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Introduction 

modules, cluster, communities, groups, partitions 
(more on this today) 
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PART I 
1. Introduction: what, why, types? 

 

2. Cliques and vertex similarity 
 

3. Background: Cluster analysis  
 

4. Hierarchical clustering (betweenness) 
 

5. Modularity 
 

6. How to evaluate (if time allows)  

Outline 
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PART II  
1. Cuts 
2. Spectral Clustering 
3. Dense Subgraphs 

 
4. Community Evolution 
5. How to evaluate (from Part I)  

Outline 
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partitions 



Graph partitioning 

The general problem 

– Input: a graph G = (V, E) 
• edge (u, v) denotes similarity between u and v 

• weighted graphs: weight of edge captures the degree of 
similarity 

 

Partitioning as an optimization problem:  
• Partition the nodes in the graph such that nodes within clusters 

are well interconnected (high edge weights), and nodes across 
clusters are sparsely interconnected (low edge weights) 

 

• most graph partitioning problems are NP hard 
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Graph Partitioning 



Graph Partitioning 

Undirected graph 𝐺(𝑉, 𝐸): 

 

Bi-partitioning task: 

Divide vertices into two disjoint groups 𝑨,𝑩 

 

 

 

 
How can we define a “good” partition of 𝑮? 

How can we efficiently identify such a partition? 
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Graph Partitioning 

What makes a good partition? 

 Maximize the number of within-group  
connections 

 Minimize the number of between-group 
connections 
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Graph Cuts 

Express partitioning objectives as a function of 
the “edge cut” of the partition 
 

Cut: Set of edges with only one vertex in a 
group: 
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An example 



Min Cut 

min-cut: the min number of edges such that when 
removed cause the graph to become disconnected  

Minimizes the number of connections between partition 

U V-U 

    
 


Ui UVj

U
ji,AUVU,E min

This problem can be solved in 
polynomial time 
 
Min-cut/Max-flow algorithm 

arg minA,B cut(A,B) 



Min Cut 

Problem: 
– Only considers external cluster connections 

– Does not consider internal cluster connectivity 
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“Optimal cut” 

Minimum cut 



Graph Bisection 

• Since the minimum cut does not always yield 
good results we need extra constraints to make 
the problem meaningful. 

• Graph Bisection refers to the problem of 
partitioning the nodes of the graph into two 
equal sets. 

• Kernighan-Lin algorithm: Start with random equal 
partitions and then swap nodes to improve some 
quality metric (e.g., cut, modularity, etc). 



Cut Ratio 

Ratio Cut 

Normalize cut by the size of the groups 
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Ratio-cut= 
Cut(U,V−U)

|𝑈|
 + 

Cut(U,V−U)

|𝑉−𝑈|
 



Normalized Cut 

Normalized-cut  

Connectivity between groups relative to the 
density of each group 

 
 

 𝑣𝑜𝑙(𝑈): total weight of the edges with at least  
one endpoint in 𝑈: 𝑣𝑜𝑙 𝑈 =  𝑑𝑖𝑖∈𝑈  

 

Why use these criteria? 

 Produce more balanced partitions 
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Normalized-cut= 
Cut(U,V−U)

𝑉𝑜𝑙(𝑈)
 + 

Cut(U,V−U)

𝑉𝑜𝑙(𝑉−𝑈)
 



Normalized-Cut(Red) = 
1

1
 + 

1

27
 = 

28

27
   

Normalized-Cut(Green) = 
2

12
 + 

2

16
 = 

14

48
   

Ratio-Cut(Red) = 
1

1
 + 

1

8
 = 

9

8
 

Ratio-Cut(Green) = 
2

5
 + 

2

4
 = 

18

20
 

Red is Min-Cut 

Normalized is even better 
for Green due to density 



An example 

Which of the three cuts has the best (min, normalized, ratio) cut? 



