
Online Social Networks and
Media

Link Analysis and Web Search

First try: Human curated Web directories
Yahoo, DMOZ, LookSmart

How to Organize the Web

How to organize the web

• Second try: Web Search
– Information Retrieval investigates:

• Find relevant docs in a small and trusted set e.g.,
Newspaper articles, Patents, etc. (“needle-in-a-
haystack”)

• Limitation of keywords (synonyms, polysemy, etc)

 But: Web is huge, full of untrusted documents, random
 things, web spam, etc.

 Everyone can create a web page of high production value
 Rich diversity of people issuing queries
 Dynamic and constantly-changing nature of web content

Size of the Search Index

http://www.worldwidewebsize.com/

How to organize the web

• Third try (the Google era): using the web
graph

– Swift from relevance to authoritativeness

– It is not only important that a page is relevant, but
that it is also important on the web

• For example, what kind of results would we
like to get for the query “greek newspapers”?

Link Analysis

• Not all web pages are equal on the web

• The links act as endorsements:

– When page p links to q it endorses the content of
the content of q

What is the simplest way to
measure importance of a
page on the web?

Rank by Popularity

• Rank pages according to the number of
incoming edges (in-degree, degree centrality)

1. Red Page

2. Yellow Page

3. Blue Page

4. Purple Page

5. Green Page

𝑣2

𝑣3

𝑣4 𝑣5

𝑣1

Popularity

• It is not important only how many link to you, but also
how important are the people that link to you.

• Good authorities are pointed by good authorities
– Recursive definition of importance

THE PAGERANK ALGORITHM

PageRank
• Good authorities should be pointed by good

authorities
– The value of a node is the value of the nodes that

point to it.

• How do we implement that?
– Assume that we have a unit of authority to distribute

to all nodes.

• Initially each node gets
1

𝑛
 amount of authority

– Each node distributes the authority value they have
to their neighbors

– The authority value of each node is the sum of the
authority fractions it collects from its neighbors.

𝑤𝑣 =
1

𝑑𝑜𝑢𝑡 𝑢
𝑤𝑢

𝑢→𝑣

𝑤𝑣: the PageRank value of node 𝑣

Recursive definition

A simple example

• Solving the system of equations we get the
authority values for the nodes

– w = ½ w = ¼ w = ¼

w w

w

w + w + w = 1

w = w + w

w = ½ w

w = ½ w

A more complex example

w1 = 1/3 w4 + 1/2 w5

w2 = 1/2 w1 + w3 + 1/3 w4

w3 = 1/2 w1 + 1/3 w4

w4 = 1/2 w5

w5 = w2

𝑤𝑣 =
1

𝑑𝑜𝑢𝑡 𝑢
𝑤𝑢

𝑢→𝑣

𝑣2

𝑣3

𝑣4 𝑣5

𝑣1

Computing PageRank weights

• A simple way to compute the weights is by
iteratively updating the weights

• PageRank Algorithm

• This process converges

Initialize all PageRank weights to
1

𝑛

Repeat:

 𝑤𝑣 =
1

𝑑𝑜𝑢𝑡 𝑢
𝑤𝑢𝑢→𝑣

Until the weights do not change

PageRank

Initially, all nodes PageRank 1/8

 As a kind of “fluid” that circulates through the network
 The total PageRank in the network remains constant (no need
to normalize)

PageRank: equilibrium

 A simple way to check whether an assignment of numbers forms an
equilibrium set of PageRank values: check that they sum to 1, and that when
apply the Basic PageRank Update Rule, we get the same values back.

 If the network is strongly connected, then there is a unique set of equilibrium
values.

Random Walks on Graphs

• The algorithm defines a random walk on the graph

• Random walk:
– Start from a node chosen uniformly at random with

probability
1

𝑛
.

– Pick one of the outgoing edges uniformly at random

– Move to the destination of the edge

– Repeat.

• The Random Surfer model
– Users wander on the web, following links.

