
Online Social Networks and 
Media  

Community detection 
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1. You should write your own code for generating the 
graphs.  

You may use SNAP graph primitives (e.g., add 
node/edge) 
 
2. For the degree distribution: 
you should produce 5 plots (simple distribution, bins of 
equal size, bins of exponential size, cumulative, zipf) 
 
3. For all your measurements, generate a number, say 
100, different graphs and report average values (this 
refers to the graphs in cases (a) and (c)) 

Notes on Homework 1 
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Real networks are not random graphs 
 
Communities 
aka: groups, clusters, cohesive subgroups, modules 
 
(informal) Definition: groups of vertices which probably 
share common properties and/or play similar roles 
within the graph 
 
Some are explicit (emic) (e.g., Facebook (groups), 
LinkedIn (groups, associations), etc), we are interested 
in implicit (etic) ones 

Introduction 
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Nodes: Football Teams 
Edges: Games played 

Can we identify node 
groups? 

(communities, 
modules, clusters) 



NCAA Football Network 

5 

NCAA conferences 

Nodes: Football Teams 
Edges: Games played 



Protein-Protein Interactions 
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Can we identify 
functional 
modules? 

Nodes: Proteins 
Edges: Physical interactions 



Protein-Protein Interactions 
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Functional modules 

Nodes: Proteins 
Edges: Physical interactions 



Protein-Protein Interactions 
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Facebook Network 
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Can we identify social 
communities? 

Nodes: Facebook Users 
Edges: Friendships 



Facebook Network 
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High school Summer 
internship 

Stanford (Squash) Stanford (Basketball) 

Social communities 

Nodes: Facebook Users 
Edges: Friendships 



Twitter & Facebook 

social circles, circles of trust 
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PART I 
1. Introduction: what, why, types? 

 

2. Cliques and vertex similarity 
 

3. Background: How it relates to “cluster analysis”  
 

4. Hierarchical clustering (betweenness) 
 

5. Modularity 
 

6. How to evaluate (if time allows)  
 

PART II 
Cuts, Spectral clustering, Denser subgraphs, community 
evolution 

Outline 
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Why? (some applications) 

 Knowledge discovery 
 

 Groups based on common interests, behavior, etc 
(e.g., Canadians who call USA, readings tastes, etc) 

 Recommendations, marketing 
 

 Collective behavior (observable at the group, not 
the individual level, local view is noisy and ad hoc) 
 

 Performance-wise (partition a large graph into many machines, 

assigning web clients to web servers, routing in ad hoc networks, etc) 
 

 Classification of the nodes (by identifying modules 
and their boundaries) 
 

 Summary, visual representation of the graph 
13 



Community Types 

Non-overlapping vs. overlapping  communities 
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Non-overlapping Communities 
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Network Adjacency matrix 

Nodes 
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Overlapping Communities 
What is the structure of community overlaps: 
Edge density in the overlaps is higher! 
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Communities as “tiles” 



Community Types 

Member-based (local) vs. group-based 
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Community Detection 

Given a graph G(V, E), find subsets Ci of V,  

such that i Ci  V 

 Edges can also represent content or attributes shared 
by individuals (in the same location, of the same 
gender, etc) 

 Undirected graphs 
 Unweighted (easily extended) 
 Attributed, or labeled graphs 

Multipartite graphs – e.g., affiliation networks, citation 
networks, customers-products: reduced to unipartited 
projections of each vertex class  
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Cliques (degree similarity) 

Clique: a maximum complete subgraph in which all pairs of 
vertices are connected by an edge.  
 
A clique of size k is a subgraph of k vertices where the degree 
of all vertices in the induced subgraph is k -1 . 

 Cliques vs complete graphs 
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Cliques (degree similarity) 

Search for  
 the maximum clique (the one with the largest number of 

vertices) or  
 for all maximal cliques (cliques that are not subgraphs of a 

larger clique; i.e., cannot be expanded further). 
 
Both problems are NP-hard, as is verifying whether a graph 
contains a clique larger than size k.  
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Cliques 

Enumerate all cliques. 
Checks all permutations! 
For 100 vertices, 299- 1 different cliques 
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Cliques 
Pruning 
 Prune all vertices (and incident edges) with degrees less than 

k - 1.  
 

 Effective due to the power-law distribution of vertex degrees  
 
 
“Exact cliques” are rarely observed in real networks.  
 

