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The basic random graph model

* The measurements on real networks are usually
compared against those on “random networks”

* The basic G, , (ErdGs-Renyi) random graph model.
— n : the number of vertices
—0<p<l

— for each pair (i,j), generate the edge (i,j) independently
with probability p

— Expected degree of a node: z = np



Degree distributions

f
B f,. = fraction of nodes with degree k
= probability of a randomly
selected node to have degree k
fo 4---

k degree

* Problem: find the probability distribution that best fits the
observed data



Power-law distributions

 The degree distributions of most real-life networks follow a power law
p(k) =Ck™

* Right-skewed/Heavy-tail distribution
— there is a non-negligible fraction of nodes that has very high degree (hubs)
— scale-free: no characteristic scale, average is not informative

* In stark contrast with the random graph model!
— Poisson degree distribution, z=np

0 =L
p( )_Ee

— Concentrated around the mean
— the probability of very high degree nodes is exponentially small



Power-law signature

* Power-law distribution gives a line in the log-log plot

log p(k) = -a logk + logC

frequency log frequency

degree

N\

log degree

* a . power-law exponent (typically 2 < a < 3)
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Exponential distribution

* Observed in some technological or collaboration

networks
p(k) = Ae

e |dentified by a line in the log-linear plot
log p(k) =- Ak + log A
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Measuring power-laws

How do we create these plots? How do we measure the power-law
exponent?

Collect a set of measurements:

— E.g., the degree of each page, the number of appearances of each word in a
document, the size of solar flares(continuous)

Create a value histogram
— For discrete values, number of times each value appears

— For continuous values (but also for discrete):
* Break the range of values into bins of equal width
* Sum the count of values in the bin
* Represent the bin by the mean (median) value

Plot the histogram in log-log scale
— Bin representatives vs Value in the bin



Discrete Counts
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Measuring power laws
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Logarithmic binning

 Exponential binning
— Create bins that grow exponentially in size

— In each bin divide the sum of counts by the bin length
(number of observations per bin unit)
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Cumulative distribution

Compute the cumulative distribution

— P[X=x]: fraction (or number) of observations that
have value at least x

— It also follows a power-law with exponent a-1
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Pareto distribution

e A random variable follows a Pareto
distribution if

P[X > X] =C X_B X Z Xin

* Power law distribution with exponent a=1+f3



Zipf plot

There is another easy way to see the power-
law, by doing the Zipf plot
— Order the values in decreasing order

— Plot the values against their rank in log-log scale
* i.e., for the r-th value x, plot the point (log(r),log(x,))

— If there is a power-law you should see something
like a straight line



Zipf’'s Law

A random variable X follows Zipf’s law if the r-th largest
value x, satisfies

X, ~rY
Same as Pareto distribution

P[X > x|~ x7""
X follows a power-law distribution with a=1+1/y
Named after Zipf, who studied the distribution of

words in English language and found Zipf law with
exponent 1
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Computing the exponent

e Maximum likelihood estimation

— Assume that the set of data observations x are
produced by a power-law distribution with some
exponent a

* Exact law: p(x) = a—l( - )_a

Xmin \Xmin
— Find the exponent that maximizes the probability
P(a|x)

1
a=1+ n{ZIn L}
i=1

) N

min

Proof in M. E. J. Newman, Power laws, Pareto distributions and Zipf's law, Contemporary Physics.