Example

• Step 0

𝑣2

𝑣3

𝑣4 𝑣5

𝑣1

Example

• Step 0

𝑣2

𝑣3

𝑣4 𝑣5

𝑣1

Example

• Step 1

𝑣2

𝑣3

𝑣4 𝑣5

𝑣1

Example

• Step 1

𝑣2

𝑣3

𝑣4 𝑣5

𝑣1

Example

• Step 2

𝑣2

𝑣3

𝑣4 𝑣5

𝑣1

Example

• Step 2

𝑣2

𝑣3

𝑣4 𝑣5

𝑣1

Example

• Step 3

𝑣2

𝑣3

𝑣4 𝑣5

𝑣1

Example

• Step 3

𝑣2

𝑣3

𝑣4 𝑣5

𝑣1

Example

• Step 4…

𝑣2

𝑣3

𝑣4 𝑣5

𝑣1

Random walk

• Question: what is the probability 𝑝𝑖
𝑡 of being

at node 𝑖 after 𝑡 steps?

𝑣2

𝑣3

𝑣4 𝑣5

𝑣1

𝑝3
0 =
1

5

𝑝4
0 =
1

5

𝑝5
0 =
1

5

𝑝1
𝑡 =
1

3
𝑝4
𝑡−1 +
1

2
𝑝5
𝑡−1

𝑝2
𝑡 =
1

2
𝑝1
𝑡−1

+ 𝑝3
𝑡−1 +
1

3
𝑝4
𝑡−1

𝑝3
𝑡 =
1

2
𝑝1
𝑡−1 +

1

3
𝑝4
𝑡−1

𝑝4
𝑡 =
1

2
𝑝5
𝑡−1

𝑝5
𝑡 = 𝑝2

𝑡−1

𝑝1
0 =
1

5

𝑝2
0 =
1

5

Markov chains
• A Markov chain describes a discrete time stochastic process over a set of

states
𝑆 = {𝑠1, 𝑠2, … , 𝑠𝑛}

 according to a transition probability matrix 𝑃 = {𝑃𝑖𝑗}
– 𝑃𝑖𝑗 = probability of moving to state 𝑗 when at state 𝑖

• Matrix 𝑃 has the property that the entries of all rows sum to 1

 𝑃 𝑖, 𝑗 = 1

𝑗

 A matrix with this property is called stochastic

• State probability distribution: The vector 𝑝𝑡 = (𝑝1
𝑡 , 𝑝2
𝑡 , … , 𝑝𝑛

𝑡) that stores
the probability of being at state 𝑠𝑖 after 𝑡 steps

• Memorylessness property: The next state of the chain depends only at the
current state and not on the past of the process (first order MC)
– Higher order MCs are also possible

• Markov Chain Theory: After infinite steps the state probability vector
converges to a unique distribution if the chain is irreducible (possible to get from
any state to any other state) and aperiodic

Random walks

• Random walks on graphs correspond to
Markov Chains

– The set of states 𝑆 is the set of nodes of the graph
𝐺

– The transition probability matrix is the probability
that we follow an edge from one node to another

𝑃 𝑖, 𝑗 = 1/ deg𝑜𝑢𝑡(𝑖)

An example

0210021

00313131

00010

10000

0021210

P

𝑣2

𝑣3

𝑣4 𝑣5

𝑣1

01001

00111

00010

10000

00110

A

Node Probability vector

• The vector 𝑝𝑡 = (𝑝𝑖
𝑡, 𝑝2
𝑡 , … , 𝑝𝑛

𝑡) that stores
the probability of being at node 𝑣𝑖 at step 𝑡

• 𝑝𝑖
0= the probability of starting from state
𝑖 (usually) set to uniform

• We can compute the vector 𝑝𝑡 at step t using a
vector-matrix multiplication

𝑝𝑡 = 𝑝𝑡−1 𝑃

An example

0210021

00313131

00010

10000

0021210

P

𝑣2

𝑣3

𝑣4 𝑣5

𝑣1

𝑝1
𝑡 =
1

3
𝑝4
𝑡−1 +
1

2
𝑝5
𝑡−1

𝑝2
𝑡 =
1

2
𝑝1
𝑡−1

+ 𝑝3
𝑡−1 +
1

3
𝑝4
𝑡−1

𝑝3
𝑡 =
1

2
𝑝1
𝑡−1 +

1

3
𝑝4
𝑡−1

𝑝4
𝑡 =
1

2
𝑝5
𝑡−1

𝑝5
𝑡 = 𝑝2

𝑡−1

Stationary distribution

• The stationary distribution of a random walk with
transition matrix 𝑃, is a probability distribution 𝜋, such
that 𝜋 = 𝜋𝑃