E.g., a clique of 1,000 vertices has (999x1000)/2  = 499,500 
edges.  
 A single edge removal results in a subgraph that is no longer 

a clique.  
 That represents less than 0.0002% of the edges 
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Relaxing Cliques 

All vertices have a minimum degree but not necessarily k -1  
 

k-plex 
For a set of vertices V, for all u, du ≥  |V| - k 
where du is the degree of v in the induced subgraph  

What is k for a clique? 

Maximal 
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Clique Percolation Method (CPM): 
Using cliques as seeds 

Assumption: communities are formed from a set of cliques and 
edges that connect these cliques.  
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Clique Percolation Method (CPM): 
Using cliques as seeds 

Two k-cliques are adjacent if they share k - 1 vertices. 
 
The union of adjacent k-cliques is called k-clique chain.  
 
Two k-cliques are connected if they are part of a k-
clique chain.  
 
A k-clique community is the largest connected 
subgraph obtained by the union of a k-clique and of all 
k-cliques which are connected to it. 

25 



Clique Percolation Method (CPM): 
Using cliques as seeds 

1. Given k,  find all cliques of size k.  
2. Create graph (clique graph) where all cliques are vertices, 

and two cliques that share k - 1 vertices are connected via 
an edge.  

3. Communities are the connected components of this graph.  
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Clique Percolation Method (CPM): 
Using cliques as seeds 

Input graph, let k = 3 
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Clique Percolation Method (CPM): 
Using cliques as seeds 

Clique  graph for k = 3 
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(v1,  v2, ,v3), (v8, v9, v10), and (v3, v4, v5, v6, v7,  v8) 



Clique Percolation Method (CPM): 
Using cliques as seeds 
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(v1,  v2, ,v3), (v8, v9, v10), and (v3, v4, v5, v6, v7,  v8) 

Result 

Note: the example protein network was detected using a CPM algorithm 



Clique Percolation Method (CPM): 
Using cliques as seeds 

 A k-clique community is identified by making a k-clique “roll" over 
adjacent k-cliques, where rolling means rotating a k-clique about the k-1 
vertices it shares with any adjacent k-clique.  
 

 By construction, overlapping.  
 

 There may be vertices belonging to nonadjacent k-cliques, which could 
be reached by different  paths and end up in different clusters.  
 

 There are also vertices that cannot be reached by any k-clique 
 

 In the example, if instead of k = 3, for the maximal cliques?  
 

 Theoretical complexity grows exponential with size, but efficient on 
sparse graphs 
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Vertex similarity 

 Define similarity between two vertices 
 Place similar vertices in the same 

cluster 
 
 

 Use traditional cluster analysis 
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Vertex similarity 

 Structural equivalence: based on the 
overlap between  their neighborhoods 

32 

 Normalized to [0, 1], e.g., 



Vertex similarity 
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Other definitions of vertex similarity 
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Use the adjacency matrix A,  



Other definitions of vertex similarity 
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If we map vertices u, v to n-dimensional points  A, B in the 
Euclidean space,  



Other definitions of vertex similarity 
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Many more – we shall revisit this issue when we talk about link 
prediction 



PART I 
1. Introduction: what, why, types? 

 

2. Cliques and vertex similarity 
 

3. Background: cluster analysis 
 

4. Hierarchical clustering (betweenness) 
 

5. Modularity 
 

6. How to evaluate 

Outline 

37 



What is Cluster Analysis? 
Finding groups of objects such that the objects in a group 
will be similar (or related) to one another and different 
from (or unrelated to) the objects in other groups 

Inter-cluster 
distances are 
maximized 

Intra-cluster 
distances are 

minimized 
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Notion of a cluster can be ambiguous 

How many clusters? 

Four Clusters  Two Clusters  

Six Clusters  
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Types of Clustering 

• A clustering is a set of clusters 
 

• Important distinction between hierarchical 
and partitional sets of clusters  
 

• Partitional Clustering 
– Division of data objects into non-overlapping subsets (clusters) such 

that each data object is in exactly one subset 

– Assumes that the number of clusters is given 
 

• Hierarchical clustering 
– A set of nested clusters organized as a hierarchical tree  
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Partitional Clustering 

Original Points A Partitional  Clustering 
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Hierarchical Clustering  

• Produces a set of nested clusters organized as 
a hierarchical tree 

• Can be visualized as a dendrogram 

– A tree like diagram that records the sequences of 
merges or splits 
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Other Distinctions Between Sets of Clusters 

• Exclusive versus non-exclusive 
– In non-exclusive clustering, points may belong to multiple clusters. 
– Can represent multiple classes or ‘border’ points 