Graph expansion 

 

Graph expansion: 

 

 
 
 UV,Umin

U-VU,cut
minα

U 




Graph Cuts 

Ratio and normalized cuts can be reformulated in matrix 
format and solved using spectral clustering 
 



SPECTRAL CLUSTERING 



Matrix Representation 
Adjacency matrix (A): 

– n n matrix 

– A=[aij], aij=1 if edge between node i and j 

 

 

 

 

 

 

 
 

Important properties:  

– Symmetric matrix 

–  Eigenvectors are real and orthogonal 
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1 2 3 4 5 6 

1 0 1 1 0 1 0 

2 1 0 1 0 0 0 

3 1 1 0 1 0 0 

4 0 0 1 0 1 1 

5 1 0 0 1 0 1 

6 0 0 0 1 1 0 

If the graph is weighted, aij= wij 



Spectral Graph Partitioning 

x is a vector in n with components (𝒙𝟏, … , 𝒙𝒏) 

– Think of it as a label/value of each node of 𝑮 

 

 What is the meaning of A x? 

 

 

 

Entry yi is a sum of labels xj of neighbors of i 
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Spectral Analysis 

ith coordinate of A x :  

– Sum of the x-values  
of neighbors of i 

– Make this a new value at node j 

Spectral Graph Theory: 

– Analyze the “spectrum” of a matrix representing 𝐺 

– Spectrum: Eigenvectors 𝑥𝑖 of a graph, ordered by 
the magnitude (strength) of their corresponding 
eigenvalues 𝜆𝑖: 

Spectral clustering: use the eigenvectors of A or 
graphs derived by it 

Most based on the graph Laplacian   
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𝑨 ⋅ 𝒙 = 𝝀 ⋅ 𝒙 



Matrix Representation 

Degree matrix (D): 
– n n  diagonal matrix 

– D=[dii], dii = degree of node i 
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1 2 3 4 5 6 

1 3 0 0 0 0 0 

2 0 2 0 0 0 0 

3 0 0 3 0 0 0 

4 0 0 0 3 0 0 

5 0 0 0 0 3 0 

6 0 0 0 0 0 2 



Matrix Representation 

Laplacian matrix (L): 

– n n symmetric matrix 
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𝑳 =  𝑫 −  𝑨 
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1 2 3 4 5 6 

1 3 -1 -1 0 -1 0 

2 -1 2 -1 0 0 0 

3 -1 -1 3 -1 0 0 

4 0 0 -1 3 -1 -1 

5 -1 0 0 -1 3 -1 

6 0 0 0 -1 -1 2 



Laplacian Matrix properties 

• The matrix L is symmetric and positive semi-
definite 

– all eigenvalues of L are positive 

 
 

• The matrix L has 0 as an eigenvalue, and 
corresponding eigenvector w1 = (1,1,…,1) 

– λ1 = 0 is the smallest eigenvalue 
 

Proof: Let  w1 be the column vector with all 1s -- show Lw1 = 0w1 

positive definite: if zTMz is non-negative, for every non-zero column vector z 



The second smallest eigenvalue 

The second smallest eigenvalue (also known as 
Fielder value) λ2 satisfies 

 

 
Lxxminλ T

1x,wx
2

1 
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The second smallest eigenvalue 

• For the Laplacian 

 

 

• The expression: 

 

is 

1wx   
i i 0x

LxxT
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
Ej)(i,
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ji xx



The second smallest eigenvalue 

 





Ej)(i,

2

ji
0x

xxmin where   
i i 0x

Thus, the eigenvector for eigenvalue λ2 
(called the Fielder vector) minimizes  

 Intuitively, minimum when xi and xj close whenever there is 
an edge between nodes i and j in the graph. 

 
 x must have some positive and some negative components 



Cuts + eigenvalues: intuition 

 A partition of the graph by taking:  
o one set to be the nodes i whose corresponding vector 

component xi is positive and  
o the other set to be the nodes whose corresponding 

vector component is negative.  
 

 The cut between the two sets will have a small number of 
edges because (xi−xj)

2 is likely to be smaller if both xi and xj 

have the same sign than if they have different signs.  
 