• The stationary distribution is an eigenvector of matrix 𝑃
– the principal left eigenvector of P – stochastic matrices have

maximum eigenvalue 1

• The probability 𝜋𝑖 is the fraction of times that we visited
state 𝑖 as 𝑡 → ∞

• Markov Chain Theory: The random walk converges to a
unique stationary distribution independent of the initial
vector if the graph is strongly connected, and not
bipartite.

Computing the stationary distribution

• The Power Method

• After many iterations qt → 𝜋 regardless of the initial
vector 𝑞0

• Power method because it computes 𝑞𝑡 = 𝑞0𝑃𝑡

• Rate of convergence

– determined by the second eigenvalue
|𝜆
2
|

|𝜆
1
|

Initialize 𝑞0 to some distribution
Repeat
 𝑞𝑡 = 𝑞𝑡−1𝑃
Until convergence

The stationary distribution

• What is the meaning of the stationary
distribution 𝜋 of a random walk?

• 𝜋(𝑖): the probability of being at node i after very
large (infinite) number of steps

• 𝜋 = 𝑝0𝑃
∞, where 𝑃 is the transition matrix, 𝑝0

the original vector
– 𝑃 𝑖, 𝑗 : probability of going from i to j in one step

– 𝑃2(𝑖, 𝑗): probability of going from i to j in two steps
(probability of all paths of length 2)

– 𝑃∞ 𝑖, 𝑗 = 𝜋(𝑗): probability of going from i to j in
infinite steps – starting point does not matter.

The PageRank random walk

• Vanilla random walk

– make the adjacency matrix stochastic and run a
random walk

0210021

00313131

00010

10000

0021210

P

The PageRank random walk

• What about sink nodes?

– what happens when the random walk moves to a
node without any outgoing inks?

0210021

00313131

00010

00000

0021210

P

0210021

00313131

00010

5151515151

0021210

P'

The PageRank random walk

• Replace these row vectors with a vector v

– typically, the uniform vector

P’ = P + dvT

otherwise0

sink is i if1
d

The PageRank random walk

• What about loops?

– Spider traps

5151515151

5151515151

5151515151

5151515151

5151515151

2100021

00313131

00010

5151515151

0021210

'P')1(

The PageRank random walk

• Add a random jump to vector v with prob 1-α

– typically, to a uniform vector

• Restarts after 1/(1-α) steps in expectation

– Guarantees irreducibility, convergence

P’’ = αP’ + (1-α)uvT, where u is the vector of all 1s
Random walk with restarts

PageRank algorithm [BP98]

• The Random Surfer model
– pick a page at random

– with probability 1- α jump to a
random page

– with probability α follow a random
outgoing link

• Rank according to the stationary
distribution

•

1. Red Page

2. Purple Page

3. Yellow Page

4. Blue Page

5. Green Page

nqOut

qPR
pPR

pq

1
1

)(

)(
)(

𝛼 = 0.85 in most cases

PageRank: Example

Stationary distribution with random
jump

• If 𝑣 is the jump vector
𝑝0 = 𝑣

𝑝1 = 𝛼𝑝0𝑃′ + 1 − 𝛼 𝑣 = 𝛼𝑣𝑃′ + 1 − 𝛼 𝑣
𝑝2 = 𝛼𝑝1𝑃′ + 1 − 𝛼 𝑣 = 𝛼2𝑣𝑃′2 + 1 − 𝛼 𝑣𝛼𝑃′ + 1 − 𝛼 𝑣

⋮
𝑝∞ = 1 − 𝛼 𝑣 + 1 − 𝛼 𝑣𝛼𝑃′ + 1 − 𝛼 𝑣𝛼2𝑃′2 + ⋯

= 1 − 𝛼 𝐼 − 𝛼𝑃′ −1

• With the random jump the shorter paths are more important, since the
weight decreases exponentially
– makes sense when thought of as a restart

• If 𝑣 is not uniform, we can bias the random walk towards the nodes that

are close to 𝑣
– Personalized and Topic-Specific Pagerank.

