = (P’’)T x 

βvyy

yx β

xαPy

11

T







P = normalized adjacency matrix 

P’’ = αP’ + (1-α)uvT,  where u is the vector of all 1s 

P’ = P + dvT, where di is 1 if i is sink and 0 o.w. 



PageRank history 

• Huge advantage for Google in the early days 
– It gave a way to get an idea for the value of a page, which was 

useful in many different ways 
• Put an order to the web. 

– After a while it became clear that the anchor text was probably 
more important for ranking 

– Also, link spam became a new (dark) art 

• Flood of research 
– Numerical analysis got rejuvenated 
– Huge number of variations 
– Efficiency became a great issue. 
– Huge number of applications in different fields  

• Random walk is often referred to as PageRank. 



THE HITS ALGORITHM 



The HITS algorithm  

• Another algorithm proposed around the same 
time as PageRank for using the hyperlinks to 
rank pages 

– Kleinberg: then an intern at IBM Almaden  

– IBM never made anything out of it 



Query dependent input 

Root Set 

Root set obtained from a text-only search engine 



Query dependent input 

Root Set 

IN OUT 



Query dependent input 

Root Set 

IN OUT 



Query dependent input 

Root Set 

IN OUT 

Base Set 



Hubs and Authorities [K98] 

• Authority is not necessarily 
transferred directly 
between authorities 

• Pages have double identity 
– hub identity 

– authority identity 

• Good hubs point to good 
authorities 

• Good authorities are 
pointed by good hubs 

 
hubs authorities 



Hubs and Authorities 

• Two kind of weights: 
– Hub weight 

– Authority weight 

 

• The hub weight is the sum of the authority 
weights of the authorities pointed to by the hub 

 

• The authority weight is the sum of the hub 
weights that point to this authority. 



HITS Algorithm 

• Initialize all weights to 1. 

• Repeat until convergence 
– O operation : hubs collect the weight of the authorities 

 

 

– I operation: authorities collect the weight of the hubs 

 
 

– Normalize weights under some norm 
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HITS and eigenvectors 

• The HITS algorithm is a power-method eigenvector 
computation 

• In vector terms  
– 𝑎𝑡 =  𝐴𝑇ℎ𝑡−1 and ℎ𝑡 =  𝐴𝑎𝑡−1 
– 𝑎𝑡 =  𝐴𝑇𝐴𝑎𝑡−1 and ℎ𝑡 =  𝐴𝐴𝑇ℎ𝑡−1 
– Repeated iterations will converge to the eigenvectors 

• The authority weight vector 𝑎 is the eigenvector of 
𝐴𝑇𝐴 and the hub weight vector ℎ is the eigenvector of 
𝐴𝐴𝑇 

 
• The vectors 𝑎 and ℎ are called the singular vectors of the 

matrix A 



Singular Value Decomposition 

 
 
 
 
 
 

• r : rank of matrix A 
 

• σ1≥ σ2≥ … ≥σr : singular values (square roots of eig-vals AAT, ATA) 
                      
•                    : left singular vectors (eig-vectors of AAT) 
                     
•                     : right singular vectors (eig-vectors of ATA) 
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Why does the Power Method work? 

• If a matrix R is real and symmetric, it has real eigenvalues 
and eigenvectors: 𝜆1, 𝑤1 , 𝜆2, 𝑤2 , … , (𝜆𝑟 , 𝑤𝑟) 
– r is the rank of the matrix 

– |𝜆1 ≥ |𝜆2 ≥ ⋯ ≥ 𝜆𝑟  

• For any matrix R, the eigenvectors 𝑤1, 𝑤2, … , 𝑤𝑟 of R define 
a basis of the vector space 
– For any vector 𝑥, 𝑅𝑥 = 𝛼1𝑤1 + 𝑎2𝑤2 +⋯+ 𝑎𝑟𝑤𝑟 

 

• After t multiplications we have: 

– 𝑅𝑡𝑥 = 𝜆1
𝑡−1𝛼1𝑤1 + 𝜆2

𝑡−1𝑎2𝑤2 +⋯+ 𝜆𝑟
𝑡−1𝑎𝑟𝑤𝑟 

 

• Normalizing (divide by 𝜆1
𝑡−1) leaves only the term 𝑤1. 