 Thus, minimizing xTLx under the required constraints will end 
giving xi and xj the same sign if there is an edge (i, j). 
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Example 



Other properties of L 

Let G be an undirected graph with non-negative 
weights. Then  
 the multiplicity k of the eigenvalue 0 of L equals the 

number of connected components A1, . . . , Ak in the 
graph 

 the eigenspace of eigenvalue 0 is spanned by the 
indicator vectors 1A1 , . . . , 1Ak of those 
components 



Proof (sketch) 

0 = 𝑥𝝉𝑳𝒙 =  𝒙𝒊 − 𝒙𝒋
𝟐

𝒊,𝒋 ∈𝑬

 

If connected (k = 1) 

Assume k connected components,  both A and L block diagonal, if we 
order vertices based on the connected component they belong to (recall 
the “tile” matrix) 

Li Laplacian of the i-th component 

for all block diagonal matrices, that the spectrum is given by the union of the spectra 
of each block, and the corresponding eigenvectors are the eigenvectors of the block, 
filled with 0 at the positions of the other blocks. 



• What we know about x? 

– 𝑥 is unit vector:  𝑥𝑖
2 = 1𝑖  

– 𝑥 is orthogonal to 1st eigenvector (1, … , 1) thus: 
 𝑥𝑖 ⋅ 1𝑖 =  𝑥𝑖𝑖 = 0 
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All labelings 

of nodes 𝑖 so 

that  𝑥𝑖 = 0 

We want to assign values 𝑥𝑖 to nodes i such that 

few edges cross 0. 

(we want xi and xj to subtract each other) 
𝑥𝑖 0 

x 

𝑥𝑗 

Balance to minimize 

Cuts + eigenvalues: summary 



Spectral Clustering Algorithms 

Three basic stages: 
Pre-processing 

• Construct a matrix representation of the graph 

Decomposition 
• Compute eigenvalues and eigenvectors of the matrix 

• Map each point to a lower-dimensional representation 
based on one or more eigenvectors 

Grouping 
• Assign points to two or more clusters, based on the 

new representation 
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Spectral Partitioning Algorithm 

Pre-processing: 
Build Laplacian  
matrix L of the  
graph 

 
 Decomposition: 

– Find eigenvalues  
and eigenvectors x  
of the matrix L 

 
– Map vertices to  

corresponding  
components of 2 
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 = X = 

How do we now 
find the clusters? 
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1 2 3 4 5 6 

1 3 -1 -1 0 -1 0 

2 -1 2 -1 0 0 0 

3 -1 -1 3 -1 0 0 

4 0 0 -1 3 -1 -1 

5 -1 0 0 -1 3 -1 

6 0 0 0 -1 -1 2 



Spectral Partitioning Algorithm 

Grouping: 
– Sort components of reduced 1-dimensional vector 
– Identify clusters by splitting the sorted vector in two 

• How to choose a splitting point? 
– Naïve approaches:  

• Split at 0 or median value 

– More expensive approaches: 
• Attempt to minimize normalized cut in 1-dimension  

(sweep over ordering of nodes induced by the eigenvector) 
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-0.3 5 

-0.3 4 

0.3 3 

0.6 2 

0.3 1 Split at 0: 

Cluster A: Positive points 

Cluster B: Negative points 

0.3 3 

0.6 2 

0.3 1 

-0.6 6 

-0.3 5 

-0.3 4 

A B 



Example: Spectral Partitioning 
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k-Way Spectral Clustering 
How do we partition a graph into k clusters? 
 Recursively apply a bi-partitioning algorithm in a hierarchical 

divisive manner 

• Disadvantages: Inefficient, unstable 
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k-Way Spectral Clustering 

40 

Use several of the eigenvectors to partition the graph.  
 
If we use m eigenvectors, and set a threshold for each, we can 
get a partition into 2m groups, each group consisting of the nodes 
that are above or below threshold for each of the eigenvectors, 
in a particular pattern. 
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Example 

If we use both the 2nd and 3rd eigenvectors,  
nodes 2 and 3 (negative in both) 
5 and 6 (negative in 2nd, positive in 3rd) 
1 and 4 alone 

• Note that each eigenvector except the first is the vector x that minimizes xTLx, subject 
to the constraint that it is orthogonal to all previous eigenvectors.  

• Thus, while each eigenvector tries to produce a minimum-sized cut, successive 
eigenvectors have to satisfy more and more constraints => the cuts progressively worse. 