Effects of random jump

• Guarantees convergence to unique
distribution

• Motivated by the concept of random surfer

• Offers additional flexibility

– personalization

– anti-spam

• Controls the rate of convergence

– the second eigenvalue of matrix 𝑃′′ is 𝛼

Random walks on undirected graphs

• For undirected graphs, the stationary
distribution of a random walk is proportional
to the degrees of the nodes
– Thus in this case a random walk is the same as

degree popularity

• This is not longer true if we do random jumps
– Now the short paths play a greater role, and the

previous distribution does not hold.

PageRank implementation

• Store the graph in adjacency list, or list of
edges

• Keep current pagerank values and new
pagerank values

• Go through edges and update the values of
the destination nodes.

• Repeat until the difference between the
pagerank vectors (𝐿1 or 𝐿∞ difference) is
below some small value ε.

A (Matlab-friendly) PageRank
algorithm

• Performing vanilla power method is now too
expensive – the matrix is not sparse

q0 = v
t = 1
repeat

 t = t +1
until δ < ε

 1tTt q'P'q
1tt qqδ

Efficient computation of y = (P’’)T x

βvyy

yx β

xαPy

11

T

P = normalized adjacency matrix

P’’ = αP’ + (1-α)uvT, where u is the vector of all 1s

P’ = P + dvT, where di is 1 if i is sink and 0 o.w.

PageRank history

• Huge advantage for Google in the early days
– It gave a way to get an idea for the value of a page, which was

useful in many different ways
• Put an order to the web.

– After a while it became clear that the anchor text was probably
more important for ranking

– Also, link spam became a new (dark) art

• Flood of research
– Numerical analysis got rejuvenated
– Huge number of variations
– Efficiency became a great issue.
– Huge number of applications in different fields

• Random walk is often referred to as PageRank.

THE HITS ALGORITHM

The HITS algorithm

• Another algorithm proposed around the same
time as PageRank for using the hyperlinks to
rank pages

– Kleinberg: then an intern at IBM Almaden

– IBM never made anything out of it

Query dependent input

Root Set

Root set obtained from a text-only search engine

Query dependent input

Root Set

IN OUT

Query dependent input

Root Set

IN OUT

Query dependent input

Root Set

IN OUT

Base Set

Hubs and Authorities [K98]

• Authority is not necessarily
transferred directly
between authorities

• Pages have double identity
– hub identity

– authority identity

• Good hubs point to good
authorities

• Good authorities are
pointed by good hubs

hubs authorities

Hubs and Authorities

• Two kind of weights:
– Hub weight

– Authority weight

• The hub weight is the sum of the authority
weights of the authorities pointed to by the hub

• The authority weight is the sum of the hub
weights that point to this authority.

HITS Algorithm

• Initialize all weights to 1.

• Repeat until convergence
– O operation : hubs collect the weight of the authorities

– I operation: authorities collect the weight of the hubs

– Normalize weights under some norm

jij

ji ah
:

ijj

ji ha
:

HITS and eigenvectors

• The HITS algorithm is a power-method eigenvector
computation

• In vector terms
– 𝑎𝑡 = 𝐴𝑇ℎ𝑡−1 and ℎ𝑡 = 𝐴𝑎𝑡−1
– 𝑎𝑡 = 𝐴𝑇𝐴𝑎𝑡−1 and ℎ𝑡 = 𝐴𝐴𝑇ℎ𝑡−1
– Repeated iterations will converge to the eigenvectors

• The authority weight vector 𝑎 is the eigenvector of
𝐴𝑇𝐴 and the hub weight vector ℎ is the eigenvector of
𝐴𝐴𝑇

• The vectors 𝑎 and ℎ are called the singular vectors of the

matrix A

Singular Value Decomposition

• r : rank of matrix A

• σ1≥ σ2≥ … ≥σr : singular values (square roots of eig-vals AAT, ATA)

• : left singular vectors (eig-vectors of AAT)

• : right singular vectors (eig-vectors of ATA)

r

2

1

r

2

1

r21
T

v

v

v

σ

σ

σ

uuuVΣUA

[n×r] [r×r] [r×n]

r21 u,,u,u

r21 v,,v,v

T
rrr

T
222

T
111 vuσvuσvuσA

Why does the Power Method work?