Collective Statistics (M. Newman 2003)

netwaork type n m z £ a | ot o v | Ref(s).
film actors undirected 440913 2HE516 482 115.43 3.45 248 | 020 0.78 0208 | 20, 416
company directors undirected TET3 5EA02 14.44 4.60 — || 0.59 0.58 0276 105, 223
math coauthorship undirected 253239 496 489 3.92 T.57 — || 015 0.34 0120 107, 182
physics coauthorship undirected E2 000 245300 0.27 6.10 — || D45 0.56 0363 | 311, 313

% biclogy coanthorship undirected 1520251 11 803 064 15.53 4.02 — || 01088 .60 0127 | 311, 313

& | telephone call graph undirected AT 000 000 S0 000 000 4.16 2.1 B, 0
emall messages directed 50012 86300 1.44 4.095 LEj2.0 0.16 136
email address books directed 16 881 5T 029 3.88 522 — || 017 0.13 ooz | o321
student relationships | undirected 573 477 L.G66 16.01 — || 0005 0,001 —0.029 | 45
sexual contacts undirected 2810 3.2 265, 266

oz | WWW nd.sdu directed 260 504 1407135 .55 1127 [|21/24 || 011 0.29 —0.067 14, 34

-% WWW Altavista directed 2005 540046 | 2130000 000 10.46 1618 [|21/27 74

E | citation network directed TEI 230 6716108 B.57 3.0/ 51

‘E Roget's Thesaurus directed 1022 5103 4.09 4.87 — || 013 015 0157 | 244

7 | waord co-cocurrence undirected 460902 17 000 000 T0.13 2.7 .44 119, 157
Internet undirected 10 607 31002 5.08 3.3 2.5 || 0U025 0.39 —0.189 86, 148

= | power gnd undirected 40941 6504 267 18.04 — || 0.0 0080 0002 | 416

% train routes undirected 58T 19603 66,79 2.16 - 0.69 —0.033 | 366

T | software packages directed 1439 1723 1.20 2.42 L&/1.4 || 0070 0082 —0.016 | 318

T‘E software classes directed 1277 2213 1.61 1.51 — || 0023 ERINEE —0.11%9 | 395

| electranie circuits undirected 24 0a7 51248 4.34 11.05 3.0 || 0nao10 0030 —0.154 155
peer-to-peer nebwork undirected Ba0 1296 1.47 428 2.1 0012 0011 —0.366 | 6, 354
metabaolic network undirected TGS 1686 0.64 2.56 22 || 0a0gn 0.67 0240 | 214

E protein interactions undirected 2115 2240 212 6.80 24 || 0072 0,071 —0.156 | 212

_E] marine food web directed 135 598 4.43 2.05 — || 0.6 0.23 —0.263 | 204

5 | freshwater food web directed 02 0a7 10.54 1.90 — || D20 0087 —0.326 | 272
neural network directed a7 2350 7.68 3.07 — || 018 0.28 —0226 | 4186, 421

TABLE I1 Basic statistics for a number of published neterorks. The properties measured are: type of graph, directed or undirected; total number of vertices n; total
number of edges m; mean degree z; mean vertex—vertex distance £; exponent o of degree distributicon if the distribution follows a pawer law (or “= if not; infout-degres

exponents are given for directed graphs); clustering coefficient 1 from Eq. (3); clustering cosfficient & fram Eq. (6); and degree correlation coefficient v, Sec. ITLF.
Tha last ~alivmn dives the cdtaticoniai e the netarork i1 the FiELaorankhy Blanlk entries indicats nnavailsble dats



Power Laws - Recap

e A (continuous) random variable X follows a power-
law distribution if it has density function

p(x)=Cx"“

* A (continuous) random variable X follows a Pareto
distribution if it has cumulative function

P[X > X: =CxP? power-law with a=1+f

* A (discrete) random variable X follows Zipf’s law if
the the r-th largest value satisfies

X =CrY power-law with a=1+1/y

r



Average/Expected degree

* For power-law distributed degree

—ifa =2, itis a constant

a—1

ElX] = a—mein

—ifa< 2, it diverges

* The expected value goes to infinity as the size of the
network grows

e The fact that a > 2 for most real networks
guarantees a constant average degree as the
graph grows



The 80/20 rule

* Top-heavy: Small fraction of values collect

most of distribution mass

W

fraction of wealth

1_

o =21
o =22
o =24
\af:z.?
o =35
e L
02 04 06 08

fraction of population P

* This phenomenon becomes
more extreme when a < 2
1% of values has 99% of mass

* E.g.name distribution



The effect of exponent
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Generating power-law values