Example 

hubs authorities 
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Step 1: O operation 



Example 

hubs authorities 
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Step 1: I operation 



Example 

hubs authorities 
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Step 1: Normalization (Max norm) 



Example 

hubs authorities 
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Step 2: O step 



Example 

hubs authorities 
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Example 

hubs authorities 
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Convergence 



The SALSA algorithm 

• Perform a random walk on the 
bipartite graph of hubs and 
authorities alternating between the 
two 

 
hubs authorities 



The SALSA algorithm 

• Start from an authority chosen uniformly at 
random 
– e.g. the red authority 

 

hubs authorities 



• Start from an authority chosen uniformly at 
random 
– e.g. the red authority 

• Choose one of the in-coming links 
uniformly at random and move to a hub 
– e.g. move to the yellow authority with 

probability 1/3 

 

hubs authorities 

The SALSA algorithm 



• Start from an authority chosen uniformly at 
random 
– e.g. the red authority 

• Choose one of the in-coming links 
uniformly at random and move to a hub 
– e.g. move to the yellow authority with 

probability 1/3 

• Choose one of the out-going links 
uniformly at random and move to an 
authority 
– e.g. move to the blue authority with probability 

1/2 

 

hubs authorities 

The SALSA algorithm 



The SALSA algorithm 

• Formally we have probabilities: 
– 𝑎𝑖: probability of being at authority 𝑖 

– ℎ𝑗: probability of being at hub 𝑗 

• The probability of being at authority i is computed as: 

𝑎𝑖 =  
1

𝑑𝑜𝑢𝑡 𝑗
ℎ𝑗

𝑗∈𝑁𝑖𝑛(𝑖)

 

• The probability of being at hub 𝑗 is computed as 

ℎ𝑗 =  
1

𝑑𝑖𝑛 𝑖
𝑎𝑖

𝑖∈𝑁𝑜𝑢𝑡(𝑗)

 

• Repeated computation converges 



The SALSA algorithm [LM00] 

• In matrix terms 
– Ac = the matrix A where columns are normalized 

to sum to 1 

– Ar = the matrix A where rows are normalized to 
sum to 1 

• The hub computation 

– ℎ =  𝐴𝑐 𝑎 

• The authority computation 
– 𝑎 =  𝐴𝑟

𝑇 ℎ =  𝐴𝑟
𝑇 𝐴𝑐 𝑎 

• In MC terms the transition matrix 
– P = Ar Ac

T
  

hubs authorities 

𝒂𝟏 =  𝒉𝟏 +  𝟏/𝟐 𝒉𝟐 +  𝟏/𝟑 𝒉𝟑 

𝒉𝟐 =  𝟏/𝟑 𝒂𝟏 +  𝟏/𝟐 𝒂𝟐 



ABSORBING RANDOM WALKS 
LABEL PROPAGATION 
OPINION FORMATION ON SOCIAL 
NETWORKS 



Random walk with absorbing nodes 

• What happens if we do a random walk on this 
graph? What is the stationary distribution? 

 

 

 

 

 

 

• All the probability mass on the red sink node: 
– The red node is an absorbing node 



Random walk with absorbing nodes 

• What happens if we do a random walk on this graph? 
What is the stationary distribution? 

 

 

 

 

 

 

 

• There are two absorbing nodes: the red and the blue. 

• The probability mass will be divided between the two 



Absorption probability 

• If there are more than one absorbing nodes in 
the graph a random walk that starts from a 
non-absorbing node will be absorbed in one 
of them with some probability 

– The probability of absorption gives an estimate of 
how close the node is to red or blue 

 

 

 



Absorption probability 

• Computing the probability of being absorbed: 
– The absorbing nodes have probability 1 of being absorbed 

in themselves and zero of being absorbed in another node. 
– For the non-absorbing nodes, take the (weighted) average 

of the absorption probabilities of your neighbors  
• if one of the neighbors is the absorbing node, it has probability 1 

– Repeat until convergence (= very small change in probs) 

𝑃 𝑅𝑒𝑑 𝑃𝑖𝑛𝑘 =
2

3
𝑃 𝑅𝑒𝑑 𝑌𝑒𝑙𝑙𝑜𝑤 +

1

3
𝑃(𝑅𝑒𝑑|𝐺𝑟𝑒𝑒𝑛) 

𝑃 𝑅𝑒𝑑 𝐺𝑟𝑒𝑒𝑛 =
1

4
𝑃 𝑅𝑒𝑑 𝑌𝑒𝑙𝑙𝑜𝑤 +

1

4
 

𝑃 𝑅𝑒𝑑 𝑌𝑒𝑙𝑙𝑜𝑤 =
2

3
 

2 

2 

1 

1 

1 
2 

1 



Absorption probability 

• Computing the probability of being absorbed: 
– The absorbing nodes have probability 1 of being absorbed 

in themselves and zero of being absorbed in another node. 
– For the non-absorbing nodes, take the (weighted) average 

of the absorption probabilities of your neighbors  
• if one of the neighbors is the absorbing node, it has probability 1 

– Repeat until convergence (= very small change in probs) 

𝑃 𝐵𝑙𝑢𝑒 𝑃𝑖𝑛𝑘 =
2

3
𝑃 𝐵𝑙𝑢𝑒 𝑌𝑒𝑙𝑙𝑜𝑤 +

1

3
𝑃(𝐵𝑙𝑢𝑒|𝐺𝑟𝑒𝑒𝑛) 

𝑃 𝐵𝑙𝑢𝑒 𝐺𝑟𝑒𝑒𝑛 =
1

4
𝑃 𝐵𝑙𝑢𝑒 𝑌𝑒𝑙𝑙𝑜𝑤 +

1

2
 

𝑃 𝐵𝑙𝑢𝑒 𝑌𝑒𝑙𝑙𝑜𝑤 =
1

3
 

2 

2 

1 

1 

1 
2 

1 



Why do we care? 