• If a matrix R is real and symmetric, it has real eigenvalues
and eigenvectors: 𝜆1, 𝑤1 , 𝜆2, 𝑤2 , … , (𝜆𝑟 , 𝑤𝑟)
– r is the rank of the matrix

– |𝜆1 ≥ |𝜆2 ≥ ⋯ ≥ 𝜆𝑟

• For any matrix R, the eigenvectors 𝑤1, 𝑤2, … , 𝑤𝑟 of R define
a basis of the vector space
– For any vector 𝑥, 𝑅𝑥 = 𝛼1𝑤1 + 𝑎2𝑤2 +⋯+ 𝑎𝑟𝑤𝑟

• After t multiplications we have:

– 𝑅𝑡𝑥 = 𝜆1
𝑡−1𝛼1𝑤1 + 𝜆2

𝑡−1𝑎2𝑤2 +⋯+ 𝜆𝑟
𝑡−1𝑎𝑟𝑤𝑟

• Normalizing (divide by 𝜆1
𝑡−1) leaves only the term 𝑤1.

Example

hubs authorities

1

1

1

1

1

1

1

1

1

1

Initialize

Example

hubs authorities

1

1

1

1

1

1

2

3

2

1

Step 1: O operation

Example

hubs authorities

6

5

5

2

1

1

2

3

2

1

Step 1: I operation

Example

hubs authorities

1

5/6

5/6

2/6

1/6

1/3

2/3

1

2/3

1/3

Step 1: Normalization (Max norm)

Example

hubs authorities

1

5/6

5/6

2/6

1/6

1

11/6

16/6

7/6

1/6

Step 2: O step

Example

hubs authorities

33/6

27/6

23/6

7/6

1/6

1

11/6

16/6

7/6

1/6

Step 2: I step

Example

hubs authorities

1

27/33

23/33

7/33

1/33

6/16

11/16

1

7/16

1/16

Step 2: Normalization

Example

hubs authorities

1

0.8

0.6

0.14

0

0.4

0.75

1

0.3

0

Convergence

The SALSA algorithm

• Perform a random walk on the
bipartite graph of hubs and
authorities alternating between the
two

hubs authorities

The SALSA algorithm

• Start from an authority chosen uniformly at
random
– e.g. the red authority

hubs authorities

• Start from an authority chosen uniformly at
random
– e.g. the red authority

• Choose one of the in-coming links
uniformly at random and move to a hub
– e.g. move to the yellow authority with

probability 1/3

hubs authorities

The SALSA algorithm

• Start from an authority chosen uniformly at
random
– e.g. the red authority

• Choose one of the in-coming links
uniformly at random and move to a hub
– e.g. move to the yellow authority with

probability 1/3

• Choose one of the out-going links
uniformly at random and move to an
authority
– e.g. move to the blue authority with probability

1/2

hubs authorities

The SALSA algorithm

The SALSA algorithm

• Formally we have probabilities:
– 𝑎𝑖: probability of being at authority 𝑖

– ℎ𝑗: probability of being at hub 𝑗

• The probability of being at authority i is computed as:

𝑎𝑖 =
1

𝑑𝑜𝑢𝑡 𝑗
ℎ𝑗

𝑗∈𝑁𝑖𝑛(𝑖)

• The probability of being at hub 𝑗 is computed as

ℎ𝑗 =
1

𝑑𝑖𝑛 𝑖
𝑎𝑖

𝑖∈𝑁𝑜𝑢𝑡(𝑗)

• Repeated computation converges

The SALSA algorithm [LM00]

