
Online Social Networks and
Media

Graph Partitioning

Introduction

modules, cluster, communities, groups, partitions
(more on this today)

2

PART I
1. Introduction: what, why, types?

2. Cliques and vertex similarity

3. Background: Cluster analysis

4. Hierarchical clustering (betweenness)

5. Modularity

6. How to evaluate (if time allows)

Outline

3

PART II
1. Cuts
2. Spectral Clustering
3. Dense Subgraphs

4. Community Evolution
5. How to evaluate (from Part I)

Outline

4

partitions

Graph partitioning

The general problem

– Input: a graph G = (V, E)
• edge (u, v) denotes similarity between u and v

• weighted graphs: weight of edge captures the degree of
similarity

Partitioning as an optimization problem:
• Partition the nodes in the graph such that nodes within clusters

are well interconnected (high edge weights), and nodes across
clusters are sparsely interconnected (low edge weights)

• most graph partitioning problems are NP hard

6

Graph Partitioning

Graph Partitioning

Undirected graph 𝐺(𝑉, 𝐸):

Bi-partitioning task:

Divide vertices into two disjoint groups 𝑨,𝑩

How can we define a “good” partition of 𝑮?

How can we efficiently identify such a partition?
7

1

3
2

5

4
6

A B

1

3

2

5

4
6

Graph Partitioning

What makes a good partition?

 Maximize the number of within-group
connections

 Minimize the number of between-group
connections

8

1

3

2

5

4
6

A B

A B

Graph Cuts

Express partitioning objectives as a function of
the “edge cut” of the partition

Cut: Set of edges with only one vertex in a
group:

9

cut(A,B) = 2
1

3

2

5

4
6

An example

Min Cut

min-cut: the min number of edges such that when
removed cause the graph to become disconnected

Minimizes the number of connections between partition

U V-U

    
 


Ui UVj

U
ji,AUVU,E min

This problem can be solved in
polynomial time

Min-cut/Max-flow algorithm

arg minA,B cut(A,B)

Min Cut

Problem:
– Only considers external cluster connections

– Does not consider internal cluster connectivity

12

“Optimal cut”

Minimum cut

Graph Bisection

• Since the minimum cut does not always yield
good results we need extra constraints to make
the problem meaningful.

• Graph Bisection refers to the problem of
partitioning the nodes of the graph into two
equal sets.

• Kernighan-Lin algorithm: Start with random equal
partitions and then swap nodes to improve some
quality metric (e.g., cut, modularity, etc).

Cut Ratio

Ratio Cut

Normalize cut by the size of the groups

14

Ratio-cut=
Cut(U,V−U)

|𝑈|
 +

Cut(U,V−U)

|𝑉−𝑈|

Normalized Cut

Normalized-cut

Connectivity between groups relative to the
density of each group

 𝑣𝑜𝑙(𝑈): total weight of the edges with at least
one endpoint in 𝑈: 𝑣𝑜𝑙 𝑈 = 𝑑𝑖𝑖∈𝑈

Why use these criteria?

 Produce more balanced partitions

15

Normalized-cut=
Cut(U,V−U)

𝑉𝑜𝑙(𝑈)
 +

Cut(U,V−U)

𝑉𝑜𝑙(𝑉−𝑈)

Normalized-Cut(Red) =
1

1
 +

1

27
 =

28

27

Normalized-Cut(Green) =
2

12
 +

2

16
 =

14

48

Ratio-Cut(Red) =
1

1
 +

1

8
 =

9

8

Ratio-Cut(Green) =
2

5
 +

2

4
 =

18

20

Red is Min-Cut

Normalized is even better
for Green due to density

An example

Which of the three cuts has the best (min, normalized, ratio) cut?

Graph expansion

Graph expansion:

 
 UV,Umin

U-VU,cut
minα

U 


Graph Cuts

Ratio and normalized cuts can be reformulated in matrix
format and solved using spectral clustering

SPECTRAL CLUSTERING

Matrix Representation
Adjacency matrix (A):

– n n matrix

– A=[aij], aij=1 if edge between node i and j

Important properties:

– Symmetric matrix

– Eigenvectors are real and orthogonal

21

1

3

2

5

4
6

1 2 3 4 5 6

1 0 1 1 0 1 0

2 1 0 1 0 0 0

3 1 1 0 1 0 0

4 0 0 1 0 1 1

5 1 0 0 1 0 1

6 0 0 0 1 1 0

If the graph is weighted, aij= wij

Spectral Graph Partitioning

x is a vector in n with components (𝒙𝟏, … , 𝒙𝒏)

– Think of it as a label/value of each node of 𝑮

 What is the meaning of A x?