• Fuzzy versus non-fuzzy 
– In fuzzy clustering, a point belongs to every cluster with some 

weight between 0 and 1 
– Weights must sum to 1 
– Probabilistic clustering has similar characteristics 

• Partial versus complete 
– In some cases, we only want to cluster some of the data 

• Heterogeneous versus homogeneous 
– Cluster of widely different sizes, shapes, and densities 
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Clusters defined by an objective 
function 

Finds clusters that minimize or maximize an objective 
function.  
– Enumerate all possible ways of dividing the points into clusters and 

evaluate the `goodness' of each potential set of clusters by using the 
given objective function.  (NP Hard) 

–  Can have global or local objectives. 

•  Hierarchical clustering algorithms typically have local objectives 

•  Partitional algorithms typically have global objectives 

– A variation of the global objective function approach is to fit the data 
to a parameterized model.  

•  Parameters for the model are determined from the data.  

•  Mixture models assume that the data is a ‘mixture' of a number 
of statistical distributions.   
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Clustering Algorithms 

• K-means 

• Hierarchical clustering 

• Density clustering 
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K-means Clustering 

• Partitional clustering approach  

• Each cluster is associated with a centroid (center point)  

• Each point is assigned to the cluster with the closest 
centroid 

• Number of clusters, K, must be specified 

• The basic algorithm is very simple 

46 



• Initial centroids are often chosen randomly. 

– Clusters produced vary from one run to another. 

• The centroid is (typically) the mean of the points in the cluster. 

• ‘Closeness’  is measured by Euclidean distance, cosine similarity, 
correlation, etc. 

• K-means will converge for common similarity measures mentioned 
above. 

• Most of the convergence happens in the first few iterations. 

– Often the stopping condition is changed to ‘Until relatively few 
points change clusters’ 

• Complexity is O( n * K * I * d ) 

– n = number of points, K = number of clusters,  
I = number of iterations, d = number of attributes 

K-means Clustering 
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Example 
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Example 
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Two different K-means clusterings 
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Importance of choosing initial points 



 K-means Clusters 

• Most common measure is Sum of Squared Error (SSE) 
– For each point, the error is the distance to the nearest cluster 

– To get SSE, we square these errors and sum them. 

 

 

 

– x is a data point in cluster Ci and mi is the representative point for 
cluster Ci  

•  can show that mi corresponds to the center (mean) of the cluster 

– Given two clusters, we can choose the one with the smallest error 

– One easy way to reduce SSE is to increase K, the number of clusters 
•  A good clustering with smaller K can have a lower SSE than a poor 

clustering with higher K 


 


K
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Limitations of K-means 

• K-means has problems when clusters are of 
differing  

– Sizes 

– Densities 

– Non-globular shapes 

 

• K-means has problems when the data contains 
outliers. 
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Pre-processing and Post-processing 

• Pre-processing 
– Normalize the data 

– Eliminate outliers 
 

• Post-processing 
– Eliminate small clusters that may represent outliers 

– Split ‘loose’ clusters, i.e., clusters with relatively high 
SSE 

– Merge clusters that are ‘close’ and that have relatively 
low SSE 

– Can use these steps during the clustering process 
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Hierarchical Clustering 
• Two main types of hierarchical clustering 

– Agglomerative:   
•  Start with the points (vertices)  as individual clusters 

•  At each step, merge the closest pair of clusters until only one cluster (or k 
clusters) left 

 

– Divisive:   
•  Start with one, all-inclusive cluster  (the whole graph) 

•  At each step, split a cluster until each cluster contains a point (vertex) (or 
there are k clusters) 

 

• Traditional hierarchical algorithms use a similarity or distance 
matrix 
– Merge or split one cluster at a time 
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Strengths of Hierarchical Clustering 

• Do not have to assume any particular number 
of clusters 
– Any desired number of clusters can be obtained 

by ‘cutting’ the dendogram at the proper level 

 

• They may correspond to meaningful 
taxonomies 
– Example in biological sciences (e.g., animal 

kingdom, phylogeny reconstruction, …) 
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Agglomerative Clustering Algorithm 

• Popular hierarchical clustering technique 
 

• Basic algorithm is straightforward 
1. [Compute the proximity matrix] 

2. Let each data point be a cluster 

3. Repeat 

4.  Merge the two closest clusters 

5.  [Update the proximity matrix] 

6. Until only a single cluster remains 
  

• Key operation is the computation of the proximity of two 
clusters 

– Different approaches to defining the distance between clusters 
distinguish the different algorithms 
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How to Define Inter-Cluster Similarity 

  

p1 

p3 

p5 

p4 

p2 

p1 p2 p3 p4 p5 . . . 