• In matrix terms
– Ac = the matrix A where columns are normalized

to sum to 1

– Ar = the matrix A where rows are normalized to
sum to 1

• The hub computation

– ℎ = 𝐴𝑐 𝑎

• The authority computation
– 𝑎 = 𝐴𝑟

𝑇 ℎ = 𝐴𝑟
𝑇 𝐴𝑐 𝑎

• In MC terms the transition matrix
– P = Ar Ac

T

hubs authorities

𝒂𝟏 = 𝒉𝟏 + 𝟏/𝟐 𝒉𝟐 + 𝟏/𝟑 𝒉𝟑

𝒉𝟐 = 𝟏/𝟑 𝒂𝟏 + 𝟏/𝟐 𝒂𝟐

ABSORBING RANDOM WALKS
LABEL PROPAGATION
OPINION FORMATION ON SOCIAL
NETWORKS

Random walk with absorbing nodes

• What happens if we do a random walk on this
graph? What is the stationary distribution?

• All the probability mass on the red sink node:
– The red node is an absorbing node

Random walk with absorbing nodes

• What happens if we do a random walk on this graph?
What is the stationary distribution?

• There are two absorbing nodes: the red and the blue.

• The probability mass will be divided between the two

Absorption probability

• If there are more than one absorbing nodes in
the graph a random walk that starts from a
non-absorbing node will be absorbed in one
of them with some probability

– The probability of absorption gives an estimate of
how close the node is to red or blue

Absorption probability

• Computing the probability of being absorbed:
– The absorbing nodes have probability 1 of being absorbed

in themselves and zero of being absorbed in another node.
– For the non-absorbing nodes, take the (weighted) average

of the absorption probabilities of your neighbors
• if one of the neighbors is the absorbing node, it has probability 1

– Repeat until convergence (= very small change in probs)

𝑃 𝑅𝑒𝑑 𝑃𝑖𝑛𝑘 =
2

3
𝑃 𝑅𝑒𝑑 𝑌𝑒𝑙𝑙𝑜𝑤 +

1

3
𝑃(𝑅𝑒𝑑|𝐺𝑟𝑒𝑒𝑛)

𝑃 𝑅𝑒𝑑 𝐺𝑟𝑒𝑒𝑛 =
1

4
𝑃 𝑅𝑒𝑑 𝑌𝑒𝑙𝑙𝑜𝑤 +

1

4

𝑃 𝑅𝑒𝑑 𝑌𝑒𝑙𝑙𝑜𝑤 =
2

3

2

2

1

1

1
2

1

Absorption probability

• Computing the probability of being absorbed:
– The absorbing nodes have probability 1 of being absorbed

in themselves and zero of being absorbed in another node.
– For the non-absorbing nodes, take the (weighted) average

of the absorption probabilities of your neighbors
• if one of the neighbors is the absorbing node, it has probability 1

– Repeat until convergence (= very small change in probs)

𝑃 𝐵𝑙𝑢𝑒 𝑃𝑖𝑛𝑘 =
2

3
𝑃 𝐵𝑙𝑢𝑒 𝑌𝑒𝑙𝑙𝑜𝑤 +

1

3
𝑃(𝐵𝑙𝑢𝑒|𝐺𝑟𝑒𝑒𝑛)

𝑃 𝐵𝑙𝑢𝑒 𝐺𝑟𝑒𝑒𝑛 =
1

4
𝑃 𝐵𝑙𝑢𝑒 𝑌𝑒𝑙𝑙𝑜𝑤 +

1

2

𝑃 𝐵𝑙𝑢𝑒 𝑌𝑒𝑙𝑙𝑜𝑤 =
1

3

2

2

1

1

1
2

1

Why do we care?

• Why do we care to compute the absorbtion probability
to sink nodes?

• Given a graph (directed or undirected) we can choose
to make some nodes absorbing.
– Simply direct all edges incident on the chosen nodes

towards them.

• The absorbing random walk provides a measure of
proximity of non-absorbing nodes to the chosen nodes.
– Useful for understanding proximity in graphs
– Useful for propagation in the graph

• E.g, on a social network some nodes have high income, some have
low income, to which income class is a non-absorbing node closer?