Entry yi is a sum of labels xj of neighbors of i

22

Spectral Analysis

ith coordinate of A x :

– Sum of the x-values
of neighbors of i

– Make this a new value at node j

Spectral Graph Theory:

– Analyze the “spectrum” of a matrix representing 𝐺

– Spectrum: Eigenvectors 𝑥𝑖 of a graph, ordered by
the magnitude (strength) of their corresponding
eigenvalues 𝜆𝑖:

Spectral clustering: use the eigenvectors of A or
graphs derived by it

Most based on the graph Laplacian

23

𝑨 ⋅ 𝒙 = 𝝀 ⋅ 𝒙

Matrix Representation

Degree matrix (D):
– n n diagonal matrix

– D=[dii], dii = degree of node i

24

1

3

2

5

4
6

1 2 3 4 5 6

1 3 0 0 0 0 0

2 0 2 0 0 0 0

3 0 0 3 0 0 0

4 0 0 0 3 0 0

5 0 0 0 0 3 0

6 0 0 0 0 0 2

Matrix Representation

Laplacian matrix (L):

– n n symmetric matrix

25

𝑳 = 𝑫 − 𝑨

1

3

2

5

4
6

1 2 3 4 5 6

1 3 -1 -1 0 -1 0

2 -1 2 -1 0 0 0

3 -1 -1 3 -1 0 0

4 0 0 -1 3 -1 -1

5 -1 0 0 -1 3 -1

6 0 0 0 -1 -1 2

Laplacian Matrix properties

• The matrix L is symmetric and positive semi-
definite

– all eigenvalues of L are positive

• The matrix L has 0 as an eigenvalue, and
corresponding eigenvector w1 = (1,1,…,1)

– λ1 = 0 is the smallest eigenvalue

Proof: Let w1 be the column vector with all 1s -- show Lw1 = 0w1

positive definite: if zTMz is non-negative, for every non-zero column vector z

The second smallest eigenvalue

The second smallest eigenvalue (also known as
Fielder value) λ2 satisfies

Lxxminλ T

1x,wx
2

1 


The second smallest eigenvalue

• For the Laplacian

• The expression:

is

1wx   
i i 0x

LxxT

 



Ej)(i,

2

ji xx

The second smallest eigenvalue

 





Ej)(i,

2

ji
0x

xxmin where  
i i 0x

Thus, the eigenvector for eigenvalue λ2
(called the Fielder vector) minimizes

 Intuitively, minimum when xi and xj close whenever there is
an edge between nodes i and j in the graph.

 x must have some positive and some negative components

Cuts + eigenvalues: intuition

 A partition of the graph by taking:
o one set to be the nodes i whose corresponding vector

component xi is positive and
o the other set to be the nodes whose corresponding

vector component is negative.

 The cut between the two sets will have a small number of
edges because (xi−xj)

2 is likely to be smaller if both xi and xj

have the same sign than if they have different signs.

 Thus, minimizing xTLx under the required constraints will end
giving xi and xj the same sign if there is an edge (i, j).

1

3

2

5

4
6

Example

Other properties of L

Let G be an undirected graph with non-negative
weights. Then
 the multiplicity k of the eigenvalue 0 of L equals the

number of connected components A1, . . . , Ak in the
graph

 the eigenspace of eigenvalue 0 is spanned by the
indicator vectors 1A1 , . . . , 1Ak of those
components

Proof (sketch)

0 = 𝑥𝝉𝑳𝒙 = 𝒙𝒊 − 𝒙𝒋
𝟐

𝒊,𝒋 ∈𝑬

If connected (k = 1)

Assume k connected components, both A and L block diagonal, if we
order vertices based on the connected component they belong to (recall
the “tile” matrix)

Li Laplacian of the i-th component

for all block diagonal matrices, that the spectrum is given by the union of the spectra
of each block, and the corresponding eigenvectors are the eigenvectors of the block,
filled with 0 at the positions of the other blocks.