. 

. 

. 

Similarity? 

Proximity Matrix 
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How to Define Inter-Cluster Similarity 

p1 

p3 

p5 

p4 

p2 

p1 p2 p3 p4 p5 . . . 

. 

. 

. 
Proximity Matrix 

MIN  or single link 

 based on the two most similar (closest) 
points in the different clusters 

 

(sensitive to outliers) 
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How to Define Inter-Cluster Similarity 

  

p1 

p3 

p5 

p4 

p2 

p1 p2 p3 p4 p5 . . . 

. 

. 

. 
Proximity Matrix 

MAX or complete linkage  

 Similarity of two clusters is based on 
the two least similar (most distant) 
points in the different clusters 

59 

(Tends to break large clusters 
Biased towards globular clusters) 



How to Define Inter-Cluster Similarity 

  

p1 

p3 

p5 

p4 

p2 

p1 p2 p3 p4 p5 . . . 

. 

. 

. 
Proximity Matrix 

Group Average 

 Proximity of two clusters is the average of 
pairwise proximity between points in the 
two clusters. 
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How to Define Inter-Cluster Similarity 

  

p1 

p3 

p5 

p4 

p2 

p1 p2 p3 p4 p5 . . . 

. 

. 

. 
Proximity Matrix 

Distance Between Centroids 
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Cluster Similarity: Ward’s Method 

• Similarity of two clusters is based on the increase 
in squared error when two clusters are merged 
– Similar to group average if distance between points is 

distance squared 
 

• Less susceptible to noise and outliers 
 

• Biased towards globular clusters 
 

• Hierarchical analogue of K-means 
– Can be used to initialize K-means 
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Example of a Hierarchically Structured 
Graph 
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Graph Partitioning 

 Divisive methods: try to identify and remove the “spanning 
links” between densely-connected regions 
 Agglomerative methods: Find nodes that are likely to belong 
to the same region and merge them together (bottom-up) 
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The Girvan Newman method 

65 

Hierarchical divisive method 
 Start with the whole graph 
 Find edges whose removal  “partitions” the graph 
 Repeat with each subgraph until single vertices 

 

Which edge? 



Use bridges or cut-edge (if removed, the nodes 
become disconnected) 
 
Which one to choose? 

66 

The Girvan Newman method 
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The Girvan Newman method 

There may be none! 



Strength of Weak Ties 
• Edge betweenness: Number of  

shortest paths passing over the edge 
• Intuition: 

68 

Edge strengths (call volume)  
in a real network 

Edge betweenness  
in a real network 



Edge Betweenness 
Betweenness of an edge (a, b): number of pairs of nodes x and y such that the edge (a, b) 
lies on the shortest path between x and y - since there can be several such  shortest paths 
edge (a, b) is credited with the fraction of those shortest paths that include (a, b). 

7x7 = 49 

3x11 = 33 

1 

1x12 = 12 

Edges that have a high probability to occur on a randomly chosen shortest path between 
two randomly chosen nodes have a high betweenness. 

Traffic (unit of flow) 

),(_#

),(),(_#
),(bt

, yxpathsshortest

bathroughyxpathsshortest
ba

yx
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b=16 
b=7.5 



» Undirected unweighted networks 

 

– Repeat until no edges are left: 

• Calculate betweenness of edges 

• Remove edges with highest betweenness 

– Connected components are communities 

– Gives a hierarchical decomposition of the network 
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[Girvan-Newman ‘02] 

The Girvan Newman method 



Girvan Newman method: An example 

Betweenness(7, 8)= 7x7 = 49 

Betweenness(3, 7)=Betweenness(6, 7)=Betweenness(8, 9) = Betweenness(8, 12)= 3X11=33 

Betweenness(1, 3) = 1X12=12 
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Girvan-Newman: Example 

72 

Need to re-compute betweenness at every step 

49 
33 

12 
1 



Girvan Newman method: An example 

Betweenness(3,7)=Betweenness(6,7)=Betweenness(8,9) = Betweenness(8,12)= 3X4=12 

Betweenness(1, 3) = 1X5=5 
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Girvan Newman method: An example 

Betweenness of every edge = 1 
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Girvan Newman method: An example 
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Girvan-Newman: Example 
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Step 1: Step 2: 

Step 3: Hierarchical network decomposition: 



Another example 

5X5=25 
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Another example 

5X6=30 5X6=30 
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Another example 

79 



Girvan-Newman: Results 

• Zachary’s Karate club:  
Hierarchical decomposition 
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Girvan-Newman: Results 

81 
Communities in physics collaborations  



How to Compute Betweenness? 