Example

• In this undirected graph we want to learn the
proximity of nodes to the red and blue nodes

2

2

1

1

1
2

1

Example

• Make the nodes absorbing

2

2

1

1

1
2

1

Absorption probability

• Compute the absorbtion probabilities for red
and blue

𝑃 𝑅𝑒𝑑 𝑃𝑖𝑛𝑘 =
2

3
𝑃 𝑅𝑒𝑑 𝑌𝑒𝑙𝑙𝑜𝑤 +

1

3
𝑃(𝑅𝑒𝑑|𝐺𝑟𝑒𝑒𝑛)

𝑃 𝑅𝑒𝑑 𝐺𝑟𝑒𝑒𝑛 =
1

5
𝑃 𝑅𝑒𝑑 𝑌𝑒𝑙𝑙𝑜𝑤 +

1

5
𝑃 𝑅𝑒𝑑 𝑃𝑖𝑛𝑘 +

1

5

𝑃 𝑅𝑒𝑑 𝑌𝑒𝑙𝑙𝑜𝑤 =
1

6
𝑃 𝑅𝑒𝑑 𝐺𝑟𝑒𝑒𝑛 +

1

3
𝑃 𝑅𝑒𝑑 𝑃𝑖𝑛𝑘 +

1

3

0.52
0.48

0.42
0.58

0.57
0.43 2

2

1

1

1
2

1
𝑃 𝐵𝑙𝑢𝑒 𝑃𝑖𝑛𝑘 = 1 − 𝑃 𝑅𝑒𝑑 𝑃𝑖𝑛𝑘

𝑃 𝐵𝑙𝑢𝑒 𝐺𝑟𝑒𝑒𝑛 = 1 − 𝑃 𝑅𝑒𝑑 𝐺𝑟𝑒𝑒𝑛

𝑃 𝐵𝑙𝑢𝑒 𝑌𝑒𝑙𝑙𝑜𝑤 = 1 − 𝑃 𝑅𝑒𝑑 𝑌𝑒𝑙𝑙𝑜𝑤

Penalizing long paths

• The orange node has the same probability of
reaching red and blue as the yellow one

• Intuitively though it is further away 0.52

0.48

0.42
0.58

0.57
0.43 2

2

1

1

1
2

1 𝑃 𝐵𝑙𝑢𝑒 𝑂𝑟𝑎𝑛𝑔𝑒 = 𝑃 𝐵𝑙𝑢𝑒 𝑌𝑒𝑙𝑙𝑜𝑤 1

𝑃 𝑅𝑒𝑑 𝑂𝑟𝑎𝑛𝑔𝑒 = 𝑃 𝑅𝑒𝑑 𝑌𝑒𝑙𝑙𝑜𝑤

0.57
0.43

Penalizing long paths

• Add an universal absorbing node to which
each node gets absorbed with probability α.

1-α
α

α

α α

1-α
1-α

1-α

𝑃 𝑅𝑒𝑑 𝐺𝑟𝑒𝑒𝑛 = (1 − 𝛼)
1

5
𝑃 𝑅𝑒𝑑 𝑌𝑒𝑙𝑙𝑜𝑤 +

1

5
𝑃 𝑅𝑒𝑑 𝑃𝑖𝑛𝑘 +

1

5

With probability α the random walk dies

With probability (1-α) the random walk
continues as before

The longer the path from a node to an
absorbing node the more likely the random
walk dies along the way, the lower the
absorbtion probability

Propagating values

• Assume that Red has a positive value and Blue a negative
value
– Positive/Negative class, Positive/Negative opinion

• We can compute a value for all the other nodes in the same
way
– This is the expected value for the node

𝑉(𝑃𝑖𝑛𝑘) =
2

3
𝑉(𝑌𝑒𝑙𝑙𝑜𝑤) +

1

3
𝑉(𝐺𝑟𝑒𝑒𝑛)