Spectral Clustering 

 Use the lowest k eigenvalues of L to 
construct the nxk graph G’ that has these 
eigenvectors as columns 

 
 The n-rows represent the graph vertices in a 

k-dimensional Euclidean space  
 

 Group these vertices in k clusters using k-
means clustering or similar techniques 



Spectral clustering (besides graphs) 

Can be used to cluster any points (not just vertices), as long as an 
appropriate similarity matrix  
 
Needs to be symmetric and non-negative 
 
How to construct a graph: 
 
• ε-neighborhood graph: connect all points whose pairwise 

distances are smaller than ε 
• k-nearest neighbor graph: connect each point with each k 

nearest neigbhor 
• full graph: connect all points with weight in the edge (i, j) equal 

to the similarity of i and j 



Summary 

• The values of x minimize 

 

 

• For weighted matrices 

 

 

• The ordering according to the xi values will group similar 
(connected) nodes together 

 

• Physical interpretation: The stable state of springs placed on 
the edges of the graph   
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Normalized Graph Laplacians 

2/12/1
2/12/1
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Lrw closely connected to random walks (to be discussed in 
future lectures) 



Cuts and spectral clustering 

Relaxing Ncut leads to normalized spectral 
clustering, while relaxing RatioCut leads to 
unnormalized spectral clustering 



Finding an Optimal Cut (sketch) 

• Express partition (A,B) as a vector 

𝑦𝑖 =  
+1
−1

     
𝑖𝑓 𝑖 ∈ 𝐴
𝑖𝑓 𝑖 ∈ 𝐵

 

• We can minimize the cut of the partition by 
finding a non-trivial vector x that minimizes: 
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𝑦𝑖 = −1 0 𝑦𝑗 = +1 

Can not solve exactly. Let us relax 𝑦 and 

allow it to take any real value (instead of two) 
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 𝜆2 = min
𝑦

𝑓 𝑦 : The minimum value of 𝑓(𝑦) is 

given by the 2nd smallest eigenvalue λ2 of the 
Laplacian matrix L  

 x = argminy 𝑓 𝑦 : The optimal solution for y is 

given by the corresponding eigenvector 𝑥, referred 
as the Fiedler vector 

 

𝑥𝑖 0 x 𝑥𝑗 

Finding an Optimal Cut (sketch) 

Rayleigh Theorem 



Need to re-transform the real-valued solution vector f of the 
relaxed problem into a discrete indicator vector. Simplest way, 
use the sign 
 
 
 
 
Consider the coordinates fi as points in R and cluster them into 
two groups  C by the k-means clustering algorithm.  

Finding an Optimal Cut (sketch) 



Spectral partition 

• Partition the nodes according to the ordering induced 
by the Fielder vector 

• If u = (u1,u2,…,un) is the Fielder vector, then split 
nodes according to a threshold value s 

– bisection: s is the median value in u 

– ratio cut: s is the value that minimizes α 

– sign: separate positive and negative values (s=0) 

– gap: separate according to the largest gap in the values of u 

• This works well (provably for special cases) 



Fielder Value 

• The value λ2 is a good approximation of the graph expansion 
 
 
 
 
 
 

• For the minimum ratio cut of the Fielder vector we have that 
 
 
 
 

• If the max degree dmax is bounded we obtain a good approximation of the 
minimum expansion cut 

α2λ
2d

α
2

max

2



 2max2
2 λ2dλα

2

λ


dmax = maximum degree 

α2λ
2d

α
2

max

2



Suppose there is a partition of G into A and B where 

𝐴 ≤ |𝐵|, s.t. 𝛼 =
(# 𝑒𝑑𝑔𝑒𝑠 𝑓𝑟𝑜𝑚 𝐴 𝑡𝑜 𝐵)

𝐴
 



Approx. Guarantee of Spectral (proof) 

• Suppose there is a partition of G into A and B 
where 𝐴 ≤ |𝐵|, s.t. 𝛼 =

(# 𝑒𝑑𝑔𝑒𝑠 𝑓𝑟𝑜𝑚 𝐴 𝑡𝑜 𝐵)

𝐴
 

then 2𝛼 ≥ 𝜆2 
– This is the approximation guarantee of the spectral 

clustering. It says the cut spectral finds is at most 2 
away from the optimal one of score 𝛼. 