• Why do we care to compute the absorbtion probability 
to sink nodes? 

• Given a graph (directed or undirected) we can choose 
to make some nodes absorbing. 
– Simply direct all edges incident on the chosen nodes 

towards them. 

• The absorbing random walk provides a measure of 
proximity of non-absorbing nodes to the chosen nodes. 
– Useful for understanding proximity in graphs 
– Useful for propagation in the graph 

• E.g, on a social network some nodes have high income, some have 
low income, to which income class is a non-absorbing node closer? 



Example 

• In this undirected graph we want to learn the 
proximity of nodes to the red and blue nodes 
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Example 

• Make the nodes absorbing 
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1 
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Absorption probability 

• Compute the absorbtion probabilities for red 
and blue 

𝑃 𝑅𝑒𝑑 𝑃𝑖𝑛𝑘 =
2

3
𝑃 𝑅𝑒𝑑 𝑌𝑒𝑙𝑙𝑜𝑤 +

1

3
𝑃(𝑅𝑒𝑑|𝐺𝑟𝑒𝑒𝑛) 

𝑃 𝑅𝑒𝑑 𝐺𝑟𝑒𝑒𝑛 =
1

5
𝑃 𝑅𝑒𝑑 𝑌𝑒𝑙𝑙𝑜𝑤 +

1

5
𝑃 𝑅𝑒𝑑 𝑃𝑖𝑛𝑘 +

1

5
 

𝑃 𝑅𝑒𝑑 𝑌𝑒𝑙𝑙𝑜𝑤 =
1

6
𝑃 𝑅𝑒𝑑 𝐺𝑟𝑒𝑒𝑛 +

1

3
𝑃 𝑅𝑒𝑑 𝑃𝑖𝑛𝑘 +

1

3
 

0.52 
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0.42 
0.58 

0.57 
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1 
𝑃 𝐵𝑙𝑢𝑒 𝑃𝑖𝑛𝑘 = 1 − 𝑃 𝑅𝑒𝑑 𝑃𝑖𝑛𝑘  

𝑃 𝐵𝑙𝑢𝑒 𝐺𝑟𝑒𝑒𝑛 = 1 −  𝑃 𝑅𝑒𝑑 𝐺𝑟𝑒𝑒𝑛  

𝑃 𝐵𝑙𝑢𝑒 𝑌𝑒𝑙𝑙𝑜𝑤 = 1 − 𝑃 𝑅𝑒𝑑 𝑌𝑒𝑙𝑙𝑜𝑤  



Penalizing long paths 

• The orange node has the same probability of 
reaching red and blue as the yellow one 

 

 

 

 

 

 
• Intuitively though it is further away 0.52 

0.48 

0.42 
0.58 

0.57 
0.43 2 
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1 
2 

1 𝑃 𝐵𝑙𝑢𝑒 𝑂𝑟𝑎𝑛𝑔𝑒 = 𝑃 𝐵𝑙𝑢𝑒 𝑌𝑒𝑙𝑙𝑜𝑤  1 

𝑃 𝑅𝑒𝑑 𝑂𝑟𝑎𝑛𝑔𝑒 = 𝑃 𝑅𝑒𝑑 𝑌𝑒𝑙𝑙𝑜𝑤  

0.57 
0.43 



Penalizing long paths 

• Add an universal absorbing node to which 
each node gets absorbed with probability α.  

1-α 
α 

α 

α α 

1-α 
1-α 

1-α 

𝑃 𝑅𝑒𝑑 𝐺𝑟𝑒𝑒𝑛 = (1 − 𝛼)
1

5
𝑃 𝑅𝑒𝑑 𝑌𝑒𝑙𝑙𝑜𝑤 +

1

5
𝑃 𝑅𝑒𝑑 𝑃𝑖𝑛𝑘 +

1

5
 

With probability α the random walk dies 
 
With probability (1-α) the random walk 
continues as before 

The longer the path from a node to an  
absorbing node the more likely the random 
walk dies along the way, the lower the 
absorbtion probability 



Propagating values 

• Assume that Red has a positive value and Blue a negative 
value 
– Positive/Negative class, Positive/Negative opinion 