• Want to compute  betweenness of 
paths starting at node 𝐴 
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Computing Betweenness 

1.Perform a BFS starting from A 
2.Determine the number of shortest path 

from A to each other node 
3.Based on these numbers, determine the 

amount of flow from A to all other nodes 
that uses each edge 
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Initial network BFS on A 
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Computing Betweenness: 
step 1 



Count how many shortest paths from A to a specific 
node 

Level 1 

Level 3 

Level 2 

Level 4 
Top-down 
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Computing Betweenness: step 2 



For each edge e: calculate the sum over 
all nodes Y of the fraction of shortest 
paths from the root A to Y that go 
through e. 
 
Each edge (X, Y) participates in the 
shortest-paths from the root to Y and 
to nodes (at levels) below Y -> Bottom 
up calculation 

e 
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Computing Betweenness: step 3 

Compute betweenness by working up the tree: If 
there are multiple paths count them fractionally 



Count the flow through each 
edge 

|)},(_|

|through ),(|

,

)(

YXpathshortest

eYXpathshortest

YX

ecredit




Portion of the 
shortest paths to K 
that go through (I, K) 
= 3/6 = 1/2 

Portion of the shortest paths 
to  I that go through (F, I) = 2/3 
+   
Portion of the shortest paths 
to K that go through (F, I) 
(1/2)(2/3) = 1/3 
= 1 
 

1/3+(1/3)1/2 = 1/2 
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Computing Betweenness: step 3 



88 

1 path to K. 

Split evenly 

1+0.5 paths to J 

Split 1:2 

1+1 paths to H 

Split evenly 

The algorithm: 

•Add edge flows: 

  -- node flow =  

        1+∑child edges  

  -- split the flow up 

based on the parent 

value 

• Repeat the BFS 

procedure for each 

starting node 𝑈 

Computing Betweenness: step 3 



(X, Y) 
 

X 

Y 

pX 

pY 

),()/(/),( iYYflow
Y

p
X

ppp
childofYiY

YXYXflow 

.. . 

Y1 Ym 
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Computing Betweenness: step 3 



Computing Betweenness 

Repeat the process for all nodes 
 
Sum over all BFSs 
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Example 
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Example 
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Computing Betweenness 

Issues 
 

  Test for connectivity? 
 

  Re-compute all paths, or only those affected 
 

  Parallel computation 
 

  Sampling 
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PART I 
1. Introduction: what, why, types? 

 

2. Cliques and vertex similarity 
 

3. Background: Cluster analysis 
 

4. Hierarchical clustering (betweenness) 
 

5. Modularity 
 

6. How to evaluate 

Outline 
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Modularity 
• Communities: sets of  

tightly connected nodes 

• Define: Modularity 𝑸 

– A measure of how well  
a network is partitioned  
into communities 

– Given a partitioning of the  
network into groups 𝑠

 
 𝑆: 

 Q   ∑s S [ (# edges within group s) –   

                      (expected # edges within group s) ] 

 

95 

Need a null model! 
a copy of the original graph keeping some of its structural 
properties but without community structure 



Null Model: Configuration Model 

• Given real 𝐺 on 𝑛 nodes and 𝑚 edges,  
construct rewired network 𝐺’ 

– Same degree distribution but  
random connections 

– Consider 𝑮’ as a multigraph 

– The expected number of edges between nodes  

𝑖 and 𝑗 of degrees 𝒅𝒊 and 𝒅𝒋 equals to: 𝒅𝒊 ⋅
𝒅𝒋

𝟐𝒎
=
𝒅𝒊𝒅𝒋

𝟐𝒎
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j 

i 

 𝑑𝑢
𝑢∈𝑁

= 2𝑚 

Note: 

For any edge going out of i randomly, the probability of this 

edge getting connected to node j is 
𝒅𝒋

𝟐𝒎
 

Because the degree for i is di, we have di number of such edges 



Null Model: Configuration Model 

 
• The expected number of edges in (multigraph) G’: 