• Proof:  
– Let: a=|A|, b=|B| and e= # edges from A to B 
– Enough to choose some 𝑥𝑖 based on A and B such 

that: 𝜆2 ≤
 𝑥𝑖−𝑥𝑗

2

 𝑥𝑖
2

𝑖
≤ 2𝛼      (while also  𝑥𝑖 = 0𝑖 ) 
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𝝀𝟐 is only smaller  



Approx. Guarantee of Spectral 

• Proof (continued):  

(1) Set: 𝑥𝑖 =  
−

1

𝑎

+
1

𝑏

     
𝑖𝑓 𝑖 ∈ 𝐴
𝑖𝑓 𝑖 ∈ 𝐵

 

• Let’s quickly verify that  𝑥𝑖 = 0:  𝑎 −
1

𝑎
+ 𝑏

1

𝑏
= 0𝑖  

(2) Then: 
 𝑥𝑖−𝑥𝑗

2

 𝑥𝑖
2

𝑖
=

 
1

𝑏
+
1

𝑎

2

𝑖∈𝐴,𝑗∈𝐵

𝑎 −
1

𝑎

2
+𝑏

1

𝑏

2 =
𝑒⋅

1

𝑎
+
1

𝑏

2

1

𝑎
+
1

𝑏

=

𝑒
1

𝑎
+

1

𝑏
≤ 𝑒

1

𝑎
+

1

𝑎
≤ 𝑒

2

𝑎
= 2𝛼   
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Which proves that the cost 

achieved by spectral is better 

than twice the OPT cost 
e … number of edges between A and B 



Approx. Guarantee of Spectral 
• Putting it all together: 

2𝛼 ≥ 𝜆2 ≥
𝛼2

2𝑑𝑚𝑎𝑥
 

– where 𝑑𝑚𝑎𝑥 is the maximum node degree  
in the graph 

• Note we only provide the 1st part: 2𝛼 ≥ 𝜆2 

• We did not prove 𝜆2 ≥
𝛼2

2𝑑𝑚𝑎𝑥
 

– Overall this always certifies that 𝜆2 always gives a 
useful bound 
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MAXIMUM DENSEST SUBGRAPH 
Thanks to Aris Gionis 



Finding dense subgraphs 

• Dense subgraph: A collection of vertices such 
that there are a lot of edges between them 

– E.g., find the subset of email users that talk the 
most between them 

– Or, find the subset of genes that are most 
commonly expressed together 

• Similar to community identification but we do 
not require that the dense subgraph is 
sparsely connected with the rest of the graph. 



Definitions 

• Input: undirected graph 𝐺 = (𝑉, 𝐸). 

• Degree of node u: deg 𝑢  

• For two sets 𝑆 ⊆ 𝑉 and 𝑇 ⊆ 𝑉: 
𝐸 𝑆, 𝑇 = u, v ∈ 𝐸: 𝑢 ∈ 𝑆, 𝑣 ∈ 𝑇  

• 𝐸 𝑆 = 𝐸(𝑆, 𝑆): edges within nodes in 𝑆 

• Graph Cut defined by nodes in 𝑆 ⊆ 𝑉: 

𝐸(𝑆, 𝑆 ): edges between 𝑆 and the rest of the graph 

• Induced Subgraph by set 𝑆 : 𝐺𝑆 = (𝑆, 𝐸 𝑆 ) 



Definitions 

• How do we define the density of a subgraph? 
 

• Average Degree: 

𝑑 𝑆 =  
2|𝐸 𝑆 |

|𝑆|
 

 
• Problem: Given graph G, find subset S, that 

maximizes density d(S) 
– Surprisingly there is a polynomial-time algorithm for 

this problem. 