• What we know about x?

– 𝑥 is unit vector: 𝑥𝑖
2 = 1𝑖

– 𝑥 is orthogonal to 1st eigenvector (1, … , 1) thus:
 𝑥𝑖 ⋅ 1𝑖 = 𝑥𝑖𝑖 = 0

34


 




2

2

),(

2

)(
min

ii

jiEji

x

xx


All labelings

of nodes 𝑖 so

that 𝑥𝑖 = 0

We want to assign values 𝑥𝑖 to nodes i such that

few edges cross 0.

(we want xi and xj to subtract each other)
𝑥𝑖 0

x

𝑥𝑗

Balance to minimize

Cuts + eigenvalues: summary

Spectral Clustering Algorithms

Three basic stages:
Pre-processing

• Construct a matrix representation of the graph

Decomposition
• Compute eigenvalues and eigenvectors of the matrix

• Map each point to a lower-dimensional representation
based on one or more eigenvectors

Grouping
• Assign points to two or more clusters, based on the

new representation

35

Spectral Partitioning Algorithm

Pre-processing:
Build Laplacian
matrix L of the
graph

 Decomposition:

– Find eigenvalues 
and eigenvectors x
of the matrix L

– Map vertices to

corresponding
components of 2

36

0.0 -0.4 -0.4 0.4 -0.6 0.4

0.5 0.4 -0.2 -0.5 -0.3 0.4

-0.5 0.4 0.6 0.1 -0.3 0.4

0.5 -0.4 0.6 0.1 0.3 0.4

0.0 0.4 -0.4 0.4 0.6 0.4

-0.5 -0.4 -0.2 -0.5 0.3 0.4

5.0

4.0

3.0

3.0

1.0

0.0

 = X =

How do we now
find the clusters?

-0.6 6

-0.3 5

-0.3 4

0.3 3

0.6 2

0.3 1

1 2 3 4 5 6

1 3 -1 -1 0 -1 0

2 -1 2 -1 0 0 0

3 -1 -1 3 -1 0 0

4 0 0 -1 3 -1 -1

5 -1 0 0 -1 3 -1

6 0 0 0 -1 -1 2

Spectral Partitioning Algorithm

Grouping:
– Sort components of reduced 1-dimensional vector
– Identify clusters by splitting the sorted vector in two

• How to choose a splitting point?
– Naïve approaches:

• Split at 0 or median value

– More expensive approaches:
• Attempt to minimize normalized cut in 1-dimension

(sweep over ordering of nodes induced by the eigenvector)

37 -0.6 6

-0.3 5

-0.3 4

0.3 3

0.6 2

0.3 1 Split at 0:

Cluster A: Positive points

Cluster B: Negative points

0.3 3

0.6 2

0.3 1

-0.6 6

-0.3 5

-0.3 4

A B

Example: Spectral Partitioning

38

Rank in x2

V
a
lu

e
 o

f
x

2

k-Way Spectral Clustering
How do we partition a graph into k clusters?
 Recursively apply a bi-partitioning algorithm in a hierarchical

divisive manner

• Disadvantages: Inefficient, unstable

39

k-Way Spectral Clustering

40

Use several of the eigenvectors to partition the graph.

If we use m eigenvectors, and set a threshold for each, we can
get a partition into 2m groups, each group consisting of the nodes
that are above or below threshold for each of the eigenvectors,
in a particular pattern.

1

3

2

5

4
6

Example

If we use both the 2nd and 3rd eigenvectors,
nodes 2 and 3 (negative in both)
5 and 6 (negative in 2nd, positive in 3rd)
1 and 4 alone

• Note that each eigenvector except the first is the vector x that minimizes xTLx, subject
to the constraint that it is orthogonal to all previous eigenvectors.

• Thus, while each eigenvector tries to produce a minimum-sized cut, successive
eigenvectors have to satisfy more and more constraints => the cuts progressively worse.