• We can compute a value for all the other nodes in the same 
way 
– This is the expected value for the node 

𝑉(𝑃𝑖𝑛𝑘) =
2

3
𝑉(𝑌𝑒𝑙𝑙𝑜𝑤) +

1

3
𝑉(𝐺𝑟𝑒𝑒𝑛) 

𝑉 𝐺𝑟𝑒𝑒𝑛 =  
1

5
𝑉(𝑌𝑒𝑙𝑙𝑜𝑤) +

1

5
𝑉(𝑃𝑖𝑛𝑘) +

1

5
 −
2

5
 

𝑉 𝑌𝑒𝑙𝑙𝑜𝑤 =  
1

6
𝑉 𝐺𝑟𝑒𝑒𝑛 +

1

3
𝑉(𝑃𝑖𝑛𝑘) +

1

3
 −
1

6
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Electrical networks and random walks 

• Our graph corresponds to an electrical network 
• There is a positive voltage of +1 at the Red node, and a negative 

voltage -1 at the Blue node 
• There are resistances on the edges inversely proportional to the 

weights (or conductance proportional to the weights) 
• The computed values are the voltages at the nodes 

+1 

𝑉(𝑃𝑖𝑛𝑘) =
2

3
𝑉(𝑌𝑒𝑙𝑙𝑜𝑤) +

1

3
𝑉(𝐺𝑟𝑒𝑒𝑛) 

𝑉 𝐺𝑟𝑒𝑒𝑛 =  
1

5
𝑉(𝑌𝑒𝑙𝑙𝑜𝑤) +

1

5
𝑉(𝑃𝑖𝑛𝑘) +

1

5
 −
2

5
 

𝑉 𝑌𝑒𝑙𝑙𝑜𝑤 =  
1

6
𝑉 𝐺𝑟𝑒𝑒𝑛 +

1

3
𝑉(𝑃𝑖𝑛𝑘) +

1

3
 −
1

6
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Opinion formation 

• The value propagation can be used as a model of opinion formation. 
• Model: 

– Opinions are values in [-1,1] 
– Every user 𝑢 has an internal opinion 𝑠𝑢, and expressed opinion 𝑧𝑢. 
– The expressed opinion minimizes the personal cost of user 𝑢: 

𝑐 𝑧𝑢 = 𝑠𝑢 − 𝑧𝑢
2 +  𝑤𝑢 𝑧𝑢 − 𝑧𝑣

2

𝑣:𝑣 is a friend of 𝑢

 

 
• Minimize deviation from your beliefs and conflicts with the society 

 
• If every user tries independently (selfishly) to minimize their personal cost 

then the best thing to do is to set 𝑧𝑢to the average of all opinions: 

𝑧𝑢 =
𝑠𝑢 +  𝑤𝑢𝑧𝑢𝑣:𝑣 is a friend of 𝑢

1 +  𝑤𝑢𝑣:𝑣 is a friend of 𝑢

  

 
• This is the same as the value propagation we described before! 



Example 

• Social network with internal opinions 

2 

2 

1 

1 

1 
2 

1 

s = +0.5 

s = -0.3 

s = -0.1 s = +0.2 

s = +0.8 



Example 

2 

2 

1 

1 

1 
2 

1 

1 

1 

1 1 

1 

s = +0.5 

s = -0.3 

s = -0.1 s = -0.5 

s = +0.8 

The external opinion for each node is 
computed using the value propagation we 
described before 

• Repeated averaging 

Intuitive model: my opinion is a 
combination of what I believe and what 
my social network believes. 

One absorbing node per user with 
value the internal opinion of the user 
 
One non-absorbing node per user that 
links to the corresponding absorbing 
node 

z = +0.22 z = +0.17 

z = -0.03 
z = 0.04 

z = -0.01 



Transductive learning 

• If we have a graph of relationships and some labels on some nodes 
we can propagate them to the remaining nodes  
– Make the labeled nodes to be absorbing and compute the probability 

for the rest of the graph 
– E.g., a social network where some people are tagged as spammers 
– E.g., the movie-actor graph where some movies are tagged as action 

or comedy.  
 

• This is a form of semi-supervised learning  
– We make use of the unlabeled data, and the relationships 

 
• It is also called transductive learning because it does not produce a 

model, but just labels the unlabeled data that is at hand. 
– Contrast to inductive learning that learns a model and can label any 

new example 



Implementation details 

• Implementation is in many ways similar to the 
PageRank implementation 
– For an edge (𝑢, 𝑣)instead of updating the value of 

v we update the value of u.  
• The value of a node is the average of its neighbors 

– We need to check for the case that a node u is 
absorbing, in which case the value of the node is 
not updated. 

– Repeat the updates until the change in values is 
very small. 