Min-Cut Problem 

Given a graph* 𝐺 = (𝑉, 𝐸),  
A source vertex 𝑠 ∈ 𝑉,  
A destination vertex 𝑡 ∈ 𝑉 
 
Find a set 𝑆 ⊆ 𝑉 
Such that 𝑠 ∈ 𝑆 and 𝑡 ∈ 𝑆  
That minimizes 𝐸(𝑆, 𝑆 ) 

* The graph may be weighted 

Min-Cut = Max-Flow: the minimum cut maximizes the flow that can 
be sent from s to t. There is a polynomial time solution. 



Decision problem 

• Consider the decision problem: 

– Is there a set 𝑆 with 𝑑 𝑆 ≥ 𝑐? 

• 𝑑 𝑆 ≥ 𝑐 
 

• 2 𝐸 𝑆 ≥ 𝑐|𝑆| 
 

•  deg 𝑣 − 𝐸 𝑆, 𝑆 ≥ 𝑐|𝑆|𝑣∈𝑆  
 

• 2 𝐸 −  deg 𝑣𝑣∈𝑆 − 𝐸 𝑆, 𝑆 ≥ 𝑐 𝑆  
 

•  deg 𝑣𝑣∈𝑆 + 𝐸 𝑆, 𝑆 + 𝑐 𝑆 ≤ 2|𝐸| 



Transform to min-cut 

• For a value 𝑐 we do the following transformation 

 

 

 

 

 

 

 

 

 

• We ask for a min s-t cut in the new graph 



Transformation to min-cut 

• There is a cut that has value 2|𝐸| 



Transformation to min-cut 

• Every other cut has value: 

•  deg 𝑣𝑣∈𝑆 + 𝐸 𝑆, 𝑆 + 𝑐 𝑆  



Transformation to min-cut 

• If  deg 𝑣𝑣∈𝑆 + 𝐸 𝑆, 𝑆 + 𝑐 𝑆 ≤ 2|𝐸| then 
𝑆 ≠ ∅ and 𝑑 𝑆 ≥ 𝑐 



Algorithm (Goldberg) 

Given the input graph G, and value c 

1. Create the min-cut instance graph 

2. Compute the min-cut 

3. If the set S is not empty, return YES 

4. Else return NO 

 

How do we find the set with maximum density? 



Min-cut algorithm 

• The min-cut algorithm finds the optimal solution in 
polynomial time O(nm), but this is too expensive for 
real networks. 

• We will now describe a simpler approximation 
algorithm that is very fast 
– Approximation algorithm: the ratio of the density of the 

set produced by our algorithm and that of the optimal is 
bounded. 

• We will show that the ratio is at most ½  
• The optimal set is at most twice as dense as that of the 

approximation algorithm. 

 
• Any ideas for the algorithm? 



Greedy Algorithm 

Given the graph 𝐺 = (𝑉, 𝐸) 

1.  𝑆0 = 𝑉 

2.  For 𝑖 = 1… |𝑉| 

a. Find node 𝑣 ∈ 𝑆 with the minimum degree 

b.  𝑆𝑖 = 𝑆𝑖−1 ∖ {𝑣} 

3. Output the densest set 𝑆𝑖   



Example 



Analysis 

• We will prove that the optimal set has density 
at most 2 times that of the set produced by 
the Greedy algorithm. 

 

• Density of optimal set: 𝑑𝑜𝑝𝑡 = max
𝑆⊆𝑉

𝑑(𝑆) 

• Density of greedy algorithm 𝑑𝑔 

 

• We want to show that 𝑑𝑜𝑝𝑡 ≤ 2 ⋅ 𝑑𝑔 



Upper bound 

• We will first upper-bound the solution of optimal 

• Assume an arbitrary assignment of an edge 
(𝑢, 𝑣) to either 𝑢 or 𝑣 

 

• Define:  
– 𝐼𝑁 𝑢 = # edges assigned to u 

– Δ = max
𝑢∈𝑉

𝐼𝑁(𝑢) 

• We can prove that  

– 𝑑𝑜𝑝𝑡 ≤ 2 ⋅ Δ 
This is true for any 
assignment of the edges! 



Lower bound 

• We will now prove a lower bound for the density of the 
set produced by the greedy algorithm. 