Spectral Clustering

 Use the lowest k eigenvalues of L to
construct the nxk graph G’ that has these
eigenvectors as columns

 The n-rows represent the graph vertices in a

k-dimensional Euclidean space

 Group these vertices in k clusters using k-
means clustering or similar techniques

Spectral clustering (besides graphs)

Can be used to cluster any points (not just vertices), as long as an
appropriate similarity matrix

Needs to be symmetric and non-negative

How to construct a graph:

• ε-neighborhood graph: connect all points whose pairwise

distances are smaller than ε
• k-nearest neighbor graph: connect each point with each k

nearest neigbhor
• full graph: connect all points with weight in the edge (i, j) equal

to the similarity of i and j

Summary

• The values of x minimize

• For weighted matrices

• The ordering according to the xi values will group similar
(connected) nodes together

• Physical interpretation: The stable state of springs placed on
the edges of the graph

 2
),(







Eji

ji xx
0x

min

   


j)(i,

2

ji
0x

xxji,Amin

 
i i 0x

 
i i 0x

Normalized Graph Laplacians

2/12/1
2/12/1





 WDDILDDLsym

WDILDLrw
1

1























Ej)(i,

2

ji
xx

ji

sym

dd
xLx

Lrw closely connected to random walks (to be discussed in
future lectures)

Cuts and spectral clustering

Relaxing Ncut leads to normalized spectral
clustering, while relaxing RatioCut leads to
unnormalized spectral clustering

Finding an Optimal Cut (sketch)

• Express partition (A,B) as a vector

𝑦𝑖 =
+1
−1

𝑖𝑓 𝑖 ∈ 𝐴
𝑖𝑓 𝑖 ∈ 𝐵

• We can minimize the cut of the partition by
finding a non-trivial vector x that minimizes:

47

𝑦𝑖 = −1 0 𝑦𝑗 = +1

Can not solve exactly. Let us relax 𝑦 and

allow it to take any real value (instead of two)

48

 𝜆2 = min
𝑦

𝑓 𝑦 : The minimum value of 𝑓(𝑦) is

given by the 2nd smallest eigenvalue λ2 of the
Laplacian matrix L

 x = argminy 𝑓 𝑦 : The optimal solution for y is

given by the corresponding eigenvector 𝑥, referred
as the Fiedler vector

𝑥𝑖 0 x 𝑥𝑗

Finding an Optimal Cut (sketch)

Rayleigh Theorem

Need to re-transform the real-valued solution vector f of the
relaxed problem into a discrete indicator vector. Simplest way,
use the sign

Consider the coordinates fi as points in R and cluster them into
two groups C by the k-means clustering algorithm.

Finding an Optimal Cut (sketch)

Spectral partition

• Partition the nodes according to the ordering induced
by the Fielder vector

• If u = (u1,u2,…,un) is the Fielder vector, then split
nodes according to a threshold value s

– bisection: s is the median value in u

– ratio cut: s is the value that minimizes α

– sign: separate positive and negative values (s=0)

– gap: separate according to the largest gap in the values of u

• This works well (provably for special cases)

Fielder Value

• The value λ2 is a good approximation of the graph expansion

• For the minimum ratio cut of the Fielder vector we have that

• If the max degree dmax is bounded we obtain a good approximation of the
minimum expansion cut

α2λ
2d

α
2

max

2



 2max2
2 λ2dλα

2

λ


dmax = maximum degree

α2λ
2d

α
2

max

2



Suppose there is a partition of G into A and B where

𝐴 ≤ |𝐵|, s.t. 𝛼 =
(# 𝑒𝑑𝑔𝑒𝑠 𝑓𝑟𝑜𝑚 𝐴 𝑡𝑜 𝐵)

𝐴

Approx. Guarantee of Spectral (proof)

• Suppose there is a partition of G into A and B
where 𝐴 ≤ |𝐵|, s.t. 𝛼 =

(# 𝑒𝑑𝑔𝑒𝑠 𝑓𝑟𝑜𝑚 𝐴 𝑡𝑜 𝐵)

𝐴

then 2𝛼 ≥ 𝜆2
– This is the approximation guarantee of the spectral

clustering. It says the cut spectral finds is at most 2
away from the optimal one of score 𝛼.