𝑉 𝐺𝑟𝑒𝑒𝑛 =
1

5
𝑉(𝑌𝑒𝑙𝑙𝑜𝑤) +

1

5
𝑉(𝑃𝑖𝑛𝑘) +

1

5
 −
2

5

𝑉 𝑌𝑒𝑙𝑙𝑜𝑤 =
1

6
𝑉 𝐺𝑟𝑒𝑒𝑛 +

1

3
𝑉(𝑃𝑖𝑛𝑘) +

1

3
 −
1

6

+1

-1

0.05 -0.16

0.16 2

2

1

1

1
2

1

Electrical networks and random walks

• Our graph corresponds to an electrical network
• There is a positive voltage of +1 at the Red node, and a negative

voltage -1 at the Blue node
• There are resistances on the edges inversely proportional to the

weights (or conductance proportional to the weights)
• The computed values are the voltages at the nodes

+1

𝑉(𝑃𝑖𝑛𝑘) =
2

3
𝑉(𝑌𝑒𝑙𝑙𝑜𝑤) +

1

3
𝑉(𝐺𝑟𝑒𝑒𝑛)

𝑉 𝐺𝑟𝑒𝑒𝑛 =
1

5
𝑉(𝑌𝑒𝑙𝑙𝑜𝑤) +

1

5
𝑉(𝑃𝑖𝑛𝑘) +

1

5
 −
2

5

𝑉 𝑌𝑒𝑙𝑙𝑜𝑤 =
1

6
𝑉 𝐺𝑟𝑒𝑒𝑛 +

1

3
𝑉(𝑃𝑖𝑛𝑘) +

1

3
 −
1

6

+1

-1
2

2

1

1

1
2

1

0.05 -0.16

0.16

Opinion formation

• The value propagation can be used as a model of opinion formation.
• Model:

– Opinions are values in [-1,1]
– Every user 𝑢 has an internal opinion 𝑠𝑢, and expressed opinion 𝑧𝑢.
– The expressed opinion minimizes the personal cost of user 𝑢:

𝑐 𝑧𝑢 = 𝑠𝑢 − 𝑧𝑢
2 + 𝑤𝑢 𝑧𝑢 − 𝑧𝑣

2

𝑣:𝑣 is a friend of 𝑢

• Minimize deviation from your beliefs and conflicts with the society

• If every user tries independently (selfishly) to minimize their personal cost

then the best thing to do is to set 𝑧𝑢to the average of all opinions:

𝑧𝑢 =
𝑠𝑢 + 𝑤𝑢𝑧𝑢𝑣:𝑣 is a friend of 𝑢

1 + 𝑤𝑢𝑣:𝑣 is a friend of 𝑢

• This is the same as the value propagation we described before!

Example

• Social network with internal opinions

2

2

1

1

1
2

1

s = +0.5

s = -0.3

s = -0.1 s = +0.2

s = +0.8

Example

2

2

1

1

1
2

1

1

1

1 1

1

s = +0.5

s = -0.3

s = -0.1 s = -0.5

s = +0.8

The external opinion for each node is
computed using the value propagation we
described before

• Repeated averaging

Intuitive model: my opinion is a
combination of what I believe and what
my social network believes.

One absorbing node per user with
value the internal opinion of the user

One non-absorbing node per user that
links to the corresponding absorbing
node

z = +0.22 z = +0.17

z = -0.03
z = 0.04

z = -0.01

Transductive learning

• If we have a graph of relationships and some labels on some nodes
we can propagate them to the remaining nodes
– Make the labeled nodes to be absorbing and compute the probability

for the rest of the graph
– E.g., a social network where some people are tagged as spammers
– E.g., the movie-actor graph where some movies are tagged as action

or comedy.

• This is a form of semi-supervised learning
– We make use of the unlabeled data, and the relationships

• It is also called transductive learning because it does not produce a

model, but just labels the unlabeled data that is at hand.
– Contrast to inductive learning that learns a model and can label any

new example

Implementation details

• Implementation is in many ways similar to the
PageRank implementation
– For an edge (𝑢, 𝑣)instead of updating the value of

v we update the value of u.
• The value of a node is the average of its neighbors

– We need to check for the case that a node u is
absorbing, in which case the value of the node is
not updated.

– Repeat the updates until the change in values is
very small.