* Asimple trick to generate values that follow a
power-law distribution:

— Generate values 7 uniformly at random within the
interval [0,1]

— Transform the values using the equation
X = Xpin(1 — 1)~/ (@D

— Generates values distributed according to power-
law with exponent o



Clustering (Transitivity) coefficient

* Measures the density of triangles (local
clusters) in the graph

* Two different ways to measure it:

Ztriangles centeredat nodei

C) — _
) triples centeredat nodei

e The ratio of the means



Example

c) — 3 :E
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Clustering (Transitivity) coefficient

* Clustering coefficient for node i

C - triangles centeredat nodei
" triples centeredat nodei

co-1c
N

* The mean of the ratios



Example

1 C(z):1(1+1+1/6):1—3
5 30
3
2 > C(l):é
8

* The two clustering coefficients give different
measures

e Cincreases with nodes with low degree



Collective Statistics (M. Newman 2003)

network type n ™ z £ o o o) " Refis).
film actors undirected 440013 2E516 482 118.4% 348 243 0.0 0.78 0208 | 20, 418
company directors undirected TET3 55302 14.44 460 — | 0.59 0.88 0276 105, 323
math ccauthorship undirected 253330 406 489 3.02 T.5T — | 015 0.84 0,120 107, 152
physics coauthorship | undirected 52000 2453800 0.27 .10 — | 045 0.56 0463 | 311, 313

% biclogy coauthorship | undirected 15301251 11 802 064 15.53 4.02 — | 0088 | 060 0127 | 311, 313

# | telephone call graph undirected AT 000 000 S0 000 00 a.16 21 B, 9
email messages directed EO012 86300 1.44 4.05 L5/2.0 0.16 136
email address books directed 16 881 57020 3.38 522 — | 017 0.1% o002 | a2
student relationships | undirected 573 477 166 | 1601 — | 0ans | 0001 —0.020 | 45
sexual contacts undirected 2810 a2 265, 266

o | WWW nd.adu directed 260 504 1497135 555 | 11.27 [ 21/24 n.11 0.29 —0.067 14, 34

-% WWW Altavista directed 203 5409046 | 2 130000 000 10.46 | 1618 [ 2.1/27 74

E | citation network directed TE3 339 6716108 B.AT 3.0/ a51

'-g Roget's Thesaurus directed 1022 5103 4.9% 4.87 — | 013 0.15 0167 | 244

7 | word co-ccourrence undirected 460902 17 000 00 T0.13 2.7 0.44 119, 167
Internet undirected 10697 41902 5.098 331 2.5 0035 | 059 —0.189 86, 148

= | power grid undirected 4941 G504 267 | 1804 — | 010 0,080 0003 | 416

E’] train routes undirected 58T 19603 (6. 79 216 - 0.69 —0.033 | 366

T | software packages directed 143% 1723 1.20 2.42 16/1.4 0070 | 0082 —0.016 | 318

j'g acftware classes directed 1377 2213 1.61 1.51 — | 0033 | 0012 —0.11% | 395

= | electranic circuits undirected 24097 53248 4.34 | 1105 340 0010 | 0.030 —0.154 156
peer-to-peer network undirected Ba0 1296 147 4.28 2.1 0012 0.011 —0.366 6, 364
metabaolic network undirected TES 3686 0.64 2.56 2.2 nos0 | 067 —0240 | 214

E protein interactions undirected 2115 2240 212 .50 24 noTz2 | 0071 —0.156 | 212

_E] marine food web directed 135 508 4.43 2.05 — | 016 023 —0263 | 204

5 | freshwater food web directed 02 297 10,84 1.90 — | 020 0087 —0426 | 272
neural netwark directed a7 2359 7.68 207 — | 018 0.28 —0226 | 416, 421

TABLE Il Basic statistics for a number of published neterorks. The propertiss measured are: type of graph, directed or undirected; total number of vertices n; total
number of edges m; mean degree z; mean vertex—vertex distance £; exponent o of degree distribution if the distribution fallows a power law (or “=" if not; infout-degres

exponents are given for directed grapha'}; clustering coefficient 1" from Eq. i3); clustering coefficient ) from Eq. (6); and degree correlation cosfficient r, Sec. IILF.
The last column gives the citation(s) for the netwcrk in the bibliography. Blank entries indicate unavailable data.