• Proof:
– Let: a=|A|, b=|B| and e= # edges from A to B
– Enough to choose some 𝑥𝑖 based on A and B such

that: 𝜆2 ≤
 𝑥𝑖−𝑥𝑗

2

 𝑥𝑖
2

𝑖
≤ 2𝛼 (while also 𝑥𝑖 = 0𝑖)

52
𝝀𝟐 is only smaller

Approx. Guarantee of Spectral

• Proof (continued):

(1) Set: 𝑥𝑖 =
−

1

𝑎

+
1

𝑏

𝑖𝑓 𝑖 ∈ 𝐴
𝑖𝑓 𝑖 ∈ 𝐵

• Let’s quickly verify that 𝑥𝑖 = 0: 𝑎 −
1

𝑎
+ 𝑏

1

𝑏
= 0𝑖

(2) Then:
 𝑥𝑖−𝑥𝑗

2

 𝑥𝑖
2

𝑖
=

1

𝑏
+
1

𝑎

2

𝑖∈𝐴,𝑗∈𝐵

𝑎 −
1

𝑎

2
+𝑏

1

𝑏

2 =
𝑒⋅

1

𝑎
+
1

𝑏

2

1

𝑎
+
1

𝑏

=

𝑒
1

𝑎
+

1

𝑏
≤ 𝑒

1

𝑎
+

1

𝑎
≤ 𝑒

2

𝑎
= 2𝛼

53

Which proves that the cost

achieved by spectral is better

than twice the OPT cost
e … number of edges between A and B

Approx. Guarantee of Spectral
• Putting it all together:

2𝛼 ≥ 𝜆2 ≥
𝛼2

2𝑑𝑚𝑎𝑥

– where 𝑑𝑚𝑎𝑥 is the maximum node degree
in the graph

• Note we only provide the 1st part: 2𝛼 ≥ 𝜆2

• We did not prove 𝜆2 ≥
𝛼2

2𝑑𝑚𝑎𝑥

– Overall this always certifies that 𝜆2 always gives a
useful bound

54

MAXIMUM DENSEST SUBGRAPH
Thanks to Aris Gionis

Finding dense subgraphs

• Dense subgraph: A collection of vertices such
that there are a lot of edges between them

– E.g., find the subset of email users that talk the
most between them

– Or, find the subset of genes that are most
commonly expressed together

• Similar to community identification but we do
not require that the dense subgraph is
sparsely connected with the rest of the graph.

Definitions

• Input: undirected graph 𝐺 = (𝑉, 𝐸).

• Degree of node u: deg 𝑢

• For two sets 𝑆 ⊆ 𝑉 and 𝑇 ⊆ 𝑉:
𝐸 𝑆, 𝑇 = u, v ∈ 𝐸: 𝑢 ∈ 𝑆, 𝑣 ∈ 𝑇

• 𝐸 𝑆 = 𝐸(𝑆, 𝑆): edges within nodes in 𝑆

• Graph Cut defined by nodes in 𝑆 ⊆ 𝑉:

𝐸(𝑆, 𝑆): edges between 𝑆 and the rest of the graph

• Induced Subgraph by set 𝑆 : 𝐺𝑆 = (𝑆, 𝐸 𝑆)

Definitions

• How do we define the density of a subgraph?

• Average Degree:

𝑑 𝑆 =
2|𝐸 𝑆 |

|𝑆|

• Problem: Given graph G, find subset S, that

maximizes density d(S)
– Surprisingly there is a polynomial-time algorithm for

this problem.

Min-Cut Problem

Given a graph* 𝐺 = (𝑉, 𝐸),
A source vertex 𝑠 ∈ 𝑉,
A destination vertex 𝑡 ∈ 𝑉

Find a set 𝑆 ⊆ 𝑉
Such that 𝑠 ∈ 𝑆 and 𝑡 ∈ 𝑆
That minimizes 𝐸(𝑆, 𝑆)

* The graph may be weighted

Min-Cut = Max-Flow: the minimum cut maximizes the flow that can
be sent from s to t. There is a polynomial time solution.

Decision problem

• Consider the decision problem:

– Is there a set 𝑆 with 𝑑 𝑆 ≥ 𝑐?