• For the lower bound we consider a specific assignment 
of the edges that we create as the greedy algorithm 
progresses: 
– When removing node 𝑢 from 𝑆, assign all the edges to 𝑢 

• So: 𝐼𝑁 𝑢 = degree of 𝑢 in 𝑆 ≤ 𝑑 𝑆 ≤ 𝑑𝑔 

• This is true for all 𝑢 so Δ ≤ 𝑑𝑔 

 

• It follows that 𝑑𝑜𝑝𝑡 ≤ 2 ⋅ 𝑑𝑔 



The k-densest subgraph 

• The k-densest subgraph problem: Find the set 
of 𝑘 nodes 𝑆, such that the density 𝑑(𝑆) is 
maximized. 

– The k-densest subgraph problem is NP-hard! 



QUANTIFYING SOCIAL GROUP 
EVOLUTION 

G Palla, AL Barabási, T Vicsek, Nature 446 (7136), 664-667 



 monthly list of articles in the Cornell University 
Library e-print condensed matter (cond-mat) archive 
spanning 142 months, with over 30,000 authors, 

 
 phone calls between the customers of a mobile 

phone company spanning 52 weeks (accumulated 
over two-week-long periods) containing the 
communication patterns of over 4 million users. 

Datasets 



Datasets 

black nodes/edges do not belong to any community,  
red nodes belong to two or more communities are shown in red 



Different local structure: 
 Co-authorship: dense network with significant overlap 

among communities (co-authors of an article form 
cliques) -- Phone-call: communities less interconnected, 
often separated by one or more inter-community 
node/edge  

 Phone-call: the links correspond to instant 
communication events,  whereas in co-authorship long-
term collaborations.  

 
Fundamental differences suggest that any common features 
represent potentially generic characteristics 

Datasets 



 Communities at each time step extracted using the clique 
percolation method (CPM)  
 

 Why CPM?  
their members can be reached through well connected subsets 
of nodes, and communities may overlap  

 
 Parameters 
k = 4 
Weighted graph – use a weight threshold w* (links weaker than 
w* are ignored) 

Approach 



Basic Events 



For each pair of consecutive time steps t and t+1, construct a joint graph consisting of 
the union of links from the corresponding two networks, and extract the CPM 
community structure of this joint network  
 
 
 
 
 
 
 
 
 Any community from either the t or the t+1 snapshot is contained in exactly one 

community in the joint graph 
 If a community in the joint graph contains a single community from t and a single 

community from t+1, then they are matched. 
 If the joint group contains more than one community from either time steps, the 

communities are matched in descending order of their relative node overlap 

Identifying Events 



s: size 
t: age 
 s and t are positively correlated: larger communities are on average older  

Results 

s 



Auto-correlation function 

 the collaboration network is more “dynamic” (decays faster) 
 in both networks, the auto-correlation function decays faster for the 

larger communities, showing that the membership of the larger 
communities is changing at a higher rate.  

where A(t) members of community A at t 

Results 



Results 

1-ζ: the average ratio of members 
changed in one step 
τ*: lifetime, stationarity ζ 
the average life-span <t*> (colour 
coded) as a function of ζ and s 
 for small communities optimal ζ 

near 1, better to have static, time-
independent 

 For large communities, the peak is 
shifted towards low f values, 
better to have acontinually 
changing membership 

phone-call 

co-authorship 



Results 



Results 



Can we predict the evolution? 

wout: individual commitment to outside the community 
win: individual commitment inside the community 
p: probability to abandon the community 



Can we predict the evolution? 

Wout: total weight of links to nodes outside the community 
Win: total weight of links inside the community  
p: probability of a community to disintegrate in the next step 
for co-authorship max lifetime at intermediate values 



Conclusions 
Significant difference between smaller collaborative or friendship 
circles and institutions.  
 
 At the heart of small communities are a few strong relationships, 

and as long as these persist, the community around them is 
stable. 

  
 The condition for stability of large communities is continuous 

change, so that after some time practically all members are 
exchanged.  
 

 Loose, rapidly changing communities reminiscent of institutions, 
which can continue to exist even after all members have been 
replaced by new members (e.g., members of a school).  
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Questions? 