Clustering coefficient for random graphs

* The probability of two of your neighbors also being neighbors
is p, independent of local structure
— clustering coefficient C=p
— when the average degree z=np is constant C =0(1/n)

Table 1: Clustering coefficients, C', for a number of different networks; n is
the number of node, z is the mean degree. Taken from [146].

Network m z C C for
measured | random graph
Internet [153] 6,374 3.8 0.24 0.00060
World Wide Web (sites) [2] 153,127 | 352 || 0.1 0.00023
power grid [192] 4,941 2.7 0.080 0.00054
biology collaborations [140) 1,520,251 | 15.5 0.081 0.000010
mathematics collaborations [141] || 253,339 3.9 0.15 0.000015
film actor collaborations [149] 449,913 | 1134 0.20 0.00025
company directors [149] 7.673 14.4 0.59 0.0019
word co-occurrence [90) 460,902 | 70.1 0.44 0.00015
neural network [192] 282 14.0 0.28 0.049
metabolic network [69] 315 28.3 0.59 0.090
food web [138] 134 8.7 0.22 0.065




Small worlds

Millgram’s experiment: Letters were handed out to people in
Nebraska to be sent to a target in Boston

People were instructed to pass on the letters to someone they
knew on first-name basis

The letters that reached the destination followed paths of
length around 6

Six degrees of separation: (play of John Guare)

Also:

— The Kevin Bacon game
— The Erdds number



Measuring the small world phenomenon

d;; = shortest path between iand j

Diameter: d=maxd.
ij

Characteristic path length:

1

l= E di- Problem if no path between two nodes
]

n(n' 1)/2 i>j

Harmonic mean

1
E_l _ d-l
n(n-1)/2§ y

Also, distribution of all shortest paths



Effective Diameter

* Disconnected components or isolated long
paths can throw off the computation of the
diameter.

* Effective diameter: the interpolated value
where 90% of node pairs are reachable

Effective
Diameter

# reachable pairs

11111111111

* Computation:

— f(d): for integer d, the fraction of pairs in the graph that
have distance less or equal to D

~ f(0):forreal xid — 1 < x < d, f(x) = HLED

— Effective Diameter: the real value x such that f(x) = 0.9




Collective Statistics (M. Newman 2003)

network type n ™ z £ o o o) " Refis).
film actors undirected 440013 2E516 482 118.4% 348 243 0.0 0.78 0208 | 20, 418
company directors undirected TET3 55302 14.44 460 — | 0.5 0.88 0276 105, 323
math ccauthorship undirected 253330 406 489 3.02 T.5T — | 0as 0.84 0,120 107, 152
physics coauthorship | undirected 52000 2453800 0.27 .10 — | 045 0.56 0463 | 311, 313

% biclogy coauthorship | undirected 15301251 11 802 064 15.53 4.02 — | 0aos8 | 060 0127 | 311, 313

# | telephone call graph undirected AT 000 000 S0 000 00 a.16 21 B, 9
email messages directed EO012 86300 1.44 4.05 L5/2.0 0.16 136
email address books directed 16 881 57020 3.38 522 — | 0a7 0.1% o002 | a2
student relationships | undirected 573 477 166 | 1601 — | 0ans | 0.001 —0.020 | 45
sexual contacts undirected 2810 a2 265, 266

o | WWW nd.adu directed 260 504 1497135 555 | 11.27 | 2.1/24 n.11 0.29 —0.067 14, 34