• 𝑑 𝑆 ≥ 𝑐

• 2 𝐸 𝑆 ≥ 𝑐|𝑆|

• deg 𝑣 − 𝐸 𝑆, 𝑆 ≥ 𝑐|𝑆|𝑣∈𝑆

• 2 𝐸 − deg 𝑣𝑣∈𝑆 − 𝐸 𝑆, 𝑆 ≥ 𝑐 𝑆

• deg 𝑣𝑣∈𝑆 + 𝐸 𝑆, 𝑆 + 𝑐 𝑆 ≤ 2|𝐸|

Transform to min-cut

• For a value 𝑐 we do the following transformation

• We ask for a min s-t cut in the new graph

Transformation to min-cut

• There is a cut that has value 2|𝐸|

Transformation to min-cut

• Every other cut has value:

• deg 𝑣𝑣∈𝑆 + 𝐸 𝑆, 𝑆 + 𝑐 𝑆

Transformation to min-cut

• If deg 𝑣𝑣∈𝑆 + 𝐸 𝑆, 𝑆 + 𝑐 𝑆 ≤ 2|𝐸| then
𝑆 ≠ ∅ and 𝑑 𝑆 ≥ 𝑐

Algorithm (Goldberg)

Given the input graph G, and value c

1. Create the min-cut instance graph

2. Compute the min-cut

3. If the set S is not empty, return YES

4. Else return NO

How do we find the set with maximum density?

Min-cut algorithm

• The min-cut algorithm finds the optimal solution in
polynomial time O(nm), but this is too expensive for
real networks.

• We will now describe a simpler approximation
algorithm that is very fast
– Approximation algorithm: the ratio of the density of the

set produced by our algorithm and that of the optimal is
bounded.

• We will show that the ratio is at most ½
• The optimal set is at most twice as dense as that of the

approximation algorithm.

• Any ideas for the algorithm?

Greedy Algorithm

Given the graph 𝐺 = (𝑉, 𝐸)

1. 𝑆0 = 𝑉

2. For 𝑖 = 1… |𝑉|

a. Find node 𝑣 ∈ 𝑆 with the minimum degree

b. 𝑆𝑖 = 𝑆𝑖−1 ∖ {𝑣}

3. Output the densest set 𝑆𝑖

Example

Analysis

• We will prove that the optimal set has density
at most 2 times that of the set produced by
the Greedy algorithm.

• Density of optimal set: 𝑑𝑜𝑝𝑡 = max
𝑆⊆𝑉

𝑑(𝑆)

• Density of greedy algorithm 𝑑𝑔

• We want to show that 𝑑𝑜𝑝𝑡 ≤ 2 ⋅ 𝑑𝑔

Upper bound

• We will first upper-bound the solution of optimal

• Assume an arbitrary assignment of an edge
(𝑢, 𝑣) to either 𝑢 or 𝑣

• Define:
– 𝐼𝑁 𝑢 = # edges assigned to u

– Δ = max
𝑢∈𝑉

𝐼𝑁(𝑢)

• We can prove that

– 𝑑𝑜𝑝𝑡 ≤ 2 ⋅ Δ
This is true for any
assignment of the edges!

Lower bound

• We will now prove a lower bound for the density of the
set produced by the greedy algorithm.

• For the lower bound we consider a specific assignment
of the edges that we create as the greedy algorithm
progresses:
– When removing node 𝑢 from 𝑆, assign all the edges to 𝑢

• So: 𝐼𝑁 𝑢 = degree of 𝑢 in 𝑆 ≤ 𝑑 𝑆 ≤ 𝑑𝑔

• This is true for all 𝑢 so Δ ≤ 𝑑𝑔

• It follows that 𝑑𝑜𝑝𝑡 ≤ 2 ⋅ 𝑑𝑔

The k-densest subgraph

• The k-densest subgraph problem: Find the set
of 𝑘 nodes 𝑆, such that the density 𝑑(𝑆) is
maximized.

– The k-densest subgraph problem is NP-hard!