– =
𝟏

𝟐
  

𝒅𝒊𝒅𝒋

𝟐𝒎𝒋∈𝑵𝒊∈𝑵 =
𝟏

𝟐
⋅
𝟏

𝟐𝒎
 𝒅𝒊  𝒅𝒋𝒋∈𝑵𝒊∈𝑵 = 

–  =
𝟏

𝟒𝒎
𝟐𝒎 ⋅ 𝟐𝒎 = 𝒎 
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j 

i 

 𝑑𝑢
𝑢∈𝑁

= 2𝑚 

Note: 



Modularity 

• Modularity of partitioning S of graph G: 
– Q  ∑s S [ (# edges within group s) –   

                   (expected # edges within group s) ] 

– 𝑄 𝐺, 𝑆 =
1

2𝑚
   𝐴𝑖𝑗 −

𝑑𝑖𝑑𝑗

2𝑚𝑗∈𝑠𝑖∈𝑠𝑠∈𝑆  
 

 

• Modularity values take range [−1, 1] 
– It is positive if the number of edges within  

groups exceeds the expected number 

– 0.3-0.7 < Q means significant community structure 
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Aij = 1 if ij,  

        0 else Normalizing cost.: -1<Q<1 



Modularity 
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Greedy method of Newman (one of the many ways 
to use modularity) 
 

Agglomerative hierarchical clustering method  
 

1. Start with a state in which each vertex is the sole 
member of one of n communities 

2. Repeatedly join communities together in pairs, 
choosing at each step the join that results in the 
greatest increase (or smallest decrease) in Q. 

Since the joining of a pair of communities between which there are no 
edges can never result in an increase in modularity, we need only consider 
those pairs between which there are edges, of which there will at any time 
be at most m 



Modularity: Number of clusters 
• Modularity is useful for selecting the  

number of clusters: 
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Q 



Modularity: Cluster quality 
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When a given clustering is “good”? 
 
Also, it is both a local (per individual cluster) 
and global measure 



Community Evaluation 

 With ground truth 
 

 Without ground truth 
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Evaluation with ground truth 

Zachary’s Karate Club 
Club president (34) (circles) and instructor (1) (rectangles) 
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Metrics: purity 
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the fraction of instances that have labels equal to the 
label of the community’s majority  

(5+6+4)/20 = 0.75 



Metrics 
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Based on pair counting: the number of pairs of vertices which 
are classified in the same (different) clusters in the two 
partitions. 

 True Positive (TP) Assignment: when similar members are 
assigned to the same community. This is a correct decision. 

 True Negative (TN) Assignment: when dissimilar members 
are assigned to different communities. This is a correct 
decision. 

 False Negative (FN) Assignment: when similar members are 
assigned to different communities. This is an incorrect 
decision. 

 False Positive (FP) Assignment: when dissimilar members 
are assigned to the same community. This is an incorrect 
decision. 



Metrics: pairs 
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For TP, we need to compute the number of pairs with the 
same label that are in the same community 



Metrics: pairs 
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For TN: compute the 
number of dissimilar 
pairs in dissimilar 
communities 



Metrics: pairs 
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For FP, compute dissimilar pairs that are in the same community. 

For FN, compute similar members that are in different communities. 



Metrics: pairs 
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Precision (P): the fraction of pairs that have been 
correctly assigned to the same community.  
 

TP/(TP+FP) 
 
Recall (R): the fraction of pairs assigned to the same 
community of all the pairs that should have been in the 
same community. 
 

TP/(TP+FN) 
 
F-measure 

2PR/(P+R) 



• Cluster Cohesion: Measures how closely related 
are objects in a cluster 

• Cluster Separation: Measure how distinct or 
well-separated a cluster is from other clusters 

• Example: Squared Error 
– Cohesion is measured by the within cluster sum of squares (SSE) 

 

 

– Separation is measured by the between cluster sum of squares 

 

 

 

– Where |Ci| is the size of cluster i  
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Evaluation without ground truth 



Evaluation without ground truth 
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Evaluation without ground truth 
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With semantics: 
 

 (ad hoc) analyze other attributes (e.g., profile, 
content generated) for coherence 

 human subjects (user study) Mechanical Turk 
Visual representation (similarity/adjacency matrix, 
word clouds, etc) 



113 

 Jure Leskovec, Anand Rajaraman, Jeff Ullman, Mining of Massive 
Datasets,  Chapter 10, http://www.mmds.org/ 
 

 Reza Zafarani, Mohammad Ali Abbasi, Huan Liu, Social Media Mining: An 
Introduction, Chapter 6, http://dmml.asu.edu/smm/ 
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Basic References 

http://dmml.asu.edu/users/reza


114 

Questions? 