-% WWW Altavista directed 203 5409046 | 2 130000 000 10.46 | 1618 | 2.1/2.7 74

E | citation network directed TE3 339 6716108 B.AT 3.0/ a51

'-g Roget's Thesaurus directed 1022 5103 4.9% 4.87 — | 013 0.15 0167 | 244

7 | word co-ccourrence undirected 460902 17 000 00 T0.13 2.7 0.44 119, 167
Internet undirected 10697 41902 5.098 331 2.5 0035 | 059 —0.189 86, 148

= | power grid undirected 4941 G504 267 | 1504 — | 0an 0,080 0003 | 416

E’] train routes undirected 58T 19603 (6. 79 216 - 0.69 —0.033 | 366

T | software packages directed 143% 1723 1.20 2.42 16/1.4 0070 | 0082 —0.016 | 318

j'g acftware classes directed 1377 2213 1.61 1.51 — | 0033 | 0012 —0.11% | 395

= | electranic circuits undirected 24097 53248 4.34 | 1105 340 0010 | 0.030 —0.154 156
peer-to-peer network undirected Ba0 1296 147 4.28 2.1 0012 0.011 —0.366 6, 364
metabaolic network undirected TES 3686 0.64 2.56 2.2 nos0 | 067 —0240 | 214

E protein interactions undirected 2115 2240 212 .50 24 noTz2 | 0071 —0.156 | 212

_E] marine food web directed 135 508 4.43 2.05 — | 08 023 —0263 | 204

5 | freshwater food web directed 02 297 10,84 1.90 — | 020 0087 —0426 | 272
neural netwark directed a7 2359 7.68 207 — | nas 0.28 —0226 | 416, 421

TABLE Il Basic statistics for a number of published neterorks. The propertiss measured are: type of graph, directed or undirected; total number of vertices n; total
number of edges m; mean degree z; mean vertex—vertex distance £; exponent o of degree distribution if the distribution fallows a power law (or “=" if not; infout-degres

exponents are given for directed grapha'}; clustering coefficient 1" from Eq. i3); clustering coefficient ) from Eq. (6); and degree correlation cosfficient r, Sec. IILF.
The last column gives the citation(s) for the netwcrk in the bibliography. Blank entries indicate unavailable data.



Small worlds in real networks

For all real networks there are (on average) short paths
between nodes of the network.

— Largest path found in the IMDB actor network: 7

Is this interesting?
— Random graphs also have small diameter
(d=logn/loglogn when z=w(logn))

Short paths are not surprising and should be combined
with other properties

— ease of navigation

— high clustering coefficient



Connected components

* For undirected graphs, the size and
distribution of the connected components
— is there a giant component?

— Most known real undirected networks have a
giant component

* For directed graphs, the size and distribution
of strongly and weakly connected components



Connected components — definitions

* Weakly connected components (WCC)
— Set of nodes such that from any node can go to any node via an undirected path
e Strongly connected components (SCC)

— Set of nodes such that from any node can go to any node via a directed path.
— IN: Nodes that can reach the SCC (but not in the SCC)
— OUT: Nodes reachable by the SCC (but not in the SCC)




The bow-tie structure of the Web
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The largest weakly connected component contains 90% of the nodes



SCC and WCC distribution

 The SCC and WCC sizes follows a power law
distribution

— the second largest SCC is significantly smaller
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Another bow-tie

Who lends to whom




Web Cores

* Cores: Small complete bipartite
graphs (of size 3x3, 4x3, 4x4)

— Similar to the triangles for
undirected graphs
* Found more frequently than
expected on the Web graph

* Correspond to communities of
enthusiasts (e.g., fans of japanese
rock bands)




Motifs

* Most networks have the same characteristics
with respect to global measurements

— can we say something about the local structure of
the networks?