QUANTIFYING SOCIAL GROUP
EVOLUTION

G Palla, AL Barabási, T Vicsek, Nature 446 (7136), 664-667

 monthly list of articles in the Cornell University
Library e-print condensed matter (cond-mat) archive
spanning 142 months, with over 30,000 authors,

 phone calls between the customers of a mobile

phone company spanning 52 weeks (accumulated
over two-week-long periods) containing the
communication patterns of over 4 million users.

Datasets

Datasets

black nodes/edges do not belong to any community,
red nodes belong to two or more communities are shown in red

Different local structure:
 Co-authorship: dense network with significant overlap

among communities (co-authors of an article form
cliques) -- Phone-call: communities less interconnected,
often separated by one or more inter-community
node/edge

 Phone-call: the links correspond to instant
communication events, whereas in co-authorship long-
term collaborations.

Fundamental differences suggest that any common features
represent potentially generic characteristics

Datasets

 Communities at each time step extracted using the clique
percolation method (CPM)

 Why CPM?
their members can be reached through well connected subsets
of nodes, and communities may overlap

 Parameters
k = 4
Weighted graph – use a weight threshold w* (links weaker than
w* are ignored)

Approach

Basic Events

For each pair of consecutive time steps t and t+1, construct a joint graph consisting of
the union of links from the corresponding two networks, and extract the CPM
community structure of this joint network

 Any community from either the t or the t+1 snapshot is contained in exactly one

community in the joint graph
 If a community in the joint graph contains a single community from t and a single

community from t+1, then they are matched.
 If the joint group contains more than one community from either time steps, the

communities are matched in descending order of their relative node overlap

Identifying Events

s: size
t: age
 s and t are positively correlated: larger communities are on average older

Results

s

Auto-correlation function

 the collaboration network is more “dynamic” (decays faster)
 in both networks, the auto-correlation function decays faster for the

larger communities, showing that the membership of the larger
communities is changing at a higher rate.

where A(t) members of community A at t

Results

Results

1-ζ: the average ratio of members
changed in one step
τ*: lifetime, stationarity ζ
the average life-span <t*> (colour
coded) as a function of ζ and s
 for small communities optimal ζ

near 1, better to have static, time-
independent

 For large communities, the peak is
shifted towards low f values,
better to have acontinually
changing membership

phone-call

co-authorship

Results

Results

Can we predict the evolution?

wout: individual commitment to outside the community
win: individual commitment inside the community
p: probability to abandon the community

Can we predict the evolution?

Wout: total weight of links to nodes outside the community
Win: total weight of links inside the community
p: probability of a community to disintegrate in the next step
for co-authorship max lifetime at intermediate values

Conclusions
Significant difference between smaller collaborative or friendship
circles and institutions.

 At the heart of small communities are a few strong relationships,

and as long as these persist, the community around them is
stable.

 The condition for stability of large communities is continuous

change, so that after some time practically all members are
exchanged.

 Loose, rapidly changing communities reminiscent of institutions,
which can continue to exist even after all members have been
replaced by new members (e.g., members of a school).

88

 Jure Leskovec, Anand Rajaraman, Jeff Ullman, Mining of Massive Datasets,
Chapter 10, http://www.mmds.org/

 Reza Zafarani, Mohammad Ali Abbasi, Huan Liu, Social Media Mining: An
Introduction, Chapter 6, http://dmml.asu.edu/smm/

 Santo Fortunato: Community detection in graphs. CoRR
abs/0906.0612v2 (2010)

 Ulrike von Luxburg: A Tutorial on Spectral
Clustering. CoRR abs/0711.0189 (2007)

 G Palla, A. L. Barabási, T Vicsek, Quantyfying Social Group Evolution. Nature
446 (7136), 664-667

Basic References

http://dmml.asu.edu/users/reza
http://dblp.uni-trier.de/db/journals/corr/corr0711.html#abs-0711-0189
http://dblp.uni-trier.de/db/journals/corr/corr0711.html#abs-0711-0189
http://dblp.uni-trier.de/db/journals/corr/corr0711.html#abs-0711-0189
http://dblp.uni-trier.de/db/journals/corr/corr0711.html#abs-0711-0189
http://dblp.uni-trier.de/db/journals/corr/corr0711.html#abs-0711-0189
http://dblp.uni-trier.de/db/journals/corr/corr0711.html#abs-0711-0189

89

Questions?