* Motifs: Find small subgraphs that over-
represented in the network



Example

* Motifs of size 3 in a directed graph

S SN >
[ D B B




Finding interesting motifs

 Sample a part of the graph of size S
* Count the frequency of the motifs of interest

 Compare against the frequency of the motif in
a random graph with the same number of
nodes and the same degree distribution



Generating a random graph

* Find edges (i,j) and (x,y) such that edges (i,y)
and (x,j) do not exist, and swap them

— repeat for a large enough number of times

degrees of i,j,x,y
G are preserved G-swapped



The feed-forward loop

* Over-represented in gene-regulation networks

— a signal delay mechanism X q\\\\\
e v & e 7

0.01 +

8 P b
£ 0.005
3

RIRIET:

Subnetwork size |\/|I|O et al. 2002




Middle — High School

Homophily

Love of the same: People tend to have friends with common interests
— Students separated by race and age




Measuring Homophily

If the fraction of cross-gender edges is
significantly less than expected, then there is
evidence for homophily

gender male with probability p
gender female with probability q

Probability of cross-gender edge?

#cross _gender _edges

<< 2
#edges P



Measuring Homophily

= “significantly” less than

" Inverse homophily

» Characteristics with more than two values:
* Number of heterogeneous edges (edge between
two nodes that are different)



Mechanisms Underlying Homophily:
Selection and Social Influence

Selection: tendency of people to form friendships with
others who are like then

Socialization or Social Influence: the existing social
connections in a network are influencing the individual
characteristics of the individuals

Social Influence as the inverse of Selection

Mutable & immutable characteristics



The Interplay of Selection and Social
Influence

Longitudinal studies in which the social connections and
the behaviors within a group are tracked over a period of
time

Why?

- Study teenagers, scholastic achievements/drug use
(peer pressure and selection)

- Relative impact?

- Effect of possible interventions (example, drug use)



The Interplay of Selection and Social
Influence

Christakis and Fowler on obesity, 12,000 people over a period of 32-years

People more similar on obesity status to the network neighbors than if
assigned randomly

Why?

(i) Because of selection effects, choose friends of similar obesity status,

(ii) Because of confounding effects of homophily according to other
characteristics that correlate with obesity

(iii) Because changes in the obesity status of person’s friends was exerting
an influence that affected her

(iii) As well -> “contagion” in a social sense



Tracking Link Formation in Online Data: interplay
between selection and social influence

= Underlying social network
= Measure for behavioral similarity
Wikipedia
Node: Wikipedia editor who maintains a user account and user talk page
Link: if they have communicated with one writing on the user talk page of the other

Editor’s behavior: set of articles she has edited

Neighborhood overlap in the bipartite affiliation network | N A ﬂ NB |
of editors and articles consisting only of edges between
editors and the articles they have edited | N A U NB |

FACT: Wikipedia editors who have communicated are significantly more similar in their
behavior than pairs of Wikipedia editors who have not (homomphily), why?

Selection (editors form connections with those have edited the same articles) vs Social
Influence (editors are led to the articles of people they talk to)



Tracking Link Formation in Online Data: interplay
between selection and social influence

Actions in Wikipedia are time-stamped
For each pair of editors A and B who have ever communicated,
o Record their similarity over time
o Time 0 when they first communicated -- Time moves in discrete units, advancing by one “tick”
whenever either A or B performs an action on Wikipedia
o Plot one curve for each pair of editors
Average, single plot: average level of similarity relative to the time of first interaction

0.03

_'i,,,,,acﬁ,,'gm,s fol | | ' Similarity is clearly increasing both before
0.025| L=~ baseline and after the moment of first interaction
(both selection and social influence)
0.02

Social influence:
continued slower

Not symmetric around time O (particular

£ iictase sty role on similarity): Significant increase
S 0.015 after first contact
s Toas before they meet
Selection: rapid
i in similari H 1 1 1
il e vk ety Blue line shows similarity of a random
pair (non-interacting)
0.005

S0 150 100 -s0 0 50 100 150 200
Number of edits after first communication
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